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Abstract

The winter 2010-2011 was a cold and very expensive winter for
the insurance companies in the Nordic countries. The winters the
past two decades have been quite warm in comparison to the win-
ters in the past century. The question was raised whether there is
a correlation between a quantified exposure to freezing temperatures
and insurance claims. In that case, are the insurance companies pre-
pared for the increase in insurance loss if the winters would be as cold
as they have been the past century; how large can the losses be ex-
pected to be in the three regions of Sweden (Norrland, Svealand and
Gotaland) within each sector (Private, Agricultural and Commercial)?
Data was gathered from a Swedish insurance company regarding the
insurance claims between 1985-2011. The temperatures were gathered
from SMHI (Sveriges Meterologiska och Hydrologiska Institution) and
ECAD (European Climate Assessment Dataset project). The tem-
peratures were used to construct temperature indexes for the winter
period. We tested two different indexes based on the daily minimum
and daily mean temperatures, showing that the minimum tempera-
ture index was generally not as strongly correlated with the insurance
claims as was the mean temperature index, why the mean tempera-
ture index was used for the remainder of the analysis. In order to
investigate the relationship between the temperature index and insur-
ance claims, a correlation analysis and then a simple linear regression
analysis were preformed demonstrating a strong correlation between
mean temperature index and insurance claims. Prediction analysis
was made regarding the years between 1930-1985. When we examined
the results, we could see that a winter as cold as the winter 1941-42
would generate big insurance claims in comparison with an average
winter from the past two decades. However, the prediction from this
model is very uncertain, which is demonstrated with a wide 95 % pre-
diction interval. The report ends with a discussion on the performed
analysis and results, where limitations and other sources of insecurities
are mentioned.

*Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: stephanieanderss@hotmail.com . Supervisor: Jan-Olov Persson.



Abstract

The winter 2010-2011 was a cold and very expensive winter for the insur-
ance companies in the Nordic countries. The winters the past two decades
have been quite warm in comparison to the winters in the past century. The
question was raised whether there is a correlation between a quantified ex-
posure to freezing temperatures and insurance claims. In that case, are the
insurance companies prepared for the increase in insurance loss if the win-
ters would be as cold as they have been the past century; how large can the
losses be expected to be in the three regions of Sweden (Norrland, Svealand
and Gotaland) within each sector (Private, Agricultural and Commercial)?
Data was gathered from a Swedish insurance company regarding the insur-
ance claims between 1985-2011. The temperatures were gathered from SMHI
(Sveriges Meterologiska och Hydrologiska Institution) and ECA&D (Euro-
pean Climate Assessment Dataset project). The temperatures were used
to construct temperature indexes for the winter period. We tested two dif-
ferent indexes based on the daily minimum and daily mean temperatures,
showing that the minimum temperature index was generally not as strongly
correlated with the insurance claims as was the mean temperature index,
why the mean temperature index was used for the remainder of the analysis.
In order to investigate the relationship between the temperature index and
insurance claims, a correlation analysis and then a simple linear regression
analysis were preformed demonstrating a strong correlation between mean
temperature index and insurance claims. Prediction analysis was made re-
garding the years between 1930-1985. When we examined the results, we
could see that a winter as cold as the winter 1941-42 would generate big
insurance claims in comparison with an average winter from the past two
decades. However, the prediction from this model is very uncertain, which
is demonstrated with a wide 95%prediction interval. The report ends with a
discussion on the performed analysis and results, where limitations and other
sources of insecurities are mentioned.
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1 Introduction

Insurance is a form of risk management used to avoid the risk of a condi-
tional, uncertain loss. An insurer is a company selling the insurance; the
insured, or policyholder, is the person, company or entity buying the insur-
ance policy. Risk management, the practice of assessing and controlling risk,
has evolved as a field of study and practice. Property insurance provides
protection against risks to property, such as fire, theft or weather damage.

Reinsurance is a form of risk management that one insurance company sells
to another insurance company. The reinsurance main purpose is to protect
the insurance company from large insurance claims due to catastrophes!.
Guy Carpenter is a global risk and reinsurance specialist. They provide in-
surance companies with in-depth analysis in a number of areas, from market
conditions, to catastrophe analysis, to environmental issues?. They were
approached by a Swedish insurance company and asked to analyze the rela-
tionship of cold winters and the insurance company’s insurance claims. The
reason for this was to evaluate the insurance company’s reinsurance policies,
since the past two years had resulted in many large claims regarding prop-
erty damages due to freezing. Is the insurance company’s current reinsurance
program sufficient to cover for potential insurance claims due to freezing dam-
ages?

Due to a signed agreement with the insurance company, no data regarding
the sizes of the insurance company or the insurance claims may be disclaimed,
why some plots, numbers and names have been omitted from this thesis.

lGustafsson B, Aterforsikring, Tierps Tryckeri AB / Partener Print, 2000 s. 7-8,10

2www.guycarp.com



2 Background

The past two winters have been excessively expensive for the insurance com-
pany. The reason for this is large claims resulting from broken water pipes due
to cold winters. Therefore the insurance company has showed an interest in
demonstrating a correlation between cold winters and large insurance claims.

The insurance company provided for their data on daily insurance claims
on property insurance from three different sectors: Private, Agricultural and
Commercial. The data consists of their daily records on property insurance
claims from 1979-2011. Due to a signed confidentiality agreement the name
of the insurance company is not revealed in this thesis.

The World Meteorological Organization (WMO) is a specialized agency of
the United Nations. WMO promotes cooperation in the establishment of net-
works for making meteorological, climatological, hydrological and geophys-
ical observations, as well as the exchange, processing and standardization
of related data, and assists technology transfer, training and research?®. Two
organizations working with WMO that registers Swedish weather conditions
are:

e SMHI (Sveriges Meterologiska och Hydrologiska Institution). SMHI is
a government agency under the Ministry of the Environment. SMHI’s
mission is to manage and develop information on weather, water and
climate that provides knowledge and advanced decision-making data
for public services, the Private sector and the general public. SMHI
receives daily data from 52 different temperature stations in Sweden.*

e The ECA&D (European Climate Assessment Dataset project) forms
the backbone of the climate data node in the pilot Regional Climate
Centre (RCC) for WMO Region VI (Europe and the Middle East) since
2010. It receives data from 58 participants for 62 countries and the
ECA&D dataset contains 31058 series of observations for 12 elements
at 6596 meteorological stations throughout Europe and the Mediter-
ranean. 38% of these series are public, which means downloadable from
their website for non-commercial research. Participation to ECA&D is
open to anyone maintaining daily station data. 3

3http://www.wmo.int /pages/about/index__en.html
4http://www.smhi.se/en /about-smhi
®http://eca.knmi.nl



3 Aims and Methods

The purpose of this thesis is to examine if and how the freezing temperatures
during wintertime affect the insurance claims on property during the same
period. Is there a stronger relationship in some areas? How big would the
claims be today if the winters would be as cold as the coldest period of this
century?

The insurance company registers their daily insurance claims geographically
all over Sweden. The data consists of the insurance claims divided into three
sectors — Private, Agricultural or Commercial — the claims come from. The
claims have been divided into amount paid and amount in reserve.

Two factors are involved in damages caused by freezing.

1. Temperature (the number of degrees Celsius below freezing point — 0°C)
2. Number of days with a temperature below freezing.

Therefore one temperature index that is derived from the daily mean temper-
atures and one temperature index that is derived from the daily minimum
temperatures from the winter period was created with the aim to address
both of these factors. The temperature index is more deeply described under
the chapter “Data Description”.

To achieve our aims, the analysis will be divided into three steps:

1. Scatter plots to examine the relationship between the mean temper-
ature indexes and insurance claims. Is the mean temperature index
correlated with the insurance claims? Is there a stronger relationship
in any area of Sweden? We then preform a simple linear regression
analysis to construct a model and to examine the relationship between
the insurance claims and the temperature index.

2. Comparison between a simple linear regression analysis of the explana-
tory variable represented by the minimum temperature index and the
mean temperature index. Which one of minimum and mean is better
to use to predict insurance claims? We will preform a multiple linear
regression with both minimum and mean temperature index to see if
this method improves our model.



3. Prediction using the most appropriate temperature index above in order
to examine lost insurance claim history data between 1930 and 1985
(the insurance company started registering accurate daily insurance
claims 1985). How big would the claims be today if the winters would be
as cold as the coldest period this century, using whichever of minimum-
and mean temperature index that proves more reliable in step 27

To analyze if the temperature index has any influence on insurance claims
we have focused on the correlation coefficient and simple and multiple linear
regression. The insurance claims have been adjusted with regards to inflation
and portfolio development. Predictions have been made using the prediction
method and prediction intervals. As diagnostic methods of model criticism
we have calculated the coefficient of determination, level of significance, con-
fidence intervals, prediction intervals, studied potential autocorrelation and
made a residual analysis.

All data provided is purely numerical.

Calculations have been made with SAS, Microsoft Excel 2007.



4 Methods and Terms Used

The terms used in this thesis are taken from the compendium “Lineéra Statis-
tiska Modeller” by Rolf Sundberg, “Statistik — metoder och tillampningar”
by Gunnar G. Lgvas and “Stokastiska Metoder” by Sven Erick Alm and Tom
Britton.

4.1 Correlation

The correlation coefficient is a measure of the linear correlation between two
variables and is designated with p. The formula for sample estimation:

A~ Cay
=T —_=
p Ty Sa Sy 9

where ¢, = (n—il) > (2 —T)(yi —7)

Sz = \/(n_il) > i (xi —T)?

Sy = \/ﬁ 22;1 (yi —)*

n is the number of observations. The value of the correlation coefficient is
between —1 and +1, where 7., = 1 indicates a positive correlation, whereas
rzy = —1 indicates a negative correlation. r,, = 0 suggests that there is no
correlation.

4.2 Regression Analysis

The regression, as opposed to the correlation analysis does not only show if
there is a correlation, but rather what the relationship is. It studies relation-
ships between a response variable and one or more independent explanatory
variables. The aim with the regression analysis is to find a linear equation
that fits the observations value and through the method of least squares, min-
imize the sum of the squared residuals. It is called simple linear regression
when using only one explanatory variable, while multiple linear regression
uses more than one explanatory variable. Both are used in this thesis.

10



4.2.1 Simple Linear Regression
Simple linear regression is the least squares estimator of a linear regression

model with only one explanation variable.

The definition of the simple linear regression model can be written:
yi = a+ Pr; + ¢

where y; is the response variable and represents a value y for the observation
i. x; is the explanatory variable, o and [ are parameters, ¢; is the random
error variable and ¢ = 1,2...,n where n is the number of observations. The
model requires that the ¢; are independent among themselves and normally
distributed with N(0,6%). « is called intercept and determines the line’s in-
tersection of the y-axis. [ is the gradient coefficient and determines the slope
of the line.

The simple regression has an expectation equation:

where the parameters have same meaning as above.

The formula for the estimated parameters & and j:

y_ Senw-D)
b= =S

a=7-pT

4.2.2 Multiple Linear Regression

When making a linear regression on a dataset, where there are more ex-
planatory variables able to influence the response variable, you have to use
the multiple linear regression analysis. The formula for multiple linear re-
gression is:

Y = a+ Bixy; + Booi + ... + Brnlmi + &

where y; is the response variable, xy;, x9;, ..., T, are the explanatory vari-
ables and «, (1, ..., B,, are parameters, ¢; is the random error variable and
1 =1,2,...,n where n is the number of observations and m is the number
of variables. The model requires the random variables to be independent
among themselves and normally distributed N(0,0?).

11



4.2.3 Residual

The residuals are used to see if the regression model fits the data. It is
important to discover dependent and systematic errors. The equation for
the residual can be written:

& =Yi— Ui

4.2.4 Coefficient of Determination R?

The coefficient of determination R? is a measurement of how much of the
variability in a data set is “explained” by the statistical model. The propor-
tion of explained variation is given by:

R2 — KVSregression _ | _ KVSgesidual — 42
o KVSTotal KVSTotal Ty

KVSTotal = Z(yl - y)Q
KVSRegression - Z(yl - y)2
KVSResidual = Z(yl - Z)Z)2

The coefficient of determination is a number between 0 and 1. The higher
the number, the stronger the linear correlation and the more variability is
explained by the statistical model.

4.3 Heteroscedasticity

Data can be considered to be heteroscedastic if the variance for one of the
variables is not constant for every value of the other variable. In order to
make a linear regression, the random variables need to be independent and
normally distributed with a constant variance, why heteroscedasticity would
hinder the method.%

4.4 Transformation

In the cases when the response variable y is not linear in the parameters «
and [, a suitable transformation of the y -variable can be helpful to construct
a linear model from a non-linear model. One common transformation is the
log-transformation. Log-transformation can be helpful to minimize the het-
eroscedasticity or to get distorted data more normally distributed.

6Vejde O. et Leander E, Ordbok i statistik, Olle Vejde Férlag, 2000 s. 107 and Ander-
sson P. & Tyrcha J. Kompendium s. 85-86

12



Some log-transformed models can be:

Transformation of y only:
log(y) = a+ Br +¢;
y:ea.eﬁx.esi
Transformation of y and x:
log(y) = a+ Blog(x) + ¢;
y=e*- P . efi

where ¢; is the error with N(0, o?).

4.5 Shapiro-Wilk Statistic

The Shapiro-Wilk test for normality tests the null hypothesis that a sample
came from a normally distributed population. The test rejects the hypothesis
of normality when the p-value is low, which would indicate a non-normal
distribution.”

4.6 Autocorrelation

Autocorrelation is the phenomenon where a relationship exists between the
errors separated by time in a regression analysis. Andersson and Tyrcha
define autocorrelation as a situation where "...the covariance between the
disturbances does not depend on calender time but only on the time difference
between the observations" when the criterion that "time-series data in which
we interpret the number of the observation as indicating the time at which
the observation was made" is met. 8

4.7 Durbin-Watson Statistic

The Durbin-Watson (DW) statistic is a test used to detect the presence of
autocorrelation.

The formula used for the DW statistic is written:

"http:/ /www.jmp.com /support /faq/jmp2085.shtml
8 Andersson P. & Tyrcha J. Kompendium s. 62, 87-89

13



d— Sro(er—e_1))
23:1 et
where T is the number of observations. €; and €(;_1) is the residual with the
observation at time ¢. The interval for d will be 0 < d < 4, where d indicates
the autocorrelation. The value of d is close to 2 if the errors are uncorrelated.
There is evidence of a positive autocorrelation if d is substantially lower than
2. From the test we get the 15 order of autocorrelation, which will have the
interval —1 < autocorrelation < 1. The test will also give us a p-value for
positive and negative autocorrelation.’

4.8 Confidence Interval

The formulas given in the section "simple linear regression” allow one to cal-
culate the point estimates of o and (3, that is, the coefficients of the regression
line for the given set of data. However, those formulas do not tell us how
precise the estimates are. That is, how much the estimators & and B can
deviate from the "true" values of o and 5. The latter question is answered
by the confidence intervals for the regression coefficients.

In order to create confidence intervals for a regression line, one uses the
standard error of the regression and the t-distribution under the assumption

that the standard errors are normally distributed.

Confidence interval for g :

A~ A ~ r0—7T)2
04—1—5(330) :l:tp/g(n— 2)0\/% + %

With a set confidence level (1-p) at for example 95%, we are 95% certain
that the interval covers the true value of y.

The confidence level for B :
Bt tys(n —2)6/\/ 3, (v — )

where @, B are the same as above

t = t-disruption with (n-2) degrees of freedom
0 =the estimated standard deviation

p = significance level

n = the number of observations.

9Andersson P. & Tyrcha J. Kompendium s. 65
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4.9 Prediction

Prediction is a method where values are estimated from the dataset, which
means that you for a new observation xy can predict a response value yy. In
short, the method uses known values in order to estimate unknown values.
In this thesis the prediction will be associated with regression models.

The predicted value 1y is an estimation by E(y)= i = 07+Bm0. Hence the
formula for simple linear regression becomes:

Yo = & + Po.

where 7 is an estimated response variable to y, ¢, & and B are estimate pa-
rameters and x is the explanatory variable.

The prediction error is given by:
€ =Yi— Ui

The prediction interval is an estimate of an interval within which new ob-
servations will fall, with a certain probability, given what has already been
observed. If the prediction interval is wide, the predictions will not be reli-
able. A wide prediction interval is linked with a small R?, which means that
the regression line only will explain a small part of the variation in the data
material. The prediction interval is given by:

4 (o)  tyya(n — 2)53 1+ L 4 0B,

where &, B are the same as above

t = t-disruption with (n-2) degrees of freedom
o =the estimate standard deviation

= significance level

= the number of observations.

B
\

15



5 Data Description

In this chapter, the temperature data and the insurance data will be treated
separately as preparation for the statistical analysis. No match or comparison
will be made until the chapter "Statistical Analysis”.

5.1 Insurance Claims

The insurance company provided for their data on daily insurance claims.
The data was for property insurance from three different sectors: Private,
Agricultural and Commercial. The data consists of their daily records on
property insurance claims from 1979-2011. Due to the signed confidentiality
agreement, all sums indicating the sizes of the insurance claims have been
omitted.

The dates from the insurance claims in the dataset are the dates when the
insurance loss was filed. This does not necessarily mean that the damage
occurred at the same date. The claims are made due to damage on property.
We have no exact data that in detail specifies the cause of the claims.

The winter period for insurance claims was set from November 1% to June
30" and the daily claims were summed, so that we got a total for the entire
period. The time period was chosen with help of Guy Carpenter. They have
the experience that damages that occurred in the wintertime on summer-
houses might not be discovered until summer. The period was also chosen
to take the probable delay of the claim into account.

In the dataset, claims have been subdivided into “payments” and “reserve”.
The payments account for the money paid to the claimant and the reserve
account, for the money that the claimants have yet to receive. These two
posts have been added in the calculations, since both are a measure of the
degree of the damage claimed. The inflation and the portfolio development
for the Private sector, Agricultural sector and the Commercial sector have
been multiplied with the insurance claims respectively. The portfolio devel-
opment for each sector is measured with the number of policies. The inflation
numbers have been provided by SCB and the development of number of poli-
cies have been provided by the insurance company.

Initially, the relationship between the temperature index and the claims from

each geographical area was analyzed with scatter plots, but no relationship
was seen. We also noted that the claims from each geographical area were

16



not large enough to show any relationship with the temperature data, why
the areas had to be merged into larger regions.

The areas were grouped into three major regions of Sweden: Norrland,
Svealand and Gotaland as seen in Image 1. 18.59% of the total claims pro-
vided by the insurance company were from Norrland, 22.13% from Svealand
and 59.28% from Gotaland.

Sweden Regions
Norrland

- Svealand
- Gotaland

Lakes

Image 1: Map of Sweden with Regions

The earliest claim registered was from 1979. From most areas in Svealand
and Gotaland, the insurance claims were not registered until 1980. From
most areas in Norrland, we had not received any insurance data before 1992,
why this region was studied regarding the years 1992-2011. Most of the
other areas did not have sufficient insurance data before 1985, why we chose
to disregard from all claims registered between 1979-1985 and Svealand and
Gotaland were studied regarding the years 1985-2011.

In Sweden as a total, the distribution of insurance claims between the three

17



sectors was as follows: Private 46%, Agriculture 12% and Commercial 42%
year 1979-2011.

5.2 Temperature Data

The daily temperatures have been provided by SMHI and ECA&D. Both or-
ganizations have data on three alternative daily temperature measurements:
minimum, maximum and mean.

Both organizations display their temperatures in °C. The formula used for
calculating the daily mean temperature has been weighted with regard to
minimum and maximum temperatures of the day and the temperatures at
Tam, 1pm and 7pm respectively.

Due to the thesis’ financial limitations SMHI only provided us the daily
mean temperatures between 1961-2011 from all of their 52 weather stations
throughout Sweden. ECA&D had public data on daily minimum, maximum
and mean temperatures in 63 Swedish cities and 6 cities in Denmark between
the years 1875 and 2011.

In the areas and time-intervals where data was available from both orga-
nizations they proved to be identical. Primarily the SMHI-stations will be
used, since they had more stations and more data per station. ECA&D was
used because primarily for the minimum and because in some stations we
had access to data starting from 1875 as opposed to SMHI that had data
starting from 1961, why we needed the ECA&D-data in this thesis in order
to predict the insurance claims before 1961.

In some areas, several temperature stations were represented, while the in-
surance company only had one source of data. Hence, we chose — if possible
— the temperature station in the city with the biggest population, since this
would be station best represented amongst the insurance claims. Some tem-
perature stations were missing daily temperatures, why we for some of the
areas had to choose a station in a city with a smaller population. For some
areas we could not find a suitable temperature station at all.

The stations used were grouped into the same three regions as before: Nor-
rland, Svealand and Gétaland, demonstrated in Table 1.

18



Region || SMHI Station ECAED Station

Norrland || Lule4, Bjuroklubb, Sveg, Sundsvall, Borliange || Luled, Sundsvall

Svealand || Karlstad, Gustavsfors, Uppsala, Stockholm Stockholm, Karlstads Flygplats

Gothenburg, Jonkoping, Malilla, Bredaker,

Gétaland Kalmar, Malmo, Torup, Skane, Visby

Gothenburg, Jonkoping, Visby,
Bredaker

Table 1: The three regions of Sweden and which SMHI- and ECA&D temperature stations were included

The ECA&D stations were selected due to them being identical to the SMHI-
stations.

5.3 Temperature Index

As mentioned in the section “Aims and Method” we construct an index for
each winter season over the temperature that “incorporates” the number of
days with freezing temperatures as well as the temperature itself.

The temperature index was created with the help of Guy Carpenter due
to their large experience in the field. The days with temperatures above
freezing were removed since we wanted to investigate how temperatures be-
low freezing affected the insurance claims. Then the daily mean temperatures
(SMHI) below 0°C for the period were summed and multiplied with —1, so
that we got a positive “temperature index” for the negative temperatures
for the entire period. When summed this way, a large number represents
either a longer period with temperatures below freezing or colder daily mean
temperatures. The reason for this is to get the most intuitive relationship
between coldness and the time below freezing.

The same thing was done with the ECA&D daily minimal and mean tem-
perature.

The “winter season” for each year was set from November 15 to March 315

19



6 Statistical Analysis

As stated before, we noted that the claims from geographical areas were not
large enough to show any relationship with the temperature data, why the
areas had to be merged into larger regions.

When we merge the insurance areas, we have to create a temperature in-
dex for the entire region. In order to create such an index, the temperature
data needs to be weighted.

6.1 Weighting the Temperature Index

In order to create a temperature index for the three larger regions, Norrland,
Svealand och Gétaland, we wanted to aggregate the data through weighting
the temperatures with regards to the portfolio development for each of the
insurance company’s areas. Due to limitations in the data supplied by the
insurance company, we had to abandon this idea and had to weight the tem-
peratures with consideration to the total insurance claims of the area, since
some areas had much bigger insurance claims than others. Consequently
the areas with larger insurance claims would have a higher level of corre-
lation with the region’s temperature index. The formula for the weighted
temperature shown below was implemented for each year:

T; =1t
q

where T;= weighted temperature for the winter season for the local temper-
ature station .

q; = total claims from the geographical area i between 1985-2011

q= Zz qi

t; = temperature index for the winter season from the local temperature sta-
tion

1 = geographic areas

After we had weighted the temperatures, the data was aggregated to form a
region temperature index.

=30 T,

where x = temperature index for the region for the selected winter period
k = region
N = number of temperature stations in the region

20



6.2 Analysis Strategy

As mentioned in “Aims and Methods”, the analysis will be divided into three
steps:

1. Scatter plots and simple linear regression analysis of the SMHI-dataset
in order to examine the relationship between freezing temperatures
and insurance claims. The reason for using SMHI in this section is
because they have more stations.

2. Comparison between a simple linear regression analysis of the insur-
ance claims and the minimal- and of the mean temperatures. Which
one of minimum and mean is better to use to predict insurance
claims? Here we use ECA&D, since we had access to the organiza-
tion’s minimum temperature data. We will also test a multiple linear
regression with both min and mean to see if this method improves our
model.

3. Prediction using the most appropriate temperature index above in
order to examine lost insurance claim history data between 1930 and
1985. How big would the claims be today if the winters would be as
cold as the coldest period this century using whichever of minimum
and mean proves more reliable in step 27

6.3 Examining the Relationship
6.3.1 Scatter Plots

Scatter plots, Figure 1-3, were constructed to visualize the relationship
between the insurance claims reported in each region and the mean
temperature index from SMHI. This was done for the three different
sectors: Private, Agricultural and Commercial. Underneath each set
of figures, the correlation coefficients for each sector and region is pre-
sented.
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Figure 1: Scatter plots of Insurance claims in relation to mean temperature index from SMHI

for Norrland Correlation coefficient— Private: r=0.83, Agricultural: r=0.80 Commercial: r=0.72
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Figure 2: Scatter plots of Insurance claims in relation to mean temperature index from SMHI for

Svealand Correlation coefficient— Private: r=0.80 , Agricultural: r=0.82 Commercial: r=0. 62
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Figure 3: Scatter plots of Insurance claims in relation to mean temperature index from SMHI for

Gétaland Correlation coefficient — Private: r=0.82, Agricultural: r=0.77 Commercial: r= 0.7}

Consistently throughout the scatter plots, a positive correlation is seen
between the insurance claims and increasing temperature index with
the correlation coefficients between 0.62-0.83. However, the spread in-
creases with an increase in temperature index implying heteroscedacity.
Hence, the conclusion is drawn that the linear regression analysis should
be made on log-transformed variables. The reason for this is to see if we
can minimize heteroscedacity. Log-transformation is suitable for data
where you can see that the residuals get bigger for bigger values of the
dependent variable as seen in the scatter plots above.

Log-transformation is firstly used on only the response variable, there-
after on the response- and explanatory variable together. The linear
relationship improves when we log-transform the response variable, but
an even stronger linear relationship is seen when both variables are log-
transformed.

Scatter plots, Figure 4-6, are created over the relationship between the

log-transformed variables: log(Private), log(Agricultural), log(Commercial),

versus log(temperature index). Within these plots we include a regres-
sion line that is adapted to the observations according to the least
square method (MK). The regression line simplifies visualizing the
spread. Underneath each set of figures, the correlation coefficients for
each sector and region is
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Figure 4: Scatter plots of log(Insurance claims) in relation to log(mean temperature index) with

regressions line for Norrland. Correlation coefficient— Private: r=0.88, Agricultural: r= 0.84,

Commercial: r= 0.76
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Figure 5: Scatter plots of log(Insurance claims) in relation to log(mean temperature index) with

regression line for Svealand. Correlation coefficient — Private :

Commercial: r=0.71
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Figure 6: Scatter plots of log(Insurance claims) in relation to log(mean temperature index) with

regression line for Gétaland. Correlation coefficient — Private: r=0.88, Agricultural: r=0.83,

Commercial: r=0.76

In the figures above a more linear relationship seems to have been es-
tablished through the log transformation and the heteroscedacity seems
to have decreased in all three regions. We also see that the correlation
has increased with the log-transformation.

We hereby conclude that the log-transformed variables approximately
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have met the criteria necessary for a linear regression analysis.

6.3.2 Linear Regression

Through linear regression we can analyze the material further and look
at residual plots to investigate whether the residuals are independent
and normally distributed. The purpose is to detect if our response
log(insurance claims) are linearly dependent or described by our ex-
planatory variable log(temperature index).

The linear regression will consist of a simple linear regression since
we only have one explanatory variable, which will be named “index"=x
below. Insurance loss for all sectors, Private, Agricultural and Com-
mercial will be named y.

We start by presuming the following formula:
yi = e - xﬁ . 651'
where « is the intercept, [ is slope and ¢; is the error term.

By using log-transformation on the variables above, we get a linear
formula as follows:

log(y;) = & + Blog(xi) + &

for every sector respectively, where & and [ are estimates of o and
and ¢ is the observation and ¢; is the error term.

Before we can study the model further, we have to control if the resid-
uals have any systematic or dependent deviance and if the residuals are
normally distributed. In order to do this we construct plots with the
residuals over the predicted values, QQ-plots and preform a Shapiro-
Wilk W-test.

When we have created graphs with the residuals on the y-axis and
the prediction on the x-axis, we find no apparent system within the
residuals, why we conclude that they are random and independent. In
the QQ-plot, we noticed that the residuals were close to the normal
distribution line. All plots can be found in Appendix I. For some of the
sectors however, we see that the residuals are further away from the
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normal distribution line, indicating that the residuals are not normally
distributed, why we have to test this further. Through a Shapiro-Wilk
W-test we can test the null hypothesis that a sample came from a nor-
mally distributed population. The test rejects the hypothesis of nor-
mality when the p-value is low. From the Shapiro-Wilk W-test we get
high p-values. Hence we cannot reject the hypothesis of normality. In
the Figure 7 below, controlling the Agricultural sector in Norrland, we
get a p-value of 0,9958 indicating that the data is normally distributed.
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Figure 7: Norrland and Agricultural
Left: Restdual over prediction

Right: A normal QQ-plot for the residuals

We also create plots showing the residuals over year to examine any
potential autocorrelation. The Figure 8§ for the Agricultural sector in
Norrland is demonstrated below. The other plots can be found in Ap-
pendix I.
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Figure 8: Norrland and Agriculture — Residual over year

In the graph, we anticipated to see a tendency towards autocorrela-
tion, which would imply that the temperature one year affects the in-
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surance claims the year after. In these plots we suspect a tendency
towards autocorrelation, why this must be investigated further. Au-
tocorrelation would indicate that the residuals are not random and
independent. Therefore we preform the Durbin-Watson test and see
that d for all regions and sectors ranges between 1,3 and 2,3 indicating
non-autocorrelation. High p-values indicate a low significance for the
autocorrelation and autocorrelation coefficient is 0.09.

In conclusion there appears to be a relationship between insurance
claims and temperature index without autocorrelation, why we now
can proceed with the analysis.

To see what influence the temperature index has on the insurance
claims, we will, by using SAS, examine the confidence intervals for
B and prediction intervals for new observations of y; as well as R? and
level of significance.

From SAS we get point estimations for o and . Through a 95%
confidence interval we get the discrepancy from the true value of S.
We also get a p-value for the hypothesis 5=0.

To get a better overview if the log-transformation gives a linear ex-
planation, we create a table for each sector in all three regions shown
in Tables 2-4:

Norrland Mean Temp. B—Value 95% Conf. for B || R? || p-value
Private 1.61 (1.17, 2.05) 0.78 || <0.0001
Agricultural 2.14 (1.63, 3.19) 0.71 || <0.0001
Commercial 1.58 (0.81, 2.70) 0.58 || 0.0001

Table 2. Linear regression analysis with log(y;) and log(x;) from Norrland the with R?-values,

p-values and B-values and their respective confidence intervals

Svealand Mean Temp. B—Value 95% Conf. for B R? || p-value
Private 1.56 (1.15, 1.97) 0.72 <0.0001
Agricultural 1.89 (1.30, 2.47) 0.65 || <0.0001
Commercial 1.48 (0.86, 2.12) 0.50 || <0.0001

Table 8. Linear regression analysis with log(y;) and log(x;) from Svealand the with R%-values,

p-values and B-values and their respective confidence intervals
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Gotaland Mean Temp. || B-value | 95% Conf. for B || R* || p-value
Private 1.30 (1.00, 1.60) 0.77 || <0.0001
Agricultural 1.65 (1.19, 2.12) 0.70 || <0.0001
Commercial 1.07 (0.68, 1.45) 0.58 || <0.0001

Table 4. Linear regression analysis with log(y;) and log(x;) from Gétaland the with R?-values,

p-values and B-values and their respective confidence intervals

In all regions there is a significant relationship between insurance claims
and temperature index at a 5% level. This is seen through a p-value
less than 0.0001.

The reason for the interest in the /5’ values is demonstrated with the
equations below.

We use the formula with the log-transformed variables below:
y=e" 2% o log(y) = a + B - log(x)
When we increase log(x) with 1 unit, we get:

log(y) = &+ B; - (log(x) + 1)

y = eb . Pllog(@)+D)

y fd e& . xB . 6/3),

which means that the insurance claim increases with a factor e? when
log(x) increases with 1 unit. An increase of log(x) with one unit is
equal to an increase of x with a factor e(x - e).

With the confidence interval for 5 we get the insecurity of B It is
of great importance having a narrow confidence interval for 5 due to
(s affect on the insurance claims.

As we can see from the table above, the B—value for the Agricultural

sector is higher in comparison with the other sectors. This would sug-
gest that the Agricultural sector would be more sensitive to a change
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in temperature index. The B—value for the Agricultural sector in Nor-
rland is 2.41. This means that if the log-transformed temperature index
would increase with 1 unit (which corresponds with the difference be-
tween the winter with the highest and the winter with the lowest tem-
perature index) it is equal to an increase in temperature index with
a factor e(~ 2.72) the insurance claims would increase with a factor
e?4! x~ 11.13. Gotaland on the other hand has a B—Value of 1.65, why
an increase in the log-transformed temperature index would result in
an increase in insurance claims with 5,21.

In Goétaland and in the Private sector in general, we seem to have
a smaller insecurity due to a narrower 95% confidence interval for B in
comparison to the other regions and sectors and we also get a higher
R?, why the model appears stronger for the Private sector.

6.3.3 Prediction Interval

The 95% prediction interval is an estimate of the interval within which
new predicted insurance claims (yy) would fall for every xy. In this
material, yo and zy have been log-transformed. The prediction interval
line in the point log(zy) is given below:

- oA 1 (log(wo)—log())?
G+ - log(xo) £ tp2(n 2)0\/1 + -+ " (log(en)—log ()2

To simplify:

tp/Q(n — 2)6'\/1 + % + (log(zo)—log(z))? —5

"1 (log(w;)—log(x))2

which gives that the 95% prediction interval:

&+ B -log(xy) £ 6
Since we have used a log-transformation, from the formula above we
get that the 95% prediction interval’s affect on g is derived after mul-
tiplying or dividing the prediction value with e as shown below:

0.95 = P(& + 3 - log(e) — 0 < log(yo) < &+ B - log(xo) + 0)
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&b . A
0.95 = P <yo < e*- zl - ef)

A wide prediction interval leads to insecurity for new observations in the
model. Below we demonstrate the J-values for an average winter season
(2000-01) for each region and sector in order to demonstrate the size of 4,
since we are not able to show any insurance claim values due to the confi-
dentiality agreement:

e Norrland; Private: 0.54, Agricultural: 0.97, Commercial: 0.85
e Svealand; Private: 1.00, Agricultural: 1.44, Commercial: 1.53
e Gotaland; Private: 1.00, Agricultural: 1.55, Commercial: 1.30

These values display a great insecurity due to a large spread. The J-value for
the Agricultural sector in Norrland is 0.97. To obtain the prediction interval
for the “un-log-transformed” § we multiply and divide with a factor e®=2.66.
For an estimated insurance claim of 1 for a given temperature index, this
would result in a spread between 0.38 and 2.66, written (0.38,2.66).

The value of § seems smaller in Norrland and within the Private sector.
The largest spread is seen in the Agricultural sector, which was also true for
the spread for the §-values before.

6.4 Comparison between Minimum and Mean Temper-
ature Index

When creating the temperature index, all temperatures above 0°C were re-
moved. When using the daily minimum temperatures for our temperature
index, days with a mean temperature above 0°C, but a minimum temperature
below 0°C, will be included in the index. Also, the minimum temperatures
are lower than the mean temperatures, giving us a higher temperature index.
How will this affect the relationship between the temperature index and the
insurance claims? Which one of minimum and mean is better to use to pre-
dict insurance claims? Here the ECA&D temperatures will be used, since we
had access to their minimum temperature data. We will also use the ECA&D
mean temperatures, since we have to use the same stations for both mean
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and minimum, when we are comparing the two. Scatter plots and simple lin-
ear regression analysis are made for both temperature indexes, first without
log-transformation and thereafter with log-transformation. As shown before,
the log-transformed variables gave better results. The log-transformed plots
are shown in Figures 9-10.

Below we demonstrate scatter plots, for the Private sector for minimum and
mean temperature index with log-transformation.

y; = insurance claims
r1 = mean temperature index
To = minimum temperature index
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Figure 9: Scatter plots for the Private sector with log(y;) and log(z1) for Norrland, Svealand and Géta-
land.
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Figure 10: Scatter plots for the Private sector with log(y;) and log(x2) for Norrland, Svealand and Go-
taland.

In both the mean and the minimum temperature analysis, we see that the
log-transformed variables decrease heteroscedacity as we saw previously. As
explained before, since we use the ECA&D-dataset, fewer stations are used
for the temperature indexes for this analysis. Even though fewer stations are
used to calculate the index, there is still a strong correlation between mean
temperature index and insurance claims.

The minimum temperatures are generally not as strongly correlated with
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the insurance claims as the mean temperatures. In Table 5 we see correla-
tion coefficient for the mean- and minimum temperature indexes. A further
discussion regarding reasons for this will be found in the discussion section.

Correlation coef- || Mean Temperature || Minimum Tempera-
ficient for private || index ture index
sector
Norrland 0.81 0.78
Svealand 0.86 0.68
Gotaland 0.87 0.85

Table 5: comparing the Private sectors correlation coefficient for mean- and minimum temperature index

for Norrland, Svealand and Gétaland.

6.4.1 Regression Analysis for Minimum and Mean Temperature
Index

We have now seen that the mean temperature index has a stronger corre-
lation. We continue with a simple linear regression in order to investigate
further if the relationship with insurance claims differs between the two in-
dexes.

The residuals for both the mean and minimum temperature index have been
analyzed in the same way as in the section “Examine the Relationship”. The
residuals appear to be independent and random. With the Shapiro-Wilk W-
test, we saw high p-values indicating that the data is normally distributed.
We find no evidence of absence of normal distribution. The residuals have
also been checked for autocorrelation with the Durbin-Watson test. For the
minimum temperature indexes, we find that d for all regions and sectors
ranges between 1,3 and 2,5 with a high p-value, indicating a low significance
in the correlation between years and the residuals. The residuals for the
mean temperature indexes were identical and varied between 1,3 and 2.5,
with a high p-value, indicating non-autocorrelation.

The next step is to make a simple linear regression analysis, comparing
the S-values, 95% confidence interval, the coefficient of determination and
significance. This is demonstrated in Tables 6-11.

Norrland Mean Temp. B—Value 95% Conf. for B || R? || p-value
Private 1.49 (1.01, 1.96) 0.72 || <0.0001
Agricultural 2.33 (1.58, 3.08) 0.72 || <0.0001
Commercial 1.42 (0.70, 2.14) 0.50 || 0.0070
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Table 6: Linear regression analysis with log(y;) and log(x1) from Norrland the with R?-values, p-values

and B-values and their respective confidence from ECAED

Norrland Min. Temp. || 3-value | 95% Conf. for B RrR? || p-value
Private 1.93 (1.15, 2.71) 0.62 || <0.0001
Agricultural 3.15 (2.01, 4.29) 0.67 || <0.0001
Commercial 1.85 (0.77, 2.93) 0.43 || 0.0022

Table 7: Linear regression analysis with log(y;) and log(z2) from Norrland the with R?-values, p-values

and B-values and their respective confidence from ECAED

Svealand Mean Temp. || f-value || 95% Conf. for | R? | p-value
Private 1.32 (0.99, 1.65) 0.74 || <0.0001
Agricultural 1.60 (1.12, 2.08) 0.66 || <0.0001
Commercial 1.26 (0.75, 1.78) 0.52 || <0.0001

Table 8: Linear regression analysis with log(y;) and log(x1) from Svealand the with R?-values, p-values

and B-values and their respective confidence from ECAED

Svealand Min. Temp. || f-value || 95% Conf. for B || R? || p-value
Private 1.71 (0.93, 2.48) 0.47 || 0.0001
Agricultural 2.14 (1.14, 3.14) 0.45 || 0.0002
Commercial 1.99 (0.94, 3.06) 0.39 || 0.0007

Table 9: Linear regression analysis with log(y;) and log(x2) from Svealand the with R?-values, p-values

and B-values and their respective confidence from ECAED

Gotaland Mean Temp. || B-value | 95% Conf. for B || R* || p-value
Private 1.36 (1.04, 1.68) 0.76 || <0.0001
Agricultural 1.73 (1.23, 2.22) 0.68 || <0.0001
Commercial 1.12 (0.71, 1.53) 0.57 || <0.0001

Table 10: Linear regression analysis with log(y;) and log(x1) from Gétaland the with R?-values,

p-values and B—values and their respective confidence from ECAED

Gotaland Min. Temp. || B-value || 95% Conf. for B || R? || p-value
Private 1.90 (1.41, 2.40) 0.72 || <0.0001
Agricultural 2.36 (1.57, 3.14) 0.61 || <0.0001
Commercial 1.59 (0.99, 2.19) 0.56 || <0.0001

Table 11: Linear regression analysis with log(y;) and log(xz2) from Gétaland the with R?-values,

p-values and ﬁ—values and their respective confidence from ECAED
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In all regions there is a significant relationship between insurance claims and
both mean and minimum temperature index at a 5% level. This is seen
through a p-value less than 0.0001.

The B-value is smaller for the mean temperature index and the 95% con-
fidence intervals are narrower than for the minimum temperature indexes.
We can also see that the coefficient of determination is higher for the mean
temperature index. Hence, the mean temperature index appears to have a
stronger relationship with insurance loss than does the minimum tempera-
ture index. Through the B—value, we also see a bigger effect on the insurance
claims with an increase in the mean temperature index.

We also study the prediction interval. A wide prediction interval leads to
insecurity in the model. Below we demonstrate the “j-values” for an average
winter season (1996-97)— as shown in section “Examining the Relationship”
— for each region and sector in order to demonstrate the size of d:

e Norrlandseqn; Private: 0.61, Agricultural: 0.96, Commercial: 0.93
e Norrland,y;, ; Private: 0.72, Agricultural: 1.05, Commercial: 0.99

Svealand pjeq,; Private: 0.96, Agricultural: 1.41, Commercial: 1.51

Svealandy;, ; Private: 1.41, Agricultural: 1.83, Commercial: 1.93

Gotalandpjeqn; Private: 1.03, Agricultural: 1.59, Commercial: 1.31
Gotaland g, ; Private: 1.11, Agricultural: 1.76, Commercial: 1.33

Mean temperature index has lower values for ¢ in all regions and sectors,
which indicates more security in the model.

We conclude that the mean temperature index is a better explanatory vari-
able for the insurance claims, since we have a smaller 95% confidence interval
for 3, a more narrow prediction interval and a higher R2.

6.5 Multiple Linear Regression

Multiple linear regression analysis was tested on the model. A log-transformed
model has been used:

log(y;) = &+ 31 log(xy1,) + Bg log(x2,)
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y; = insurance claim

a and B = estimated parameters

r1 = mean temperature index

9 = minimum temperature index

g; = an independent and normally distributed N(0,0?) error term.

The coefficient of determination is increased in comparison with the sim-
ple linear regression model, although this was expected, since R? increases
with increasing number of variables.

With multiple linear regression analysis we could not se any definite improve-
ment, but in some regions and sectors we could see significant relationships,
which can be studied further. As reported before, the mean temperatures
have been weighted with consideration to the minimum temperatures, why
the minimum and mean temperatures will be dependent. We could see that
in most cases the minimum temperatures were not significant. This will not
be studied further in this thesis.

6.6 Summary of the Comparison between Minimum and
Mean Temperatures

In conclusion, when comparing the scatter plots, the B—value and the widths
of B ’'s 95% confidence intervals, 95% prediction intervals and the coefficients
of determination, we conclude that the mean temperature indexes show a
stronger relationship to the insurance claims than do the minimum temper-
ature indexes. Consequently from now on, we will only analyze the mean
temperature indexes.
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7 Prediction of Insurance Claims 1930-2011

As mentioned before, the winters the past two decades have been quite warm
in comparison to the winters in the past century. In order to look at the rela-
tionship for the colder winters that have occurred the past 80 years we have
to conduct a prediction analysis of the material. SMHI has daily tempera-
tures between 1961 and 2011. In order to make predictions regarding colder
winters, we want to include the period 1939-1942, why the SMHI-data is not
sufficient. In the ECA&D-dataset, some stations have data going back all the
way to 1875, although we are only interested in analyzing the period 1930-
2011. Figure 11-13 demonstrate the temperature indexes between 1930-2011
for Norrland, Svealand and Gdétaland.
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Figure 11: Mean temperature index for Norrland between 1930-2011, ECA&D
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Figure 12: Mean temperature index for Svealand between 1930-2011, ECA&D
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Figure 13: Mean temperature index for Gétaland between 1930-2011, ECAD

There were only four ECA&D temperature stations that had data from
1930-2011, one station in Norrland, two in Gotaland and Kopenhamn. We
included Kopenhamn as a part of Gotaland to represent the southern part
of Gotaland. We found one station in Svealand with data going back to 1950.

The data from the three stations in Gotaland was aggregated and then
weighted with regard do the insurance claims in the regions as preformed

the section “Weighting the temperature index”.

The stations used in each region are presented in the table below.

Region || Temperature Station
Norrland || Froson

Svealand || Karlstad Airport

Gotaland || Kopenhamn, Vixjo and
Linkoping

Table 12: Temperature station used per region

We constructed scatter plots where we compared the temperature index
from each region with the other two respectively. They were all checked for
correlation, and we noticed that the temperatures were strongly correlated
through a linear relationship.

Through a correlation matrix between Goétaland and Svealand, we could
se a strong positive correlation (r = 0,96). To point estimate temperatures
for Svealand we took the quota from dividing the Svealand temperature in-
dex with the Gotaland temperature index. We found that Svealand had an
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average temperature index of 2,21 times the average Gotaland temperature
index. Therefore, through this correlation, we could point estimate the 20
years from 1930-1950 for the station in Svealand.

Now that we have new mean temperature indexes for all three regions for
1930-2011, we once again must conduct a simple linear regression analysis
with log-transformation. Since we only have insurance claim data between
1985 and 2011, the linear regression will be made with the temperatures from
those years. Figure 14 demonstrates log-transformed values for the Private
sector in all regions.
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o4 as0 475 500 525 55 575 600 625 650 675 700 325 080 375 400 425 450 475 500 525 550 575 600

logi logi logi

Figure 14: Scatter plots from Norrland, Svealand and Gétaland — Private sector: log(yi) in relation to
log(zi) with regressions line. Correlation coefficient — Norrland: r =0.82, Svealand: r =0.86 , Gétaland:

r = 0.90

The residuals have been analyzed in the same way as in the section “Exam-
ine the Relationship” and the section “Comparison between minimum and
mean”. The residuals appear to be independent and random. The Shapiro-
Wh-test gives high p-values indicating that the data is normally distributed.
We find no evidence of absence of normal distribution. The residuals have
also been checked for autocorrelation with the Durbin-Watson test. We find
that d for all regions and sectors ranges between 1,5 and 2,5 with high p-
values indicate a low significance for the autocorrelation.

The results from the regression analysis is presented in Table 13-15.

Norrland Mean Temp. || B-value || 95% Conf. for B || R* || p-value

Private 1.39 (0.89, 1.89) 0.67 || <0.0001

Agricultural 2.16 (1.37, 2.96) 0.66 || <0.0001

Commercial 1.46 (0.81, 2.11) 0.57 || 0.0002

Table 13: regression summary with log(y;) and log(z;) from mean temperature station Fréson from
Norrland
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Svealand Mean Temp. || f-value || 95% Conf. for | R? | p-value
Private 1.41 (1.06, 1.77) 0.74 || <0.0001
Agricultural 1.68 (1.15, 2.11) 0.64 || <0.0001
Commercial 1.39 (0.85, 1.92) 0.57 || <0.0001

Table 14: regression summary with log(y;) and log(xz;) from mean temperature station Karlstad from

Svealand

Gotaland Mean Temp. || B-value | 95% Conf. forB R? || p-value
Private 1.23 (0.97, 1.48) 0.80 || <0.0001
Agricultural 1.58 (1.20, 1.97) 0.75 || <0.0001
Commercial 0.99 (0.63, 1.34) 0.58 || <0.0001

Table 15: regression summary with log(y;) and log(z;) from mean temperature station Képenhamn,

Vizjé and Linképing from Gétaland

In all regions and sectors, there is a significant relationship between insur-
ance claims and the temperature index at a 5% level. This is seen through
a p-value less than 0.0001. R? is higher for the Private sector than for the
Agricultural- and Commercial sector. As we saw before in the section “Ex-
amining the Relationship” the S-values are higher in the Agricultural sector.
This indicates that an increase in temperature index has a bigger effect on
the insurance claims from the Agricultural sector than from the other sec-
tors. The B—interval for the private sector has the narrowest 95%-confidence
interval for B , which decreases the insecurity. The low B-Value indicates that
an increase in temperature index has a smaller effect on the insurance claims
from the Private sector.

Agriculture still has the greatest uncertainty among the sectors. Generally,
Svealand has the greatest uncertainty among the regions.

Through the regression analysis, we have found the models to be signifi-
cant at a 5% level with the constant of determination at a varying level. We
cannot prove that g; is not normally distributed. With this in mind, we now
proceed to “predict” the period 1930-1985.

In order to estimate new values for the insurance claims for the period 1939-
1942, we use the prediction method and use the 95% prediction interval to
get an estimation of the variation around the regression line. The prediction
of the insurance claims for Gétaland is shown below with insurance loss ex-
cluded due to the signed confidentiality agreement.
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Figure 15: Predicted Insurance loss for the Private sector in Gétaland between 1930-1985

Figures for the rest of the region and sectors will be found in Appendix
I1. From this figure, we get that if a winter as cold as the winters 1939-1942
would occur, the insurance claims would be increase considerably, which will
be discussed further on the next page. As diagnostic methods of model crit-
icism we use the prediction intervals to examine the spread around g;.

In Figure 16, we see the log-transformed insurance claims for the Private
sector from the original dataset between 1985-2011 on the y-axis. On the
x-axis are the log-transformed predicted insurance claims from the same pe-
riod. The reason for constructing such a plot is to investigate the relationship
and to evaluate the predicted values. It appears as if the if there is a linear
relationship between the two, which supports the prediction.

log = 57E-14 +1pre
19 4

N
| 26
+ - Rsq
T 0.8048
+ Adj Rsq
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RMVSE
0.4388

log
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H
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Figure 16: Private insurance claims from Gétaland for year 1985-2011: log-transformed values from the
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original dataset over log-transformed the log-transformed predicted dataset.

To illustrate the meaning of the prediction interval, we will demonstrate the
effect of the prediction interval for an “average” winter, the coldest winter
within the period with insurance data and the coldest winter within the pre-
diction as an “out of sample prediction” (Table 16). The “e’-values” for the
prediction intervals have been calculated as shown in section “Examining the
Relationship”. Below the temperatures from Gétaland and the “e’-values”
are presented. e’ represents the quota between y, and the lower limit if the
prediction interval. It is also the quota between the upper limit of the pre-
diction interval and y,. Tables for Norrland and Svealand will be presented
in Appendix III.

Gétaland/ 2001-02 "aver- || 1986-87 coldest with || 1941-42 coldest within prediction
Winter age” insurance data

Temperature In- || 98 449 731

dex

Table 16: Temperature index for Gotaland during an “average” winter, the coldest winter within the

period with insurance data and the coldest winter within the prediction

If we assume that the insurance claims for the Private sector in Gotaland for
the “average” winter 2001-2002 would be 1 unit, the corresponding claims for
the other two winters are demonstrated. As we have shown in the section
“Examining the Relationship”, we will now show the e’-values’ effect on the
prediction intervals for the periods above. To obtain the prediction interval
for the “un-log-transformed” ¢, we multiply /divide with a factor e’ for each
period. The e’-values are demonstrated in Table 17 and the prediction in-
tervals effect on the insurance claims in Gotaland is demonstrated in Table
18.

Gotaland Winter 2001-02 Winter 1986-87 Winter 1941-42
Private 2.53 2.59 2.77
Agricultural || 4.06 4.22 4.66
Commercial || 3.36 3.78 4.14

Table 17: Gétaland- “ e°-values” for an “average” winter, the coldest winter within the period with

insurance data and the coldest winter within the prediction
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Gdtaland Winter 2001-02 Winter 1986-87 Winter 1941-42
Private 1 6.43 11.67
Pred. intervall for Private (0.39, 2.53) (2.48, 16.65) (4.21, 32.33)
Agricultural 1 11.16 24.67
Pred. intervall for Agricultural || (0.25, 4.06) (2.64, 47.10) (5.29, 114.96)
Commercial 1 4.49 7.26
Pred. intervall for Commercial || (0.28, 3.63) (1.19, 16.97) (1.75, 30.06)
Table 18: Predicted insurance claims from the Private, Agricultural and Commercial sector in Gétaland
if the claims for the Winter 2001-02 would be 1 unit. Second row shows the prediction intervals’ effect
on Zy) if Zy) for the winter 2001-02 would be 1 unit.
We see in Table 17 that the predictions for the Private sector have narrower
prediction intervals than do the other sectors. In Table 18 we show that
the prediction from the model is very uncertain, which is demonstrated with
a wide prediction interval. The “out of sample prediction” has much wider
prediction intervals than do the other predictions. Although, we can say that
a winter, as cold as the winter 1941-42, would generate big insurance claims
in comparison with an average winter from the past two decades.
7.1 Predication for Sweden as a Whole
Total Insurance Loss for Sweden 1930-2011
= Total
TATETE TR LEEEEATnTARLAn
R R N E L L R R

Figure 17:Predicted Total Insurance loss for Sweden between 1930-1985

We construct a prediction for the period 1930-2011 with the data from all
sectors and regions aggregated into a whole, i.e. the insurance claims from
Sweden as a whole. The prediction is made under the assumption that all
sectors and regions are independent of each other and thereby summed the
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predicted insurance claims.

What can be seen from the prediction is that the past two winters should
have been among the 15 winters with the highest insurance claims of the past
80 years. We can state with great uncertainty that a winter, as cold as the
winter 1941-42, would probably have generated higher insurance claims than
the winters of 2009-2011.
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8 Results and Conclusion

Initially, the relationship between the temperature index and the claims from
the each area was analyzed with scatter plots, but no relationship was seen.
We also noted that the claims from these areas were not large enough to show
any relationship with the temperature data, why the insurance data had to
be aggregated and the areas merged into larger regions.

The areas were grouped into three major regions of Sweden: Norrland,
Svealand and Gotaland. 18.59% of the insurance company’s total claims
of the period were from Norrland, 22.13% from Svealand and 59.28% from
Gotaland.

In Sweden as a total, the distribution of insurance claims between the three
sectors was as follows: Private 46%, Agriculture 12% and Commercial 42%.

In all analyses for the mean temperature index from the SMHI dataset, the
mean and the minimum temperature indexes from the ECA&D dataset, we
could see that the log-transformed variables decreased the heteroscedacity.
The minimum temperatures were generally not as strongly correlated with
the insurance claims as the mean temperatures, why the mean temperatures
were used for the analysis.

Through a simple linear regression analysis with the insurance data over
the temperature index derived from the SMHI temperature data we could
see that the B—Value for the Agricultural sector was higher in comparison
with the other sectors. We could also see that the B—Value for Norrland was
higher in comparison with the other regions. This would suggest that the
Agricultural sector and Norrland as a region would be more sensitive to a
change in temperature index than would the other sectors and regions. As
an example, the B—Value for the Agricultural sector in Norrland was 2.41.
This would mean that if the log-transformed temperature index were to in-
crease with 1 unit (the difference between the year with the highest and the
lowest temperature index) the insurance claims would increase with a factor
e>4 ~ 11.13.

However, in Gotaland and in the Private sector, the insecurities were smaller
owed to a narrower 95% confidence interval for B in comparison to the other
regions and sectors. We also got a higher R?, why the model appeared
stronger for the Private sector.
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Through the method of prediction we could construct graphs with insurance
claims for the period 1930-2011 with wide prediction intervals suggesting un-
certainty in the model. Although, we can say that a winter, as cold as the
winter 1939-42, would generate big insurance claims in comparison with an
average winter from the past two decades.

44



9 Discussion

The purpose of this thesis has been to examine how the freezing tempera-
tures during wintertime affect the insurance claims on property during the
same period.

To achieve this goal, we had to construct a model of numerically describ-
ing the coldness of a winter period. This was achieved with the help of
Guy Carpenter although several other options of arbitrary numerical models
could have been considered and tested. As we wrote in the section “Aims
and Methods” we have taken two factors into consideration that probably is
involved in damages caused by freezing.

1. The temperature (the number of degrees Celsius below freezing point — 0°C)

2. The “time-factor” i.e. number of days with the temperature above.

These two factors can be accounted for in many different arbitrary models of
constructing a temperature index. As an example, we could look at the num-
ber of days below 0°C separately. It is difficult to comment on beforehand
what model will have the strongest relationship with the insurance claims.

The minimum temperatures were generally not as strongly correlated with
the insurance claims as the mean temperatures, why the mean temperatures
were used for the analysis. One could argue that the reason for this would be
that the temperature stations take the minimum temperature into consider-
ation when calculating the mean temperature. The daily mean temperatures
were estimated with several measurements over the day and thereby proba-
bly had more of the “time-factor” mentioned above accounted for, why the
time below freezing might have a stronger influence than we had considered
from the start.

Through simple linear regression, we have been able to construct a statistical
model describing a strong correlation between the mean temperature index
and insurance claims.

With multiple linear regression analysis we could not se any definite improve-
ment, but in some regions and sectors we could see significant relationships,
which can be studied further. One could also construct a model taking other
temperature indexes and/or more environmental factors into consideration,
such as snow depth and snow pressure and to look at possible interactions.
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The reason to look at snow depth and pressure would be that snow pressure
can be a direct cause of damages, but can at the same time insulate and
hence minimize the effect of freezing.

When looking at the different sectors separately, we saw that the B—Value
for the Agricultural sector was higher in comparison with the other sectors.
This would suggest that the Agricultural sector would be more sensitive to
a change in temperature index than the other sectors, which would be more
intuitive due to a more natural “exposure” to the environment in the Agri-
cultural sector. Though one must be careful drawing such conclusions, since
the 95% confidence intervals are wide and overlap those of the other sectors.
Small data samples in Norrland and for the Agricultural sector might also
be a source of uncertainty.

We have chosen to look at the different regions and sectors (Private, Agri-
cultural and Commercial) separately to see if there is a difference.

One aim with the thesis was to examine how big the claims would be to-
day if the winters would be as cold as the coldest period this century. We
have shown that a winter, as cold as the winter 1939-42, would generate big
insurance claims in comparison with an average winter from the past two
decades. It appears, using a 95% prediction interval (as shown in Table 18),
that a winter as cold as the winter 1941-1942 would generate insurance claims
from the Private sector somewhere between 4,2 and 32 times the insurance
claims from an average winter.

One problem constructing the temperature index for the prediction was that
we were forced to use the ECA&D-dataset, since they provided temperatures
from before 1961 as opposed to SMHI. When we compare the R? for the corre-
lation between the insurance claims and the temperature indexes constructed
with the SMHI- and the ECA&D-data respectively, we see a higher R? for
the SMHI-data, suggesting that the results would have improved if we had
access to more temperature stations with data going back before 1961. An-
other problem using the ECA&D dataset was that we had to point estimate
the temperatures for Svealand for the period 1930-1950, which increased
the uncertainty of the prediction in the region of Svealand. We should even
have considered omitting Svealand in the prediction analysis due to this fact.

Another source of insecurity in the method is that we have made an “out

of sample prediction”. The highest temperature index for which we have
insurance data in Gotaland was an index of 449, while we are trying to pre-
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dict the insurance claims when the temperature index was 731. We noted
that the difference in temperature index between our coldest “out of sample
prediction” and the coldest index within the period with insurance data was
largest in Svealand, corresponding with the widest prediction interval for the
prediction in that region.

From the formula for the prediction interval:

log(i;) = & + (o) = typa(n — \/1 ERFQ e

i=1 IEZ—CE)

we get that one way of decreasing the width of the prediction interval would
be to increase the number of observations (n), in other words to retrieve
more insurance data. The simplest way of doing this would be to merge the
different sectors or to get insurance data from other insurance companies.

In order to confirm the results above, it would be preferable to construct

a cross-validation study in order to see how well the results would work ap-
plied to the new dataset.
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11 Appendix
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Figure 26: Gotaland: Residual over year- Private, Agricultural and Commercial

1090 2000 2010

Autocorrelation coefficient || Private Agricultural Commercial
Norrland 0.048 -0.14 0.09
Svealand 0.16 0.008 0.33
Gotaland -0.16 -0.25 0.002

Table 19: Durbin- Watson Statistic for autocorrelation: Autocorrelation coefficient (-1<autocorrelation<1)

for Private, Agricultural and Commercial for SMHI.

P-value for Autocorrelation || Private post./neg Agricultural Commercial post./neg
post. /neg

Norrland 0.22/0.78 0.52/0.48 0.16/ 0.84

Svealand 0.10/0.90 0.36/0.64 0.11/0.89

Gotaland 0.67/0.33 0.81/0.19 0.33/0.67

Table 20: Durbin- Watson Statistic for autocorrelation: Positive- and negative P-value for Autocorrelation

for SMHI
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Figure 27: Insurance loss for the Private, Agricultural and Commercial sector in Norrland over time with

point estimates of insurance loss between 1930-1985
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Figure 28: Insurance loss for the Private, Agricultural and Commercial sector in Svealand over time with

point estimates of insurance loss between 1930-1985
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Figure 29: Insurance loss for the Agricultural and Commercial

estimates of insurance loss between 1930-1985

Appendix III

sector

in Gétaland

over time with point

dex

Norrland 2001-02  "aver- || 1993-94 coldest with || 1965-66 coldest within prediction
Winter age” insurance data
Temperature In- || 594 1147 1720

Table 21: Temperature index for Norrland during an “average” winter, the coldest winter within the
period with insurance data and the coldest winter within the prediction

Norrland Winter 2001-02 Winter 1993-94 Winter 1965-66
Private 1.95 2.03 2.25
Agricultural || 2.39 2.53 3.60
Commercial || 2.89 3.10 2.86

Table 22: Norrland- “ €®-values” for an “average” winter, the coldest winter within the period with
insurance data and the coldest winter within the prediction

dex

Svealand 2001-02  "aver- || 1986-87 coldest with || 1939-40 coldest within prediction
Winter age” insurance data
Temperature In- || 296 902 1285

Table 23: Temperature index for Svealand during an “average” winter, the coldest winter within the
period with insurance data and the coldest winter within the prediction

Svealand Winter 2001-02 Winter 1986-87 Winter 1939-40
Private 2.64 2.77 2.94
Agricultural || 4.31 4.66 5.00
Commercial || 4.35 4.71 5.05

Table 24: Svealand- “ % -values” for an “average” winter, the coldest winter within the period with
insurance data and the coldest winter within the prediction

o4






