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Abstract

The aim of this thesis is to study how the two events of evolution,
speciation and extinction, has changed in 32 bird phylogenies. The
main question to answer is if the diversification rate (speciation rate
using a modified birth-death process called the reconstructed process,
describing the process of a phylogeny where the extinct species has
been removed. Six different diversification scenarios, two with con-
stant diversification rate and four with decreasing diversification rate,
have been tested on the different phylogenies. A comparison of how
well the models perform under the assumption that all extant (now
living) species is represented in the phylogeny, i.e. complete sampling,
compared to the assumption that there only is a subsample of all ex-
tant species in the phylogeny, i.e. random sampling, is also done. The
result in this thesis indicates that the diversification rate is decreasing
because of a declining speciation rate.
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1   Introduction 
Evolution is the biological process that alters life forms on earth. The evolutionary 

theory tries to describe the common ancestry of all present living species. Due to natural 

selection species adapt to their environment and under different circumstances, such as 

geographic separation, different population of the same species can become 

independent species. The event when two species originate from a single ancestral 

species is called a speciation event. Furthermore, species compete with each other for 

resources such as food and space. This competition may lead to that species go extinct. 

In macroevolution (evolution on species level) studies are often interested in the 

patterns of evolution, such as diversification dynamics (Morlon, Potts, & Plotkin, 2010; 

Lieberman, 2001). Many studies use constant speciation and extinction rates 

(Lieberman, 2001), although this assumption is not realistic. Studies have for example 

shown rapid radiation in lizard’s early history (Jackman, Larson, De Queiroz, & Losos, 

1999). Five mass extinction periods have been observed from the fossil record, 

extinction periods were followed by periods of rapid radiations (Seposki, 1998). This 

indicates that rates have not been constant through time and that there is a need to use 

varying rates (Nee, May, & Harvey, 1994). 

Mathematically, a birth-death process models the process of speciation and extinction. A 

more detailed description is given in Section 2. In this thesis we are interested in 

modelling the birth-death process and inferring speciation and extinction rates for 

different sets of species. Speciation and extinction rates can be inferred from molecular 

phylogenies (Nee, Holmes, May, & Harvey, 1994). 

The data in the study of evolution could either be organisms phenotype (colour, shape) 

or as in molecular phylogenetics their genotype (DNA, RNA). A phylogenetic tree 

represent the process of evolution by a binary tree, where the ancestral node in the tree 

represents the most recent common ancestor (MRCA) of the two descendant species 

and the time since the speciation event is represented by the branch length. An example 

is illustrated in figure 1.  
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Figure 1 Example of phylogenetic tree and explanations. 

In this thesis we will study in what way the two events of evolution, speciation and 

extinction, have operated through time in 32 bird phylogenies (754 species). Primarily 

we will try to answer if the diversification rate (=birth rate – death rate) is limited, 

which could indicate that there is a limit to diversity.  The reason for a limit to diversity 

could be that species now had time to adapt to the available spaces and the environment 

is becoming saturated, thus speciation events is becoming less frequent. Another reason 

could be that extinction is becoming more common due to restraints in nature and 

competition among species. 

The results in this thesis tell us that diversification rate is, in fact, decreasing in most 

phylogenies and that it is because of a decay in the speciation rate. The number of 

species is still increasing but with a much slower rate. These results tell us that a 

possible limit to diversity could exist. 

The thesis is structured as follows: First we will give a background to the process used in 

this thesis to illustrate the evolutionary process of our set of bird phylogenies. We will 

then continue by deriving the likelihood needed to estimate the speciation and 

extinction rates. Thirdly we will explain the different diversification scenarios that will 

be used to test the hypothesis that there is a limit to diversification. We have models 

where diversification rate declines as alternative hypothesis (model 3-6) against the 

null hypothesis where diversification rate remains constant through time (model 1 and 

2). Analysis will first be done assuming we have all extant (now living) species 

represented in the phylogenetic tree and then assuming we only have a subsample of all 

extant species. 
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2   Background 

Mathematical models are necessary to study the diversification rate. In this thesis birth-

death models will be used, which are widely used in phylogenetics and the study of 

diversification. First, in section 2.1 a brief explanation of the birth and death process will 

be given. Then in section 2.2 we will go deeper into what is called the reconstructed 

process which is the process we will use to illustrate the phylogenetic tree. In section 2.3 

we will for time dependant rates derive the likelihood function of the speciation times 

given the total age of the tree. 

We will use speciation and birth, extinction and death, tree and phylogeny, as synonyms 

throughout the text. 

2.1   Birth-death process 

The birth-death process is a stochastic process having states 0,1,2... which represent the 

number of currently living species or individuals. When the process is in state n , it can 

in one transition either go to state 1n   (a death) or to state 1n   (a birth). A birth 

happens at an exponential rate λn and a death happens at an exponential rate μn . The 

waiting time until the next transition is exponentially distributed with rate (λ+μ)n . 

These types of processes are well known in statistics and are called “continuous time 

Markov chains”. 

In a constant birth-death process each species can either speciate (give birth) with a 

constant rate λ or go extinct (die out) with a constant rate μ. Here the diversification 

rate will be speciation minus extinction (λ μ) .  

 

The pure birth process (Yule, 1924) is a special case of the linear birth-death process 

with the extinction rate being 0. Hence, each species gives birth to a new one with a 

constant rate λ and extinction does not exist. With only one lineage the waiting time 

until the next birth is exponentially distributed with rate λ and with n  lineages the rate 

is λn .  

2.2   The reconstructed process 

The definition of the birth-death process presented in section 2.1 is the most widely 

used in phylogenetics but considers only constant rates over time. However, in this 

thesis the scenario where the rates vary over time will additionally be used, i.e. the birth 

and death rates are functions over time, λ( )t  and μ( )t . Time varying rates are needed to 

study if the diversification rate is decreasing, which could indicate that there is a limit to 

diversity.  

 

The data are trees from the species which have survived until present day. The 

construction of such trees, so-called reconstructed trees, is done by simulating a birth-

death process and pruning all extinct lineages from what is called the complete tree (the 

third tree in Figure 2). Therefore we will start deriving the probabilities of the ordinary 
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birth-death process where extinct lineages are represented. Then we will modify the 

ordinary birth-death process by conditioning on that the process survives to present 

time and then remove every extinct lineage. This will generate what is called the 

“reconstructed” process and we will follow the derivations as done in Nee, May, & 

Harvey (1994). We will derive the distribution of the number of lineages in the 

reconstructed process and the likelihood function  L θ  for the reconstructed process 

given the total age of the tree.  

We will assume that we have one single lineage at the beginning of the process  0t  . 

The general birth-death process is a process that can either die or stay alive until some 

time t  between 0 and present time T . From the first process we can form three others 

(Figure 2). The second process will survive until some arbitrary time t  and may or may 

not go extinct before present time T . From the second process we will construct a third 

process using the information that the process survives to present time. The fourth 

process is the reconstructed process. This process is the same as the third except that 

we remove all the lineages that died before time T . 

 

Figure 2. The first tree is generated from an ordinary birth-death process. The second tree is a birth-death process 

which survives to time t.  Tree number 3 can be seen as a complete phylogenetic tree and survives to present time and 

tree number 4 is the reconstructed phylogeny of tree number 3 where every extinction event has been removed. 
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Let ( ( ) )P n t n denote the probability of the number of lineages at time t , where ( )n t  is 

the random variable which stands for the number of lineages at time t . Let the 

superscript of ( ( ) )P n t n  denote which process it belongs to. We start with process one 

which is an ordinary birth and death process. In a short amount of time dt   three things 

can happen, a birth event, no event or a death event; 

( ) ( ) 1     with  probability  λ( ) ( )

( ) ( )          with  probability 1  (λ( ) μ( )) ( )  

( ) ( ) 1     with  probability  μ( ) ( )

n t dt n t t n t dt

n t dt n t t t n t dt

n t dt n t t n t dt

  


   
   

 (1) 

 At the starting time there is only have one lineage (0) 1n  , the probability of having one 

lineage at time 0 is therefore ( (0) 1) 1P n    and the probability of having 1n   lineages 

at the beginning is ( (0) ) 0P n n  . Using these probabilities and the generating function 

Kendall (1948) obtain the probability function for the first process   1P n t n , which 

can either die or stay alive until some arbitrary time t, 

  

  

1

1 1

0 1 (0, )

(0, )(1 ) n

t t

P n t P t

P n t n P t u u 

   


     (2)

 

Where ( , )P t T  is the probability that a single lineage at time t  is still alive at a later time 

T , given in Kendall (1948), 

1
( , ) ,

1 exp( ( , ))μ( )

T

t

P t T

t d   



 

  (3) 

where  

( , ) (μ( ) λ( )) .
t

t s s ds



     

And 1 tu

 
is the probability of a single offspring after a time t , 

1 (0, )exp( (0, ))tu P t t  .  (4) 

Both (3) and (4) will be used to form the likelihood function of the speciation times in 

the reconstructed process. Next, to be able to get to   2P n t n we only need to realize 

that the probability of having n species at a specific time in the second process is the 

same as   1P n t n with the exception that we know that it survives to time t , thus the 

term (0, )P t in (2) is not needed,  

  2 1(1 ) n

t tP n t n u u    .  (5) 
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In the third process at least one lineage survives to present time T. That is, it is the 

second process conditioned on that it survives until the present time T. Nevertheless, 

the probability densities of the third process are not necessary for the reconstructed 

process. The fourth process is the third except that we remove every extinction event. 

We obtain the fourth process if we do as in equation (1) and (2) but consider a birth 

process instead (no extinction exist). Each lineage gives birth to a new one with 

probability λ( ) ( , )t P t T . We know the process survives to at least time t  but we want it to 

survive to the present time as well, and therefore we include the extra ( , )P t T  which is 

the probability for a single lineage to survive to present time. After a small time interval 

either a birth event can occur or no event; 

( ) ( ) 1  with  probability   ( )λ( ) ( , )

( ) ( )       with  probability 1  ( )λ( ) ( , )

n t dt n t n t t P t T dt

n t dt n t n t t P t T dt

  


  
  (6) 

Using these equations we get a probability function much the same the second equation 

in (2) except that (0, )P t  is not needed, because the process survives to time t . Instead of 

tu  we will have (0, ) (0, )tu P T P t , where (0, ) (0, )P T P t  is the probability that a process 

that is alive at time t  is still alive at T .  We now have a geometric distribution with 

parameter 1 (0, ) (0, )tu P T P t ; 

  4 1(0, ) (0, )
(1 )( )

(0, ) (0, )

n

t t

P T P T
P n t n u u

P t P t

    .  (7) 

Equation (7) is the probability density function for the number of species alive at time t , 

given that at least one lineage is alive at time T . We could use (7) to calculate for 

example the expected number of species at any time point. If we would like to use a 

likelihood conditioned on the number of species instead of doing as here, where the 

likelihood is conditioned on the total age of the tree, probability function (7) is essential. 

2.3   Likelihood function of speciation times 

The data in molecular phylogenetics is the set of every : thi , 2...i N , speciation  event 

{t2,t3,…,tN} (see figure 3). t2 will in this situation be the time where the most recent 

common ancestor (MRCA) gave birth and defines the start of the clade, the origin.  
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Figure 3 A phylogenetic tree. The ti represent the time for the speciation events and the xi  represent the length of time 

from the nodes to present time. 

Let n nx T t  , nx  is the length of time between the present and the birth of the : thn

lineage. The two outer lineages survives from time 2t  to time T  with length 2x . Because 

we define 2t  as the origin, then 2x T .  If we have n  lineages in a tree there will be a 

probability of birth proportional to 1 1λ( ) ( , )n nn t P t T  , see (6), because of this the birth 

events in the tree contributes to the likelihood with 

2 2 3 3

2

λ( ) ( , )2λ( ) ( , )...( 1)λ( ) ( , ) ( 1)! λ( ) ( , )
N

N N i i

i

t P t T t P t T N t P t T N t P t T


    .         (8) 

Equation (8) differs a little from the what they use in Nee, May & Harvey (1994). They 

do not include the first term 2 2λ( ) ( , )t P t T , the probability of the birth of the second 

lineage, in their likelihood. They believe that to be able to watch the phylogenetic tree 

the first speciation event have to occur and therefore 2 2λ( ) ( , )t P t T does not give any 

contribution to the likelihood. We disagree with Nee, May & Harvey (1994), we do 

believe that this term contributes to the likelihood and therefore we choose to keep it in 

our model.  

The other contribution to the likelihood comes from the amount of time the process 

does not give birth, i.e. the probability that the lineages observed at it  has not split into 

two until present time. As said before in (4) the probability for a single lineage not to 

give birth in a given time ix  is 1
ixu . In the likelihood this will be  

2

2

3

(1 ) (1 )
i

N

x x

i

u u


  . 

2

2(1 )xu comes from the two outer lineages which arose from the first speciation event. 

The whole likelihood function of the speciation times for a phylogeny with N lineages 
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given the total age of the tree, with different parameters 1( ,..., )n θ  depending on 

how the rates λ( )t and μ( )t  are chosen, will therefore be  

 
2

2

2 3

( 1)! λ( ) ( , ) (1 ) (1 )
i

N N

i i x x

i i

L N t P t T u u
 

 
     

 
 θ  

2

2 2

( 1)!(1 ) λ( ) ( , ) 1
i

N N

x i i x

i i

N u t P t T u
 

  
     

  
   

2

2

( 1)!(1 ) λ( ) ( , )(1 )
i

N

x i i x

i

N u t P t T u


 
    

 


 

        

   2

2 2

2

( 1)! ( , )exp ( , ) λ( ) ( , ) exp ( , )
N

i i i

i

N P t T t T t P t T t T 


 
  

 
 .    (9) 

3   Method 
To be able to say if the diversification rate has decreased over time we will need to use 

different diversification models. In this section it will decide which models to use. We 

will derive the likelihood functions and then estimate birth and death rates for each 

model for a set of bird phylogenies from Phillimore and Price (2008). Section 3.1 

contains the models where the assumption has been made that all the extant species of a 

clade are represented. In section 3.2 we deal with the problem of only having a random 

subsample of the extant species. 

3.1   Diversification models with complete sampling 

To answer our main question we will test several hypothesis models against our null 

models, the constant birth and death model and the constant birth model (model 1 and 

2), see Rabosky (2006), who also used this approach. Different scenarios can lead to a 

declining diversification rate, which are discussed in the following. The birth rate is 

constant but the death rate increases with time, the death rate is constant but birth rate 

decreases with time or the birth rate decreases and death rate increases. We will 

construct the models given in table 1: 
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Model Number of  
parameters 

Model Properties Parameters Equations for Rates 

Model 1 
 

2 Constant birth 
and death rates 

λ   birth rate 
μ  

death rate 
λ( ) λt   

μ( ) μt   

Model 2 
 

1 Constant Birth rate,  
no extinction (Yule) 

λ
 

birth rate 
 

λ( ) λt   

Model 3 
 

2 Decreasing birth rate, 
no extinction 0

λ
 

initial birth rate 

α  variation in birth rate 
0

λ( ) λ exp( α )t t   

 

Model 4 
 

4 Decreasing birth rate,  
increasing death rate 0

λ      initial birth rate 

α  variation in birth rate 

μ
T  

death rate at present 

β  variation in death rate 

0
λ( ) λ exp( α )t t   

μ( ) μ (1 exp( β ))
T

t t    

Model 5 
 

3 Constant birth rate, 
increasing death rate 

λ
 

birth rate 

μ
T  

death rate at present 

β  variation in death rate 

λ( ) λt   

μ( ) μ (1 exp( β ))
T

t t    

Model 6 
 

3 Decreasing birth rate, 
constant death rate 0

λ   initial birth rate 

α  variation in birth rate 

μ             death rate 

0
λ( ) λ exp( α )t t   

μ( ) μt   

Table 1. The different diversification models with description of their properties and parameters. 

As seen in table 1 we have chosen exponential increasing and decreasing rate models. 

These models have been presented in different experiments before (Rabosky D. L., 2008; 

Morlon, Potts, & Plotkin, 2010). All models represent expanding diversity but with 

different degrees. The speciation rate is believed to be greater than the extinction rate at 

all time1. Model 1, the constant birth and death process, will be reduced to model 2 (the 

Yule process) if the extinction rate is zero. In model 3 extinction is absent but the 

speciation rate is declining, thus giving declining diversification rate. If the parameter α, 

which denotes the magnitude of the rate decline, is equal to zero we will have a constant 

birth process, model 2. Model 6 is a simple extension of model 3 where a constant 

extinction rate is introduced. If α=0 model 6 is reduced to model 1 with constant rates. 

Model 5 has asymptotically increasing extinction rate and constant speciation rate. The 

parameter β controls how fast the extinction rate increases towards its asymptotic 

value. If β is very large the extinction rate will be constant and the model will be reduced 

to the constant birth and death process. Model 4 has decreasing speciation rate and 

increasing extinction rate and can be reduced to any of the above given models. The 

different models are illustrated in figure 4.  

                                                           

1 If 
0

λ( ) μ( ) 0

t

t t ds  for large t, then ( ( ) 0) 1 (0, ) 1P n t P t    . 
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Figure 4. An illustration of the different diversification models explained in table 1. The red line symbolizes the 
natural logarithm of species under the different scenarios.   

3.2   Diversification models with incomplete sampling 

Real data consist often of incomplete samples (Nee, May, & Harvey, 1994; Stadler, 2009), 

i.e. the models are not based on all the living species in a clade but of a random sample of 

the living species. Therefore models accounting for incomplete taxon sampling will be 

included. The assumption of random sampling is not always met, but is easier to work 

with. A discussion is held in the end of section 5.2. 

Incomplete taxon sampling, where every species has the same probability p  of being 

sampled, can be modelled by a mass extinction at the time just before the species were 

observed (Nee, May & Harvey 1994). Let us assume that all species are included in the 

tree until very close to the present time T when a mass extinction occurs where each 

species has a probability p  of surviving. We then get a reconstructed process where the 
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number of species used in our analysis is a subsample of all the extant species. To 

achieve this we use the Dirac delta function ( )x  and change the death rate into 

μ( , ) μ( ) ( ) ln( )t T t t T p   . 

Here μ( )t is the death rate as before and ( )t T  is the Dirac delta function with the 

property 

0

0

( ) 0,    if   ,

( ) 1,    if  

s

s

t T dt s T

t T dt s T





  

  





 

The Dirac delta function is zero everywhere except at t T . Note, for technical 

implementation in R we need the property: for 0   

( ) ( ) ( )

T

T

f t t T dt f T










  . 

This will be applied on the same type of models as in table 1. In 20 of the 32 phylogenies 

there are species missing in the clade and are therefore suitable for this kind of analysis 

(see table of data in section 4.1).  

3.3   Inference and model comparison 

To make the maximum likelihood estimate for each parameter we first found the 

analytic solution for ( , )t   for each model, see Appendix A4. For the time varying rate 

models we additionally needed to use numerical integration to find the solution to 

( , )iP t T . We used integrate as implemented in R (Piessens, De Doncker-Kapenga, 

Überhuber, & Kahaner, 1983). This then enabled us to express the appropriate 

likelihood functions for every model. We used the Nelder-Mead method in the 

optimization function optim in R to do the estimations (Nelder & Mead, 1965).   

To compare the fit of each model on a specific phylogeny we used the modified Akaike 

information criterion (Burnham & Anderson, 2004) which takes into account a finite 

sample size, 

2 ( 1)
AIC 2log ( ) 2

1
c

k k
L k

n k

 

   
 

. 

Here log ( )L 


is the maximized log likelihood of the speciation times, k  is the number 

of parameters in the model and n  is the number of observations (the number of 

speciation events). The model with the lowest AICc fit the data best. The first penalty, 2k , 

is needed to reduce the overfitting problem in the likelihood when a model has many 
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parameters. The quotient is a adjustment to a finite sample and gives further penalty to 

models with many parameters and small data sets.  

We also used the Akaike weights which may be interpreted as the probability that a 

given model is the best among a set of models. A model’s Akaike weight (Burnham & 

Anderson, 2004), iw , among a set with R  models is calculated as follows 

1

exp( / 2)

exp( / 2)

i

i R

r

r

w







. 

Here i is the difference between the AICc score of model i  and the lowest AICc score 

among all models. We compared the varying rate model with lowest AICc score with the 

constant rate model with lowest AICc score to determine with which degree a varying 

rate model fit the data compared to our null models with constant rates.  The relative 

probability of the best model with varying rates compared to the best model with 

constant rates is 

v

v c

w

w w
. 

 The weight for the varying rate model is denoted vw  and the constant rate model 

weight is denoted cw . 
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4   Analysis 

4.1   The data 

The data set constitutes of 32 different bird phylogenies from Phillimore and Price 

(2008). The phylogenies were generated from sequences of mitochondrial protein 

coding genes, using a relaxed clock Bayesian method implemented in BEAST (Phillimore 

& Price, 2008).  In 20 of these phylogenies there are a known number of species missing, 

which have not yet been sequenced. The phylogenies, their size and clade age is given in 

Table 2. 

Phylogeny Number of 
species sampled 

Number of 
species missing 

Clade age 
(million years) 

1. Aegotheles 8 1 10.221 
2. Amazona 28 3 6.717 
3. Anas  45 6 8.345 
4. Anthus 37 9 12.653 
5. Caciques and oropendolas   17 2 7.862 
6. Dendroica, Parula, Seiurus, Vermivora 40 5 9.086 
7. Grackles and allies                   36 4 8.417 
8. Hemispingus 12 2 15.688 
9. Myiarchus 19 3 9.593 
10. Phylloscopus and Seicercus  59 11 12.330 
11. Puffinus 24 3 7.843 
12. Ramphastos 8 3 8.114 
13. Sterna 34 10 21.656 
14. Storks 16 3 11.205 
15. Tangara 42 5 10.104 
16. Trogons 29 10 24.875 
17. Turdus and allies                 60 10 14.290 
18. Wrens 50 24 12.098 
19. Tringa 12 1 15.203 
20. Meliphaga 12 1 15.645 
21. Alectoris 7 0 7.950 
22. Catharus 12 0 8.674 
23. Cinclodes 13 0 5.190 
24. Cranes 15 0 10.033 
25. Crax 14 0 4.628 
26. Penguins 18 0 10.011 
27. Ficedula 27 0 15.772 
28. Geositta 11 0 16.140 
29. Albatross 14 0 9.080 
30. Myioborus 12 0 4.707 
31. Toxostoma 10 0 9.579 
32. Acanthiza 13 0 9.903 

Table 2. Summary table of the 32 bird phylogenies. 

4.2   Result 

The main result we have obtained is that the diversification rate declines over time and 

this is because of a decrease in the speciation rate. This diversification rate still leads to 

an expanding diversity but with a decreasing rate the closer it gets to present time. All 

phylogenies are best explained by a model with no extinction. In 21 of the 32 

phylogenies (65.6%) model 3, the model with declining speciation rate and no 

extinction, fit the data best. In the remaining 11 phylogenies (34.4%) model 2, the 

constant birth model, has the lowest AICc score. Table 3 below gives the AICc score for 

each model and phylogeny. For extended results including the estimates, see appendix B.   
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Phylogeny Model 1 
cb-cd 

Model 2 
cb 

Model 3 
db 

Model 4 
db-id 

Model 5 
cb-id 

Model 6 
db-cd 

1. Aegotheles  

p=1 

p=0.8889 

 

31.387 

31.211

 

 

27.187 

27.011 

 

27.846 

27.977

 

 

48.846 

48.977

 

 

38.387 

38.211

 

 

34.846 

34.977 

2. Amazona 

p=1 

p=0.9032 

 

-10.097 

-10.388 

 

-12.437 

-12.728 

 

-15.495 

-15.199 

 

-10.301 

-10.051 

 

-7.554 

-7.845 

 

-13.077 

-12.796 

3. Anas  

p=1 

p=0.8824 

 

-77.948 

-77.274 

 

-79.067 

-77.805 

 

-76.869 

-75.608
 

 

-77.001 

-76.425

 

 

-77.719 

-77.350

 

 

-79.022 

-78.416

 

4. Anthus 

p=1 

p=0.8043 

 

21.153 

19.342
 

 

18.907 

17.096
 

 

-4.868 

-3.178 

 

0.0592 

1.748 

 

23.539 

21.728

 

 

-2.481 

-0.792

 

5.Caciques and 
oropendolas   

p=1 

p=0.8947 

 

 

28.113 

27.667
 

 

 

25.476 

25.009
 

 

 

15.765 

15.965
 

 

 

22.363 

22.555
 

 

 

31.190 

30.744
 

 

 

18.740 

18.934

 

6. Dendroica, Parula, 
Seiurus, Vermivora 

p=1 

p=0.8889 

 

 

-15.616 

-16.317
 

 

 

-17.841 

-18.542
 

 

 

-29.229 

-28.681
 

 

 

-24.566 

-24.031 

 

 

-13.264 

-13.964
 

 

 

-27.057 

-26.501

 

7. Grackles and allies                   

p=1 

p=0.9 

 

-1.096 

-1.976
 

 

-3.349 

-4.230
 

 

-23.584 

-23.206
 

 

-18.840 

-18.472
 

 

1.304 

0.423
 

 

-21.387 

-21.019

 

8. Hemispingus 

p=1 

p=0.8571 

 

41.460 

41.362
 

 

38.404 

38.307
 

 

38.208 

38.467
 

 

47.188 

47.422
 

 

45.388 

45.291
 

 

41.994 

42.229

 

9. Myiarchus 

p=1 

p=0.8636  

 

11.967 

12.164
 

 

9.417 

9.614
 

 

11.914 

12.163
 

 

18.191 

18.440
 

 

14.881 

15.079
 

 

14.828 

15.077

 

10. Phylloscopus and 
Seicercus  

p=1 

p=0.8429 

 

 

-31.618 

-33.502
 

 

 

-33.765 

-35.649
 

 

 

-64.146 

-62.524
 

 

 

-59.609 

-57.988
 

 

 

-29.392 

-31.276
 

 

 

-61.920 

-60.298

 

11. Puffinus 

p=1 

p=0.8889 

 

-2.333 

-2.430
 

 

-4.743 

-4.840
 

 

-3.273 

-3.058
 

 

2.350 

2.564
 

 

0.3299 

0.233
 

 

-0.6095 

-0.395

 

12. Ramphastos 

p=1 

p=0.7272 

 

27.818 

27.947
 

 

23.618 

23.747 

 

25.454 

26.179
 

 

46.387 

47.094
 

 

34.818 

34.947
 

 

32.416 

33.137

 

13. Sterna 

p=1 

p=0.7727 

 

25.220 

27.0476
 

 

22.949 

24.777
 

 

25.136 

27.0477  
 

 

30.165 

32.070
 

 

27.647 

29.469
 

 

27.564 

29.475

 

14. Storks 

p=1 

p=0.8421 

 

37.145 

36.851 

 

34.452 

34.158 

 

30.110 

30.549 

 

36.714 

37.087 

 

40.327 

40.032 

 

32.948 

33.330 

15. Tangara 

p=1 

p=0.8571 

 

-5.963 

-7.262

 

 

-8.176 

-9.475
 

 

-29.343 

-28.367
 

 

-24.540 

-23.572
 

 

-3.630 

-4.929
 

 

-27.002 

-26.035

 

16. Trogons 

p=1 

p=0.7436 

 

64.112 

64.034
 

 

61.786 

61.708
 

 

56.538 

58.829
 

 

61.797 

64.089
 

 

66.632 

66.554
 

 

59.058 

61.349 

17. Turdus and allies                
p=1 

p=0.8571 

 

-54.032 

-55.508
 

 

-56.176 

-57.653
 

 

-69.311 

-68.502
 

 

-64.785 

-63.976
 

 

-51.810 

-53.286
 

 

-67.089 

-66.280

 

18. Wrens 

p=1 

p=0.6757 

 

4.113 

1.453
 

 

1.937 

-0.722
 

 

-40.581 

-33.456
 

 

-35.932 

-28.808
 

 

6.386 

3.726
 

 

-38.308 

-31.183

 

19. Tringa 

p=1 

p=0.9231 

 

43.636 

43.365

 

 

40.581 

40.309
 

 

34.847 

34.954

 

 

43.013 

44.121

 

 

47.565 

47.293

 

 

38.775 

38.882

 

20. Meliphaga 

p=1 

p=0.9231 

 

40.759 

40.526

 

 

37.704 

37.471
 

 

36.306 

36.386

 

 

45.472 

45.553

 

 

44.688 

44.455

 

 

40.234 

40.315
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21. Alectoris 

p=1 

 

27.932

 

 

22.932
 

 

25.011
 

 

65.011

 

 

37.932

 

 

35.012

 

22. Catharus 

p=1 

 

32.331

 

 

29.276
 

 

23.021

 

 

32.104

 

 

36.260

 

 

26.889

 

23. Cinclodes 

p=1 

 

11.086

 

 

8.153
 

 

10.521

 

 

18.843

 

 

14.753

 

 

14.186 

24. Cranes 

p=1 

 

23.915

 

 

21.157
 

 

22.844

 

 

30.197

 

 

27.224

 

 

26.153

 

25. Crax 

p=1 

 

14.019

 

 

11.182
 

 

4.982

 

 

12.782

 

 

17.485

 

 

8.448

 

26. Penguins 

p=1 

 

23.249

 

 

20.659
 

 

22.253

 

 

28.345

 

 

26.238

 

 

25.009

 

27. Ficedula 

p=1 

 

42.261

 

 

39.906
 

 

32.789

 

 

38.064

 

 

44.830

 

 

35.266

 

28. Geositta 

p=1 

 

40.897

 

 

37.683
 

 

36.491

 

 

46.777

 

 

45.183

 

 

40.777

 

29. Albatross 

p=1 

 

18.144

 

 

15.311
 

 

18.148

 

 

25.917

 

 

21.583

 

 

21.610

 

30. Myioborus 

p=1 

 

14.744

 

 

11.689
 

 

11.274

 

 

20.440

 

 

18.673

 

 

15.202

 

31. Toxostoma 

p=1 

 

32.704

 

 

29.276
 

 

25.915
 

 

37.915

 

 

37.504

 

 

30.715

 

32. Acanthiza 

p=1 

 

34.329

 

 

31.396
 

 

25.187

 

 

33.568

 

 

37.996

 

 

28.854

 

Table 3. AICc score for every phylogeny. Cb stands for constant birth rate, db for decreasing birth rate, cd for constant 
death rate and id for increasing death rate. The value highlighted is the model with lowest AICc for each phylogeny. 

 

The 21 phylogenies best explained by model 3, decreasing speciation rate and no 

extinction, is given in Table 4. The decrease in the speciation rate varies from 5.92 folds 

lower than the initial speciation rate (Amazona phylogeny) to 45,8 folds lower than the 

initial speciation rate (Wrens phylogeny). The mean and median of all the 21 

phylogenies is 20 folds lower the initial rate. In 18 of the 21 phylogenies the present 

speciation rate is lower than 0.1 and in 14 phylogenies lower than 0.05.   

 

Phylogeny Initial speciation 
rate   

Speciation 
rate today   

2. Amazona 1.012 0.1708 
4. Anthus 1.209 0.0397 
5. Caciques and oropendolas   1.140 0.0374 
6. Dendroica, Parula, Seiurus, Vermivora 0.9822 0.0919 
7. Grackles and allies                   1.309 0.0522 
8. Hemispingus 0.3520 0.0442 
10. Phylloscopus and Seicercus  1.129 0.0494 
14. Storks 0.5905 0.0441 
15. Tangara 1.1826 0.0565 
16. Trogons 0.2784 0.0395 
17. Turdus and allies                 0.9635 0.1037 
18. Wrens 1.210 0.0264 
19. Tringa 0.600 0.0204 
20. Meliphaga 0.4496 0.0450 
22. Catharus 1.040 0.0258 
25. Crax 1.988 0.0825 
27. Ficedula 0.5333 0.0484 
28. Geositta 0.4277 0.0389 
30. Myioborus 1.225 0.1524 
31. Toxostoma 0.8247 0.0314 
32. Acanthiza 0.9155 0.0338 

Table 4. The speciation rate when the process began and at present time in the 21 phylogenies best explained by 
model 3, decreasing speciation rate and no extinction. 
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All species are not represented in 20 of the phylogenies. This enables comparison 

between models taking random sampling into account and models with the assumption 

that all species are represented. In most of the phylogenies three of the six models 

taking into account random sampling get a better fit. The models that are improved are 

model 1, the constant birth-death model, model 2, the pure birth model and model 5, the 

model with constant birth rate and increasing death rate. This is, however, not the case 

in 20% of the phylogenies (the Anas, Myiarchus, Ramphastos and the Sterna phylogeny). 

Taking random sampling into account does not improve the model fit of the three 

models with decreasing birth rates, model 3, 4 and 6. This was not expected. We know 

that there is a subsample of species in these 20 phylogenies, and therefore we expected 

that the models assuming we have a subsample of species would get a better fit for these 

phylogenies.  

We found that model 3, the model with decreasing birth rate and no extinction, 

assuming complete sampling explain the data best in most phylogenies. Conclusion 

drawn from models using the assumption that all species are represented could be false 

if the sample used for the model is incomplete, an impression of decline in the speciation 

rate could be the result of this procedure (Nee, Holmes, May, & Harvey, 1994; Rabosky 

D. L., 2008). When evaluating only the models which assumes random sampling we 

obtain the same main result of declining speciation rate as before. There is only two 

differences when only studying random sample models; model 6, decreasing speciation 

and constant extinction, gives a better fit instead of model 2 in the Anas phylogeny and 

model 2 get the lowest AICc score instead of model 3 in the Hemispingus phylogeny.  

The results obtained when computing the Akaike weights for every phylogeny, even 

further strengthen our initial conclusion that there is a declining diversification rate. In 

14 phylogenies the time varying model had more than 90% probability of being the true 

one compared to the best constant rate model, i.e. there is under 10% probability that 

the best model for these phylogenies is a constant rate model. In 12 of these phylogenies 

the varying rate model had more than 95% probability of being the best model 

explaining the phylogenies, see Fig. 5. The highest relative probability among the 11 

phylogenies best explained by a constant rate model is just over 80%. For the 11 

phylogenies best fit by the constant rate models the mean of the relative probability of 

being the true model is 70% compared to 88% for the 21 phylogenies best fit by varying 

rates models.  
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Figure 5. Relative probability of the best varying rate model compared to the best constant rate model for each 
phylogeny. The Akaike weights are used to compute the relative probability. The best varying rate model is in all cases 
except in the Anas phylogeny model 3. In the Anas phylogeny model 6 is the best varying rate model. Model 2, the Yule 
model, is in all phylogenies the best constant rate model to fit the data. 

Studying the results in the appendix B we see that for model 1, the constant birth and 

death model, there are only 2 phylogenies where the extinction rate is not estimated to 

zero, both assuming complete sampling and random sampling. The same tendency is 

detected for model 5, the model with constant birth rate and increasing death rate, as for 

model 1. In model 4, decreasing birth rate and increasing death rate, there is 13 (40.6%) 

phylogenies where the extinction rate is not estimated to zero assuming complete 

sampling and 10 (50%) phylogenies where the extinction rate is not estimated to zero 

assuming random sampling. In both cases, with or without random sampling, all 

phylogenies with extinction rates estimated to zero where the same except for the 

Sterna phylogeny. The Sterna phylogeny had under complete sampling an extinction rate 

estimated to zero and under random sampling an estimate of 0.0088. The same results 

were obtained for model 6, the model with decreasing birth rate and constant death 

rate, when it comes to extinction rate, as for model 4.  

We can also look at the natural logarithm of the number of species in different 

phylogenies. In Fig. 6 we have an example of four phylogenies; Sterna, Puffinus, Grackles 

and Trogons. The Sterna phylogeny is best explained by model 2, the constant birth 

process, assuming complete sampling and next best by model 2 assuming we have a 

random sample. The Puffinus phylogeny is also best explained by model 2, but the best 

model is the one assuming we have a random sample and next best assuming complete 

sampling. The Trogons and the Grackles phylogeny is best explained by model 3, the 

decreasing birth process, assuming complete sampling and next best by the 

corresponding model taking samples into account. We have plotted the logarithm of the 

expected number of species from these different models. We can see a difference of the 

curves representing the actual number of species in the trees best explained by a 

constant rate model (Sterna and Puffinus) compared to the trees best explained by the 

varying rate model (Trogons and Grackles).  
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The two best models explaining the Grackles phylogeny looks the same, the AICc score in 

these two models are very similar, -23.584 and -23.21. 

Figure 6. These lineages-through-time plots are of the natural logarithm of the actual number represented by the line, 
the expected number of species under the best model by the line with circles and the next best model by the dashed 
line. The Grackles and Trogons phylogeny is best explained by the pure decreasing birth rate model with complete 
sampling. The Sterna phylogeny is best explained by model 2, the constant birth process, assuming we have complete 
sampling and next best by the same model but assuming random sampling. The Puffinus phylogeny is also best 
explained by model 2 but with random sampling and next best by model 2 and complete sampling. 
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5   Discussion 
Our results of declining diversification rates are in line with previous studies (Morlon, 

Potts, & Plotkin, 2010; Rabosky D. L., 2008). In Morlon, Potts, & Plotkin (2010) they use, 

among others, the same phylogenies as we do but use a different approach than the birth 

and death process. Their result is that most phylogenies are best explained by models 

with declining diversification rate. In Rabosky D. L. (2008) they use three phylogenies 

with a declining diversification rate and test whether it is changes in the speciation rate 

or extinction rate that is the cause. They use phylogenies with a sample fraction >0.93 

and use models assuming complete sampling. They find that declining speciation rate 

and no extinction is the best-fit model in all three phylogenies. The declining speciation 

rate could be explained by adaptive radiation. In the past, species may have found 

relatively unoccupied niches and had the possibility to evolve in several different ways. 

Species then accumulated and adapted to the environment available to them, resulting 

in a slowdown in the speciation rate due to less resources and more competition 

(Gavrilets & Vose, 2005).  

5.1   Extinction rate 

The assumption used in this study that the speciation rate always is higher than the 

extinction rate may be an inaccurate representation of nature. When changing this 

assumption the results for the constant birth-death model are the same as before. This 

is, however, not very interesting because if the extinction rate would be higher than the 

speciation rate in the constant rate model the phylogenetic tree would, with high 

probability, die out before present time (Kendall, 1948). There are living species in the 

phylogenies and if the constant birth and death model is the underlying model it is likely 

that the speciation rate is higher than the extinction rate. However, it is relevant to 

change the assumption for the time varying rate models. A low extinction rate early in 

history could have resulted in the phylogenetic tree’s survival, but later in time the 

extinction rate becomes higher than the speciation rate. When changing the assumption 

in model 5, constant birth rate and increasing death rate, there was only one case where 

the result differed from before. This was the Anas phylogeny and somewhere in its later 

history the extinction rate exceeds the speciation rate, it also leads to an improvement of 

the models fit.  

When finding the parameters giving the maximum likelihood when removing the 

constraint that the extinction rate has to be larger than or equal to zero, we usually 

obtain a negative extinction rate (see Fig.  7). The Anas phylogeny is an exception and 

most of the times we get plots as the right one in Fig. 7, when plotting the extinction rate 

against the loglikelihood in the constant birth and death model. 
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Figure 7. we fixed the value of the speciation rate giving the maximum log likelihood and made plots of the extinction 
rate.  

5.2   Random sampling 

Among the 20 phylogenies where species are missing, the two constant rate models had 

4 phylogenies where the model assuming to have a random sample did not get a better 

fit than the corresponding model assuming that we have all species represented in the 

phylogeny. We also get the result that none of the models with random sampling and 

decreasing birth rate are better than the corresponding models assuming complete 

sampling. We have chosen to use a somewhat different equation for random sampling 

compared to Nee, May & Harvey (1994). They use a Taylor expansion of the component 

ln( )p  into 1p   to obtain eq. 34 but we chose to keep ln( )p  because it is an unnecessary 

approximation. When performing the analysis with this approximation one will get the 

result that all constant rate models with random sampling fit the data better. When 

using the approximation for model 3, decreasing birth rate and no extinction, we get that 

60% of the phylogenies is best explained by the model under complete sampling. This 

leads to the conclusion that models with decreasing birth rate, of the exponential form in 

this thesis, and models with random sampling do not fit well together. Something must 

be changed if we want to continue exploring random sampling and varying rates 

together, especially if we want to use an exponential decreasing birth rate. To be able to 

establish if other decreasing models, and not only the exponentially decreasing models 

used in this thesis, has a problem with random sampling, we tried with a simple 

decreasing linear model with no extinction rate ( 0λ( ) α λt t   ). We tried this on the 

first 16 phylogenies and they all gave the same result; the models with random sampling 

did not give a better fit. This is an important obstacle to overcome, because we do in fact 

know that there is a subsample of species in some of our data and we should include this 

in our analysis. This is important especially if we want to say with more confidence that 

the diversification rate has declined through time and is doing so because of a 

decreasing speciation rate in the incomplete phylogenies. There is a risk that the results 

obtained here is only the product of us not being able to model random sampling. We 

argued in section 4.2 that there can be an impression of a decline in the speciation rate 
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when having an incomplete sample but using models assuming complete sampling. To 

ascertain that the results obtained here is not a product of this mechanism we verified 

that the results would be the same if we only considered random sampling models. If 

declining speciation rate models under the assumption of random sampling does not 

work well together, and there is some relationship between them, then we cannot put 

full trust in these results. When studying only the phylogenies with a high sampling 

fraction (0.9 )p , and using models assuming complete sampling, we get that 9 out of 14 

(64.3%) phylogenies is best explained by model 3, the decreasing birth model. This 

leads us to the conclusion that our results before have some accuracy.  

The sampling fraction could be another possible error source. To do these analyses we 

need to know how many species are missing to get the correct value of the sampling 

fraction p . If we missed some species that actually belong to the phylogeny, it will lead 

to overestimation of the sampling fraction, and our results would be incorrect. 

One reason for the problem with the models under random sampling might be the way 

the mass extinction event is modelled. The lineages have been removed randomly in our 

analysis but in reality this may not always be true. To obtain the data in molecular 

phylogenetics we must have access to parts of species DNA. Even though sequencing of 

DNA is becoming easier and new species get their DNA sequenced continuously, it is still 

a matter of cost. This leads to that the choosing of which species to sequence could 

follow some pattern and not be random.  

5.3   Starting the process at t1 or t2? 

We do not know how long the first lineage lived before it split into two species. To be 

able to make our estimations, we set the first known speciation event as time 0. This is 

also done in Rabosky (2008) and is implemented in the LASER package in R (although 

with a different likelihood function) (Rabosky D. L., 2006:2). We wondered whether this 

would influence the outcome of decreasing birth rates not fitting well with random 

sampling. Therefore we also made the unknown time, from the birth of the very first 

species until the first splitting event, into a parameter. We tried to estimate it along with 

the other parameters. Unfortunately this did not work; we got the same estimations for 

the birth rate, death rate and the same likelihood as before for different values of this 

new parameter. Also, the problem remained that the models with decreasing birth rates 

with the assumption of incomplete sampling did not fit the data better than the models 

assuming complete sampling. 

5.4   Studied models 

Six different diversification scenarios have been tested for how well they explain 

different bird phylogenies. Two of the models are common null hypothesises in the 

study of cladogenesis. The other four were chosen because they are quite simple 

exponential models with few parameters but with opportunity to represent many 

different scenarios, including the two first ones. They have also been used in other 

studies and therefore give us the opportunity to compare our results. One could of 
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course use different time varying rate models than the ones used in this thesis. Even 

though the two models with no extinction best fit the bird phylogenies here, it is still 

important to use models with extinction present because we know that species have 

gone extinct throughout history.  

6.   Summary and future work 

6.1   Summary and conclusions 

We have studied how the diversification rate has changed through time in 32 bird 

phylogenies. This is done by using a modified birth-death process called the 

reconstructed process, describing the process of a phylogeny where the extinct species 

has been removed. Six different diversification scenarios, two with constant 

diversification rate and four with decreasing diversification rate, have been tested on 

the different phylogenies. The constant rate models are the constant birth-death model 

and the pure birth model (the Yule process). The declining diversification rate models 

are generated with decreasing speciation rate extinction, increasing extinction rate or 

both at the same time.  We have also compared how well the models perform under the 

assumption that all extant species is represented in the phylogeny, named complete 

sampling compared to incomplete sampling. The result in this thesis indicates that the 

diversification rate is decreasing and is doing so because of a declining speciation rate. 

The two constant rate models and one of the declining diversification models perform 

better under the assumption of incomplete sampling. The other three declining 

diversification rate models, which do never performs better under incomplete sampling, 

have one thing in common; decreasing speciation rate. This is something which should 

be explored further. 

6.2   Future work 

Here, we have used an expression for the likelihood conditioned on the total age of the 

phylogenetic tree. There are two things we could change and continue working with. 

First, the total age contains some uncertainty regarding the time prior to the first 

speciation event and, second, we do know how many species are alive today and we can 

condition on that knowledge (Gernhard, 2008). We have written about it in appendix C. 

This is only for constant rates but if we could do it for time varying rates as well it would 

perhaps be a better way of tackling questions concerning diversification patterns.  

Another thing one can try is to not let the speciation rate and extinction rate vary with 

time but rather with the clade size. If there only exist ten species in a clade the 

competition should not be so tough for space and resources and the extinction rate 

should be lower than if the clade contained a hundred species. This is called density 

dependant diversification and is discussed in Phillimore & Price (2008) and analysis is 

done in Seposki Jr (1978) and Rabosky & Lovette (2008). This would lead to a process 

with the properties 
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n t dt n t t n t dt

n t dt n t t t n t dt

n t dt n t t n t dt

  


   


   .

 

A third aspect to reconsider, which may be different in nature compared to these models 

and worth exploring, is that at a given time point each lineage has the same probability 

of going extinct and the same probability to speciate. Is this really likely? When 

competition hardens between species, is it not possible that one of the competitive 

species has the upper hand for a long time before the other goes extinct? If this is true 

then the species might not have the same probability of going extinct at a given time 

point. 
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A     Equations 

We will give a summary of all the most important equations as well as some extensions 
simplifying implementation in, for example, R. 

A.1 Meanings 

λ( )t – the speciation rate 

μ( )t – the extinction rate 

( )n t  – number of species at  time t  

  P n t n – the probability that a process has n  lineages at time t  

( , )P t T  – the probability that a single lineage at time t   is still alive at a later time T  

1 tu   – the probability of a single offspring after a time t  

it –  the time of the :i th  birth event  

nx  –  the length of time between the present and the birth of the :n th  lineage 

( )x  – the dirac delta function 

A.2 Complete sampling 

For general rates we have 

1
( , )

1 exp( ( , ))μ( )

T

t

P t T

t d   



 

,  

Where  

( , ) (μ( ) λ( )) .
t

t s s ds



   
 

For constant rate we have 

λ μ
( , ) ,

λ μ exp( (λ μ)( ))
P t T

T t




     

And commonly done in the literature we denote ρ by r  when using constant rates 

( ) (λ μ)r t t    which leads to the expression 

 λ 1 exp( ( ))
.

λ μ exp( ( ))
t

r t
u

r t




  



 
 

 
 

A.3 Incomplete sampling 

We will in the case of incomplete sampling have a different extinction rate due to the 
introduced mass extinction close to present time T. This will change both the ρ and the 
probability for a lineage to survive to present time, 

μ( , ) μ( ) ln( ) ( )t T t p t T   , 

μ( ) λ( )                 if 

( , ) μ( ) λ( ) ln( ) ( ) .

μ( ) λ( ) ln( )    if 

t

t

t

s s ds T

t s s p s T ds

s s ds p T









  




 


     

   








 

To calculate ( , )P t T we will also need to do the following  

exp( ( , ))μ( ) exp μ( ) λ( ) ln( ) ( ) μ( )

T T

t t t

t d s s ds p T d



      
 

     
 

  
 

exp μ( ) λ( ) μ( )

exp(ln( ) ( ))

T
t

t

s s ds

d
p T








 
 

 


 


 , 

where ( )T  is 0 if T  and 1 if T  .

 

 

Figure 8. Plot of ( )T   

In the given integration interval the denominator will be equal to 1 and we have 

exp( ( , ))μ( ) exp μ( ) λ( ) μ( )

T T

t t t

t d s s ds d



     
 

  
 

   . 

With this and the property given in the main text, 

( ) ( ) ( ),

T

T

f t t T dt f T










 
 

we can simplify ( , )P t T  with consideration to implementation in R.  



 
 

 
 

  

1
( , )

1 exp ( , ) μ( ) ln( ) ( )

T

t

P t T

t p T d     



  

 

   

1

1 exp ( , ) μ( ) ln( )exp ( , ) ( )

T T

t t

t d p t T d        



   
 

 

1

1 exp μ( ) λ( ) μ( ) ln( )exp ( , )

T

t t

s s ds d p t T



  


 

   
 

 

. 

 

A.4 Likelihood functions for each model 

The general likelihood function (9) is 

   

 

2

2 2

2

( 1)! ( , ) exp ( , ) λ( ) ( , ) exp ( , ) ,

and we will in the following section give the corresponding ,  ( , ) and ( , ) to each model.

N

i i i

i

N P t T t T t P t T t T

L P t T t T

 





 
  

 


θ

 

1. Constant birth rate and constant death rate.  

λ( ) λt  and μ( ) μt   

If we have complete sampling the equations will take the following form; 

( , ) μ λ   (μ λ)( )

T

t

t T ds T t       

 
λ μ

( , )
λ μexp (λ μ)( )

P t T
T t




   
 

If we have incomplete sampling we will instead have; 

( , ) μ λ ln( ) ( )  (μ λ)( )  ln( )

T

t

t T p s T ds T t p        

 

   

1
( , )

1 μ exp (μ λ)( ) exp ( , ) ln( )

T

t

P t T

t d t T p  



   

 



 
 

 
 

    

1

μ ln( )
1 exp (μ λ)( ) 1 exp (μ λ)( )

μ - λ

p
T t T t

p



      

 

   
(λ μ)

.
λ μ+(λ μ) ln( ) exp (μ λ)( )

p

p p p T t




   
 

A Taylor expansion of the component ln( )p into 1p  will generate the same equation as 

equation 34 in (Nee, May, & Harvey, 1994). 

The likelihood be will be 

   1 2

2 2

2

(λ,μ) ( 1)!λ ( , )exp ( , ) ( , ) exp ( , )
N

N

i i

i

L N P t T t T P t T t T 



   . 

2. The constant birth model.  

λ( ) λt   and μ( ) 0t   

With complete sampling we have  

( , ) λ    λ( )

T

t

t T ds T t      .  

The probability of surviving until present time is ( , ) 1P t T  because no extinction exists. 

Incomplete sampling yields, 

( , ) λ ln( ) ( )   λ( ) ln( )

T

t

t T p s T ds T t p          

1
( , )

1 ln( )exp( ( , ))
P t T

p t T


 . 

The likelihood will for the constant birth model be 

   1 2

2 2

2

λ ( 1)!λ ( , )exp( ( , )) ( , ) exp ( , )
N

N

i i

i

L N P t T t T P t T t T 



 
   

 
 . 

In the case of complete sampling we have 

2

2

1
λ̂=

N

i

i

N

x x





 

 

 

 



 
 

 
 

3. Decreasing birth rate with no extinction.  

0λ( ) λ exp( α )t t 
 and μ( ) 0t   

Assuming complete sampling gives  

 0

0

λ
( , ) λ exp( α ) exp( α ) exp( α ) ,

α

T

t

t T s ds T t         

and the probability of surviving until present time is equal to 1 as in the previous model, 

1
( , ) 1.

1 exp( ( , ))μ( )

T

t

P t T

t d   

 

 
 

Incomplete sampling yields, 

 0

0

λ
( , ) λ exp( α ) ln( ) ( ) exp( α ) exp( α ) ln( ),

α

T

t

t T s p s T ds T t p            

1 1
( , ) .

1 ln( )exp( ( , ))
1 ln( ) exp( ( , )) ( )

T

t

P t T
p t T

p t t T d


   

 


 
 

The likelihood for the decreasing birth model will be 

     1 2

0 0 2 2

2

λ ,α ( 1)!λ ( , )exp ( , ) ( , ) exp( α )exp ( , ) .
N

N

i i i

i

L N P t T t T P t T t t T 



 
   

 
  

4. Decreasing birth rate, increasing death rate.  

0λ( ) λ exp( α )t t 
 and μ( ) μ (1 exp( β ))Tt t  

 

With complete sampling we have 

0( , ) μ (1 exp( β )) λ exp( α )  

T

T

t

t T s s ds      

    0λμ
=μ ( ) exp( β ) exp( β ) exp( α ) exp( α ) .

β α

T

T T t T t T t          

The probability of surviving until present time is 

1
( , ) .

1 μ exp( ( , ))(1 exp( β ))

T

T

t

P t T

t d   



  

 

 



 
 

 
 

Incomplete sampling yields the following equations instead 

   0λμ
( , ) μ ( ) exp( β ) exp( β ) exp( α ) exp( α ) ln( ),

β α

T

Tt T T t T t T t p           

 

   

1
( , ) .

1 μ exp μ( ) λ( ) 1 exp( β ) exp ( , ) ln( )

T

T

t t

P t T

s s ds s d t T p



 


 

     
 

 
 

The likelihood becomes 

     1 2

0 0 2 2

2

λ ,μ ,α,β ( 1)!λ ( , )exp ( , ) exp( α ) ( , ) exp ( , ) .
N

N

T i i i

i

L N P t T t T t P t T t T 



 
   

 


 

5. Constant birth rate, increasing death rate.  

0λ( ) λt  and μ( ) μ (1 exp( β ))Tt t  
 

Under the assumption of complete sampling we will have these expressions; 

 0 0

μ
( , ) μ (1 exp( β )) λ  (μ λ )( ) exp( β ) exp( β ) ,

β

T

T

T T

t

t T t ds T t T t           
 

1
( , ) .

1 μ exp( ( , ))(1 exp( β ))

T

T

t

P t T

t d   



  
 

Incomplete sampling gives the following instead; 

 0

μ
( , ) (μ λ )( ) exp( β ) exp( β ) ln( ),

β

T

Tt T T t T t p        

 

   

1
( , ) .

1 μ exp μ( ) λ( ) 1 exp( β ) exp ( , ) ln( )

T

T

t t

P t T

s s ds s d t T p



 


 

     
 

 
 

The likelihood becomes 

     1 2

0 0 2 2

2

λ ,μ ,β ( 1)!λ ( , )exp ( , ) ( , ) exp ( , ) .
N

N

T i i

i

L N P t T t T P t T t T 



 
   

 
  

 

 

 



 
 

 
 

6. Decreasing birth rate, constant death rate 

0λ( ) λ exp( α )t t 
 and μ( ) μt   

Under the assumption of complete sampling we will have these expressions; 

 0

0

λ
( , ) μ λ (exp( α )) μ( ) exp( α ) exp( α ) ,

α

T

t

t T s ds T t T t         
 

1
( , ) .

1 μ exp( ( , ))

T

t

P t T

t d  



 
 

Incomplete sampling gives the following instead; 

 0λ( , ) μ( ) exp( α ) exp( α ) ,
α

t T T t T t      

 

 

1
( , ) .

1 μ exp μ( ) λ( ) exp ( , ) ln( )

T

t t

P t T

s s ds d t T p



 


 

   
 

 
 

The likelihood will be 

     1 2

0 0 2 2

2

λ ,μ,α ( 1)!λ ( , )exp ( , ) exp( α ) ( , ) exp ( , ) .
N

N

i i i

i

L N P t T t T t P t T t T 



 
   

 


 



 
 

 
 

B    Table of results  

   Table of results complete taxon sampling 

p=1 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
1. Aegotheles  
N=9  
n=8 

λ̂=0.1409 

μ̂ 0

LogL= -12.194



 

λ̂=0.1409

LogL= -12.194
 

λ̂=0.5656

α̂=0.2481

LogL= -10.423  

λ̂=0.5656

α̂=0.2481

μ̂ 0

β̂=0.1089

LogL= -10.423



 

λ̂=0.1409

μ̂ 0

β̂=0.2129

LogL= -12.194



 

λ̂=0.5656

α̂=0.2481

μ̂ 0

LogL= -10.423



 

2. Amazona 
N=31  
n=28 

λ̂=0.3261

μ̂ 0

LogL= 7.299



 

λ̂=0.3261

LogL= 7.299

 
λ̂=1.012

α̂=0.2649

LogL= 9.997
 

λ̂=1.297

α̂=0.2823

μ̂=0.1597

β̂=0.3536

LogL= 10.06
 

λ̂=0.3261

μ̂ 0

β̂=3.5740

LogL= 7.299



 

λ̂=1.448

α̂=0.2990

μ̂=0.1572

LogL=10.060
 

3. Anas  
N=51 
n=45 

λ̂=0.5286

μ̂=0.2327

LogL= 41.120  

λ̂=0.3962

LogL= 40.581

 
λ̂=0.3962

α̂ 0

LogL= 40.581



 

λ̂=0.9772

α̂=0.0525

μ̂=0.8991

β̂=0.1448

LogL= 43.019

 

λ̂=0.6539335

μ̂=0.6539331

β̂=0.1769

LogL= 42.159
 

λ̂=1.434

α̂=0.1036

μ̂=0.6043

LogL= 42.811
 

4. Anthus 
N=46  
n=37 

λ̂=0.1508

μ̂ 0

LogL= -8.394

  

λ̂=0.1508

LogL= -8.394

 
λ̂=1.209

α̂=0.2700

LogL= 4.616
 

λ̂=1.209

α̂=0.2700

μ̂ 0

β̂=3.811

LogL= 4.616



 

λ̂=0.1508

μ̂ 0

β̂=3.282

LogL= -8.394



 

λ̂=1.209

α̂=0.2700

μ̂ 0

LogL= 4.616



 

5. Caciques 
and 
oropendolas  
N=19  
n=17 

λ̂=0.1937

μ̂ 0

LogL= -11.595



 

λ̂=0.1937

LogL= -11.595

 
λ̂=1.140

α̂=0.4348

LogL= -5.421
 

λ̂=1.267

α̂=0.4362

μ̂=0.0411

β̂=0.9736

LogL= -5.363

 

λ̂=0.1937

μ̂ 0

β̂=1.918

LogL= -11.595



 

λ̂=1.281

α̂=0.4387

μ̂=0.0407

LogL= -5.370
 

6. Dendroica, 
Parula, 
Seiurus, 
Vermivora 
N=45  
n=40 

λ̂=0.2280

μ̂ 0

LogL= 9.975

  

λ̂=0.2280

LogL= 9.975

 
λ̂=0.9822

α̂=0.2607

LogL= 16.781
 

λ̂=1.317

α̂=0.2771

μ̂=0.1029

β̂=3.978

LogL= 16.871

 

λ̂=0.2280

μ̂ 0

β̂=14.246

LogL= 9.975



 

λ̂=1.305

α̂=0.2769

μ̂=0.0988

LogL= 16.862
 

7. Grackles 
and allies 
N=40 
n=36 

λ̂=0.2113

μ̂ 0

LogL= 2.735

  

λ̂=0.2113

LogL= 2.735

 
λ̂=1.309

α̂=0.3827

LogL= 13.980
 

λ̂=1.504

α̂=0.3850

μ̂=0.0591

β̂=0.6654

LogL= 14.087

 

λ̂=0.2113

μ̂ 0

β̂=1.870

LogL= 2.735



 

λ̂=1.5324

α̂=0.3882

μ̂=0.0584

LogL= 14.081
 



 
 

 
 

8. 
Hemispingus 
N=14  
n=12 

λ̂=0.1080

μ̂ 0

LogL= -17.980



 

λ̂=0.1080

LogL= -17.980

 
λ̂=0.3520

α̂=0.1316

LogL= -16.354
 

λ̂=0.4240

α̂=0.1318

μ̂=0.0785

β̂=0.0732

LogL= -16.261

 

λ̂=0.1080

μ̂ 0

β̂=3.127

LogL= -17.980



 

λ̂=0.4766

α̂=0.1408

μ̂=0.0524

LogL= -16.283
 

9. Myiarchus 
N=22  
n=19  

λ̂=0.2949

μ̂ 0

LogL= -3.583

  

λ̂=0.2949

LogL= -3.583

 
λ̂=0.3420

α̂=0.0218

LogL= -3.557
 

λ̂=0.3420

α̂=0.0218

μ̂ 0

β̂=0.5615

LogL=-3.557



 

λ̂=0.2949

μ̂ 0

β̂=3.053

LogL= -3.583



 

λ̂=0.3420

α̂=0.0218

μ̂ 0

LogL= -3.557



 

10. 
Phylloscopus 
and Seicercus 
N=70  
n=59 

λ̂=0.1649

μ̂ 0

LogL= 17.918

  

λ̂=0.1649

LogL= 17.918

 
λ̂=1.129

α̂=0.2537

LogL= 34.182
 

λ̂=1.1289

α̂=0.2537

μ̂ 0

β̂=0.1151

LogL=34.182



 

λ̂=0.1649

μ̂ 0

β̂=1.385

LogL= 17.918



 

λ̂=1.1291

α̂=0.2537

μ̂ 0

LogL= 34.182



 

11. Puffinus 
N=27  
n=24 

λ̂=0.3352

μ̂ 0

LogL=3.467

  

λ̂=0.3352

LogL= 3.467

 
λ̂=0.5694

α̂=0.0980

LogL= 3.936
 

λ̂=0.5694

α̂=0.0980

μ̂ 0

β̂=1.100

LogL=3.936



 

λ̂=0.3352

μ̂ 0

β̂=4.083

LogL= 3.467



 

λ̂=0.5694

α̂=0.0980

μ̂ 0

LogL= 3.936



 

12. 
Ramphastos 
N=11 
n=8 

λ̂=0.1818

μ̂ 0

LogL= -10.409



 

λ̂=0.1818

LogL= -10.409

 
λ̂=0.5731

α̂=0.2596

LogL= -9.227
 

λ̂=0.7423

α̂=0.2769

μ̂=0.0785

β̂=2.1396

LogL=-9.194

 

λ̂=0.1818

μ̂ 0

β̂=2.000

LogL= -10.409



 

λ̂=0.7491

α̂=0.2799

μ̂=0.0773

LogL= -9.208
 

13. Sterna 
N=44  
n=34 

λ̂=0.1506

μ̂ 0

LogL= -10.410



 

λ̂=0.1506

LogL= -10.410

 
λ̂=0.1756

α̂=0.0097

LogL= -10.368
 

λ̂=0.1756

α̂=0.0097

μ̂ 0

β̂=1.100

LogL=-10.368



 

λ̂=0.1506

μ̂ 0

β̂=2.354

LogL= -10.410



 

λ̂=0.1757

α̂=0.0097

μ̂ 0

LogL= -10.368



 

14. Storks 
N=19  
n=16 

λ̂=0.1449

μ̂ 0

LogL= -16.072



 

λ̂=0.1449

LogL= -16.072

 
λ̂=0.5905

α̂=0.2316

LogL= -12.555
 

λ̂=0.7088

α̂=0.2334

μ̂=0.0520

β̂=0.5066

LogL=-12.3572

 

λ̂=0.1449

μ̂ 0

β̂=3.004

LogL= -16.072



 

λ̂=0.7302

α̂=0.2380

μ̂=0.0507

LogL= -12.383
 

15. Tangara 
N=49  
n=42 

λ̂=0.1909

μ̂ 0

LogL= 5.139



 

λ̂=0.1909

LogL= 5.139

 
λ̂=1.1826

α̂=0.3010

LogL= 16.825
 

λ̂=1.1826

α̂=0.3010

μ̂ 0

β̂=3.224

LogL=16.825



 

λ̂=0.1909

μ̂ 0

β̂=1.810

LogL= 5.139



 

λ̂=1.182

α̂=0.3010

μ̂ 0

LogL= 16.825



 



 
 

 
 

16. Trogons 
N=39  
n=29 

λ̂=0.0830

μ̂ 0

LogL= -29.816



 

λ̂=0.0830

LogL= -29.816

 
λ̂=0.2784

α̂=0.0785

LogL= -26.029
 

λ̂=0.2784

α̂=0.0785

μ̂ 0

β̂=0.0359

LogL=-26.029



 

λ̂=0.0830

μ̂ 0

β̂=3.219

LogL= -29.816



 

λ̂=0.2784

α̂=0.0785

μ̂ 0

LogL= -26.029



 

17. Turdus 
and allies 
N=70  
n=60 

λ̂=0.1951

μ̂ 0

LogL= 29.123

  

λ̂=0.1951

LogL= 29.123

 
λ̂=0.9635

α̂=0.1560

LogL= 36.763
 

λ̂=0.9635

α̂=0.1560

μ̂ 0

β̂=0.1125

LogL=36.763



 

λ̂=0.1951

μ̂ 0

β̂=1.5892

LogL= 29.123



 

λ̂=0.9636

α̂=0.1560

μ̂ 0

LogL= 36.763



 

18. Wrens 
N=74  
n=50 

λ̂=0.1424

μ̂ 0

LogL= 0.0738

  

λ̂=0.1424

LogL= 0.0738

 
λ̂=1.210

α̂=0.3162

LogL= 22.421
 

λ̂=1.210

α̂=0.3162

μ̂ 0

β̂=2.0106

LogL=22.421



 

λ̂=0.1424

μ̂ 0

β̂=4.840

LogL= 0.0738



 

λ̂=1.210

α̂=0.3162

μ̂ 0

LogL= 22.421



 

19. Tringa 
N=13 
n=12 

λ̂=0.0978

μ̂ 0

LogL= -19.068



 

λ̂=0.0978

LogL= -19.068
 

λ̂=0.6000

α̂=0.2223

LogL= -14.673  

λ̂=0.6000

α̂=0.2223

μ̂ 0

β̂=0.8921

LogL= -14.673



 

λ̂=0.0978

μ̂ 0

β̂=2.437

LogL= -19.068



 

λ̂=0.6001

α̂=0.2223

μ̂ 0

LogL= -14.673



 

20. 
Meliphaga 
N=13 
n=12 

λ̂=0.1115

μ̂ 0

LogL= -17.630



 

λ̂=0.1115

LogL= -17.630
 

λ̂=0.4496

α̂=0.1471

LogL= -15.403  

λ̂=0.4494

α̂=0.1471

μ̂ 0

β̂=1.334

LogL= -15.403



 

λ̂=0.1115

μ̂ 0

β̂=2.435

LogL= -17.630



 

λ̂=0.4495

α̂=0.1472

μ̂ 0

LogL= -15.403



 

21. Alectoris 
N=7 
n=7 

λ̂=0.1725

μ̂ 0

LogL= -9.966



 

λ̂=0.1725

LogL= -9.966
 

λ̂=0.6473

α̂=0.3104

LogL= -8.505  

λ̂=0.6473

α̂=0.3104

μ̂ 0

β̂=01.216

LogL= -8.505



 

λ̂=0.1724

μ̂ 0

β̂=2.564

LogL= -9.966



 

λ̂=0.6472

α̂=0.3104

μ̂ 0

LogL= -8.505



 

22. Catharus 
N=12 
n=12 

λ̂=0.1635

μ̂ 0

LogL= -13.416



 

λ̂=0.1635

LogL= -13.416
 

λ̂=1.040

α̂=0.4262

LogL= -8.760  

λ̂=1.080

α̂=0.4192

μ̂=0.2236

β̂=0.0157

LogL= -8.719
 

λ̂=0.1635

μ̂ 0

β̂=1.613

LogL= -13.416



 

λ̂=1.134

α̂=0.4254

μ̂=0.0283

LogL= -8.730
 



 
 

 
 

23. Cinclodes 
N=13 
n=13 

λ̂=0.4044

μ̂ 0

LogL= -2.876



 

λ̂=0.4044

LogL= -2.876
 

λ̂=0.6699

α̂=0.1527

LogL= -2.594  

λ̂=1.043

α̂=0.2145

μ̂=0.2362

β̂=2.035

LogL= -2.564
 

λ̂=0.4044

μ̂ 0

β̂=3.340

LogL= -2.876



 

λ̂=0.7514

α̂=0.1705

μ̂=0.0517

LogL= -2.593
 

24. Cranes 
N=15 
n=15 

λ̂=0.2295

μ̂ 0

LogL= -9.412



 

λ̂=0.2295

LogL= -9.412
 

λ̂=0.4589

α̂=0.1024

LogL= -8.876  

λ̂=0.4590

α̂=0.1024

μ̂ 0

β̂=0.835

LogL=-8.876



 

λ̂=0.2295

μ̂ 0

β̂=1.671

LogL= -9.412



 

λ̂=0.4590

α̂=0.1024

μ̂ 0

LogL= -8.876



 

25. Crax 
N=14 
n=14 

λ̂=0.3417

μ̂ 0

LogL= -4.410



 

λ̂=0.3417

LogL= -4.410
 

λ̂=1.988

α̂=0.6877

LogL= 0.1091  

λ̂=1.988

α̂=0.6877

μ̂ 0

β̂=0.3284

LogL=0.1091



 

λ̂=0.3417

μ̂ 0

β̂=1.957

LogL= -4.410



 

λ̂=1.988

α̂=0.6877

μ̂ 0

LogL= 0.1091



 

26. Penguins 
N=18 
n=18 

λ̂=0.2205

μ̂ 0

LogL= -9.196



 

λ̂=0.2205

LogL= -9.196
 

λ̂=0.3789

α̂=0.0849

LogL= -8.748  

λ̂=0.7233

α̂=0.1287

μ̂ 0.1996

β̂=0.7538

LogL=-8.506



 

λ̂=0.2205

μ̂ 0

β̂=3.461

LogL= -9.196



 

λ̂=0.7571

α̂=0.1364

μ̂=0.1932

LogL= -8.581
 

27. Ficedula 
N=27 
n=27 

λ̂=0.1247

μ̂ 0

LogL= -18.870



 

λ̂=0.1247

LogL= -18.870
 

λ̂=0.5333

α̂=0.1521

LogL= -14.133  

λ̂=0.7095

α̂=0.1616

μ̂=0.0546

β̂=2.542

LogL= -14.079
 

λ̂=0.1247

μ̂ 0

β̂=4.132

LogL= -18.870



 

λ̂=0.6980

α̂=0.1612

μ̂=0.0507

LogL= -14.088
 

28. Geositta 
N=11 
n=11 

λ̂=0.1034

μ̂ 0

LogL= -17.591



 

λ̂=0.1034

LogL= -17.591
 

λ̂=0.4277

α̂=0.1485

LogL= -15.388  

λ̂=0.4277

α̂=0.1485

μ̂ 0

β̂=0.3072

LogL= -15.388



 

λ̂=0.1034

μ̂ 0

β̂=0.9047

LogL= -17.591



 

λ̂=0.4278

α̂=0.1485

μ̂ 0

LogL= -15.388



 

29. Albatross 
N=14 
n=14 

λ̂=0.2992

μ̂=0.0172

LogL= -6.472  

λ̂=0.2915

LogL= -6.474
 

λ̂=0.2915

α̂ 0

LogL= -6.474



 

λ̂=0.3153

α̂ 0

μ̂=0.0535

β̂=0.9298

LogL= -6.458



 

λ̂=0.3153

μ̂=0.0534

β̂=0.9297

LogL= -6.458
 

λ̂=0.2992

α̂ 0

μ̂=0.0171

LogL= -6.472



 

30. 
Myioborus 
N=12 
n=12 

λ̂=0.3637

μ̂ 0

LogL= -4.622



 

λ̂=0.3637

LogL= -4.622
 

λ̂=1.225

α̂=0.4428

LogL= -2.887
 

λ̂=1.225

α̂=0.4428

μ̂ 0

β̂=0.481

LogL= -2.887



 

λ̂=0.3637

μ̂ 0

β̂=0.1135

LogL= -4.622



 

λ̂=1.225

α̂=0.4428

μ̂ 0

LogL=-2.887



 



 
 

 
 

31. 
Toxostoma 
N=10 
n=10 

λ̂=0.1487

μ̂ 0

LogL= -13.352



 

λ̂=0.1487

LogL=  -13.352
 

λ̂=0.8247

α̂=0.3411

LogL= -9.958  

λ̂=0.8247

α̂=0.3411

μ̂ 0

β̂=0.0887

LogL= -9.958



 

λ̂=0.1487

μ̂ 0

β̂=0.6054

LogL= -13.352



 

λ̂=0.8246

α̂=0.3411

μ̂ 0

LogL= -9.958



 

32. Acanthiza 
N=13 
n=13 

λ̂=0.1535

μ̂ 0

LogL= -14.498



 

λ̂=0.1535

LogL= -14.498
 

λ̂=0.9155

α̂=0.3332

LogL= -9.027  

λ̂=0.9155

α̂=0.3332

μ̂ 0

β̂=0.2279

LogL= -9.027



 

λ̂=0.1535

μ̂ 0

β̂=2.613

LogL= -14.498



 

λ̂=0.9155

α̂=0.3332

μ̂ 0

LogL= -9.927



 

 
 

 

Table of results random taxon sampling 

p=1 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

1. 
Aegotheles  
N=9  
n=8 
 

λ̂=0.1537

μ̂ 0

LogL= -12.106



 
 

λ̂=0.1537

LogL= -12.106
 

λ̂=0.5684

α̂=0.2341

LogL= -10.488  

λ̂=0.5684

α̂=0.2341

μ̂ 0

β̂=1.107

LogL= -10.488



 

λ̂=0.1537

μ̂ 0

β̂=0.7622

LogL= -12.106



 

λ̂=0.5684

α̂=0.2341

μ̂ 0

LogL= -10.488



 

2. Amazona 
N=31  
n=28 
 

λ̂=0.3468

μ̂ 0

LogL= 7.444



 

λ̂=0.3468

LogL= 7.444
 

 

λ̂=1.001

α̂=0.2483

LogL= 9.849
 

λ̂=1.490

α̂=0.2850

μ̂=0.1845

β̂=4.964

LogL= 9.935
 

λ̂=0.3468

μ̂ 0

β̂=0.7610

LogL= 7.444



 

λ̂=1.460

α̂=0.2838

μ̂=0.1717

LogL=9.920
 

3. Anas  
N=51 
n=45 

λ̂=0.6035

μ̂=0.3076

LogL=40.783  

λ̂=0.4197

LogL= 39.950

 
λ̂=0.4197

α̂ 0

LogL= 39.950



 

λ̂=1.029

α̂=0.0416

μ̂=1.029

β̂=0.1470

LogL= 42.725

 

λ̂=0.7458931

μ̂=0.7458928

β̂=0.1994

LogL= 41.975
 

λ̂=1.534

α̂=0.095

μ̂=0.6933

LogL= 42.508
 

4. Anthus 
N=46  
n=37 

λ̂=0.1763

μ̂ 0

LogL= -7.489

  

λ̂=0.1763

LogL= -7.489

 
λ̂=1.165

α̂=0.2445

LogL= 3.771
 

λ̂=1.165

α̂=0.2445

μ̂ 0

β̂=0.2145

LogL= 3.771



 

λ̂=0.1763

μ̂ 0

β̂=2.659

LogL= -7.489



 

λ̂=1.165

α̂=0.2445

μ̂ 0

LogL= 3.771



 

5. Caciques 
and 
oropendolas  
N=19  
n=17 

λ̂=0.2091

μ̂ 0

LogL= -11.372



 

λ̂=0.2091

LogL= -11.372

 
λ̂=1.153

α̂=0.4197

LogL= -5.521
 

λ̂=1.295

α̂=0.4210

μ̂=0.0473

β̂=0.9883

LogL= -5.459

 

λ̂=0.2091

μ̂ 0

β̂=4.177

LogL= -11.372



 

λ̂=1.311

α̂=0.4237

μ̂=0.0469

LogL= -5.467
 



 
 

 
 

6. 
Dendroica, 
Parula, 
Seiurus, 
Vermivora 
N=45  
n=40 

λ̂=0.2454

μ̂ 0

LogL= 10.325

  

λ̂=0.2454

LogL= 10.325

 
λ̂=0.9720

α̂=0.2461

LogL= 16.507
 

λ̂=1.313

α̂=0.2624

μ̂=0.1100

β̂=3.891

LogL= 16.603

 

λ̂=0.2454

μ̂ 0

β̂=2.284

LogL= 10.325



 

λ̂=1.301

α̂=0.2622

μ̂=0.1055

LogL= 16.593
 

7. Grackles 
and allies 
N=40 
n=36 

λ̂=0.2266

μ̂ 0

LogL= 3.175

  

λ̂=0.2266

LogL= 3.175

 
λ̂=1.308

α̂=0.3685

LogL= 13.980
 

λ̂=1.529

α̂=0.3713

μ̂=0.0672

β=0.7576

LogL= 13.903

 

λ̂=0.2266

μ̂ 0

β̂=0.3820

LogL= 2.735



 

λ̂=1.556

α̂=0.3744

μ̂=0.0666

LogL= 13.790
 

8. 
Hemispingus 
N=14  
n=12 

λ̂=0.1190

μ̂ 0

LogL= -17.931



 

λ̂=0.1190

LogL= -17.931

 
λ̂=0.3565

α̂=0.1222

LogL= -16.484
 

λ̂=0.4348

α̂=0.1211

μ̂=0.1055

β̂=0.0612

LogL= -16.377

 

λ̂=0.1190

μ̂ 0

β̂=2.100

LogL= -17.931



 

λ̂=0.5016

α̂=0.1317

μ̂=0.635

LogL= -16.400
 

9. Myiarchus 
N=22  
n=19  

λ̂=0.3221

μ̂ 0

LogL= -3.6821



 

λ̂=0.3221

LogL= -3.6821

 
λ̂=0.3290

α̂=0.0031

LogL= -3.6816
 

λ̂=0.3291

α̂=0.0032

μ̂ 0

β̂=0.8880

LogL=-3.6816



 

λ̂=0.3221

μ̂ 0

β̂=2.941

LogL= -3.6821



 

λ̂=0.3291

α̂=0.0032

μ̂ 0

LogL= -3.6816



 

10. 
Phylloscopus 
and 
Seicercus 
N=70  
n=59 

λ̂=0.1848

μ̂ 0

LogL= 18.860

  

λ̂=0.1848

LogL= 18.860

 
λ̂=1.103

α̂=0.2359

LogL= 33.371
 

λ̂=1.103

α̂=0.2359

μ̂ 0

β̂=0.2681

LogL=33.371



 

λ̂=0.1848

μ̂ 0

β̂=3.101

LogL= 18.860



 

λ̂=1.103

α̂=0.2359

μ̂ 0

LogL= 33.371



 

11. Puffinus 
N=27  
n=24 

λ̂=0.3605

μ̂ 0

LogL=3.515

  

λ̂=0.3605

LogL= 3.515

 
λ̂=0.5528

α̂=0.0791

LogL= 3.829
 

λ̂=0.5528

α̂=0.0791

μ̂ 0

β̂=0.2810

LogL=3.829



 

λ̂=0.3605

μ̂ 0

β̂=1.232

LogL= 3.515



 

λ̂=0.5528

α̂=0.0791

μ̂ 0

LogL= 3.829



 

12. 
Ramphastos 
N=11 
n=8 

λ̂=0.2269

μ̂ 0

LogL= -10.474



 

λ̂=0.2269

LogL= -10.474

 
λ̂=0.5937

α̂=0.2187

LogL= -9.5894
 

λ̂=0.8360

α̂=0.2393

μ̂=0.1199

β̂=2.223

LogL=-9.547

 

λ̂=0.2269

μ̂ 0

β̂=1.589

LogL= -10.474



 

λ̂=0.8452

α̂=0.2434

μ̂=0.1173

LogL= -9.568
 

13. Sterna 
N=44  
n=34 

λ̂=0.1751

μ̂=0.0011

LogL= -11.324

 

λ̂=0.1745

LogL= -11.324

 
λ̂=0.1745

α̂ 0

LogL= -11.324



 

λ̂=0.1791

α̂ 0

μ̂=0.0088

β̂=0.5106

LogL=-11.321



 

λ̂=0.1790

μ̂=0.0087

β̂=0.5094

LogL= -11.321

 

λ̂=0.1751

α̂ 0

μ̂=0.0012

LogL= -11.324



 



 
 

 
 

14. Storks 
N=19  
n=16 

λ̂=0.1622

μ̂ 0

LogL= -15.925



 

λ̂=0.1622

LogL= -15.925

 
λ̂=0.6007

α̂=0.2168

LogL= -12.775
 

λ̂=0.7403

α̂=0.2181

μ̂=0.0645

β̂=0.5114

LogL=-12.543

 

λ̂=0.1622

μ̂ 0

β̂=0.8368

LogL= -15.925



 

λ̂=0.7659

α̂=0.2235

μ̂=0.0626

LogL= -12.775
 

15. Tangara 
N=49  
n=42 

λ̂=0.2117

μ̂ 0

LogL= 5.789



 

λ̂=0.2117

LogL= 5.789

 
λ̂=1.164

α̂=0.2816

LogL= 16.342
 

λ̂=1.164

α̂=0.2816

μ̂ 0

β̂=0.5724

LogL=16.342



 

λ̂=0.2117

μ̂ 0

β̂=2.148

LogL= 5.789



 

λ̂=1.164

α̂=0.2816

μ̂ 0

LogL= 16.342



 

16. Trogons 
N=39  
n=29 

λ̂=0.1009

μ̂ 0

LogL= -29.777



 

λ̂=0.1009

LogL= -29.777

 
λ̂=0.2662

α̂=0.0631

LogL= -27.174
 

λ̂=0.2662

α̂=0.0631

μ̂ 0

β̂=0.0210

LogL=-27.175



 

λ̂=0.1009

μ̂ 0

β̂=1.308

LogL= -29.777



 

λ̂=0.2662

α̂=0.0631

μ̂ 0

LogL= -27.175



 

17. Turdus 
and allies 
N=70  
n=60 

λ̂=0.2159

μ̂ 0

LogL= 29.861

  

λ̂=0.2159

LogL= 29.861

 
λ̂=0.9237

α̂=0.1418

LogL= 36.358
 

λ̂=0.9237

α̂=0.1418

μ̂ 0

β̂=0.0996

LogL=36.358



 

λ̂=0.2159

μ̂ 0

β̂=2.804

LogL= 29.861



 

λ̂=0.9238

α̂=0.1418

μ̂ 0

LogL= 36.358



 

18. Wrens 
N=74  
n=50 

λ̂=0.1891

μ̂ 0

LogL= 1.404

  

λ̂=0.1891

LogL= 1.404

 
λ̂=1.152

α̂=0.2664

LogL= 18.858
 

λ̂=1.152

α̂=0.2664

μ̂=0.1427

β̂ 0

LogL=18.858


 

λ̂=0.1891

μ̂ 0

β̂=2.771

LogL= 1.404



 

λ̂=1.152

α̂=0.2664

μ̂ 0

LogL= 18.858



 

19. Tringa 
N=13 
n=12 

λ̂=0.1037

μ̂ 0

LogL= -18.932



 

λ̂=0.1037

LogL= -18.932
 

λ̂=0.6012

α̂=0.2155

LogL= -14.727  

λ̂=0.6012

α̂=0.2155

μ̂ 0

β̂=0.8426

LogL= -14.727



 

λ̂=0.1037

μ̂ 0

β̂=1.725

LogL= -18.932



 

λ̂=0.6012

α̂=0.2155

μ̂ 0

LogL= -14.727



 

20. 
Meliphaga 
N=13 
n=12 

λ̂=0.1181

μ̂ 0

LogL= -17.513



 

λ̂=0.1181

LogL= -17.513
 

λ̂=0.4465

α̂=0.1404

LogL= -15.443  

λ̂=0.4465

α̂=0.1404

μ̂ 0

β̂=0.3098

LogL= -15.443



 

λ̂=0.1181

μ̂ 0

β̂=2.732

LogL= -17.513



 

λ̂=0.4465

α̂=0.1404

μ̂ 0

LogL= -15.443



 

 

 
 



 
 

 
 

C    future work 

We know how many species live at the present time T and therefore we should 

condition on that knowledge. We seek 

  
2 3

2 3 4

( , ,..., | )
( , ,..., | , ) N

N

f t t t T
f t t t T N

P n t T N


 
. 

The denominator is the probability that we have N species at timeT in the reconstructed 

process 

    
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       

   . 

And so the density of the speciation times given the number of species today and the age 

of the tree is 

 
2 3

2 3 1

( , ,..., | )
( , ,..., | , )

1

N

N N

T T

f t t t T
f t t t T N

u u 


 . 

If, we let the process start at the origin with one single lineage, we have an additional 

parameter which is the time of the origin (or the time of the whole process). Trying to 

estimate this parameter along with the speciation and extinction rates did not give good 

results but it can be integrated out as nuisance instead. Since commonly we do not know 

anything about the time of the origin and are not particular interested in it, we advocate 

in favour of integrating out the time of the origin. This will yield 2 3( , ,..., | )Nf t t t N  

instead. To achieve this we use Gernhard’s equation 4 (Gernhard, 2008)  which states 

that 2( | ) ( | )i i orf s t t f s t t   where is is the speciation times unordered, the speciation 

times are i.i.d, and ort is the time of origin. Gernhard (2008) defines the present time as 

zero and let time go backwards and therefore the time of the origin ort is the same as the 

total age of the tree, our T, and her times of speciation is the same as our ix . In our case 

Gernhard’s equation 4 in is the same as 2( | ) ( | )i if s x t f s T t   . It is then with some 

calculations easily confirmed that the density of the speciation times conditioned on T  

and N for constant rates is the same as  

2 3 2 3 2( , ,..., | , ) ( , ,..., | , )N Nf t t t T t N f t t t x t N  
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This is the same density function as on top of page 20 in Gernhard’s paper (2008). 

Theorem 3.2 in (Gernhard, 2008) gives the density function of the age of the tree, T ( )ort , 

conditioned on that the tree has N species, 

    
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  
. 

Through the law of total probability we then have the integral below which Gernhard 

solves in the same article (2008) 
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This last equation would be our likelihood function for constant rates. If we want to do 

this for all our models we would need to do the same but for λ( )t  and μ( )t .  We can not 

just simply exchange all λ  into λ( )t . We would have to find the density of time T given N 

species but for varying rates and then integrate out T.  




