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Abstract

In this paper we summarize the theory of clinical trials, in par-

ticular their design, optimal design and adaptive design. We empha-

size the two-stage optimal response-adaptive design and implement

the theory of optimization on the nonlinear, multiparameter Emax-

sigmoid model using two different optimization criteria, two optimiza-

tion methods, three different parameter vectors and three different

sample sizes. The aim of the paper is to study the distributional prop-

erties of an optimal design through simulations. We also propose an

optimization method for computing the optimal design. The results

reveal that a large variation in parameter estimates of the dosere-

sponse curve yields a large variation of the estimated optimal design.

To explore this further we consider four different dose-response curve

models. One of these models proves to give a reduction in variation

and hence a reliable optimal design. However, our conclusion is that

this model might not be realistic and that further investigation of the

asymptotics of the estimated parameters should be carried out.
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Summary
In this paper we summarize the theory of clinical trials, in particular their
design, optimal design and adaptive design. We emphasize the two-stage
optimal response-adaptive design and implement the theory of optimization
on the nonlinear, multiparameter Emax-sigmoid model using two different
optimization criteria, two optimization methods, three different parameter
vectors and three different sample sizes. The aim of the paper is to study
the distributional properties of an optimal design through simulations. We
also propose an optimization method for computing the optimal design.
The results reveal that a large variation in parameter estimates of the dose-
response curve yields a large variation of the estimated optimal design. To
explore this further we consider four different dose-response curve models.
One of these models proves to give a reduction in variation and hence a
reliable optimal design. However, our conclusion is that this model might
not be realistic and that further investigation of the asymptotics of the
estimated parameters should be carried out.
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1 Introduction
The process of developing new drugs is time-consuming and expensive and
it is hence important for researchers to outline the clinical trial in a way that
gives as much information as possible about effective doses and safety of the
drug. Knowledge about the dose-response relationship is crucial in order
to decide which doses should be investigated in the rest of the clinical de-
velopment process, and this knowledge is oftenly obtained in a dose-finding
trial, also called a Phase IIB trial. It is based on this trial that a decision
is made of whether or not it is sufficient to continue to investigate the new
drug, and if it is, the dose-finding trial determines the appropriate doses to
be investigated in the following Phase III trials.

In dose-finding trials, a traditional design is oftenly used, allocating the pa-
tients into different dose groups and one placebo-group equally. The problem
with this type of design is that it may throw away possibilities to investigate
the dose-response relationship more efficiently. What we will look at in this
paper is an alternative to the traditional design for dose-finding trials called
an adaptive optimal design, where we after some preliminary investigation
reallocate the patients to the dose groups with respect to some optimal-
ity criterion. We will not focus on the comparison between the efficiency
in an adaptive optimal design versus a traditional design, but rather look
at the process of developing the adaptive optimal design and the potential
difficulties it may cause.

1.1 Background material

Before a more detailed description of the problem is stated it is a good idea
to look more into what a clinical trial is, what parts it consists of, what an
optimal design of a clinical trial is and why the design is such an important
part of the clinical trial. We will also give an explanation of what adaptive
designs are and in particularly focus of the explanation the type of design
that we will use in this paper, namely the response-adaptive design.

What is a clinical trial?

A definition of a clinical trial and its’ main purpose is formulated as:

“A clinical trial is a clinical investigation in which treatments are adminis-
tered, dispensed or used involving one or more human subjects for evaluation
of the treatment“1

1Chow et. al. (2004). Design and Analysis of clinical trials, Wiley & Sons, second
edition
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A drug development process, which consists of several clinical studies, can
be divided in drug development phases, as follows.

• Pre-clinical: this is the phase where pharmaceutical companies de-
cide whether a new drug should be further investigated or not, based
on early evidence of toxicity, efficacy and pharmacokinetic responses
(see the word list in Appendix D for explanation of the term pharma-
cokinetics). The tests can be either in vivo (on animals or cells) or in
vitro (in test tubes) and one oftenly tests a wide range of doses.

• Phase 0: this phase is also called human microdosing (see Appendix
D) study since doses given to a small group of human patients (10-15)
by definition are too low to give any real therapeutic effect. The main
goal with phase 0 is to see whether the investigational drug behaves
as expected (from the pre-clinical phase) in the human body and to
collect preliminary data of how the body processes the drug and how
the drug works in the body. The procedure with a phase 0 is relatively
new in the area of clinical trials, it was first recommended in the
United States Food and Drug Administration’s (FDA) 2006 Guidance
on Exploratory Investigational New Drug (IND) Studies and it has
been discussed whether or not this phase is useful or redundant.

• Phase I: if no phase 0 trials has been carried out, then this is the
first introduction of the new drug to human subjects. The primary
objectives are to determine how the drug is absorbed in the human
body, possible early side effects at different dose levels, the maximal
tolerable dose MTD (see Appendix D) and above all; the safety of
the drug. To determine the appropriate dose levels for the following
phases one often uses dose escalation; different groups of patients are
given different doses. Phase I trials are usually relatively small, around
20-100 subjects are enrolled.

• Phase II: this phase usually includes larger trials with approximately
100-300 patients. In this phase one continues to monitor safety and
the key issue is to determine the dosing ranges and doses for the phase
III trials. These dosing ranges and dose levels are oftenly determined
by dose-finding trials and it is based on these trials that we make a
decision for proceeding or not proceeding to phase III. Is it safe to
continue the testing of the new drug or should the development of the
new drug be stopped now? It is not unlikely that the new drug fails
in this development phase when it is discovered that the drug doesn’t
work as expected or it has unexpected, potentially dangerous, side
affects

• Phase III: this phase involves trials with a few hundred or sometimes
a thousand or more patients. The trials often has one or several control
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groups and the patients are usually randomized into dose groups. It
is also common to use multicenter trials as phase III trials, which is
several clinical trials performed at different clinics or institutions. This
can be a benefit when the trials involves a lot of patients, but it can
also impose variation between the clinics (not giving a reliable result
as a consequence). The primary goal of the studies is to give additional
information regarding the safety and effectiveness of the drug. Phase
III trials are only conducted if the preliminary evidence of the safety
and efficacy of the drug has been demonstrated in the previous phase
II trials.

• Phase IV: this final phase is usually carried out first when the drug
has been approved for marketing. It is an opportunity to learn about
interaction with other substances/drugs and about possible rare side
affects.

Planning and executing a clinical trial is a very large project and it contains
a sufficient number of details and procedures that are beyond the scope of
this paper, hence we refer to the literature in the reference list for more
reading.

As mentioned earlier, a good understanding of the dose-response relation-
ship is crucial, not only for cost-reduction reasons, but also because any
compound is potentially toxic if consumed in high enough doses. Water
may for example seem harmless but states a good example of a compound
that is toxic in large amounts since it is potentially lethal for humans if we
drink more than 10 liters at once. The emphasis of this paper will therefore
be on the dose-finding phase IIB trial usually performed at the end of the
phase II trial, and we will look at a particular type of design of this trial
called a response-adaptive design.

Design of clinical trials

Before we can explain the concept of optimal design we need to establish
what a design of a clinical trial is. In short and simple terms the design of a
clinical trial is the specification of which treatments, such as which doses of
the new drug or placebo, will be used in the trial and how many patients will
be treated with each dose. Further, designs of clinical trials can be divided
into two main groups as follows.

• Non-adaptive designs: the design is fully pre-specified, i.e. the
allocation of patients to each dose group is pre-specified and may not
be altered during the course of the trial.

• Adaptive designs: allocations to dose groups can be altered during
the trial based on interim analyses of this ongoing trial. Adaptive
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designs are sometimes called sequential designs.

Within these two main groups there are several types of designs. The de-
scription of these designs goes beyond the scope of this paper, but for the
interested reader we refer to the literature in the reference list for more read-
ing.

The design we will use in this paper belongs to the group of adaptive designs
and we will describe these in more detail in a section below.

Optimal design

The design that we will use in this paper belongs to a group called optimal
designs. An optimal design is a design that depend on a statistical model
and is optimal with respect to some statistical criterion. The advantages of
optimal designs are that they reduce cost by using statistical models which
enable estimation of parameters with fewer replicates than standard non-
optimal designs and they are applicable to designs where the design space is
constrained (which sometimes isn’t even possible with non-optimal designs).
The disadvantage is that they are model dependent due to the fact that most
optimal design criteria are based on some function of the information ma-
trix, hence an optimal design that is best for one model might be inefficient
for another model. Depending on model and optimization criterion, these
designs can also be computationally more challenging than non-optimal de-
signs. It is also worth noting that optimal design is a general statistical
concept which has been not only applied to clinical trials, but has many
areas of usage.

There are a wide variety of optimality criteria for optimal designs. We
will not go through any other criteria then the ones used in the paper, but
it can be mentioned that the majority of optimality criteria in use have in
common that they are functions of the eigenvalues of the information matrix
(which equals the inverse of the variance-matrix) and the goal is to minimize
the variance of some component of the estimated parameter vector or the
estimated dose-response curve. In the single- parameter case this is a sim-
pler task since we don’t have to deal with matrices. However, in this paper
we will look at a multiparameter model and use two different optimality
criteria for comparison. Hence we will have to deal with matrices and the
problems that this may cause (ill-conditioning is one example).

For more reading about optimal designs, we refer to Silvey S.D. (1980).
Optimal Design, which gives a short but comprehensive presentation of this
area.
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Adaptive designs

An adaptive design is, as already implied, a design that allows for modifica-
tions of the design during the ongoing clinical trial and it offers a possibility
to improve the conventional methods used in the area of clinical trials. For
example, in a typical clinical trial comparing a standard drug to a new drug,
subjects are assigned to the different treatments with half of the subjects
to one treatment and the other half to the other treatment. In a response-
adaptive design, patients responses can be evaluated as they become avail-
able during the trial and used to reallocate the rest of the patients in the
study such that the responses from different treatments can be determined
as efficiently as possible .

As already mentioned, development of new drugs is expensive and time-
consuming and the idea of adaptive designs are that they can help to “ex-
tract” as much information as possible and more efficiently than standard
designs. The question is then; why don’t we always use adaptive designs?
Unfortunately, there are some drawbacks when it comes to these types of
designs. One drawback is that adaptive designs usually are more compli-
cated to design and analyze, and sometimes an adaptive design is not even
applicable on the study in question. Another drawback is that unblinding
(see Appendix D for explanation of the term “blinding”) during the on-
going clinical trial can potentially cause bias introduced by the change of
design after the analysis of the interim data has become available, which
can damage the credibility of the study. To reduce this damage, results of
the unblinded analysis should not be available to anyone directly operating
the study.

There are a number of different adaptive designs. In our case, we will look
at a two-stage response-adaptive design where we first use a smaller part
of the patients enrolled in the study and assign them equally to each dose
group and then adapt the allocation of patients to the dose groups after the
interim data from the first stage has been analyzed.

1.2 Purpose

Since clinical trials are expensive and time-consuming, improvements of the
already existing designs are always desirable. Adaptive designs have been
studied for years and can in some cases be an improvement of the efficiency
of the study. Unfortunately, adaptive procedures are more complicated to
design and to analyze, and in some cases more difficult to apply. As men-
tioned in the section about optimal designs of clinical trials, optimal designs
can be more complicated and computationally more challenging than non-
optimal designs. We will combine these two and look at an adaptive optimal
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design. The purpose with this paper is to implement the theory for a given
model and to show some of the risks and complications of working with
optimal designs.
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2 Description of the problem
The problem formulation is based on the one used in ”Optimal Designs for
estimating the interesting part of a dose-effect curve” by Miller et al. (2007),
the difference is that they use a Bayesian approach on the adaptive design,
whereas we use a frequentistic approach. In short, we want to implement
a two-stage response-adaptive optimal design for a given model using two
different optimization criteria in order to obtain the optimal allocation of the
subjects to the different dose groups for the second stage of the clinical trial.
Since the problem formulation is based on the article by Miller et al, the
investigation preceeding this paper is the planning of the same AstraZenca
phase IIB dose-finding trial as in their article and for confidentiality reasons,
details regarding this investigation will be left out. However, the information
given in the paper should be enough for the understanding of the problem
and the methods of how to solve it.

3 Method of adaptive optimization - a step-by-
step procedure

The procedure of optimizing the allocation of patients to dose groups in
the second stage of the trial can be compressed into a few steps. We begin
by going through these steps briefly to get an outline of the method, and
then work through these steps more thoroughly. Last but not least, we will
implement the method on a specific model.

In short steps the procedure can be arranged as follows:

1. Choose a model for the dose-response relationship, i.e. a function
f(xi, θ) measuring the effect of the treatment where xi is the dose
group for patient i = (1, . . . , N) and θ is an unknown parameter vector.

2. Choose the sample size N .

3. Start out with n/k = N/(3k) patients in each dose group, where k is
the number of dose groups. This corresponds to a uniform design

wunif = (1/k, . . . , 1/k).

More generally, a design w = (w0, . . . , wk−1) refers to the proportion
wj of patients allocated to dose group number j. Hence the weights
should satisfy wj ≥ 0 and ∑k−1

j=0 wj = 1. When we have response data
from the n = N/3 patients, compute an estimate θ̂ of the parameters
θ = (E0, Emax, α, ED50). The estimation of the parameters is carried
out with nonlinear least squares estimation (NLS estimation) since the
model we use is nonlinear.
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4. Given an optimality criterion Φ(w, θ), find the design wopt = wopt(θ̂)
that maximizes the optimality criterion with estimated θ, Φ(w, θ̂).
The challenge here is that this optimization is constrained, due to
properties of w. We go through these constraints in more detail below.

5. Reallocate the rest of the N − n patients according to the optimal
design from the previous step.

6. Collect data from the remaining N − n patients, allocated to doses
according to Step 5. Compute a final estimate θ̂final of θ using NLS
estimation and all N patients.

In this paper we will focus on finding the estimated optimal design wopt(θ̂)
and thus confine ourselves to Steps 1-5. We will also use simulated data,
drawn from the model, in Step 3. Thus we are able to repeat Steps 1-5 a
large number of times, and may so infer the distribution of the estimated
optimal design.

3.1 The model

As mentioned in the section about optimal designs, these types of designs
require a model to be specified. The model that we use to describe the dose-
response curve was chosen by pharmacometric modellers from AstraZeneca
based on results from pre-clinical trials, phase I clinical trials and on data
from a drug with similar characteristics as the investigational drug. The
model that they chose is called an Emax-sigmoid model and the model func-
tion is:

Yi = f(xi, θ) + εi = E0 + Emaxx
α
i

EDα
50 + xαi

+ εi, i = 1, . . . , N (1)

where

• N is the total number of patients enrolled in the trial, Yi is the re-
sponse for patient i, the set of parameters θ = (E0, Emax, α, ED50)
and normally distributed, independent, random errors εi with mean 0
and standard deviation σ.

• the response is a continuous variable measured in some unit where
higher values indicate a positive effect.

• dose (measured in mg) x = 0 is the placebo dose and x = 100 is
the highest dose (any dose over 100 mg was considered to have a
too high safety risk) determined by pharmacometric modellers based
on the same information that the choice of model is based on. The
reason why only doses x ∈ {0, 20, 40, 60, 80, 100} are possible is that
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the available manufactured tablets only are available in multiples of
20 mg.

• E0 is the effect of the placebo dose.

• Emax is the maximum effect for a very high dose compared to a placebo
dose.

• α is a parameter that alternates the shape of the curve.

• ED50 is the dose with half of the maximum effect.

3.2 Choice of sample size

In clinical trials the sample size is usually calculated based on statistical
power analysis. This is used to calculate the minimum sample size N re-
quired to obtain a test with a pre-specified significance level and at least
some given power for a certain assumed effect. This is a very important
part of a clinical trial since a too small sample size might not give reliable
results and a too large sample size might be too expensive (or impossible).
It is well known that larger sample size increase statistical power, but in the
area of clinical trials large sample sizes are more exceptional.

However, power analysis goes beyond the scope of this paper and we con-
sider three different sample sizes, N = 360, N = 720 and N = 1440, as
given. Looking at three different sample sizes gives us an idea of how the
optimal design changes as we increase the sample size. Naturally, we would
get a more reliable asymptotic result if we increased the sample size even
more, but in most practical cases this wouldn’t be feasible.

3.3 Initial estimation of parameters

Now that we have our sample size N we can estimate the parameters θ =
(E0, Emax, α, ED50). Since the model that we use is nonlinear we must
use a nonlinear estimation method and the one we will use is the common
nonlinear least squares estimation method (NLS estimation). The estimated
parameters in this adaptive design are only made for a third of the entire
sample size in this first stage, as mentioned in the quick step-by-step preview.
Before we move on, let’s have a look at the theory of NLS estimation.

3.3.1 Nonlinear Least Squares estimation (NLS estimation)

Assume that we have n observations (x1, y1), (x2, y2), ..., (xn, yn) from a non-
linear model where yi is an observation from

Yi = f(xi, θ) + εi, i = 1, ..., n,
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E[εi] = 0, xi is a predictor and θ is a m-dimensional vector of parame-
ters where the true θ belongs to Θ ⊆ <m and n ≥ m. Define the residuals

ri(θ) = yi − f(xi, θ).

The least squares estimate of θ, denoted by θ̂, minimizes the residual sum
of squares

S(θ) =
n∑
i=1

ri(θ)2 θ ⊆ Θ. (2)

Assuming εi to be independent and identically distributed with variance σ2

it can be shown that, in addition with some other regularity conditions on
f(· , θ), θ̂ is a consistent estimate of θ and that θ̂ is asymptotically normally
distributed when n→∞. If we also assume that εi are normally distributed
variables, then θ̂ is the maximum likelihood estimate (ML estimate) of θ.
For a proof of consistency and asymptotic normality, we refer to Seber and
Wild (1989).

Differentiating S(θ) with respect to the jth component θj of θ

∂S(θ)
∂θj

= 2∑n
i=1 ri(θ) ∂ri∂θj

, j = 1, . . . ,m,

gives us the gradient functions of the model. Setting the gradients equal
to zero

∂S(θ)
∂θj

= 0, j = 1, . . . ,m,

gives us the normal equations for the parameters, but solving these equa-
tions is not always easy. Due to the fact that these equations in general are
nonlinear, they oftenly do not have an explicit solution and thus we need
iterative methods. Most statistical packages have these functions built in,
ready to use, but a tricky part is that they generally demand initial guesses
(or starting values) of the values of the parameters. Different methods are
more or less sensitive to starting far away from the values that minimize
the function, but guessing values as close as possible is always an advantage
since it requires less iterations (and hence less computational power).
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Estimation of the parameters in our case was initially made with nlin in
Matlab, which uses the Levenberg-Marquardt method, but due to problems
that we will bring up later we changed method to a derivative-free one that
uses a version of an algorithm called the Nelder-Mead algortihm (also called
the simplex search algorithm), namely fminsearch in Matlab. For informa-
tion on how this algorithm works, see Appendix A.

3.4 Finding the optimal design

Once the estimators of the parameters are available, we can use them to
search for an optimal design for the second part of the dose-finding trial. In
optimal design theory, a design is optimal with respect to some optimality
criterion, as mentioned in the section about optimal designs. In this pa-
per we look at two different criteria, both of these depending on a function
d(x,w, θ). This function in turn is proportional to the asymptotic variance
of the nonlinear least squares estimate f(x, θ̂)− f(0, θ̂) of the dose-response
function increment f(x, θ)− f(0, θ), given a design w and parameter vector
θ, as n → ∞. These estimates are asymptotically unbiased (see Seber and
Wild (1989) for a proof), hence the value of the function d says something
about the precision of the estimate and it can be shown that the function
depends sensitively on the design w. Consequently, to obtain the optimal
design we minimize this estimated variance. To learn the structure of this
function d, see Appendix B.

Now, let’s look at the two different criteria that we will use.

Criterion 1: This criterion is an alternated version of Criterion 1 in Miller
et al. (2007). The criterion determines the design w such that the function

Φ1(w, θ) =
(∑

x

d(x,w, θ)
)−1

(3)

is maximized. This optimality criterion is used to produce a design that
best can answer questions regarding the estimated dose-response compared
to placebo dose x = 0 for doses

x ∈ {xmax
k − 1 ,

2xmax
k − 1 , . . . , xmax}

up to the maximal tolerable dose (in our case 100 mg).

Criterion 2: This criterion is the same as Criterion 2 of Miller et al. (2007),

Φ2(w, θ) = d(xmax,w, θ)−1 (4)
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In the same way as in Criterion 1, this function gives the optimal design
when it is maximized. It is a somewhat simpler criterion since it is used
to produce a design that answers questions regarding the estimated dose-
response at the maximal tolerable dose compared to placebo, hence it only
looks at a single dose compared to placebo.

The inverse of the criteria, 1/Φ(w, θ), can be minimized using any minimiza-
tion method without particular difficulties. Problems however arise when
we have a constrained design space (i.e. when the weights have boundaries),
since constrained optimization is quite complicated. In our case, the weights
have a lower and a upper boundary, complicating the optimization. More
about this under “Implementation and results” .

3.5 Reallocating patients using the optimized design

Reallocating the patients is actually quite straightforward, it is just simple
calculus:

1. Calculate the number of patients in each dose group with the new
optimized weights, for the entire sample size N . Let the optimized
weights be wopt = wopt(θ̂), then

n = (n0, . . . , nk−1) = N ·wopt

where nj is the total number of patients assigned to the jth dose.

2. Round off so that the sum of the elements in n is equal to N . Denote
the rounded off number of patients in each dose group by ñ.

3. Subtract the N/3k patients that were allocated equally to each dose
group in the first stage. We then get

nopt = ñ− N(1,...,1)
3k

as our optimized number of patients in each dose group for the second
part of the study.

12



4 Implementation and results

4.1 Implementation

Now that we have an outline of the method we can apply it on the Emax-
sigmoid model (1) with σ = 10. As mentioned earlier, we consider sample
size as given and we study three different sample sizes; N = 360, N = 720
and N = 1440.

We begin by estimating the parameters for n = N/3 patients equally al-
located to the k = 6 dose groups. This consequently gives us n/6 patients
in each dose group and an initial design

wunif =
(

1/6 1/6 1/6 1/6 1/6 1/6
)

(5)

In order to estimate the parameters in the model with the NLS method,
we need initial guesses of the values of the parameters. The seven different
combinations (here called scenarios) of parameter values in the table below
were suggested by experts from AstraZeneca. Observe that we hereafter will
call the parameter values θ from the scenarios the “true” θ, despite that we
actually do not know the true values. However, the scenarios are suggested
by experts and they are the best guesses we have, hence we will call them
the true parameter values since we simulate data from this model.

Table 1: Scenarios for values of the parameters

Scenario E0 Emax α ED50
1. Prior guess 22 11.2 1 70
2. High Emax 22 16.8 1 70
3. Low ED50 22 11.2 1 35
4. High ED50 22 11.2 1 200
5. Intermed α 22 11.2 2 70
6. High α 22 11.2 4 70
7. Low Emax, ED50 22 7.0 1 35

For more information about the reasoning regarding why these particular
values were chosen, we refer to Miller et al. (2007). Although all of these
scenarios are interesting we will not study all of them (due to time limi-
tations), but settle for the most interesting scenarios 1, 2 and 6. Before
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proceeding with parameter estimation it is rewarding to have a look at how
the dose-response curves look like for these three scenarios.

Figure 1: Dose-response curve for three different scenarios

From this it is easy to see how the parameter values affect the shape of the
curve in these specific scenarios; a higher Emax pushes the curve upwards
and a higher alpha makes the curve more s-shaped. The latter should be
observable in the optimized design; it should put a larger part of patients in
the higher dose groups.

The estimation of the parameters was initially made with nlin in Matlab,
which uses the Levenberg-Marquardt algorithm (which in turn uses the Ja-
cobian matrix for estimation). However, it quickly became obvious that we
had a problem. There was a very large variation in estimated parameter
values (mainly in Êmax, α̂ and ÊD50) between different runs and in some
runs the algorithm stopped due to an ill-conditioned Jacobian, we therefore
tried the more robust and derivative-free Nelder-Mead algorithm. This al-
gorithm doesn’t use gradient functions but instead searches directly for the
minimum value of the residual sum of squares S(θ) in (2). This naturally
removed the problem with an ill-conditioned Jacobian and the algorithm
runned smoothly. However, the estimated values of the parameters still had
a large variation between different runs. It was also discovered that one
of the estimated parameters, ÊD50, in some runs took on negative values,
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causing the estimated response to be imaginary valued. An interesting fea-
ture was that, although different sets of estimated parameters were quite
different, they gave almost the same estimated dose-response curve. The
main reason for this is that the estimated parameters that had the largest
variation were Êmax and ÊD50, and looking at the model function one can
see that if these two increase or decrease simultaneously, it will not affect
the curve very much. Below is an example with two different data sets, both
simulated from the sigmoid model (1) with n = 360/3 = 120 patients, true
parameter vector θ corresponding to Scenario 1 and normally distributed
errors εi with σ = 10. The corresponding parameter estimates θ̂1 and θ̂2
were both obtained with the NLS method using the true θ as starting point
for the iterations. The two runs gave quite different estimated parameter
values and despite that, they gave similar estimated dose-response curves.

Table 2: Estimated parameter values for two different runs and the true θ

E0 Emax α ED50

True θ 22 11.2 1 70
θ̂1 22.1368 7.9986 1.5447 41.0948
θ̂2 21.9264 21.3534 0.7650 261.4315

Below is a figure that illustrates that the estimated dose-response curves
aren’t all that different for these sets of parameters.
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Figure 2: Estimated dose-response curve for three different sets of parameters

The problem with large variation in estimated parameter values wouldn’t
have been a big issue if we had been interested in the behavior of the dose-
response curve. However, we need the estimated parameter values to calcu-
late the optimal design (via the gradients, see appendix B for a refreshment),
and if the estimated values of the parameters have a large variation it will
cause a large variation in optimal designs. Therefore, we had to find the
reason or reasons for these large variations. Digging a bit deeper into what
the problem was, the situation was diagnosed to depend on either

• overparametrization of the model, or

• a too large standard deviation of the random errors
A standard deviation of σ = 10 can cause negative simulated responses,
which is impossible in reality. The only way to find out which ones of these
(or perhaps both) were the problem, was to repeat the simulations with
one parameter fixed and/or a reduced σ. It turned out that both of these
facts caused large variation in estimated optimal design. Reducing σ to 1
removed the problem with negative simulated responses, but we still had
a large variation in parameter estimates between different runs. From this
we were also able to draw the conclusion that increasing the sample size N
would have almost the same effect as decreasing σ , since the precision of
the estimates is proportional to σ/

√
N (see Seber and Wild, 1989). Letting

one parameter be fixed, α in our case, and keeping σ = 10 reduced the vari-
ation but the problem with negative simulated responses naturally remained.
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For the sake of comparison, we have looked at the following combinations
(from now on called models) for each of the two criteria and for the sample
sizes N = 360, N = 720 and N = 1440.

Table 3: Four possible models

Model Number of unknown parameters Standard deviation σ
1 4 10
2 4 1
3 (α fixed) 3 10
4 (α fixed) 3 1

In Models 3 and 4, the value of α is fixed to 1 if we look at Scenario 1
or 2, and fixed to 4 if we look at Scenario 6.

Once we had our estimated parameters we used these to calculate the op-
timal design wopt = wopt(θ̂) for the second part of the trial, using our two
criteria and optimization theory. There are a wide variety of ready-built
functions for solving optimization problems without constraints in statis-
tical packages, but as soon as we have a constrained parameter space it
complicates things since most of these functions cannot handle constraints.
As mentioned earlier, in our case we had constraints on the design space,
namely that the proportion of patients in each dose group wj had to lie
between

1
18 ≤ wj ≤

13
18 and

6∑
j=1

wj = 1 (6)

where j = 1, 2, 3, 4, 5, 6 correspond to doses 0, 20, 40, 60, 80, 100. The lower
boundary is the minimum proportion of patients for a dose group in the
second part of the trial and it origins from the fact that we have already
assigned a third of the patients to each dose group in the first part of the
trial, according to the initial design wunif (5). Rewriting the number of
patients that are allocated to various doses in the first step as

nwunif =
(
N/18 N/18 N/18 N/18 N/18 N/18

)
,

one can more easily see that the smallest value wj can take is 1/18. The
upper boundary is calculated as
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1− (5/18) = 13/18

where 5/18 is the sum of the other five weights when they take the smallest
value they can take (i.e. the lower boundary). Last but not least, the sum
of the weights naturally have to equal one.

The optimization was carried through with the following two methods.

Method 1: This method is to use the ready-built function fminsearch in
Matlab with the function to be minimized inside an additional function,
where the additional function controls that the constraints are fulfilled. In
our case the function to be minimized is the criterion 1/Φ, and this is called
upon in a function that adds a large “punishment” to the value of 1/Φ when-
ever

min(w) < 1
18 and/or max(w) > 13

18

This additional “check-function” also controls that the sum of the weights
equalled one. Hence this function forces the algorithm to search within the
chosen boundaries at the same time as it minimizes 1/Φ.

Method 2: The second algorithm we built ourselves. The main idea is
to change one coordinate of w at a time in a cyclic manner, with a geomet-
rically decreasing step size. If ej is a unit vector with a one in position j
and zeros elsewhere we replace w by

w′ = (w + ∆wjej)/(1 + ∆wj) (7)

as the current best design if the criterion function 1/Φ decreases, i.e. 1/Φ(w′, θ̂) <
1/Φ(w, θ̂). In addition, w′ must be a valid two-stage design, i.e. satisfy
the boundary conditions imposed by (6). We run the algorithm for a pre-
specified number of steps mmax where one “sweep” or step of the algorithm
consists of iterating (7) for j = 1, . . . , 6. The step size is

∆wj = ∆w0 × ρm

if (7) belongs to sweep number m = 0, 1, . . . ,mmax and where ρm is some
change factor that geometrically decreases the step size for each sweep num-
ber m. In other words; the step size is constant within a sweep but decreases
with each sweep. The algorithm stops when ∆wj reaches a pre-specified stop
value.

This algorithm is a modified first order exchange algorithm and for more
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reading about the original algorithm we refer to Atkinson A.C. and Donev
A.N. (1992), Optimum Experimental Designs in the reference list.

We let Method 2 use the four different combinations of starting step size
∆w0, stopping step size ∆wmmax and the number of steps according to the
table below. Then we let the program chose the combination that produced
an optimal design with the smallest value of the criterion.

Table 4: Four combinations of ∆w0, ∆wmmax and mmax for Method 2

Starting step size ∆w0 Stopping step size ∆wmmax Number of steps mmax

0.1 10−5 100
0.05 10−5 100
0.07 10−5 100
0.09 10−5 100

In the same way, we let the program choose between Method 1 and Method
2 based on the value of the criterion. In approximately 90 percent of the
times the program chose the optimal design produced by Method 2. This is
most likely due to the fact that Method 2 is “tailor-made” for this particular
problem and hence gives a better result. Although we made the constrained
problem unconstrained by the additional function in Method 1, fminsearch
is built for unconstrained optimization and the additional function might
not remove as much of the problem as we would like it too.

Next step was then to reallocate the rest of the patients using our opti-
mal design. The reallocation of patients to obtain the optimal number of
patients nopt for the second part of the trial was made according to the steps
in section 4.5. Apart from one small challenge, this was just straightforward
calculus. The minor challenge here was to control the rounding off in step 2,
since for some optimal designs the sum of the elements in n equaled N + 1
or N − 1 instead of N . Whenever this occurred, we corrected it with a
function that added or subtracted 1 to the element in n that was closest to
be rounded off in the opposite direction.

The final part was then to repeat the program a large number of times.
Due to time limitations and the fact that the program took some time to
run (optimization is usually quite expensive in computational power which
affects the speed of the program), we settled with 500 iterations.
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4.2 Results

4.2.1 Fitted response curves

Finally, let’s have a look at the most interesting part; the results. The pre-
sentation of the results will be made using boxplots with explanatory text.
The first boxplots illustrates the behavior of the estimated dose response
curves f(· ; θ̂) that we observed in figure 2, but for more iterations than
two. The boxplots below show the estimated responses given by (1) with
500 simulated sets of θ̂ and the dose-response curve for the true θ, for all
the four models in Table 3, Scenario 1 and with total sample size N = 360,
hence n = 120 data points are used for computing θ̂. We choose not to show
these plots for a larger N since the effect of increasing sample size was al-
most the same as the effect of reducing σ. Also, we choose not to show plots
for scenario 2 and scenario 6 since they basically show the same thing as the
plots for scenario 1, but for the interested reader these plots can be studied
in Appendix C. Observe that which criterion we choose here has no signifi-
cance, since these have no impact on the initial estimate θ̂ of the parameters.

Figure 3: Boxplot of estimated mean responses, 500 simulations, Model 1,
Scenario 1, N = 360
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Figure 4: Boxplot of estimated mean responses, 500 simulations, Model 2,
Scenario 1, N = 360

Figure 5: Boxplot of estimated mean responses, 500 simulations, Model 3,
Scenario 1, N = 360
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Figure 6: Boxplot of estimated mean responses, 500 simulations, Model 4,
Scenario 1, N = 360

The reason to the odd shape of the boxplots in Figure 3 is that the estimated
parameter ÊD50 has taken on negative values, causing estimated responses
to be imaginary valued. However, this will not interfere with the result of
which we are interested in showing since we are mainly interested in showing
that there is a large variation, rather than the pattern of the variation. The
important thing to observe in these plots is that although the variation of
the estimated responses in some cases is large (which depends on a large
variation in θ̂), the boxplots are still narrow around the true response curve,
which was what we showed for two iterations in figure 2. The smallest
variation of the estimated responses is for Model 4 and we can expect that
the smallest variation in optimal designs will be found for this model too.
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4.2.2 Estimated optimal designs

Now, let us consider the true optimal designs wopt(θ) and the estimated
optimal designs wopt(θ̂) produced by the same set of simulated θ̂ that was
used to calculate the estimated responses above.

Below are boxplots for 500 simulated optimal weights for Models 1 and
4 (the two “extreme” ones), both of the criteria, Scenario 1 and N = 360,
N = 720 and N = 1440. The reason that we will not show plots for the
other scenarios is the same as above, and again these plots can be found in
Appendix C. Worth to observe in the plots below is that both the criteria
produces optimal designs with a large proportion of patients in the placebo
dose group, which is important since we are interested in the differences
between the placebo dose and all other doses.

Figure 7: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 1, Scenario 1, N = 360
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Figure 8: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 1, Scenario 1, N = 720

Figure 9: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 1, Scenario 1, N = 1440
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Figure 10: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 4, Scenario 1, N = 360

Figure 11: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 4, Scenario 1, N = 720
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Figure 12: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 4, Scenario 1, N = 1440

Figure 13: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 1, Scenario 1, N = 360
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Figure 14: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 1, Scenario 1, N = 720

Figure 15: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 1, Scenario 1, N = 1440
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Figure 16: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 4, Scenario 1, N = 360

Figure 17: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 4, Scenario 1, N = 720
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Figure 18: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 4, Scenario 1, N = 1440

Part of the reason to why we only show the two extreme models is that the
difference between them gives a quite clear result; large variation for esti-
mated parameters causes a large variation in estimated optimal designs. As
we saw in the Figure 3 and 6, the variation for estimated responses, and thus
the variation in parameter estimates, was much smaller in Model 4 than in
Model 1. Since our optimality criteria Φ1 and Φ2 both reflect the efficiency
of estimating a dose-response curve increment rather than the parameters
themselves, it is natural that the estimated optimal design varies in a similar
way as the estimated response curves. Hence there is a larger variation in
estimated optimal design in Figures 7-9 compared to Figures 10-12, and in
Figures 13-15 compared to Figures 16-18.

Worth noting in these plots is the difference in the estimated optimal de-
signs between the criteria, which is easiest to observe in Figures 10-12 and
Figures 16-18 (i.e. for Model 4). Criterion 2 produces estimated optimal
designs with a larger proportion of the patients in the placebo dose group
and the group given the maximal dose. This is not so surprising, since this
criterion is used to produce a design that answers questions regarding the
estimated dose-response at the maximal tolerable dose compared to placebo.
Criterion 1, however, produces estimated optimal designs that has a larger
proportion of patients in three dose groups; x = 00, x = 40 and x = 100.
Looking at the description of the criterion in section 3.4, this is not so sur-
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prising either since the criterion is designed to produce a design that best
can answer questions regarding the estimated dose-response compared to
placebo dose x = 0 for doses all doses up to the maximal tolerable dose.

4.2.3 Estimated criterion values

Last but not least, let’s have a look at the estimated criterion values for both
criteria, Model 1 and Model 4, N = 360, N = 720, N = 1440 and all three
scenarios. In the boxplots below, the asterisk represents the criterion value
based on the true θ, 1/Φ(wopt, θ) = 1/Φ(wopt(θ), θ), and the boxplots shows
the estimated criterion values based on θ̂, 1/Φ(wopt, θ̂) = 1/Φ(wopt(θ̂), θ̂),
for 500 simulations.

Figure 19: Boxplot of estimated values of 1/Φ1, 500 simulations, Model 1
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Figure 20: Boxplot of estimated values of 1/Φ1, 500 simulations, Model 4
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Figure 21: Boxplot of estimated values of 1/Φ2, 500 simulations, Model 1
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Figure 22: Boxplot of estimated values of 1/Φ2, 500 simulations, Model 4

Again, since our optimality criteria depends on wopt, which in turn depends
on θ̂, it is natural that the estimated values of the criteria are afflicted with
a large variation if we have a large variation in parameter estimates. These
plots are just another way of visualizing what we have already observed in
the plots above.
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5 Conclusions and discussion
When we started this project, we didn’t expect the difficulties that the op-
timization of the design for this model brought. However, the contents of
this paper states a clear message; when dealing with optimal designs, one
has to be extremely careful. Our results shows us that, to be able to obtain
a reliable optimal design, it is fundamental that we have a good estimation
of the parameter values to base our optimization on.

From the plots above we can draw the conclusion that for this particu-
lar problem, Model 4 is the model that we should use if we want a reliable
optimal design. But is this model realistic? When working with the de-
velopment process of a new drug, we work with human subjects who are
different in metabolism and in other aspects. A standard deviation of 1 unit
(in combination with a clinical relevant effect of 5 units) is usually unreal-
istically low in this context. Also, we might not have a good foundation for
fixing the value of one parameter, due to several reasons (no similar com-
pounds to compare to, pre-clinical studies weren’t possible to conduct, etc.).

What do we do then? When we work with an adaptive design we need
to obtain a reliable optimal design, which is impossible with the large vari-
ation in parameter estimates as Model 1 gives. Increasing the total sample
size N is one solution, but as mentioned earlier, in most cases this isn’t
possible.

An interesting follow-up to this paper would be to continue with step 6
from section 3; collect data from the remaining N − n patients, allocated
to doses according to Step 5 and then compute a final estimate θ̂final of θ
using NLS and all N patients. What would be interesting here is to look at
the first- and second order asymptotics of θ̂final.
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A The Nelder-Mead simplex search method
The Nelder-Mead simplex search method is a well-known technique that
was suggested by John Nelder and Roger Mead (1965). It is a derivative-
free method for solving unconstrained optimization problems of minimizing
nonlinear functions. The method is called a direct search-method since it,
instead of using gradients to search for the minimum, uses the function val-
ues of the model.

A simplex is a generalization of the concept of a triangle or tetrahedron
to arbitrary dimension. For example, a 2-simplex is a triangle, a 3-simplex
is tetrahedon, and an n-simplex is an n-dimensional polytope (a geometric
object with flat sides, existing in any number n of dimensions) with n + 1
specific kind of points that mark the corners of the polytope.

The Nelder-Mead simplex method starts at an initial set of points that cre-
ate the starting simplex S, say θ0, θ1, ..., θn+1 , with corresponding function
values f(θ0), f(θ1), ..., f(θn+1). There is only one restriction on the starting
simplex S ; the initial set of points can not lie in the same hyperplane. The
method is then to move the simplex through space toward the minimum
by shifting the corner with the highest function value. Once the process
hits a higher function value than the present or when the function value
has reached some pre-specified value, it stops. The whole idea is hence to
change the location of the simplex at each step to find the smallest value of
the function.

There are naturally advantages and disadvantages of this method, as with
all methods of optimization. The largest advantage is that it is a fairly easy
technique to understand and implement. A disadvantage is that it has a
relatively slow convergence if the initial guesses of the starting points are
far from the ones that minimize the function, which in turn demands a lot
of computational power (it is computationally expensive, one can say).
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B The variance function d(x,w, θ)
Let

• x = dose ∈ {0, 20, 40, 60, 80, 100}

• w = the weights for the different doses (the design of the study)

• θ = (E0, Emax, α, ED50) = vector of parameters

• f(x, θ) = the true response from dose x

• σ2 = the variance of the observations

From the theory of nonlinear least squares estimation we know that if the
errors of the model are iid normally distributed, then the estimation (θ̂, σ̂2)
of (θ, σ2) has an asymptotic bivariate normal distribution:

√
N

((
θ̂
σ̂

)
−
(
θ
σ

))
→ N

((
0
0

)
,

(
σ2M−1(w, θ) 0

0 2σ4

))

where the convergence is in distribution and N denotes the total sample
size of the clinical trial. The information matrix M is calculated as

M(w, θ) = ∑k
j=1wjg(xj , θ)g′(xj , θ)

where j = 1 indicates dose 0 (placebo) and j = k indicates the max dose,
and

g(xj , θ) =
(

∂f(xj ,θ)
∂E0

∂f(xj ,θ)
∂Emax

∂f(xj ,θ)
∂α

∂f(xj ,θ)
∂ED50

)′
=

(
1 xαj

EDα50+xαj

EmaxEDα50x
α
j (logxj−logED50)

(EDα50+xαj )2
−EmaxαEDα−1

50 xαj
(EDα50+xαj )2

)′

are the gradient functions. The variance of the estimated effect of dose
xj is then approximately

g′(xj , θ)σ2M(w, θ)−1g(xj , θ)

This finally gives us the variance of the estimated difference between any
dose compared to a placebo dose as
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d(xj ,w, θ) = (g(xj , θ)− g(0, θ))′σ2M(w, θ)−1(g(xj , θ)− g(0, θ))

where j = 1, 2, 3, 4, 5 correspond to doses 20, 40, 60, 80, 100.

C Figures

C.1 Fitted response curves
Figure 23: Boxplot of estimated mean responses, 500 simulations, Model 1,

Scenario 2, N = 360
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Figure 24: Boxplot of estimated mean responses, 500 simulations, Model 2,
Scenario 2, N = 360

Figure 25: Boxplot of estimated mean responses, 500 simulations, Model 3,
Scenario 2, N = 360
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Figure 26: Boxplot of estimated mean responses, 500 simulations, Model 4,
Scenario 2, N = 360

Figure 27: Boxplot of estimated mean responses, 500 simulations, Model 1,
Scenario 6, N = 360
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Figure 28: Boxplot of estimated mean responses, 500 simulations, Model 2,
Scenario 6, N = 360

Figure 29: Boxplot of estimated mean responses, 500 simulations, Model 3,
Scenario 6, N = 360
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Figure 30: Boxplot of estimated mean responses, 500 simulations, Model 4,
Scenario 6, N = 360

C.2 Estimated optimal designs
Figure 31: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,

Model 1, Scenario 2, N = 360
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Figure 32: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 1, Scenario 2, N = 720

Figure 33: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 1, Scenario 2, N = 1440
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Figure 34: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 4, Scenario 2, N = 360

Figure 35: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 4, Scenario 2, N = 720
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Figure 36: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 4, Scenario 2, N = 1440

Figure 37: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 1, Scenario 2, N = 360
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Figure 38: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 1, Scenario 2, N = 720

Figure 39: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 1, Scenario 2, N = 1440
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Figure 40: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 4, Scenario 2, N = 360

Figure 41: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 4, Scenario 2, N = 720
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Figure 42: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 4, Scenario 2, N = 1440

Figure 43: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 1, Scenario 6, N = 360
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Figure 44: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 1, Scenario 6, N = 720

Figure 45: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 1, Scenario 6, N = 1440
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Figure 46: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 4, Scenario 6, N = 360

Figure 47: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 4, Scenario 6, N = 720
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Figure 48: Boxplot of estimated optimal weights, 500 simulations, Criterion 1,
Model 4, Scenario 6, N = 1440

Figure 49: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 1, Scenario 6, N = 360
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Figure 50: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 1, Scenario 6, N = 720

Figure 51: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 1, Scenario 6, N = 1440
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Figure 52: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 4, Scenario 6, N = 360

Figure 53: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 4, Scenario 6, N = 720
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Figure 54: Boxplot of estimated optimal weights, 500 simulations, Criterion 2,
Model 4, Scenario 6, N = 1440
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D Word list
• Pharmacokinetics=what impact the body has on the drug, for ex-

ample how the body absorbes it, how it is distributed in the body and
the duration of the effect of the drug.

• Microdosing=”a technique for studying the behaviour of drugs in
humans through the administration of doses so low they are unlikely
to produce whole-body effects, but high enough to allow the cellular
response to be studied”1

• ICH-E4 = the primary source of regulatory guideline in the area of
clinical trials

• Maximal tolerable dose (MTD) =”the maximal tolerable dose
beyond which no further beneficial effect is seen”(ICH-E4)

• Blinding=a blinded experiment is a experiment where some of the
persons involved in the experiment are kept unknowing of certain in-
formation that might otherwise lead to conscious or unconscious bias,
causing damage on the credibility of the results

1Wikipedia
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