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Abstract

When working with phylogenetic trees and Markov chain Monte
Carlo (MCMC) methods it is often of interest to visualize the tree
space provided by the MCMC algorithm. First, we need to define a
metric so we can get an distance between all trees. However the tree
space is an high dimensional space so it needs to be reduced to allow
visualization. In this thesis we look at two metrics and four dimension
reduction methods. The main conclusion is that metric is much more
important than the method used to reduced the dimensions. Differ-
ent metrics can give almost completely different plots while different
dimension reduction methods rarely radically changes the plots.
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1 Introduction
1.1 Why visualize the Phylogenetic Tree space?
The main reason why you want to visualize the tree space is that a plot in two or
three dimensions is much easier to get an overview of than a multidimensional
matrix. Using the plot it’s possible to check how the MCMC algorithm behave
when walking through the tree space. For an example you can see how it behaves
with "islands" of higher probability which is important when studying different
types of random walks([1]). In [2] they use visualization to compare how many
times different types of MCMC algorithms crosses between two islands. It is
also important when looking for a good summary tree, i.e. the mean of the trees.

1.2 Outline
In the background section we will start with an introduction to phylogenetics,
tree metrics and dimension reduction techniques. All the methods and programs
used are also presented in that section. In the next section some plots of trees
are presented and discussed. In the last section the results are combined and a
conclusion is drawn and discussed.

2 Background
2.1 Phylogenetics and phylogenetic trees
Phylogenetics is the study of evolutionary relationships among groups of species
and populations through molecular sequences and morphological data. The goal
is to describe the history of evolution for the species or their parts, both living
and extinct.

A phylogenetic tree is a branching diagram used to describe the evolution-
ary relationships. A rooted tree is a directed diagram and has an unique
internal node corresponding to the most recent common ancestor. In some
rooted trees the length of the edges may bee interpreted as time estimates. The
trees can also have different numbers of descendants from an interior node. Bi-
nary(bifurcating) trees have two and multifurcating have two or more. All trees
in this thesis are binary and rooted.

Formal definition
We define a phylogenetic tree T on S as a tree T with nodes p1, ...pn. To each
node pi we assign a label Si which is an partition of S. Nodes with degree tree
or more may have empty labels, but nodes of degree one or two must have
non-empty labels. A rooted tree is binary and has a unique internal node with
degree two. The set of nodes is P and the set of edges is E, T=(P,E). The edges
cannot be assigned negative lengths. The set of all trees on S is γs. [3]
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2.1.1 Newick format

If we have this rooted and binary tree

Figure 1: A tree with 5 taxa.

It is represented by (((A:1.0,B:1.0):2.0,(C:2.0,D:2.0):1.0):1.0,E:4.0); in Newick
format.

The tree ends with a semicolon. Interior nodes are represented by a pair of
matched parentheses. Between them are the nodes that are the descenders
from that node, separated by commas. In the example tree the immediate de-
scendants from the root are E and two interior nodes. The two interior nodes
are represented by a pair of parentheses enclosing its representation of its im-
mediate descendants. In this case A,B for one interior node and C,D for the
other. There can also be new interior nodes which can create further levels of
nesting. The names of the taxa can be any string of characters except blanks,
colons, semicolons, parentheses, and square brackets.

The number after each node with the colon is the length of the branch leading
to that node. It can be any real number, with or without a decimal point. The
trees can also be multifurcating at any nodes.[4]

2.2 Tree metrics
To be able to compare the distances between two trees we first need to de-
fine a metric on the tree space. In this thesis two metrics are used, Robin-
son Fould-distance(RF) and weighted Robinson Fould-distance(WRF). They
are both based on the splitting of trees by removing an edge and comparison of
the subsets that the split creates.

2.2.1 Robinson Foulds metric

Robinson and Foulds introduced a distance metric called Robinson Foulds dis-
tance (RF) or partition metric in their paper 1981. It’s one of the simplest
metrics for trees and is defined as the minimum number of operations needed
to transform both trees to the exact same tree using an operation called α.
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The operation α and its inverse is defined as:
Let T1 be phylogenetic tree on set γs and let e1 be an edge of T1 with corre-
sponding nodes p1 and p2. By removing the edge e1 and merging the two nodes,
p1 and p2, into a new node we have formed a new tree. The label of the new
node is the union of the labels of p1 and p2. The inverse of the operation, α−1,
is defined as removing one node and replacing it with an edge and two nodes.
The edges connecting to the old node may bee assigned to any of the new nodes
and the labelling of the new nodes can be chosen in any way as long as the
union of the labels from the new nodes is the same as the labels for the removed
node. Note that the new tree formed by either α or α−1 necessarily don’t have
to be binary.[3]

They also define matching edges as the two edges that split the two trees into
the same non-empty subsets when removed. Let (A|B) denote the split of a tree
T into two non-empty sets, A and B. Define the function f on an edge as

f(e1) = (A|B)

Edges e1 ∈ E1 and e2 ∈ E2 are then matched if and only if f(e1) = f(e2).
For an example the edge e1 in figure 2 is matched with the edge e1 in figure 1
while the edges e2 don’t have any match in the other tree.

Figure 2: An example of the operations α and α−1.
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Later in the same paper they show that the distance between two trees T1, T2
is defined as follows

If T1, T2 ∈ γS then

d(T1, T2) = |E1/É1|+ |E2/É2|

where E1 and E2 is the set of all edges on T1 respectively T2. É1 and É2 is
defined as

É1 = {e1 ∈ E1 : ∃e2 ∈ E2s.t.f(e1) = f(e2)}

É2 = {e2 ∈ E2 : ∃e1 ∈ E1s.t.f(e2) = f(e1)}

In other words É1 is the set of all edges in E1 that has an match in E2. So
the distance is all the unmatched edges for both trees. For complete proof see
Robinson, Foulds, Comparison of phylogenetic trees, 1981.[3]

The distance between the two trees in figure 1 and figure 2 is two. By re-
moving the edge e2 in both trees one gets the same tree. Remember that the
root of the tree has to have a label, otherwise the distance might become shorter
than it really is.

It can also be shown that.

Proposition If T1, T2 ∈ γS and are binary and rooted then

|E1/É1| = |E2/É2|

Proof
Binary, rooted trees with the same number of taxa always have the same number
of edges and since É1 = É2, because it is a one to one correspondence between
matched edges, the result follows.

But the metric has its limitations, Steel and Penny [5] write that it is fast
to compute but that its Possion distribution is very skewed. So it’s only use-
ful if the trees that are being compared are very similar. It also gives longer
distances than what is intuitively expected when two taxa far away from each
other is the only difference between two trees. This is because it takes a lot of
operations to join those two taxa into one node in both trees, while a metric
based on grafting and pruning would give a smaller distance. It’s even possible
for two trees where only one taxa have switched place to have the maximum
possible distance between them.[5]
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2.2.2 Weigthed Robinson Foulds metric

The weighted Robinson Foulds metric(WRF) is one of the simplest extensions of
the metric and adds the length of the edges to the metric. As with RF-distance
let (A|B) denote the split of a tree T into two non-empty sets, A and B. Re-
moving an edge e from the tree divides the tree into the two sets and thereby
creating a split. Let

∑
T be the set of all splits in a tree T. The metric is then

defined as
For each split A|B ∈

∑
Ti, i = 1, 2 we let wi(A|B) denote the length of the

corresponding edge and let wi(A|B) = 0 for all A|B /∈
∑
Ti

d(T1, T2) =
∑

A|B∈
∑

T1∪
∑

T2

|w1(A|B)− w2(A|B)|

However just as RF-distance it can give longer distances than intuitively ex-
pected when only one taxa have switched place. The distance between the two
example trees in figure 1 and figure 2 is 5.[6][7]

2.3 Dimension reduction
Dimension reduction techniques are methods used for reducing the numbers of
dimensions in a dataset and can be split into two groups, feature extraction
and feature selection. Feature extraction methods transforms the data into a
space with a lower dimension, the transformation can be linear or non-linear.
Feature selection methods try to find a subset of the original variables that best
describes the dataset. All methods used here are feature extraction methods.[8]

Using these methods the number of dimensions can be reduced to two or three
which allows visualization. It is also useful when modelling data since most
traditional statistical methods break down when the number of variables is big-
ger than the number of observations. While some computationally expensive
methods([9]) can construct models with high accuracy from high-dimensional
data it’s often still of interest to reduce the number of dimensions before any
modelling.[10]

The goal is to reduce the dimensions with as little information loss as possi-
ble. However it is generally not possible to reduce the data with zero loss, even
when reducing to the "true" number of dimensions due to errors in the original
measurements.
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(a) A cube with sides of length
one reduced using classic MDS. The
large points are the corners of one
side of the cube and the small ones
are the other side. The same applies
to the shapes.

(b) A multidimensional sphere re-
duced with non-metric MDS. The
square in the middle has distance
two from all other points. The
points in the pairs have distance two
from each other and the distances
between the pairs are four.

Figure 3: Two examples of distortion

To examine the distortion of the distances in the visualization we can visualize
figures that we already know how they look and what their true distances are.
Then it’s easier to see how the distances get changed. Two appropriate figures
shown here are a cube and a multidimensional sphere. In the cube the small
circle and large square next to each other are actually further away from each
other than the two large shapes. In the sphere the distance between the points
in a pair seems much shorter than from the pair to the middle point even though
the distance is the same. We will take a closer look on them using all dimen-
sion reduction methods in the results and discussion section. Because of the
distortion and that the scales and orientation are arbitrary it’s important to re-
member that you cannot compare any distances between reduced datasets. On
the other hand it’s possible to overcome this problem when dealing with trees
by considering all possible solutions and then plot the results of the analysis in
that space. However this only possible with small datasets because of the large
number of possible trees. It is not possible either with a continuous metric like
the weighted RF-distance([1]). Also many of these methods are iterative which
means they can get stuck in local optimums so it is important to do multiple
runs with different starting points.

The methods used here are multidimensional scaling(MDS) and principal com-
ponent analysis(PCA). MDS is used to find a spatial configuration of objects
when you have measure of their similarity or dissimilarity. It has its origins
from a problem where one have distances from a map and want to know how
the map looks. PCA uses an orthogonal transformation to transform a set of
observations into a set of values of uncorrelated variables which are called prin-
cipal components. The number of components are less or equal to the number
of variables in the original dataset. Either you can use the PCs that describe
the dataset best or use them for feature selection.[11][10]
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2.3.1 Multidimensional scaling

Multidimensional scaling (MDS) are methods for multivariate and exploratory
data analysis. The goal is to find a spatial configuration of the objects repre-
sented as points when the information known is a measure of their similarity or
dissimilarity. These points are arrange so that their distances corresponds to
the similarities of the objects, similar objects have points closer to each other
and dissimilar objects by points that are far apart.[11]

Most software divide the methods it into two groups, metric and non-metric.
The classical method is a type of metric MDS which assumes that the distance
matrix displays metric properties like distances on a map. The distances in the
reduced matrix therefore preserves the intervals and ratios as good as possible.
It minimizes a loss function called strain. The other metric methods are an
extension of the classical MDS with generalized optimization with weights, dif-
ferent loss functions and so on, but the transformation is still linear. In those
methods the loss function is called stress and often minimized using stress ma-
jorization. But sometimes the metric assumption will be too strong or that the
distances between points is of no interest, only their order is. That is where non-
metric MDS is used, it only assumes that the order of the distances is important
and uses a monotonic transformation of the distance matrix. So it will try to
keep the order as good as possible while intervals and ratios are ignored. [11][12]

Metric MDS only have to optimize the points in the configuration while non-
metric is a twofold optimization. First the monotonic transformation of the
input distances has to be optimized. Then the points in the configuration will
be arranged in such away that their distances match the scaled input distances
as close as possible.[11]

The most common stress function in MDS is Kruskal Stress, also called Stress1.
This is the stress function used here in non-metric and metric MDS. Let f(xij)
denote the transformation, dij is the distance between the points i and j and
xij is the distances given in the input matrix. For the metric MDS we have
f(xij) = xij . Then the Kruskal Stress function is defined as√∑

ij(f(xij)− dij)2∑
ij d

2
ij

The stress doesn’t tell everything about the goodness of fit and another useful
tool is a Shepard plot. It displays the relationship between the true distances
and the distances in the point configuration by plotting them against each other.
In metric and classic MDS the points should be close to a straight increasing
line and in non-metric MDS the should be close to the monotonically increasing
line of the transformed true distances, called disparities. Shepard plots can also
be used on other methods to see how the new distances looks compered to the
true distances.[11]
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2.3.2 Principal component analysis

Principal component analysis(PCA) is the best linear dimension reduction tech-
nique in the mean squared error sense. It reduces the data by finding orthogonal
linear combinations, called principal components (PC), that explains the most
variance. Their are as many PCs as there are variables in the dataset. The first
PC, s1 explains the most variance, the second PC, s2 explains the second most
variance and is ortogonal to the first PC and so on. It is usually possible to
just keep the first PCs and discard the rest with little loss in explained variance.
These components can then be used to reduce the data, either you use a number
of the first components themselves or use them for feature selection. We have
s1 = XTw1, where X is an n x n matrix and the coefficient vector(n x 1) w1
solves

w1 = arg max
||w||=1

V ar(XTw)

The second PC is the linear combination with the second largest variance and
orthogonal to the first PC, and so on. The variables in the dataset should be
normalized to have mean zero and the same variance since PCA is sensitive to
scaling, because the variance depends on the scale.[10]

2.4 Procedures and programs
In this section we will go through how the distance matrices can be calculated,
reduced and plotted. The programs used are Matlab, R, Weka[13], Spotfire[14]
and two programs written for this thesis.

2.4.1 Calculating the distances

For this thesis two programs were written in C++ to calculate the distances. To
shorten the time for calculating the RF-distance the result |E1/É1| = |E2/É2|
was used, that means only one of them needs to be calculated in d(T1, T2) =
|E1/É1|+ |E2/É2|. The distances were calculated on five datasets, shown in a
table below. Each dataset contains 2000 trees. However not all trees were used
since the program crash if the trees are to many. Trees were selected in two
ways, every tenth tree for a total of 200 trees and the first 300 trees.

Dataset Number of species sampled Number of species missing
Acanthiza 12 0
Aegotheles 7 1
Ficedula 25 0
Myioborus 19 13
Tringa 12 1

Table 1: A table showing the datasets that were used in this thesis.[15]
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2.4.2 Reducing the dimensions

Here we will look at R, Matlab and Weka[13] and which commands to use to
run different MDS and PCA methods.

Both R and Matlab can do classical and non-metric MDS, however only Matlab
can perform metric MDS. Also R doesn’t return the disparities for non-metric
MDS. Classical MDS is performed with the command cmdscale in R and with
mdscale using the option ’strain’ as ’criterion’ in Matlab and they give the
same result. Metric and non-metric MDS in Matlab is performed with the same
command but with the option ’metricstress’ and ’stress’ instead of ’strain’ as
the ’criterion’ option. In R non-metric MDS is performed using the command
metamds in the mass package or in this case isomds. Isomds is from the vegan
package[16] and uses metamds several times to find the best solution. Non-
metric MDS in R and Matlab don’t give exactly the same results. However it’s
possible that it’s only the orientation that is different since they both use the
same stress function, Kruskal Stress. In this thesis we used R, since the program
doesn’t stop if it has problems converging, as for Matlab.

Weka was used for PCA, it can be found under unsupervised filters. It nor-
malize the data and outputs a set number of PCs or enough PCs to cover a
set percentage of the information. However there are commands in both R and
Matlab that can give the PCs. It’s important though to make sure that methods
used normalizes the data.

2.4.3 Visualization

The Shepard plots are created by using the distances from the original distance
matrix and calculating all the transformed distances from the point configura-
tion. When using Matlab for non-metric MDS it’s also possible to plot the the
disparities. Spotfire can be used to create the plots of the tree space and to
colour the trees. Spotfire is a program for visualization and can create differ-
ent types of plots and change colours or shapes according to variables in the
dataset.[14]
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3 Results and discussion
We will here go through all results starting with the cube and the sphere which
were briefly talked about in the background section to see how diffrent methods
distort the distances. Then we will look at how good the fit is. Finally we will
look at how groups of trees behave when changing metric or dimension reduction
method.

3.1 The cube and the sphere
The cube and sphere is useful for testing how different methods distort the dis-
tances since we know how they should look and what their true distances are.
The cube has sides of length one. The black points are the corners of one side
of the cube and the red ones are the corners on the other side, the same applies
to the shapes. The multidimensional sphere has a red point in the middle of the
sphere and all the other points are on the surface of the sphere. The red point
in the middle has distance two from all other points. The points in the pairs
have distance two from each other and the distances between the pairs are four.

The cube looks almost the same on all plots but with different orientation of
the two squares. However metric MDS stands out as it puts the squares on top
of each other. Most of the transformed distances are close to the original ones,
except in metric MDS. The non-metric plot is especially good at giving a good
representation of the distances, although it’s hard to see that it’s a cube. The
sphere is much more distorted than the cube and gave a result that was not
expected. The sphere reduced with PCA has the middle point on the left side
and all the other points in an vertical line on the right side as shown in the plot
below. Each point on the right side is actually both points in the pair being
placed in the exact same spot. The sphere reduced with metric MDS has the
same strucutre but with the the line going around the middle point instead of
being in an vertical line. Both methods get the distance to the middle point
close to the true distance while most of the other distances are to short. All the
plots of the cube and sphere can be found in appendix 5.1.
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(a) Metric MDS (b) Non-metric MDS

Figure 4: The cube reduced with metric and non-metric MDS

(a) Metric MDS (b) PCA

Figure 5: The sphere reduced with metric MDS and PCA
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3.2 Goodness of fit

Figure 6: A plot of stress values for all the datasets, the order is the same as in the
table in appendix 5.3

To examine goodness of fit we will use stress values and Shepard plots, however
only metric and non-metric MDS give stress values. Both methods use stress1
which means that their stress values can be compared. As expected non-metric
MDS always has lower stress than metric MDS. It has around 0.1-0.15 lower
stress, which in some cases can be almost 50% lower. However non-metric MDS
has problems converging on all datasets except the cube and Aegotheles, WRF,
300 first trees. Those two datasets along with both Myioborus RF datasets
are the only ones with a stress value below 0.17. It’s hard to say though what
good and bad stress values are since it’s much like judging R2 in multiple linear
regression, it depends on the situation. Since the cube reduced with non-metric
MDS has good preserved distances and has a stress value of 0.16 it’s likely that
stress values around 0.16 or lower can be considered as good. There is another
downside as well, stress doesn’t seem to tell everything about the fit. If we look
at some of the plots of the tree space reduced with metric MDS and non-metric
MDS we see that they are not that different from each other despite the some-
times big difference in stress. We will now look at some of the Shepard plots to
see if they can tell us more about the fit.

When looking at the Shepard plots we quickly see that PCA has the worst per-
formance. They have a cone like structure with a wide spread of possible values
for the longer distances. The spread is far too wide to be considered a good fit,
especially when compared to metric and non-metric MDS which have a more
narrow spread. Classic MDS also tends to look like a cone, but not as much as
PCA. Metric and non-metric look more like they should, that is a narrow in-
creasing field and in the case of metric MDS close to the 1:1 line. The plots also
look different depending on the metric because RF-distance is discrete while
WRF-distance is continuous. On the WRF datasets all methods transforms
some of the long distances into to distances that are to short but relatively few
distances becomes too long. RF-distance has an more even spread between too
short and too long distances, but still a few more become too short than too long.
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(a) Shepard plot of Myioborus, RF, 200
trees with PCA

(b) Shepard plot of Myioborus, RF, 200
trees with metric MDS

Figure 7: Shepard plots

The Shepard plots for the dataset Aegotheles, WRF, 300 first trees stands out
compered to the rest, two of them are shown below. They have big gaps in
the Shepard plots because the dataset has two trees that are far away from
all other trees which creates the gaps in all the Shepard plots. They all look
like they should with a linear increasing line except the one reduced with non-
metric MDS. It has a big jump in transformed distances where the gap is. At
first glance this might look worse than it really is if disparities are not plotted.
However we can use Matlab on this particular dataset to get the disparities since
there is no problem with convergence on this dataset. Also on this dataset the
difference between the Shepard plots from R and Matlab are neglectable. In the
middle near the jump it follows the red line poorly so in that area it has a very
bad fit, but everywhere else it follows the line well. This shows how important
it is to plot the disparities.
There are more Shepard plots in appendix 5.2.

(a) Shepard plot of Aegotheles, WRF, 300
trees with non-metric MDS. Using Matlab
instead of R.

(b) Shepard plot of Aegotheles, WRF, 300
trees with PCA

Figure 8: Shepard plots
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3.3 Examining groups in the plots
We will mark different groups of trees in a plot and then mark the exact same
trees in another plot to see how the groups behave when changing metric or
dimension reduction method. One example is shown below were the plot of
Acanthiza has been split into two groups. By looking at several plots like these
with different groups mark the conclusion is that generally the groups stay to-
gether when changing method, but not when changing metric. However, the
groups can be slightly drawn together when changing method. This often often
happens when changing from a MDS method to PCA. What usually happens
when changing metric is that the groups mix with each other and can sometimes
be distributed over large areas of tree space.

(a) RF-distance (b) WRF-distance

Figure 9: Acanthiza, 300 trees reduced with metric MDS and different metrics. The
groups in the WRF plot were first marked according to two subgroups, squares and
stars, then the same trees got marked in the other plot.

(a) PCA (b) Classic MDS

Figure 10: Acanthiza, WRF-distance, 300 trees reduced with PCA and classical MDS.
Same groups as in the plot above.
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4 Conclussion and future work
So what is the best metric and dimension reduction method? The colouring
of the plots clearly showed that the metric has the most impact on the plots.
Dimension reduction method seems to have little impact on how groups of trees
behave but it can affect the placing of those groups.

If we compare the dimension reduction methods we can rule out PCA and
classical MDS first because of their bad Shepard plots. Even though non-metric
MDS has problems converging it gives smaller stress values and slightly better
Shepard plots than metric MDS. But the plots of the trees still look a bit sim-
ilar with the only difference often being that non-metric MDS gives more well
defined groups of trees while metric MDS gives a plot with more evenly spread
trees. It probably doesn’t matter so much if one chooses non-metric or metric
MDS but non-metric might be considered slightly better. When testing different
methods for dimension reduction Shepard plots proved to be much more useful
than the stress values. The stress values add little information beyond what is
already present in the Shepard plots. They are also harder to interpret and not
all methods give stress values.

There is no clear best metric of the two used. As described in the background
ssection the RF-distance has some limitations and the WRF-distance as well.
The spread of trees of trees in the plots are diffferent, RF-distance gives plots
that has more evenly spread trees than WRF plots. So if we are trying to find
groups of trees for which the WRF-distance is preferable. However there is no
way to say which one is the best without going more in-depth about their distri-
bution and other properties. Since the metrics give so different plots it’s likely
a good idea to use different metrics. Two trees that are close to each other in
one metric might be far from each other when using another metric.

For future work in this subject the focus should be on the metrics since those af-
fect the plots most. However it might still be interesting to try more non-linear
methods. There is for an example two non-linear extensions of PCA, Principal
curves and Vector quantization. These examples are described in more detail in
[10], together with some other methods.
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5 Appendix
5.1 Cube and sphere plots
The cube has sides with length one. The big points are the corners of one side
of the cube and the small ones are on the other side. The same applies to the
shapes.

The sphere consists of one middle point(square) and 25 pairs(star). The dis-
tance to the middle is two and the distances between the pairs are four. The
distance between the points within the pairs is 2.

(a) Classic MDS (b) Metric MDS

(c) Non-metric MDS (d) PCA

Figure 11: The cube reduced with different methods

18



(a) Classic MDS (b) Metric MDS

(c) Non-metric MDS (d) PCA

Figure 12: The sphere reduced with different methods
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5.2 Shepard plots of Myioborus

(a) Classic MDS (b) Metric MDS

(c) Non-metric MDS (d) PCA

Figure 13: Shepard plots of Myioborus, weighted rf-distance, 200 trees reduced with
different methods
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5.3 Stress values

Dataset Metric Trees Non-metric Metric
Sphere - - 0.346 0.553
Ficedula WRF First 300 0.302 0.493
Ficedula WRF Every tenth tree, 200 trees 0.296 0.492
Ficedula RF First 300 0.295 0.466
Ficedula RF Every tenth tree, 200 trees 0.290 0.459
Acanthiza WRF Every tenth tree, 200 trees 0.268 0.439
Acanthiza WRF First 300 0.276 0.449
Acanthiza RF Every tenth tree, 200 trees 0.272 0.418
Acanthiza RF First 300 0.265 0.405
Tringa WRF First 300 0.256 0.411
Tringa RF First 300 0.255 0.414
Tringa WRF Every tenth tree, 200 trees 0.255 0.413
Tringa RF Every tenth tree, 200 trees 0.248 0.403
Aegotheles RF First 300 0.247 0.356
Myioborus WRF First 300 0.240 0.381
Aegotheles WRF Every tenth tree, 200 trees 0.246 0.399
Myioborus WRF Every tenth tree, 200 trees 0.239 0.394
Aegotheles RF Every tenth tree, 200 trees 0.235 0.343
Myioborus RF Every tenth tree, 200 trees 0.174 0.297
Cube - - 0.167 0.333
Myioborus RF First 300 0.159 0.262
Aegotheles WRF First 300 0.121 0.352

Table 2: A table showing the stress values, sorted in descending order by non-metric
MDS.

Note: The non-metric MDS had problems converging, only the dataset Aegothe-
les WRF First 300 and the cube converged completly.
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