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Abstract

The aim with this paper is to give an introduction to the mathe-
matical modeling of the genealogical process of genes. Humans have
two copies of their genes which they inherit from their parents, one
copy from each parent. A gene can be coded in different ways; the
different codes are called alleles. This paper will describe the trans-
mission of alleles between generations. The Wright-Fisher model is an
urn model with replacement used to describe the variation of alleles
in a population. From this model the Kingman coalescent process is
derived. The Kingman coalescent process is a mathematical model for
describing the line of descent for genes. It takes a sample from the
population and step backwards in time to see how different lineages
coalesce. The time to coalescence in this process is exponentially dis-
tributed when using a scaled time rate and letting the population size
go to infinity. The coalescent process can be extended to a coalescent
process including the possibility of mutation. The Ewens sampling
formula is based on this extended version of the coalescent process
and gives the distribution of the different alleles in a sample. Hoppe’s
urn model and the Chinese restaurant process can be used to simulate
a sample from the Ewens sampling formula. By letting the sample
size go to infinity an asymptotic estimate of the mutation rate can be
derived. This estimate has quite low convergence rate which yields
high variance of the estimates. Unfortunately there is no other way
to estimate the mutation rate consistently with lower variance.
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E-mail: r.hellman@hotmail.com . Supervisor: Andreas Nordvall Lager̊as.
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1 Introduction

DNA is present in each one of our cells and carries all the genetic information
that makes us human. We have thousands of genes encoded in our DNA that
specifies our traits. All of us have two copies of our DNA and thus two copies
of each gene; one inherited from the mother, and one from the father [1].
The purpose with this paper is to give an introduction to the mathematical
modeling of the genealogical process of genes and the line of descent for
them. This paper is based on chapter 1 ”‘Basic Models”’ in Durrett, 2002
[2]. The genealogical process of genes, or the coalescent process as it will be
referred to in this paper, has been developed to more and more advanced
models through the years, but in this paper we will keep to the first and
most basic model, the Kingman coalescent process. It can be shown that
this very simple model yields the same results as the more advanced models.
We will start off with explaining the Wright-Fisher model, which is a model
describing the genetic variation among genes in a population. From the
Wright-Fisher model the Kingman coalescent process will be derived. The
coalescent process looks at a sample from the population and describes how
the lines of descent are structured. From the fact that the gene focused on in
the coalescent process may mutate during descent, the Kingman coalescent
process will be extended to a coalescent process with mutation from which
the Ewens sampling formula will be derived. The Ewens sampling formula
gives the distribution of the entire sample in the coalescent process and
yields some interesting results about the mutation rate and its estimate.
The Ewens sampling formula will be described with two models, Hoppe’s
urn model and the Chinese restaurant process. With the help of either
one of these two models it is easy to simulate the Ewens sampling formula,
which will be done in the last section. Some interesting results from the
simulations are the estimated mutation rate and the dependence between
the simulated sample and the mutation rate.

2 A brief introduction to the genetic code

Before we start talking about the modeling of gene transmission it can be
a good idea to gain some knowledge about the biological structure and
function of the genetic material discussed in this paper.

Most living organisms have deoxyribonucleic acid (DNA) molecules which
carry their genetic information about cell growth, division and function.
DNA molecules are composed of two chains twisted around each other to
form a double helix. Each chain consists of a sequence of four nucleotides,
adenine (A), guanine (G), cytosine (C), and thymine (T). The two chains
join together in a ladder-like form where adenine pairs up with thymine and
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guanine pairs up with cytosine. This means that the number of adenine
nucleotides is equal to the number of thymine nucleotides and that the
number of guanine nucleotides is equal to the number of cytosine nucleotides.
It is the sequence of nucleotides on the DNA molecule that encodes the
genetic information.

Figure 1: DNA chain [3].

A gene is a collection of nucleotides, or a segment of the DNA chain, which
specifies a specific trait of an organism [4]. Each gene in the DNA chain
has a special function; e.g. one gene may be responsible for your eye color
while another may decide the shape of your nose. The specific sequences of
nucleotides in a gene are called alleles. When we start modeling we will look
at a specific gene and describe how the alleles are inherited from previous
generations. Let us say that one gene is responsible for your eye color, then
one allele might give you green eyes and another allele might give you blue.
An organism is said to be haploid if it only has one copy of its genetic
material. Humans and most higher organisms are diploid and have two
copies of their genetic material; some plants can have many more copies. In
diploid organisms the alleles are inherited from the parents, one from the
father, and one from the mother. Thus, a diploid organism has two copies
of the genes but may have two different alleles for each gene.

3 The Wright-Fisher Model and the Kingman Co-
alescent Process

The Wright-Fisher model is used to describe the way genes are transmitted
from one generation to the next. In this section we will discuss the Wright-
Fisher model and how the result from this model can be used to derive the
Kingman coalescent, which is a process describing how different lineages
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coalesce backwards through time. Last in this section the possibility of gene
mutations and how this affects the coalescent process will be discussed.

3.1 Wright Fisher Model

To describe the Wright-Fisher model we will start by explaining a strictly
mathematical model and then we will discuss its application on the gene
transmission process.

Assume we have 2N balls, all with different colors, and put them all in a big
urn, urn number one. Then we draw a ball from the urn and put a new ball
with the same color as the one that was drawn in a new urn, urn number
two. The ball that was drawn from the first urn is put back in the first urn,
i.e. it is an urn process with replacement. We repeat this process until we
have 2N balls in urn number two. We can repeat this process several times
and pick balls from urn number n and place new balls of the same colors
into urn n + 1. We will most likely have a different distribution of balls in
the new urn, so the probabilities to draw a ball with a specific color from
the new urn will not be the same as before for all balls. In other words, it
is likely that we from the first urn have drawn 2 or more balls of the same
color.

Figure 2: Urn Model.

From the urn model described above we get a probability that if there were
i balls of a specific color, say red, in the nth urn there is j red balls in urn
n+ 1 which follow the binomial distribution and is calculated as,

p(i, j) =
(

2N
j

)
pji (1− pi)2N−j

where pi = i/2N is the probability to draw a red ball from an urn with i
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red balls and (
2N
j

)
=

(2N)!
j!(2N − j)!

is the number of ways one can choose j balls from 2N possible.

Now set Xn to be the number of balls in a specific color in urn number n,
to be more specific say as above the number of red balls. Then we get that
Xn, as discussed above, follows the binomial distribution.

Xn|Xn−1 = i ∼ Bin
(

2N, pi =
i

2N

)
.

Expected value and absorbing states

Since Xn is binomially distributed the expected value of Xn is easily derived.

Lemma 1. E[Xn|Xn−1 = i] = 2N
(
i

2N

)
= i = Xn−1.

This tells us that the expected value of Xn stays constant in time. As n goes
to infinity Xn will eventually reach one of the absorbing states 0 or 2N , i.e.
eventually there will not be any red balls left or all the balls in the urn will
be red. If none of the balls in the urn are red it is not possible to draw any
red balls and put in the next urn and therefore Xn = 0 for all future urns.
The same applies if all the balls are red, then all future urns will contain
only red balls.

Now, let τ be the smallest amount of time it takes for Xn to reach one of
the absorbing states, where time is measured in n, the number of urns.

τ = min {n : Xn = 0 or Xn = 2N}

Then we get the following result.

Theorem 2. P (Xτ = 2N |X0 = i) = i
2N .

Proof. To prove Theorem 2 we first derive two equations which combined
give the desired result. The first equation is

E[Xτ |X0 = i] = 0 · P (Xτ = 0|X0 = i) + 2N · P (Xτ = 2N |X0 = i) =
= 2N · P (Xτ = 2N |X0 = i).

The second equation is a result of Lemma 1 and the optional stopping
theorem [5]. The optional stopping theorem says that if Eτ < ∞ and if
there exists a constant c such that E|Xi+1 − Xi| ≤ c for i = 1, 2, . . . then
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EXτ = EX1. Since the expected value of Xn stays constant in time we get
that

E[Xτ |X0 = i] = E[X0|X0 = i] = i.

Combining these two equations gives

E[Xτ |X0 = i] = i = 2N ·P (Xτ = 2N |X0 = i)⇔ P (Xτ = 2N |X0 = i) =
i

2N
.

Application of the Wright-Fisher model

Until now we have only described the Wright-Fisher model as a strictly
mathematical process. Now we will see how this model can be used to de-
scribe how genes are transmitted between generations. Consider a popula-
tion of N diploid individuals with non-overlapping generations and random
mating. Non-overlapping generations mean that only one generation can ex-
ist at any one time. When we talk about random-mating we mean that each
individual in the population is equally likely to mate and produce offspring.
Since our interest is limited to one specific gene from a diploid organism we
can consider that each individual is carrying two alleles. The possible num-
ber of different alleles is almost infinitive which will discuss in more detail in
Section 4. Consider the different alleles as different colors just as the balls
in the urn. We treat the diploid population of size N as a population of 2N
haploid individuals. Now, take all the 2N alleles and put them in a big urn.
To get the next generation of individuals we draw alleles from the urn, with
replacement, in the same way we picked the colored balls before. The only
difference now is that we see the colored balls as different alleles instead.
In other words, the different color groups represent different families, and
provided there was initially only one ball of a specific color the individuals
in that color-family have at least one common ancestor.

Figure 3: The Wright-Fisher Urn Model.
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3.2 The Kingman Coalescent Process

When considering the Wright-Fisher model one can go backwards in time to
see how different lineages coalesce. The Kingman coalescent process looks
at a sample from the population and describes how the different lineages
coalesce. If we look at a sample of size k from generation number n (i.e. urn
n) and then go backwards in time to generation (n−1) there is a probability
that some of the individuals descend from the same parent. We will in this
section discuss the distribution of coalescent times. We will also show that
the coalescent times follow the exponential distribution if we scale the time
with 2N and let 2N go to infinity.

Figure 4: The Kingman coalescent process.

If we look at a sample of size k from the population, the probability that
any two individuals choose the same parent is(

k

2

)
· 1

2N
=
k(k − 1)

2
· 1

2N

where
(
k
2

)
is the number of ways we can choose two individuals from a sample

of size k and the second term is the probability that those two choose the
same parent when we have random mating. The probability that more than
two individuals choose the same parent is negligible when N →∞ and will
not be accounted for. We are also ignoring the probability that two or more
different pairs collide. From this we get the probability of no collision as(

1− k(k − 1)
2

· 1
2N

)
and the probability of no collision in the first n generations as(

1− k(k − 1)
2

· 1
2N

)n
.
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Note that (1 − x) ≈ e−x when x is small. If we apply this in the above
formula we get that(

1− k(k − 1)
2

· 1
2N

)n
≈ e− k(k−1)

2
· n
2N

when N is large. From this result the following theorem is derived.

Theorem 3. Let the population size N → ∞, and let t = n/(2N) be the
time scale used. Then the time to the first collision follows an exponential
distribution with parameter k(k − 1)/2.

Let Tj be the exact time at which the sample coalesce to j lineages and let
tj be the amount of time there are exactly j lineages. It then follows from
the theorem above that tj is approximately exponentially distributed with
parameter j(j − 1)/2, i.e. tj ∼ Exp(j(j − 1)/2).

Figure 5: Coalescent process with exponentially distributed coalescent times
[6].

An interesting result from all this is that the expected time it takes for all
lineages in the sample to coalesce to a single lineage is

E[T1] = E

 k∑
j=2

tj

 =
k∑
j=2

2
j(j − 1)

= 2
k∑
j=2

(
1

j − 1
− 1
j

)
=

= 2
((

1− 1
2

)
+
(

1
2
− 1

3

)
+ · · ·+

(
1

k − 1
− 1
k

))
=

= 2
(

1− 1
k

)
.
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Note that T1 converges to two as the sample size k goes to infinity, but
t2 which is the amount of time when there are only two lineages have an
expected value equal to one, i.e. E[t2] = 1. This means that the expected
time waiting for the last collision is the same amount of time it takes for all
lineages before the last to coalesce, as the sample size goes to infinity.

3.3 Mutations

So far we have only discussed the possibility of a coalescent event. But in
fact there are two possible events that may occur, either a coalescent or a
mutation of the allele. Say we pick a red allele from the urn at time n, then
there is a possibility that the red allele will mutate to another color as we
put it down in the new urn.

Figure 6: Wright-Fisher Urn Model with mutations.

For the coalescent process this means that if a mutation has occurred it is
no longer possible to track that lineage further back in time. If we try to
track an allele, say a green allele, backwards through the coalescent process,
it is possible to track it as long as it stays green, but if the allele mutates to
a red one it is no longer possible to track it further back in time.
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Figure 7: Coalescent process, the dots represents a mutation event.

The figure above illustrates the genealogical gene tree for a coalescent process
with mutation where time is measured in coalescent and mutation events.
As indicated by the dots the trace of an allele disappears when a mutation
occurs.

4 Ewens Sampling Formula

As mentioned earlier there can be an almost infinite number of different
alleles. Say a gene consists of 500 nucleotides, then the number of possible
DNA sequences on that gene is 4500 = 10301. In other words, when an allele
mutates it will almost certainly mutate to a new type never seen before, and
therefore it is reasonable to assume that the number of alleles is infinite.
In this section we will describe the coalescent process with mutation. This
will be described with two different models, namely Hoppe’s urn model and
the Chinese restaurant process. From Hoppe’s urn model we will derive
the Ewens sampling formula, which gives the distribution for the number
of different alleles in a sample. An important result in this section is the
estimation of the mutation rate µ or equivalently the scaled mutation rate
θ.

10



4.1 Hoppe’s Urn Model

If we have a sample from the population containing k lineages the probability
of a coalescent event in one time step is

≈
(
k

2

)
· 1

2N
=
k(k − 1)

2
· 1

2N
.

The probability to see more than one mutation at any one time step is
negligible and therefore the probability that a mutation is seen instead of a
coalescent is

≈ kµ
where µ is the probability that an individual mutates. To make sure that
coalescence and mutation occur with the same rate we speed up the system
by running time at a rate of 2N . The rate for coalescence is then k(k−1)/2
and the rate for mutation is kθ/2, where θ = 4Nµ. θ is called the scaled
mutation rate.

Hoppe’s urn model can be explained as follows. At time zero (t = 0) we
have an urn containing a black ball with mass θ. At t = 1 we pick a ball
from the urn which of course is the black ball and then we put back the
black ball together with a colored ball with mass 1 in the urn. Also at time
t = 2 we pick a ball from the urn, but now the probability to pick the black
ball is

θ

θ + 1
and the probability to pick the colored ball is

1
θ + 1

.

If the black ball is picked up we again put back the black ball together with
a new ball of a different color, but if the colored ball is picked we put a
new ball with the same color in the urn so that we have two balls of the
same color. All colored balls have mass 1 and it is assumed to be an infinite
number of colors available. At time t = k there are k colored balls in the
urn plus the black one, so the probability to pick the black ball is

θ

θ + k

and the probability to pick a colored ball is

k

θ + k
.

In this model the event that a black ball is picked represents a mutation and
the event that a colored ball is picked represents a coalescence. Thus we get
the same coalescent process as illustrated in Figure 7 above.
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Figure 8: Hoppe’s urn model.

We can track an individual backwards in time to find out where he originated
from, but if a mutation has taken place we are not able to look further back,
i.e. a mutation can be looked at as a completely new individual in the model.
If we go backwards from time k + 1 to time k in Hoppe’s urn model we get
a probability to loose track of an individual because of mutation equal to

θ

θ + k

and a probability to have a coalescent event equal to

k

θ + k
.

This is the same probabilities as we get when running the coalescent process
with scaled time. Suppose there are k+ 1 lineages in the coalescent process,
then the rate at which we will see a mutation is (k + 1)θ/2 and the rate for
a coalescence event is (k + 1)k/2. These event rates and the fact that all
coalescent events have equal probability gives that

Theorem 4. The genealogical relationship between k individuals in the coa-
lescent process can be simulated by running Hoppe’s urn model k time steps.

4.2 Estimation of θ

Let Kn be the number of different alleles in a sample of size n. Further let
ηi = 1 if the ith ball in Hoppe’s urn model is a new color. Then it follows
from Hoppe’s urn model that Kn = η1 + · · ·+ ηn and that

η1, . . . , ηn are independent with P (ηi = 1) =
θ

θ + i− 1
.
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Due to this independence we can compute the asymptotic behavior of the
expected value and variance of Kn, which is then used to estimate θ.

Theorem 5. Suppose θ is fixed in all generations. Then, as the sample size
n goes to infinity

EKn ∼ θ ln(n) and Var(Kn) ∼ θ ln(n)

where an ∼ bn means that
an
bn
→ 1 when n→∞.

Proof. We start with proving the expected value.

EKn =
n∑
i=1

E [ηi] =
n∑
i=1

θ

θ + i− 1
.

Remember the Riemann sum approximation of an integral which gives

n∑
i=1

1
θ + (i− 1)

≈
∫ n+θ

θ

1
x
dx = ln(n+ θ)− ln(θ) ∼ ln(n)

when n→∞. This gives that

EKn =
n∑
i=1

θ

θ + i− 1
∼ θ ln(n) as n→∞.

Since all ηi are independent we get the variance of Kn as

Var(Kn) =
n∑
i=1

Var(ηi) =
n∑
i=1

θ

θ + i− 1

(
1− θ

θ + i− 1

)
=

n∑
i=1

θ(i− 1)
(θ + i− 1)2

.

Now, we see that
i− 1

θ + i− 1
=

1
θ/(i− 1) + 1

→ 1.

With this result and the Riemann sum approximation we get that

Var(Kn) ∼
n∑
i=1

θ

θ + i− 1
∼ θ ln(n).

Corollary 6. By using the results from Theorem 5 we can calculate an
asymptotically normal estimator of the mutation rate θ as

Kn

ln(n)
≈ θ.
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The asymptotic standard deviation of the estimate is of order 1/
√

lnn which
is quite large. This means that if the true value of θ = 1 and we want
an estimate of θ with a standard error of 0.1 we need a sample of size
e100 ≈ 2.688 · 1043. However, there is no other way to estimate θ. Kn

actually is a sufficient statistic for θ, i.e. Kn contains all useful information
from the sample needed to estimate θ. This we will show with the help of
the Chinese restaurant process later on.

4.3 Ewens Sampling Formula

In the previous section we talked about the asymptotic behavior of the
number of different alleles. Now we will describe the distribution of the
entire sample, which is given by the Ewens sampling formula.

Theorem 7 (Ewens sampling formula). Let ai be the number of alleles
present i times in the sample. When the scaled mutation rate is θ = 4Nµ
the sample distribution is given by

Pθ(a1, a2, ..., an) =
n!
θ(n)

n∏
j=1

(θ/j)aj

aj !

where θ(n) = θ(θ + 1)(θ + 2) · · · (θ + n− 1).

Proof. According to Theorem 4 it suffices to show that the distribution of
the colors in Hoppe’s urn at time n is given by the Ewens sampling formula.
This is shown with induction. For n = 1, (a1, a2, ..., an) equals (1, 0, 0, ..., 0)
and

Pθ(a1, a2, . . . , an) =
1!
θ

θ1

1!
= 1.

If we only have one allele in the sample the probability that the sample will
have the distribution (1, 0, . . . , 0) is one. At time n we have the distribu-
tion (a1, a2, . . . , an). Let a = (a1, . . . , an), and let ā = (ā1, . . . , ān) be the
distribution at the previous time step, then we get two different cases.

Case 1. ā1 = a1 − 1, i.e. the black ball is chosen and a new color is added
into the urn. The number of one-colored groups increases with one. The
transition probability for getting from ā to a is,

p(ā, a) =
θ

θ + n− 1
.
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We also have that

Pθ(a)
Pθ(ā)

=
n!
θ(n)

∏n
j=1

(θ/j)aj

aj !

(n−1)!
θ(n−1)

∏n
j=1

(θ/j)āj

āj !

=

= {ā1 = a1 − 1} =
n

θ + n− 1
· θ
a1
.

Case 2. One of the colored balls is chosen and a new one of the same color
is added into the urn. In other words this means that for some 1 ≤ j < n
we have that aj = āj − 1 and aj+1 = āj+1 + 1. The transition probability
this time is

p(ā, a) =
jāj

θ + n− 1
.

We also have that

Pθ(a)
Pθ(ā)

=
n

θ + n− 1
·
∏n
j=1

(θ/j)aj

aj !∏n
j=1

(θ/j)āj

āj !

=

=

{
āj = aj + 1

āj+1 = aj+1 − 1

}
=

n

θ + n− 1
· jāj

(j + 1)aj+1
.

To complete the proof we see that∑
ā

Pθ(ā)
Pθ(a)

p(ā, a) =
θ + n− 1

n
· a1

θ
· θ

θ + n− 1
+

+
n−1∑
j=1

θ + n− 1
n

· (j + 1)aj+1

jāj
· jāj
θ + n− 1

=

=
a1

n
+
n−1∑
j=1

(j + 1)aj+1

n
=

=
1
n

(a1 + 2a2 + · · ·+ nan) =
1
n
· n = 1.

Rearranging the above gives that∑
ā

Pθ(ā) · p(ā, a) = Pθ(a).

Since the distribution of Hoppe’s urn also satisfies this recursion with the
same initial condition the two must be equal according to Theorem 4.

4.4 The Chinese Restaurant Process

The same coalescent process as described with Hoppe’s urn can also be
described with the Chinese restaurant process. Consider a restaurant with
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an infinite number of tables labeled 1,2,3,... . The first person arriving to the
restaurant will sit down at the first table, table 1. The second person that
arrives will choose to sit down at the first unoccupied table with probability

θ

θ + 1

and at the occupied table with probability

1
θ + 1

.

When the nth person arrives at the restaurant he will choose to sit at an
unoccupied table with probability

θ

θ + n− 1

and at occupied table number i with probability
ci

θ + n− 1

where ci =’the number of persons at table i’. That a person chooses to
sit down at a new unoccupied table corresponds to a mutation and that
he chooses to sit at one of the occupied tables corresponds to a coalescent
event.

Figure 9: The Chinese restaurant process.

One of the differences between Hoppe’s urn model and the Chinese restau-
rant process is that in the later one knows the exact permutation of the
sample. Let Πn be the permutation when there are n individuals. A prop-
erty when using this notation is that given a permutation, the path to it
is unique, i.e. in the example given in the figure above we know just by
knowing the permutation that person 2 is a mutation from person one and
that person 3 is a descendant from person 2 and so on. The following is a
result from this property.
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Theorem 8. If π is a permutation with k cycles (i.e. k tables) then

Pθ(Πn = π) =
θk

θ(n)
.

Note that when θ = 1, Pθ(Πn = π) = 1/n!. That is, all permutations are
equally likely.

Proof. In the example given in the figure above we have, if the probabilities
are as given, that

Pθ(Π8 = {(741)(832)(65)}) =

=
θ

θ
· θ

θ + 1
· 1
θ + 2

· 1
θ + 3

· θ

θ + 4
1

θ + 5
· 1
θ + 6

· 1
θ + 7

=

=
θ3

θ8
.

Now, if a permutation of {1, 2, . . . , n} has k cycles the numerator is always
θk and the denominator is always θ(n).

Now, let |Skn| be the number of permutations from {1,2,. . . ,n} with k cycles,
i.e. |Skn| is the number of ways we can get k groups from a sample of size n.
|Skn| is called the Stirling numbers of the second kind. The Stirling numbers
of the second kind satisfy the relationship

|Skn| = (n− 1)|Skn−1|+ |Sk−1
n−1|.

In words this means that we can construct a π ∈ |Skn| from a member of
|Sk−1
n−1| by adding {n} as a new cycle, or from a σ ∈ |Skn−1| by picking an

integer 1 ≤ j ≤ n− 1 and setting π(j) = n and π(n) = σ(j).

Furthermore, let Kn just as before be the number of different alleles (number
of groups or tables) in a sample of size n. Now, it follows that

Lemma 9. Pθ(Kn = k) = θk

θ(n)
· |Skn|.

It can be shown by calculating the Ewens sampling formula and conditioning
on Kn that

Theorem 10. Kn is a sufficient statistic for estimating θ.
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Proof.

Pθ(a1, a2, . . . , an) =
n!
θ(n)

n∏
j=1

(θ/j)aj

aj !
=

=
n!
θ(n)
· θk

n∏
j=1

(1/j)aj

aj !
=

= n!
Pθ(Kn = k)
|Skn|

n∏
j=1

(1/j)aj

aj !
.

Conditioning on Kn gives

Pθ(a1, a2, . . . , an|Kn = k) =
Pθ(a1, a2, . . . , an)
Pθ(Kn = k)

=
n!
|Skn|

n∏
j=1

(1/j)aj

aj !
.

Since this conditional distribution does not depend on θ, Kn is a sufficient
statistic for estimating θ.

4.5 Maximum-likelihood estimation of θ

Earlier we gave an asymptotic estimate of θ. In this section we will derive
the maximum-likelihood estimator for θ based on Kn. The two estimates
are not the same but they are asymptotically equal when the sample size n
goes to infinity.

Ln(θ, k) =
θk

θ(n)
· |Skn|.

This is the likelihood of observing k when the true value is θ. To find the
value for θ that maximizes the probability to observe k we have to take the
derivative of the likelihood with respect to θ.

∂

∂θ
Ln(θ, k) = |Skn|

kθk−1θ(n) − θkθ′(n)

(θ(n))2
=
θk|Skn|
θ(n)

(
k

θ
−
θ′(n)

θ(n)

)
.

If we set this to zero and solve it for k we get that

k = θ ·
θ′(n)

θ(n)
= θ · d

dθ
ln(θ(n)).

Remember that θ(n) = θ(θ + 1) · · · (θ + n− 1), so

d

dθ
ln(θ(n)) =

d

dθ

n∑
i=1

ln(θ + i− 1) =
n∑
i=1

1
θ + i− 1
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and we get that

k = θ

(
1
θ

+
1

θ + 1
+ · · ·+ 1

θ + n− 1

)
= EKn.

This means that the maximum likelihood estimator is the θ that makes the
expected number of different alleles equal to the observed number, i.e. the θ
that solves EKn = k. When n goes to infinity this is the same asymptotic
estimate as we got from Corollary 6.

θ̂ ≈ k

ln(n)
, when n is large.

According to the theory of maximum likelihood estimation, Eθ̂ is asymptot-
ically equal to θ, and Var(θ̂) = 1/I(θ̂) where I(θ) is the Fisher information.

I(θ) = E

(
∂

∂θ
ln(Ln(θ, k))

)2

In our case we get that

∂

∂θ
ln(Ln(θ, k)) =

∂

∂θ
ln
(
θk|Skn|
θ(n)

)
=
k

θ
− ∂

∂θ
ln(θ(n)) =

1
θ

(
k −

n∑
i=1

θ

θ + i− 1

)
.

Since EKn =
∑n

i=1
θ

θ+i−1 it follows from the definition of the variance that

I(θ) =
1
θ2
E[k − EKn]2 =

1
θ2

Var(Kn).

Combining this with previous result about the asymptotic behavior of the
variance we get that

Var(θ̂) =
θ2

Var(Kn)
→ 0, as n→∞.

This asymptotic result tell us that θ̂ is a consistent estimator of θ, but it
converge rather slow since Var(θ̂) ∼ θ/ ln(n) .

5 Simulation

In this section we will simulate data from the Ewens sampling formula (The-
orem 7) with the help of Hoppe’s urn model. It is possible to simulate data
with the Chinese restaurant process as well but it demands more computer

19



power and compared to Hoppe’s urn it does not give any extra information
that is useful for us. When we make the simulations the aim is to estimate
the scaled mutation rate θ and see how accurate the estimation is. As we
previously have mentioned and will see in this section the convergence rate
of EKn/ ln(n)→ θ is quite slow. This means that n has to be very large for
good estimation of θ. Unfortunately, as discussed in the previous section,
the only way to estimate θ is with Kn/ ln(n). An interesting thing that will
be looked at is how the number of alleles (groups) depends on the mutation
rate θ. We will also see how the estimation of θ depends on the real θ and
the sample size n.

Remember the relationship between the mutation rate µ and the scaled
mutation rate θ

µ =
θ

4N
.

The mutation rate in human mitochondrial DNA is estimated to approx-
imately 2.7 · 10−5 [7]. Instead of using the actual population size when
making the calculations an effective population size is used. This is due
to its more accurate representation of the genetic variation among humans.
The effective population size for humans has in many studies been shown to
be ∼ 10 000 [8]. So to give an example, if we have an effective population
size of 10 000, the scaled mutation rate θ = 0.27 · 4 = 1.08.

Before we start simulating let us look at the convergence rate for the asymp-
totic results. As proved in the previous section EKn ∼ θ ·ln(n) when n→∞
or equivalent

EKn

θ · ln(n)
→ 1 and

EKn

ln(n)
→ θ

when n → ∞. The convergence rate will be illustrated in the figure below
where we let n go from 1 to 100 000 in

EKn

θ · ln(n)
=

1
ln(n)

·
n∑
i=1

1
θ + i− 1

for different values of θ. As n increase this should converge to one.
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Figure 10: Plots of EKn/(θ ln(n)) for θ = 0.5, 1, 5, 10.

From the plots we see that EKn/(θ ln(n)) converges quickly for small n:s
but more slowly as n increases. The plots also show that θ = 1 gives the
best convergence rate and that the convergence rate decreases as θ increases
(for 0 < θ < 1 the convergence rate increase as θ increases). The expected
values when n = 100 000 are given in the following table.

θ 0.5 1 5 10
EKn/ ln(n) = θ∗ 0.8670559 1.050137 4.345921 8.044235
EKn/(θ ln(n)) 1.170548 1.050137 0.8691842 0.8044235

The table shows that the estimated values of θ differ from the true values
quite much when n = 100 000. From the table we also see that when the
true θ increases the expected estimation of θ, EKn/ ln(n), is further from
the true value. This is due to the slower convergence rate for high values
of θ and thus a larger sample size n is needed for more accurate estimation
when θ is large. The larger sample size we have the better the estimate will
be but as seen in the plots θ∗ close up on the true θ slower and slower as n
increases. To give an example, if θ = 1 and n = 200000 we get θ∗ = 1.047289
which yields a difference of only 0.002847574 compared to θ∗ at n = 100000.

With this slow convergence in mind we will make simulations from the Ewens
sampling formula with the help of Hoppe’s urn model. From these simula-
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tions we will estimate θ. The estimate from the sample is given by

θ̂ =
Kn

ln(n)
.

To get a good estimate of θ we know that n has to be large. But just
to illustrate the variance within a sample, i.e. the variation among groups
we simulate a very small sample. If we are not interested in estimating θ
the small sample size does not cause any trouble, and it is hard to get an
overview of the variation if the sample size is too large. So let us simulate
a sample of size 20 from Hoppe’s urn model where θ = 2, and illustrate the
variance among groups with the following genealogical gene tree.

Figure 11: Genealogical gene tree of simulations. θ = 2, n = 20 and time is
measured in events.

As the genealogical tree shows the simulation gives us six groups, and five
mutation events take place before the first collision. The expected number
of groups is

∑n
i=1 θ/(θ + i− 1) ≈ 5.3. If we estimate θ from our simulation

we get θ̂ = 6/ ln(20) = 2.0028 which seems to be a pretty good estimate
considering that the true θ equals two. But the standard deviation for θ̂ is
approximately 2/ ln(20) ≈ 0.82. So the estimate has in this case quite high
variance and the sample size is to small for us too trust the estimation.

We will see how the number of different alleles in the simulated sample
depend on the scaled mutation rate θ. The number of alleles in the sample,
or the number of different colors in Hoppe’s urn, is given by Kn. According
to Hoppe’s urn model Kn should increase when θ does, which comes from
that θ/(θ + k) is the probability for a new allele. Let us examine what
happens when Kn is a function of θ.

22



Figure 12: Number of alleles Kn as a function of θ, sample size n = 1 000.

The plot clearly indicates that the number of alleles depend on θ, it shows
that Kn increase with θ. The expected value of Kn, EKn, which is plotted
in red, follow the simulated values well and therefore gives an indication
that the simulations are accurate. The plot also give example of the high
variance in the simulations which seems to increase with θ just as expected
(Var(Kn) ∼ θ · ln(n)).

To get an idea of how θ̂ differs from the real θ we will make 1000 simulations,
calculate θ̂ for each one of the 1 000 simulations and draw an histogram of
the result. θ̂ will differ from the true θ more or less depending on what the
true value is so we will see what happens when we change θ, the sample size
n is set to 10 000 in the simulations.
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Figure 13: Histograms of θ̂ for θ = 1, 2, 5, 10.

θ 1 2 5 10
mean(θ̂) 1.058593 1.919473 4.165427 7.579199

The mean values of θ̂ is the center of mass in the histograms and shows
approximately how big the difference is between the estimated and the true
θ. As we see the estimated value of θ differs more and more from the true
value as θ increases (when θ ≥ 1). This is due to that the variance of θ̂
increases with θ, Var(θ̂) ∼ θ/ ln(n). For fixed variance the sample size n
increases exponentially with θ, e.g. say the true θ = 10 and we want to
estimate θ with a standard deviation of 0.5, then we would need a sample
size equal to e10/0.52

= e40 ≈ 2.35 · 1017. If θ = 1 a sample size of e4 ≈ 55
had resulted in a standard deviation equal to 0.5. As we have seen earlier
the convergence rate is slower at larger values of θ and therefore we need a
larger sample size to get the same variance.

To more clearly see the relationship between θ̂ and the true θ the simulated
θ̂ are plotted against the true θ.
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Figure 14: θ̂ from simulations with n = 10 000 as a function of the true θ.

This scatter plot suggests, with its cone like structure, that the variation of
θ̂ increase when θ do, just as we have seen before. The figure also show that
θ̂ differs more and more from the true value as θ increase.

We have earlier discussed how θ̂ depend on n. Now we will illustrate how
this dependence between θ̂ and n looks like. We will simulate samples of
different sizes for a fixed value of θ and calculate θ̂ for them. It would
according to the structure of θ̂ be expected to see that θ̂ → θ as n increases.
With the following figure we see what the simulations say about this.
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Figure 15: θ̂ as a function of the sample size n, true θ = 3.

It is not clear in the figure that θ̂ → θ as n increases as we could expect to
see. The reason for this is that we need exponentially higher sample size to
see any noticeable difference in variance. In our case we use a sample size
from 1000 to 100000 and a θ = 3 which yields a variance from 3/ ln(100000)
to 3/ ln(1 000).

To round off we conclude that Kn/ ln(n) is a poor estimate of θ but yet a
function of the sufficient statistic Kn. The convergence rate is very slow
which makes the estimate of θ smaller than the real θ. The sample size n is
exponentially dependent on the variance and the scaled mutation rate θ, i.e.
eθ/Var(θ̂) ∼ n. θ = 1 gives the best convergence rate and thus the simulated
estimate with the lowest mean squared error for any given n. The increased
uncertainty in the estimate when θ increases can be explained mostly by
the increasing bias, even if, as we have seen, the variance increases slightly
as well. The maximum-likelihood estimate of θ is probably approximately
unbiased, and would probably yield a better estimate than Kn/ ln(n). But
it is more difficult to calculate the maximum-likelihood estimate due to the
nonlinear likelihood equations.
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