On the Linkage Between CMAC Age

and its Morphological and Biological
Features

Billy Pettersson Pablo




Kandidatuppsats 2012:8
Matematisk statistik
September 2012

www.math .su.se

Matematisk statistik
Matematiska institutionen

Stockholms universitet
106 91 Stockholm



wala Mathematical Statistics
Stockholm University

Vi v st .
Bachelor Thesis 2012:8
StO_CkhO_].IIl http://www.math.su.se
University

On the Linkage Between CMAC Age and its
Morphological and Biological Features

Billy Pettersson Pablo*

September 2012

Abstract

As metastasis is the primary cause of cancer lethality, understand-
ing cell migration and cell adhesion plays a major roll in unraveling
the mechanisms underlying cancer progression. In the laboratory of
Staffan Stromblad at Karolinska Institutet, the coordinating unit of a
EU network of excellence, researchers use a combination of advanced
experimental setups, fluorescence microscopy and quantitative statisti-
cal analysis to investigate the systems of cell migration. As the behav-
ior of cancer cells is partly affected by cell-matrix adhesion complexes
(CMACs), attachments to the extracellular matrix, in this thesis we
investigate the possibility of describing the relation between the age
of a CMAC and a number of related features. Our findings demon-
strate varying degrees of dependence due to the treatments used on
the cellular level and due to the grouping of CMACs.
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1 Introduction

1.1 Background

Cell migration and cell adhesion constitute the backbone of many physiolog-
ical processes such as development, wound healing and disease progression.
Specifically, cell migration and cell adhesion are fundamental to the pro-
cess of metastasis, which itself is a major driver of cancer mortality. Thus,
investigating cell migration and cell adhesion is of primary and principal
importance in understanding the mechanisms behind cancer progression. In
the laboratory of Staffan Stromblad at Karolinska Institutet, the coordi-
nating laboratory of an EU network of excellence in Systems Microscopy,
long-term efforts have been launched to conduct biological research aimed to
illuminate the processes of cell migration and cell adhesion using an integrat-
ed platform of advanced microscopy, data mining and statistical modelling;:
a Systems Microscopy research platform[6]. More specifically, the aim of the
platform is to focus on both the cellular and molecular level. In particular,
the focus on the sub-cellular level has been on cell-matrix adhesion com-
plexes (CMACs) and the F-actin network. CMACs act as communication
hubs between the cell and its environment, the extra-cellular matrix. In
microscopic analysis of cells, CMACs are detected and segmented through
automated algorithms, recording measurements of a number of morpholog-
ical and dynamical properties (see Figure .

Figure 1: Image display of a cell with examples of measured cell properties
and CMAC properties.



1.2 Cell-matrix adhesion complex

CMACs with their dynamic nature act as an information linkage between the
extra-cellular matrix and parts of the cytoskeleton, and are thus interacting
in most of the major cell functions|7]. With this in mind CMACs are an
obvious target in the study of cancer cell migratory behaviour.

1.3 Description of data

The data set consists of 137605 observations of a number of CMAC units
with a total number of 34 variables. Among these, one variable describes
the speed of the cell, and 29 variables describe different features of CMACs
(for a complete list, see in the Appendix). We also have 4 indexing
variables, that specify the cell ID, CMAC ID, perturbation, and time of each
observation. The variable time is in itself not important, but it is used to
create a variable CMAC age, that specifies the age of a CMAC for each time
it has been observed.

However, CMACs have a wide variety of life expectancies, so as the func-
tion of a CMAC unit depends not only on how long it has existed, but rather
on what stage of its life it is in, we will find it useful to construct a new vari-
able, b2d (birth to death), ranging from 0 to 1, that tells us what proportion
of its life a CMAC has passed at the time of the observation. Furthermore,
using b2d we can now separate observations into, for example, three different
groups, where in group one we have the observations where the CMACs are
in an early stage of their life, group two characterizes middle-aged CMAC-
s, and group three has CMACs in their final stages of their lives, close to
disassembly. The exact number of groups shall be decided using statistical
tests, which we will see in Section [3.4

Now, as we do not know for how long the CMAC units that are observed
at the onset of the experiment (i.e. time=0) have lived, we will have to
remove these from our data. Neither do we know for how long the CMAC
units at the end of the experiment will continue to live on, and therefore we
will remove these as well. Hence, our data set is reduced to 115711 obser-
vations.

One may also note that, as we have four different perturbations, that are
geared to manipulate the behaviour of the cells in different directions, we
will have to treat our data as four different subsets, with the first one being
a group with cells that have received a DMSO (control) treatment, and the
other three containing observations of cells having received the three treat-



ments of Blebbistatin, RhoActivator, or RockInhibitor respectively[ﬂ These
four data sets will be named pert0, pertl, pert2, and pert3 respectively.

2 Methods

Our main objective is to fit a linear model to describe the proportional age,
b2d, of a CMAC unit using a number of variables. To do this we will per-
form linear regression and feature selection, using both stepwise regression
and the elastic net. We will also, through multivariate analysis of variance,
MANOVA, examine the possibilities of dividing CMAC units into different
age categories depending on the variable b2d. As there is a risk that some
methods lose effectiveness when background variables are too highly corre-
lated, which we suspect to be the case with our data, the initial task is to
counter this by the usage of principal component analysis, PCA. Another
justification for using PCA is to transform the data set so as to meet the
requirements of distribution symmetry (approximate normality).

2.1 Regression analysis

Regression analysis is a statistical procedure which includes a number of
techniques for analyzing the relationship between one or more response vari-
ables and one or more background variables. In our case, regression is used
for estimating the response variable given the background ones.

2.1.1 Linear regression

In a linear regression model, one has made an assumption, among others
(see section n Appendix), claiming that the relationship between the
response variable and the explanatory variables is linear. Through adding
an extra term, €, that will explain the disturbance we get the following linear
model,

y=a+XB+e, (1)

where « is the intercept, and y, X, 3, and € are vectors/matrices of the
observed data, the estimated parameters, and the errors respectively, as
defined below.

Y1 11 0 Tim B €1

Y2 21t T2m B2 €2
y=1|.1|.X=| . . .8 = . |.e=] .|,

Yn Tnl *° Tpm ﬁm €n

In crude terms specific to this study Blebbistatin and RockInhibitor lead to faster
cells and decreased CMAC lifetimes while RhoActivator does the contrary on both levels.



where m is the number of variables, and n is the number of observations.
This, (1), is called the regression function. There are a number of methods
to decide the parameters in 3, and in our case the criterion of ordinary least
squares (OLS) will be used. The variable y will represent observations on
b2d, while X represents observations on remaining variables.

A linear model estimated by OLS is achieved by minimizing the squared
orthogonal distances between observed values of the response variable and
the values estimated by the regression function, as seen in [6.3.1

2.1.2 Coefficient of determination

The coefficient of determination, R?, is the proportion of the variance in the
response variable, that can be explained by the variance in the explanatory
variables of the model. It is defined as R? = S5medel and ranges from 0 to

5SS, otal
1. It is commonly used when analyzing a fit of a model.

The adjusted R?, R?, is a modified version of R?, where the number of
explanatory variables is taken into account. It is defined as follows,

SSerrordftotal
SStotal dferror ’

where dfiotq; and dferror are degrees of freedom, n — 1 and n —m — 1 respec-
tively, and the summed squares are defined as

R?’=1-

n
SSmodel = Z(Ql - g)27
i=1
n
SSerror = Z(yz - gi)Qa
i=1
n
SStotal = Z(yz - @2,
i=1
where §;, i, and g are i*" predicted, i observed, and mean of the response
variable.

2.1.3 Feature selection: stepwise regression

In stepwise regression we start off with only an intercept and the response
variable, and then alternate adding a significant variable, or removing a
non-significant one. In each step an F-statistic is computed to test a model
with or without a certain variable, with the null-hypothesis being that the
variable has a zero coefficient if in the model.



2.1.4 Feature selection: the elastic net

In statistics and in particular in the fitting of linear regression models, the
main trade-off is between the accuracy and simplicity of the model. The
elastic net is a regularized regression technique which is used to reduce the
number of predictors in a regression model by means of smooth shrinkage[g].
The method is useful when there are a number of highly correlated variables,
where the elastic net’s grouping effect leads to consistent results. The for-
mulation of elastic net is to be found at in the Appendix.

2.2 MANOVA

We will find ourselves in situations where we have to explore whether mul-
tivariate groups of data are different, and as we have multiple explanatory
variables, the procedure of multivariate analysis of variance, MANOVA, is
a suiting solution for this task. As Hotelling’s T2 is a test of whether two
vectors of means are sampled from the same distribution, MANOVA anal-
ogously compares means of two or more groups. The method provides a
measure of the overall likelihood of two or more random vectors of means
being derived from the same distribution, by using the covariance matrices
of data[5]. For the mathematical definitions and procedure of MANOVA,

see in Appendix.

As in the case with ANOVA, where comparing groups pairwise increase
the risk of type I errors EL MANOVA also has problems of multiple post hoc
comparisons. It does not specify which groups that differ from each other.

We will use MANOVA to explore how changes in explanatory variables
affect the response variables. Mainly to find out how the four perturbations
affect cells, and to test hypotheses of whether the explanatory variables can
be used to predict the response ones. We will also use MANOVA in order to
find a relation between CMAC age and different CMAC features, and thus
create a way of age categorizing CMAC units.

2.3 The EM-algorithm

The expectation-maximization algorithm is an iterative procedure with the
aim of finding maximum likelihood estimates of parameters in statistical
models. The idea of the algorithm is to improve estimates through alter-
nating between an expectation step and a maximization step, where the
expectation step computes the log-likelihood of the model using the current
parameter estimates, while in the maximization step new parameter esti-
mates are obtained based on the result of the previous step by maximizing

2Type I errors occurs when the null hypothesis is rejected, even though it is true.



the log-likelihood of the model.[3] We will use the algorithm to cluster data
into a given number of groups, and see if these groups are resemblant of the
age categories.

2.4 Akaike information criterion

The Akaike information criterion, AIC, is used to measure the relative good-
ness of fit of a model, in comparison to other models, when both the com-
plexity and precision of the models are taken into account. The criterion
penalizes models as they increase in complexity[2]. Mathematical definition
is found in appendix: We will use AIC to determine the optimal
number of groups given the groups’ composition after having run the EM-
algorithm.

2.5 Principal component analysis

Principal component analysis, PCA, is a method of linear orthogonal trans-
formation, with the aim of transforming a data set into a linearly non-
correlated set of variables called principal components, i.e. converting the
covariance matrix into a diagonal matrix[I]. This is done either by an eigen-
value decomposition of the covariance matrix of data or a singular value de-
composition of the normalized data matrix. The principal components are
ordered in terms of their representative variance, thus leading to a reduction
of inputs when the original data set consists of many correlated variables.
Note that they do not affect the spatial distances between observations, but
only rotate data in a preferable direction.

3 Statistical analysis

3.1 PCA Transformation

In order to solve the phenomenon of multicollinearity between our 29 ex-
planatory variables, we transform our data into a new set, using principal
component analysis. Figure [2| and the table below display correlations be-
tween variables and the variance accounted for when each new principal
component is added in the PCA-transformed pert0 data set.

As the figure shows, we have no correlation between the principal com-
ponents of our data. Note, however, that we have not changed the spatial
distances between observations, but only introduced new axes. In the table
we find that approximately 95% of the variance is covered after adding only
14 principal components.

10
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Figure 2: Correlation between variables within data sets. To the left we have
pert0 data, and to the right PCA transformed pert0 data.

pert0 pertl pert2 pert3
0.3355 0.3096 0.3220 0.2924
0.4566 0.4797 0.4763 0.4774
0.5497 0.5621 0.5796 0.5680
0.6254 0.6381 0.6494 0.6352
0.6881 0.7035 0.7066 0.6968
0.7315 0.7586 0.7503 0.7492
0.7677 0.7999 0.7922 0.7903
0.8026 0.8348 0.8297 0.8248
0.8363 0.8682 0.8628 0.8541
10 | 0.8641 0.8944 0.8904 0.8789
11 | 0.8905 0.9163 0.9107 0.9027
12 | 0.9136 0.9358 0.9274 0.9202
13 | 0.9304 0.9488 0.9419 0.9372
14 | 0.9458 0.9604 0.9539 0.9508
15| 0.9571 0.9703 0.9649 0.9635
16 | 0.9671 0.9759 0.9735 0.9739
17 1 0.9755 0.9812 0.9802 0.9806
18 | 0.9814 0.9852 0.9852 0.9852
19 | 0.9849 0.9887 0.9892 0.9891
20 | 0.9880 0.9914 0.9918 0.9922
21 | 0.9908 0.9935 0.9941 0.9940
22 1 0.9936 0.9951 0.9963 0.9955
23 | 0.9958 0.9965 0.9975 0.9969
24 |1 0.9974 0.9977 0.9984 0.9981
25 | 0.9986 0.9987 0.9991 0.9991
26 | 0.9993 0.9994 0.9995 0.9996
27 1 0.9996 0.9998 0.9998 0.9998
28 1 0.9999 1.0000 0.9999 1.0000
29 | 1.0000 1.0000 1.0000 1.0000

0O Ui Wi+

Nej

Table 1: Accumulated variances accounted for in a data set when adding 1
or up to 29 principal components.

11



3.2 Grouping by perturbation

We are now interested to investigate the existence of any dependence be-
tween a perturbation and CMAC age. As we now have 29 variables depend-
ing on the variable pert, employing MANOVA would be a suitable choice.
We want to find out whether the effects of the four perturbations differ or
not, and therefore seek the dimension of the group means. This leads us to
formalize and test a null hypothesis, Hy, stating that the expected means
are the same for all groups.

After conducting the tests we obtain a vector of p-values, where the first
p-value tests whether the dimension is 0, i.e. all means being equal, and the
other two tests whether the dimension is 1 or 2. However, all p-values are
approximately 0, indicating that the four multivariate means fall in a three
dimensional room, and thus leading us to conclude that the four groups
differ significantly, a conclusion supported by Figure [3 which displays a
scatter plot of data represented by two canonical Variablesﬂ

o
+  Bleh
i T P Rock
i COMS0
o +  Rha
ok
ov2 L
4
-Br
*
-G F
10 | | | | | | | |
-6 4 2 0 2 4 6 8

Figure 3: This scatter plot of the full data set, represented with 2 canonical
variables and colour marked by our four perturbations, suggests that the
effects of the different perturbations differ quite significantly.

With these results in mind, we reject the null hypothesis, and hence
we will from here on consider our data as derived from four significantly
different distributions. Our four data sets will be labelled pert0 to pert3,
and contain number of observations as according to the table below.

3As opposed to PCA, the resulting canonical vectors in MANOVA are selected in
a manner to find linear combinations of the original variables that produce the largest
separation between groups with respect to the within-group variations.
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Data set pert0) pertl  pert2 pert3
Number of observations | 60518 7844 18251 29098

Table 2: Number of observations in the subgroups of data.

3.3 Linear regression
3.3.1 An initial model

An initial linear regression model per data set, will give us coefficients of
determination as presented in the table below. As the models contain all
explanatory variables, these are the maximum values of R? achievable by
linear regression analysis on our four complete data sets. The parameter
estimates are to be found in Table [9] in appendix. Note that we have used
the principal components in this case due to their relatively more symmet-
ric distributions and thus, superior suitability for OLS regression modelling
compared to our original data.

Condition | pert0 pertl pert2 pert3d full data set
R? 0.1555 0.0752 0.1071 0.0334 0.1065

Table 3: Determination coefficients derived from linear regression analyses
on our data sets.

Though the R? values might be considered quite small we can not ex-
clude the hypothesis of some of the regression coefficients being statistically
significant. There might be important relationships between the response
variable and explanatory variables, even though they do not explain much
of the variance in the response variable.

In order for the models to fit, we require for the residuals to be normally
distributed with a constant variance. To find out whether this is the case
or not, we will examine a few plots. In Figure [4] below, we find the normal
probability plots of the residuals of our four data sets. We want the residu-
als to be normally distributed, as oppose to following some trend. Normally
distributed observations are expected to be scattered tightly along the di-
agonal line, which is not completely our case.

However, we will in Section try to improve this fit, by excluding

some observations of our data due to limitations regarding measurement
precision.
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Figure 4: Normal probability plots of the residuals of our four regression
models.

3.3.2 Reduced data set

The precision of the variable b2d is dependent on the length of the time
intervals between observations. Let us say, for example, that a CMAC is
observed only once. Then its whole lifetime, with its different features, will
be summed up in only one observation. This gives us reason to analyse a
reduced data set, where such observations have been excluded.

We exclude observations where b2d=0 from our data, and investigate
the outcome. First thing we find is that all R? values have increased (Table
below), though not remarkably. Neither in the normal probability plots
of the residuals, Figure [ in Appendix, can we spot any significant improve-
ments. However, for the reasons stated in the beginning of this section,
continued analysis will be performed on reduced data sets.

Data set pert0  pertl pert2 pert3 full data set
Number of Observations | 59241 6824 17992 25244 109301
R? 0.1577 0.0841 0.1086 0.0372 0.1096

Table 4: Number of observations per reduced data set, and determination
coefficients of linear regression models.
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3.3.3 Feature selection

Let us now find out if we can reduce the number of inputs through different
means of feature selection. With stepwise regression we can keep R? almost
the same size as of full models, though the numbers of explanatory variables
have decreased (see Table [5)). For parameter estimates, see Table

Figure presents the contributing variables based on the elastic net.
With even more stringent requirements, elastic net in combination with ten-
fold cross validation, only the variables presented in Table [L7] pass the tests
of significance and contribute to our EN-models. Figure [5| displays a sum-
mary of the elastic net procedure. It shows how the R? values change when
excluding variables from the models. It appears as if we can remove a num-
ber of explanatory variables while keeping the coefficients of determination
somewhat unchanged.

Condition pert0  pertl pert2 pert3d full data set

R? 0.1553 0.0728 0.1056 0.0325 0.0687

R? 0.1550 0.0716 0.1049 0.0320 0.0685
Number of variables 24 10 14 17 24

Table 5: Results from stepwise regression modelling on data.

Figure 5: Summary of the variable selection process of elastic net, with R?
represented as dotted lines.
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3.4 Categorization by age

In this chapter we will try to define the groups in which to divide our ob-
servations. This will be done through using on one hand MANOVA, and on
the other hand the EM-algorithm.

3.4.1 MANOVA

As mentioned, we will divide observations into groups, depending on what
stage of its life the CMAC unit is currently in at the time of the observa-
tion. At first we need to decide the preferable number of age categories, and
therefore use the method of multivariate analysis of variance, MANOVA.

Table [18]in appendix presents p-values for testing whether the means lie
in a space of dimension 0, 1, and so on. In conclusion we can say that for
the majority of our data sets we can, on a 5% significance level, reject the
hypothesis of the means lying in a three dimensional space or less. Unfor-
tunately, MANOVA does not reveal which groups that are having vectors
of means that differ from the rests, but we hope to get some clarifications
using the expectation-maximization algorithm.

3.4.2 EM-algorithm

Results presented in this chapter are achieved through the employment of
the EM-algorithm. Our intention is to decide how to split each data set into
different groups, and hope that these groups will be resemblant of different
age categories. In Table [I9, we have used the Akaike information criterion
to select preferable ones among EM-algorithm groupings. However, if we
look at the b2d means of the subgroups (Figure @ we can spot no obvious
distinctions in sample distribution, although some means appear to be high-
er/lower than the rest.

16
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Figure 6: Means of the values observed on the b2d variable in the subgroups
given by the EM-algorithm. On the z axis we have 4 different groupings of
each data set, from 2-5 subgroups, and on the y axis we can see the b2d

means of each subgroup.

4 Extra analysis of pert0 data

As we can observe a great variety of lengths on CMAC life-span, we decide
to split the data set pert0 into a number of subgroups, and perform an extra
analysis. In this case, a subgroup contains all observations of each CMAC
unit that will reach a certain age. Data is named from pert00 to pert05 and
contain observations as described in the table below.

Data set pert00 | pertOl | pertO2 | pert03 | pert04 | pertO5
Age at <5 <10 <20 <40 <50

disassembly > 5 > 10 > 20 > 40 > 50
Number of observations | 19935 | 19433 | 14984 5646 333 187

Table 6: Distribution of observations from pert0 data into subgroups.
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4.1 Linear regression

We will now go through results of regression analysis performed on data sets
pert00-pert05, in a similar fashion as we did with the pert0-pert3 data. To
begin with, after computing OLS parameter estimates (Table , we notice
an immense difference in R? numbers compared to what we have observed
earlier, as well as well fitted residual plots (Figure , especially in the cases
of pert03-05. However, we assume that the reason for this is that in the
case of short life periods, the CMACs go rapidly through different stages in
a manner that lets us treat observations as independent (random), while in
the case of long life CMACs the changes they go through between obser-
vations are less palpable. Therefore it might be a good idea to disregard
results based on those data sets. Another legitimate reason for cautionary
interpretations is the number of unique CMAC units involved in the analys.
On both of the counts mentioned above the groups pert04 and pert05 fail
to meet our criteria.

Regarding the elastic net, R? based selection gives contributing variables
listed in Figure and Figure [7] summarizes the procedure. For the same
reasons as stated in the above section, we can see instability in the variable
selection for especially the pert05 data set.

If we instead combine with the more stringent criteria of cross validation
we get a model of variables listed in Table with estimated parameters
displayed in Table However, due to the sparse number of variables
passing the criteria, we lose great proportions of the R?.

’ Condition \ pert00 pert01 pert02 pert03 pert04 pert05
Rfcu” 0.1049 0.1996 0.1882 0.1746 0.4166 0.7394
R? 0.1049 0.1993 0.1879 0.1723 0.3750 0.5501

stepwise

R2, ., cov | 0.0651 0.1686 0.1518 0.0535 0.0205 0.0473

Table 7: Coefficients derived from stepwise regression modeling on subgroups
of pert0. Estimated parameter coefficients are to be found in Table and

Table[17) of appendix.
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Figure 7: Summary of the variable selection process of elastic net, with R?
represented as dotted lines.

5 Discussion

5.1 Biological aspects

As the role of cell migration and cell adhesion is fundamental to many physi-
ological phenomena such as cancer progression and metastasis, studying cell
migration and cell adhesion has been of primary importance in the molecular
biology branch of cancer research. In this study the particular aim has been
focused on cell-matrix adhesion complexes (CMACs) as they constitute the
means through which the cell communicates with its environment.

Our analysis shows that the relationship between the age of the CMAC-
s, and other morphological and biological features of CMACs undergoes
palpable changes as the cells within which the CMACs are embedded are
perturbed with different treatments.

5.2 Statistical aspects

Our main objective was to describe a relationship between the age of the
CMACs and various explanatory variables. Though few things appear as
naturally linear as oppose to, for example, logarithmic or of higher order,
our approach was to try, with various methods, to find linear connections
since those are the simplest and most understandable types to deal with

19



when having a large number of explanatory variables, and therefore consti-
tute a reasonable first analysis.

Regarding assumptions of independent observations, which is required
when constructing a linear model, we have two cases. For a large data set
of observations of short lived CMACs, we can assume approximate indepen-
dence between observations. The reason for this is that those CMACs will
rapidly develop and change their features. CMACS that do not disassemble
quickly, on the other hand, keep their features for longer periods of time, and
we are thus having a dependence between observations of the same CMAC.

However, in cases where multiple linear regression models do not appear
to have a good fit, one still can not reject the hypothesis of some of the
regression coefficients being statistically significant. There might be impor-
tant relationships between the response variable and explanatory variables,
even though they do not explain much of the variance in the response vari-
able. Through the employment of feature selection methods we can present
a number of selected variables that have passed the selection algorithm’s
criteria. Whether or not they are actually reasonable from a biological per-
spective is for the biologists to determine.

We use MANOVA to test if multivariate means are derived from the
same sampling distribution, since MANOVA is an adequate method for the
task. However, MANOVA does not tell which groups (if any) that differ
from the rest. That is why we also incorporate the EM-algorithm. Though
the indexing given by the EM-algorithm did not clearly match age any cat-
egories we can not reject the hypothesis that there is an efficient method of
determining CMAC ages given certain explanatory variables.

Possible improvements upon our presented models can potentially be
achieved by i) means of non-parametric/non-linear (in silico) models, and
i1) expansion of biological experiments and inclusion of extended variable
sets (in vitro).
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6 Appendix

6.1 Tables
6.1.1 List of variables

Descriptive Indexing | Perturbations
1 CMAC Area CMAC ID DMSO
2 CMAC Major Axis Cell ID Bleb
3 CMAC Minor Axis Pert Rho
4 CMAC Eccentricity Time Rock
) CMAC Angle
6 CMAC Perimeter
7 CMAC Convex Area
8 CMAC Solidity
9 CMAC DistBorder
10 CMAC DistCenter
11 CMAC MeanlRaw-chl
12 CMAC Local BG-chl
13 CMAC Meanl-chl
14 CMAC Stdevl-chl
15 CMAC MaxI-chl
16 CMAC Integrated Intensity-chl
17 CMAC MeanlIRaw-ch2
18 CMAC Local BG-ch2
19 CMAC Meanl-ch2
20 CMAC Stdevl-ch2
21 CMAC MaxI-ch2
22 CMAC Integrated Intensity-ch2
23 CMAC Pearson-chlvs2
24 CMAC Growth of Area
25 CMAC Length Growth
26 CMAC Delta Intensity-chl
27 | CMAC Delta Integrated Intensity-chl
28 CMAC Delta Intensity-ch2
29 | CMAC Delta Integrated Intensity-ch2
30 Cell Speed

Table 8: List of measured biological and morphological variables and indexing
variables.
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6.1.2 Regression models

Data set

Variables pertO pertl pert2 pert3
intercept 0.6532 | 0.5423 0.603 | 0.5811
CMAC Area -0.1083 | -0.0599 | 0.0061 | -0.1531
CMAC Major Axis 0.0302 0.037 | 0.0214 0.049
CMAC Minor Axis -0.0537 | -0.2031 | -0.1591 | -0.1799
CMAC Eccentricity -0.0179 | -0.0071 | -0.0915 | -0.007
CMAC Angle 0 0 0 0
CMAC Perimeter 0.0014 | -0.0015 0.001 | -0.0087
CMAC Convex Area 0.0411 | -0.0022 | -0.0066 | 0.1143
CMAC Solidity -0.0163 | 0.0598 | 0.0216 | 0.0253
CMAC DistBorder -0.0086 | -0.0019 | -0.0088 | -0.0018
CMAC DistCenter -0.0003 | 0.0005 | 0.0012 | 0.0002
CMAC MeanIRaw-chl 0.1086 | 0.6087 | -0.0927 | -0.2232
CMAC Local BG-chl 0.0015 -0.02 | 0.0032 | -0.0005
CMAC Meanl-chl -0.1526 | -0.5693 0.045 0.258
CMAC Stdevl-chl -0.0002 | 0.0017 | -0.0011 | 0.0026
CMAC MaxI-chl -0.0164 | -0.0469 | -0.0047 | -0.1004
CMAC Integrated Intensity-chl 0.0011 | -0.0024 | 0.0002 | 0.0047
CMAC MeanlIRaw-ch2 0.0706 | 0.0392 | -0.0717 | -0.0661
CMAC Local BG-ch2 0.001 | 0.0005 | 0.0042 | 0.0036
CMAC Meanl-ch2 -0.0641 | -0.044 | 0.0303 | 0.0254
CMAC StdevI-ch2 -0.0007 | 0.0001 | 0.0011 | -0.0011
CMAC MaxI-ch2 0.0052 | -0.0049 | -0.0199 | 0.0137
CMAC Integrated Intensity-ch2 0.0003 | 0.0008 | 0.0001 | -0.0003
CMAC Pearson-chlvs2 -0.0018 | 0.0061 | -0.0105 | -0.0028
CMAC Growth of Area -0.1331 | -0.1277 | -0.0736 | -0.174
CMAC Length Growth -0.0254 | 0.0546 | -0.0309 0.054
CMAC Delta Intensity-chl -0.0053 | -0.0053 | -0.0032 | -0.0045
CMAC Delta Integrated Intensity-chl 0 | -0.0003 0 0
CMAC Delta Intensity-ch2 0.0003 | 0.0005 | -0.0001 | 0.0005
CMAC Delta Integrated Intensity-ch2 0 0 0 0

Table 9: Parameter estimates of linear regression models based on PCA

data.




Data set

Variables pert0 pertl pert2 pert3

intercept 0.6542 | 0.5540 | 0.5964 | 0.5704

CMAC Area -0.1041 0 0 0

CMAC Major Axis 0.0288 0| 0.0314 0
CMAC Minor Axis -0.0699 | -0.1568 | -0.1396 | -0.2222
CMAC Eccentricity -0.0193 0 | -0.0838 0
CMAC Angle 0 0 0 0

CMAC Perimeter 0 0 0 0
CMAC Convex Area 0.0413 0 0 0
CMAC Solidity 0 0 0 0

CMAC DistBorder -0.0086 | -0.0024 | -0.0078 | -0.0018
CMAC DistCenter -0.0003 0| 0.0017 | 0.0002
CMAC MeanlRaw-chl 0.1041 0 0 | -0.2402
CMAC Local BG-chl 0.0015 0 0 0
CMAC Meanl-chl -0.1477 0]-0.0373 | 0.2963
CMAC Stdevl-chl 0 0 | -0.0011 | 0.0026
CMAC MaxI-chl -0.0188 0 0| -0.1092
CMAC Integrated Intensity-chl 0.001 | -0.0028 0| 0.0031
CMAC MeanIRaw-ch2 0.0742 | 0.0365 0| -0.0675
CMAC Local BG-ch2 0.0009 | 0.0005 | 0.0034 | 0.0037
CMAC Meanl-ch2 -0.0629 | -0.037 | -0.0192 | 0.0249
CMAC Stdevl-ch2 -0.0006 0 0| -0.0011
CMAC MaxI-ch2 0 0 0] 0.0119
CMAC Integrated Intensity-ch2 0.0003 0 0 0
CMAC Pearson-chlvs2 0 0 0 0
CMAC Growth of Area -0.1339 | -0.0797 | -0.0705 | -0.1682
CMAC Length Growth -0.0249 0 | -0.0306 | 0.0425
CMAC Delta Intensity-ch1l -0.0053 | -0.0055 | -0.0032 | -0.0045
CMAC Delta Integrated Intensity-chl 0 | -0.0002 0 0
CMAC Delta Intensity-ch2 0.0003 | 0.0007 0| 0.0005
CMAC Delta Integrated Intensity-ch2 0 0 0 0

Table 10: Parameter estimates of stepwise regression models.
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Data set

Variables

pert0

pertl
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CMAC Meanl-ch2
CMAC StdevI-ch2
CMAC MaxI-ch2
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Table 11: Parameter estimates of the models constructed through employ-

ment of elastic net.
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Data set

Variables pert0 pertl pert2 pert3

intercept 0.4991 | 0.4983 | 0.4988 | 0.4994

CMAC Area -0.0937 | -0.0123 | -0.0100 | -0.0086

CMAC Major Axis 0.0155 | 0.0080 | 0.0176 | 0.0066
CMAC Minor Axis -0.0054 | -0.0108 | -0.0183 | -0.0219
CMAC Eccentricity -0.0043 | -0.0004 | -0.0181 | -0.0039
CMAC Angle -0.0022 | 0.0026 | -0.0027 | -0.0003

CMAC Perimeter 0.0074 | -0.0005 | 0.0070 | -0.0127
CMAC Convex Area 0.0317 | -0.0059 | 0.0021 | 0.0084
CMAC Solidity -0.0069 | 0.0137 | -0.0044 | 0.0112

CMAC DistBorder -0.0281 | -0.0015 | -0.0188 | -0.0057
CMAC DistCenter -0.0023 | 0.0014 | 0.0080 | 0.0040
CMAC MeanlRaw-chl 0.0497 | 0.1534 | -0.0204 | 0.0070
CMAC Local BG-chl 0.0045 | -0.0260 | 0.0267 | -0.0061
CMAC Meanl-ch1 -0.0678 | -0.1372 | 0.0068 | 0.0046
CMAC StdevI-chl -0.0030 | 0.0120 | -0.0095 | 0.0141
CMAC MaxI-chl -0.0143 | -0.0248 | -0.0088 | -0.0333
CMAC Integrated Intensity-chl 0.0339 | -0.0146 | 0.0005 | 0.0161
CMAC MeanlRaw-ch2 0.0519 | 0.0156 | -0.0645 | -0.0452
CMAC Local BG-ch2 0.0223 | 0.0128 | 0.0631 | 0.0314
CMAC Meanl-ch2 -0.0715 | -0.0380 | 0.0375 | 0.0244
CMAC StdevI-ch2 -0.0096 | -0.0001 | 0.0074 | -0.0082
CMAC MaxI-ch2 0.0062 | -0.0016 | -0.0116 | 0.0162
CMAC Integrated Intensity-ch2 0.0216 | 0.0096 | 0.0037 | -0.0073
CMAC Pearson-chlvs2 -0.0006 | 0.0001 | -0.0026 | 0.0005
CMAC Growth of Area -0.0626 | -0.0241 | -0.0312 | -0.0329
CMAC Length Growth -0.0057 | 0.0051 | -0.0110 | 0.0095
CMAC Delta Intensity-chl -0.0360 | -0.0270 | -0.0210 | -0.0239
CMAC Delta Integrated Intensity-chl | -0.0102 | -0.0274 | -0.0205 | -0.0022
CMAC Delta Intensity-ch2 0.0051 | 0.0091 | -0.0019 | 0.0099
CMAC Delta Integrated Intensity-ch2 | 0.0198 | 0.0113 | 0.0119 | -0.0030

Table 12: Parameter estimates of stepwise regression models constructed

with PCA transformed data sets.
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Data set
Variables pert00 | pertOl | pertO2 | pertO3 | pertO4 | pert05
intercept 0.5485 0.716 | 0.8268 0.815 | 1.0303 | 0.7658
CMAC Area -0.1295 | -0.1319 | -0.1142 | -0.1724 | -0.161 | 0.0082
CMAC Major Axis 0.1229 | 0.0294 | -0.0388 | 0.0753 | -0.8042 | 1.0903
CMAC Minor Axis 0.1309 | -0.0716 | -0.2417 | 0.0303 | 1.0945 | 0.6629
CMAC Eccentricity -0.0151 | -0.0246 | -0.0583 | -0.0121 | 0.4436 | -0.6199
CMAC Angle 0 | -0.0001 0 | -0.0001 0 | -0.0003
CMAC Perimeter -0.0103 | -0.0065 | 0.0124 | -0.0014 | 0.2322 | -0.2139
CMAC Convex Area 0.0383 | 0.0486 | 0.0655 | 0.1107 | -0.2034 | -0.123
CMAC Solidity -0.0866 | -0.0319 | -0.0072 | -0.1423 | -0.5067 | 0.3556
CMAC DistBorder -0.0036 | -0.0078 | -0.0123 | -0.0138 | -0.0017 | -0.0489
CMAC DistCenter 0.0005 | -0.0001 | -0.0013 | -0.0016 | -0.013 | -0.0305
CMAC MeanlRaw-chl -0.0043 | 0.0914 0.222 | 0.5216 | 2.5776 0
CMAC Local BG-chl 0| 0.0011 | 0.0037 | 0.0072 | 0.0115 | 0.0487
CMAC Meanl-ch1 -0.0171 | -0.1393 | -0.315 | -0.6508 | -3.1479 | 0.0715
CMAC Stdevl-chl -0.0004 0 | -0.0008 | -0.0003 | 0.0019 | -0.018
CMAC MaxI-chl 0.0021 | -0.0204 | -0.0207 | -0.0168 | -0.017 0.534
CMAC Integrated Intensity-chl 0.0004 | 0.0014 0.002 | 0.0017 0.004 | -0.0096
CMAC MeanlRaw-ch2 0.0282 | 0.0505 | 0.0691 | 0.1419 | 0.6195 0
CMAC Local BG-ch2 0.001 | 0.0012 | 0.0011 | -0.0001 | -0.0049 | 0.0236
CMAC Meanl-ch2 -0.0349 | -0.0733 | -0.0579 | -0.0869 | -0.2948 | -0.1461
CMAC Stdevl-ch2 -0.0007 | -0.0008 | -0.0005 | 0.0007 | -0.0093 | 0.0008
CMAC MaxI-ch2 0.0047 | 0.0142 | 0.0043 | -0.0023 | 0.0431 | 0.0333
CMAC Integrated Intensity-ch2 0.0004 | 0.0007 | 0.0002 | -0.0002 | 0.0004 | 0.0031
CMAC Pearson-chlvs2 -0.0024 | -0.0066 | 0.0107 | -0.0195 | 0.0807 | 0.0193
CMAC Growth of Area -0.1398 | -0.1718 | -0.1206 | -0.1211 | -0.024 0.304
CMAC Length Growth 0.0113 | -0.0498 | -0.0496 | -0.0531 | -0.1728 | -0.0721
CMAC Delta Intensity-chl -0.0023 | -0.0067 | -0.0068 | -0.0064 | -0.0063 | 0.0081
CMAC Delta Integrated Intensity-chl 0 0 0 0 0 | -0.0002
CMAC Delta Intensity-ch2 0.0006 0 | -0.0001 | -0.0004 | 0.0009 | -0.0049
CMAC Delta Integrated Intensity-ch2 0 0 0 0| 0.0001 | 0.0001

Table 13: Parameter estimates in linear regression models based on the split
pert0 data set.
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Data set

Variables pert00 | pertOl | pertO2 | pertO3 | pertO4 | pert05

intercept 0.5432 | 0.7161 | 0.4984 | 0.4989 | 0.5015 | 0.4991

CMAC Area -0.1197 | -0.1243 | -0.1117 | -0.1402 0 0

CMAC Major Axis 0.0771 0 0 0 | -0.9016 0
CMAC Minor Axis 0.107 | -0.136 | -0.2047 | -0.1655 0 0
CMAC Eccentricity 0 | -0.0329 | -0.0545 0 0 0
CMAC Angle 0 | -0.0001 0 0 0 0

CMAC Perimeter 0 0 0 0| 0.2709 0
CMAC Convex Area 0.036 | 0.0445 | 0.0673 | 0.1045 | -0.2936 0
CMAC Solidity -0.0825 0 0 0 0 0

CMAC DistBorder -0.0036 | -0.0072 | -0.0123 | -0.0142 0 0
CMAC DistCenter 0.0005 0 | -0.0013 | -0.0017 | -0.0082 | -0.0247
CMAC MeanlRaw-chl 0| 0.0805 | 0.2168 | 0.5161 | 2.4868 0
CMAC Local BG-chl 0 0| 0.0038 | 0.0071 0 0
CMAC Meanl-chl -0.0172 | -0.1254 | -0.311 | -0.6651 | -3.0142 | -0.2708
CMAC StdevI-chl 0 0 | -0.0007 0 0 0
CMAC MaxI-chl 0 | -0.0211 | -0.0199 0 0 0
CMAC Integrated Intensity-chl 0| 0.0013 0.002 | 0.0015 | 0.0054 0
CMAC MeanlRaw-ch2 0.0318 | 0.0509 | 0.0719 | 0.1408 | 0.5895 0
CMAC Local BG-ch2 0.0009 | 0.0012 0.001 0 | -0.0044 | 0.0231
CMAC Meanl-ch2 -0.035 | -0.0738 | -0.0561 | -0.0908 | -0.2654 0
CMAC StdevI-ch2 -0.0006 | -0.0008 | -0.0004 | 0.0006 | -0.0068 0
CMAC MaxI-ch2 0 0.014 0 0 0 0
CMAC Integrated Intensity-ch2 0.0005 | 0.0007 | 0.0002 0 0 0
CMAC Pearson-chlvs2 0 0 0 | -0.0265 0 0
CMAC Growth of Area -0.1316 | -0.1669 -0.12 | -0.1403 0 0
CMAC Length Growth 0 | -0.0485 | -0.049 0 0 0
CMAC Delta Intensity-chl -0.0023 | -0.0065 | -0.0068 | -0.0065 0 0
CMAC Delta Integrated Intensity-chl 0 0 0 0 | -0.0001 0
CMAC Delta Intensity-ch2 0.0006 0 0 0 0 0
CMAC Delta Integrated Intensity-ch2 0 0 0 0 | 0.0001 0

Table 14: Parameter estimates in stepwise regression models based on the

split pert0 data set.

27




Variables pert00 | pertOl | pert02 | pert03 | pertO4 | pert05

CMAC Area 0 0 0 0 0 | -0.0146

CMAC Major Axis 0 0 0 0 | -0.0325 0
CMAC Minor Axis 0 | -0.0379 | -0.0106 0 0 0
CMAC Eccentricity 0 0 0 0 0 0
CMAC Angle 0 0 0 0 0 0

CMAC Perimeter 0 0 0 0 0 0
CMAC Convex Area 0 0 0 0 0 0
CMAC Solidity 0 | -0.0162 | -0.0135 0 0 0

CMAC DistBorder 0 0 0 0 0 0
CMAC DistCenter 0 0 0 0 0 0
CMAC MeanlIRaw-chl 0 0 0 0 0 0
CMAC Local BG-chl 0 0 0 0 0 0
CMAC Meanl-chl 0 0 0 0 0 0
CMAC StdevI-ch1 0 0|-0.0113 0 | -0.0387 0
CMAC MaxI-chl 0 | -0.0657 | -0.1178 | -0.0676 0 0
CMAC Integrated Intensity-chl 0 0 0 0 0 0
CMAC MeanlRaw-ch2 0 0 0 0 0 0
CMAC Local BG-ch2 0.0355 | 0.0601 | 0.0679 | 0.0017 0| 0.0424
CMAC MeanI-ch2 -0.0488 | -0.0692 | -0.0332 0 0 0
CMAC StdevI-ch2 0 0 0 0 0 0
CMAC MaxI-ch2 0 0 0 0 0 0
CMAC Integrated Intensity-ch2 0 0 0 0 0 0
CMAC Pearson-chlvs2 0 0 0 0 0 0
CMAC Growth of Area -0.1136 | -0.2381 | -0.1112 | -0.0043 0 0
CMAC Length Growth 0 | -0.0191 | -0.0267 0 0 0
CMAC Delta Intensity-chl 0] -0.1312 | -0.1199 0 0 0
CMAC Delta Integrated Intensity-chl | -0.0316 | -0.0270 | -0.1009 | -0.0799 | -0.0138 0
CMAC Delta Intensity-ch2 0.0476 0 0 0 0 0
CMAC Delta Integrated Intensity-ch2 0 0 0 0 0 0

Table 15: Parameter estimates of the models gained through employment of
elastic net on the subgroups of the pert0 data.
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6.1.3 Elastic net

pert00

pert01

CMAC Local BG-ch2

CMAC Meanl-ch2

CMAC Growth of Area

CMAC Delta Integrated Intensity-chl
CMAC Delta Intensity-ch2

CMAC Minor Axis

CMAC Solidity

CMAC MaxI-chl

CMAC Local BG-ch2

CMAC Meanl-ch2

CMAC Growth of Area

CMAC Length Growth

CMAC Delta Intensity-chl

CMAC Delta Integrated Intensity-chl

pert02

pert03

CMAC Minor Axis

CMAC Solidity

CMAC Stdevl-chl

CMAC MaxlI-chl

CMAC Local BG-ch2

CMAC Meanl-ch2

CMAC Growth of Area

CMAC Length Growth

CMAC Delta Intensity-ch1

CMAC Delta Integrated Intensity-chl

CMAC MaxI-chl

CMAC Local BG-ch2

CMAC Growth of Area

CMAC Delta Integrated Intensity-chl

pert04

pert05

CMAC Major Axis
CMAC Stdevl-chl
CMAC Delta Integrated Intensity-chl

CMAC Area
CMAC Local BG-ch2

Table 16: Contributing variables in the models created with elastic net in
combination with ten-fold cross validation.
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pert0 pertl

CMAC Stdevl-chl | CMAC StdevI-chl
CMAC Local BG-ch2
CMAC StdevI-ch2

pert2 pert3

CMAC DistCenter | CMAC StdevI-chl
CMAC Local BG-ch2
CMAC StdevI-ch2

Table 17: Contributing variables in the models created with elastic net in
combination with ten-fold cross validation.

6.1.4 MANOVA

Number

of groups, i | pert0  pertl pert?2  pert3
1 0 0 0 0

2 0 0 0 0

3 0 0 0.2726 0

4 0 0.4279 0.9182 0

5 0.1300 0.7571 0.9644 0.0264

5 4 3 6

Table 18: P-values derived from tests of whether data consists of 1 or up
to 5 age categories. If the ith p value is close to zero, then we doubt the
hypothesis of the group means lying on a space of i-1 dimensions.

6.1.5 EM-algorithm

AlC

Number of groups | pert0 | pertl | pert2 | pert3

3.875 | 0.587 | 44.125 | -2.569

3.559 | 0.386 | 38.673 | -1.930

3.275 | 0.764 | 32.830 | -3.842

3.032 | 0.239 | 30.334 | -2.467
5 5 4 4

T W N

Table 19: The AIC values achieved with different EM-models.
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6.2 Figures
6.2.1 Residual analysis
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Figure 8: Residual plots of regression models from subgroups of pert0.
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Mormal Probability Plot Mormal Probahility Plot
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Figure 9: Normal probability plots of the residuals from our four models of
data sets where CMAC units observed only once have been excluded.
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6.2.2 Elastic net

Summary
CMAC Meanl-ch1 CMAC Meani-ch1
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6.3 Mathematical formulae
6.3.1 Linear regression

A classical linear regression consists of the following assumptions.
e The regression model is linear in the parameters.
e The disturbance terms, ¢;, are independent and N (0, 02)-distributed.
e The columns in the data matrix, X, are linearly independent.

Among other methods to estimate the parameters in a linear regression
model, we choose OLS. An ordinary least squares model is achieved by
minimizing the sum, S, of squared residuals

n
§ 2
S - T,L» 5
=1

where
Ty =Y — f(xla/@)a

are the residuals of each observations, and with f(z,3) being the regression
function.

6.3.2 Elastic net

For an a between 0 and 1, and A > 0, elastic net solves the following problem,

N
win (2} S (i~ Bo—aTB) + m(ﬂ)) ,
o i=1

where

1— " r1-
Pal) = 1521018 + il = 30 (F5 202 + a3l )

j=1
and

e N is the number of observations.

1; is the response at observation 1.

x; is data, a vector of p values at observation 1.

e ) is a positive regularization parameter corresponding to one value of

Lambda.

The parameters Sy and § are scalar and p-vector respectively.
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6.3.3 One-way MANOVA

For a matrix, X, of data, MANOVA tests make the following assumptions:
e Multivariate normality.
e Multivariate homogeneity.

e Observations are mutually independent.

Group
1 2 P
Sample size | ny | ng Ny
Mean vector Observed | X7 | Xo X,
Expected | p | p u
Covariance matrix Observed | 81| 8 Sp
Expected | X | X b

Table 20: Observed and expected statistics for the mean vectors and the
covariance matrices of four groups in a one-way MANOVA, under the null
hypothesis.

In testings of the dimension of the group means, there is a statistic,
Wilks’ lambda, defined as

Wilks’ lambda: A = |TW/||,

where

B= SSCPbetween = Qgroup - Qtotal7
W = SSCPwithin = Qdata - ngup’
T = SSCPtotal = Qdata - Qtotal?

are the matrices of sums of squares in the diagonal entries and cross products
off the diagonals, and

Qdata = XlX?
Qgroup = T;'Mja
Qiotal = TM/:

where X is the matrix of raw data, T; represents sums of the individual
groups, T grand sums, M; means per group, and M grand means.
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For Wilks’ lambda, smaller is better, so to be significant, our obtained
lambda must be smaller than the tabled value. Regarding degrees of free-
dom, we have k groups, so dfy=k — 1, and there are n observations, so
dfw = n — k.[4] Also note that R =1 — A.

There are four useful statistics:
e Wilks’ lambda,

e The Pillai trace,

e Lawley-Hotellings treace,

e Roy’s largest root,

however in our analyses we have used only the Wilks’ lambda, since it is
considered to be the most stable one.

6.3.4 Akaike information criterion
The Akaike information criterion is defined as follows,
AIC =2k — 2in(L),

where k is the number of parameters, and L is the maximum of the likelihood
function of the model. Over a number of different models with different AIC-
values, we choose the one with the smallest AIC-value.
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