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false discovery rate at 5%. Pairwise comparisons of the three strains
at base level and stressed state respectively show that for C41 and
C43, but not BL21, the majority of proteins are produced in the same
amounts at both states. Chi-square Q-Q plots show that we should
not assume a common error variance for the different proteins.
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Abstract

In this paper we use statistical methods to help understand how overexpression of mem-
brane protein KDEL-receptor affects the proteome of the three host E.coli strains: BL21(DE3),
C41(DE3) and C43(DE3). We analyse 411 proteins by two-way ANOVA and identify 186
proteins with a strain or treatment effect, when controlling the false discovery rate at
5%. Pairwise comparisons of the three strains at base level and stressed state respectively
show that for C41 and C43, but not BL21, the majority of proteins are produced in the
same amounts at both states. Chi-square Q-Q plots show that we should not assume a
common error variance for the different proteins.
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Chapter 1

Introduction

Two researchers, Samuel Wagner and Mirjam Klepsch at the Institution for Biochemistry
and Biophysics at Stockholm University are analyzing the effects of KDEL-receptor over-
expression in bacterium Escherichia coli. They are trying to understand how production
of KDEL-receptor affects the cellular proteome of the host Escherichia coli. Proteome is
the sum of all existing proteins in a cell at a given point of time.

In their experiment, they analyzed the stressed state (with KDEL-receptor overex-
pression) and the base level (without KDEL-receptor overexpression) for three different
Escherichia coli strains: BL21 (DE3) pLysS, C41 (DE3), and C43 (DE3).

In this paper, we will help them to identify proteins that differ between the two dif-
ferent states as well as the three different strains. The analysis will be performed with
two-way ANOVA separately on each of the 411 proteins. We perform multiple tests, so it
is necessary to make control for false significances. They asked us to use false discovery
rate (FDR) at level 0.05. FDR is the expected proportion of incorrectly rejected null
hypotheses in a list of rejected hypotheses. Furthermore, we will investigate whether a
same error-variance for different proteins is suitable to use in the analysis.
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Chapter 2

Background and Objectives

2.1 Background

Escherichia coli (E.coli) is a bacterium that is commonly found in the lower intestine of
warm-blooded animals. E.coli are not always confined to the intestine, and their ability
to survive for brief periods outside the body together with the ability of growing easily
and its comparatively simple and asily-manipulated genetics makes them widely used as
indicator organism and the preferred choice for the high-level expression system.

Figure 2.1: Escherichia coli

However, membrane protein overexpression is often toxic to cells as known, but the
reasons are so far not well understand. So Wagner and Klepsch did this experiment in
order to try to understand what happened to E.coli when overexpressing a membrane
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protein - KDEL-receptor. Besides this they also wanted to understand the difference be-
tween the three E.coli strains BL21 (DE3), C41 (DE3) and C43 (DE3) (in the following,
the three strains will be written as BL21, C41 and C43). A strain of E.coli is a sub-group
within the species that has unique characteristics that distinguish it from other E.coli
strains. C41 and C43 evolve from BL21 and are somehow more resistant than BL21 to
the membrane protein overexpression toxicity. In theory, they should not be too differ-
ent. Wagner and Klepsch set two states for the experiment. State with production of
KDEL-receptor is stressed state and the state without production of KDEL-receptor is
base level. [6]

The proteome of E.coli cells was analyzed by a method called 2-dimensional gel elec-
trophoresis. In the first dimension, proteins were separated according to their isoelectric
point and in the second dimension by their molecular weight. Wagner and Klepsch used
PDQuest 8.0 from Bio-Rad to analyse the 2D-gel. Figure 2.2 shows a 2D-gel and every
single black spot corresponded to a protein. They removed the irrelevant spots close to
the left and right sides as well as the top part of the gel. Spots that located near actin
and tubulin were overabundant and also deleted. [2]

Figure 2.2: Removing irrelevant data
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The software measured the optical density of each spot in the scanned gels. They
did the procedure with 4 gel replicates for every strain and treatment combination and
validate the spots one by one. The 522 spots in the data are all of the valid spots which
they judged true. They use one normalization method for total density of valid spots
according to the formula:

normalized spot density =
(raw spot density× scaling factor)

(normalization factor)
, (2.1)

where raw spot density is the unnormalized quantity of each spot, scaling factor is a con-
stant and normalized factor is calculated for each gel.

2.2 Objectives

They have four objectives as Figure 2.3 shows for the experiment.

• To compare the proteomes of the three different strains at base level.

• To compare the proteomes of the three different strains at stressed state.

• To compare the base level proteome with the stressed state proteome of each strain
for the production of KDEL.

• To compare the changes of the third objective between the different producing
strains. [5]

Figure 2.3: KDEL production

Besides these four objectives, we will also investigate whether there is a common
experimental error for the different proteins. If so, we will use it in this analysis to
strengthen the experiment.
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Chapter 3

Data description

Data consists of normalized optical densities for 522 different proteins from three E.coli
strains at two states (base level and stressed state). For each combination of strain and
state, there are four replicate gels.

In theory there should be four replicates of every strain and state combination for
each protein. However, none of the proteins has four replicates for every state and strain
combination. There are more or less some missing values in every protein. The reason for
missing value could be biological, i.e. the amount of protein is below the detective level,
or technical problem or some other problem. We do not know exactly what the problems
are. There are 111 proteins for which optical densities are missing in some combinations
in all of the four replicate. Before doing the analysis, these 111 proteins should be elim-
inated since those missing values make the comparisons incomplete. After eliminating
there are only 411 relevant proteins left.

In the end of paper, we will discuss a little about the eliminated data.
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Chapter 4

Statistical methods and important
concepts

4.1 Statistical methods

We will use two-way ANOVA model type I (only with systematic factors) to analyze
the factors that affect the production level of a specific protein. Analysis of variance
(ANOVA) is a collection of statistical models, in which the observed variance is parti-
tioned into components due to different explanatory factors.

In this paper, we will study the state effects, the strain differences and the interaction
between state and strain in an additive model for each protein separately,

log(Yijk) = µ+ αi + βj + γij + εijk, εijk ∼ N(0, σ2), (4.1)

where i = 1, 2; j = 1, 2, 3; k = 1, 2, 3, 4. With respect to the experiment we analyse:

• log(Yijk) is log normalised optical density (with state index i, strain index j and
repetition index k);

• µ is a constant of the overall mean value;

• αi is state parameter,
∑

i αi = 0;

• βj is strain parameter,
∑

i βi = 0;

• γij is interaction parameter,
∑

i γi =
∑

j γj = 0;

• εijk is a random disturbance and is assumed to be independent and normal dis-
tributed with expected value zero and equal variance.
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The first protein is chosen as an example to illustrate ANOVA in Table 4.1. Because
some values are missing in the second and fourth replicate, there are only 21 observations
instead of 24. That is, there are not 4 replicates for each combination. This situation is
called unbalanced. In our analysis, we use partial square sum - an attempt to compute
what square sums could have been if the experiment had been balanced. Each factor is
adjusted for other factors in the model, but the sum of square sums for all of the factors
and residual are not necessary to be equal to the total square sum.

Table 4.1: ANOVA (analysis of variance)
Number of obs = 21 R-squared = 0.5238

Root MSE = 1.11791 Adj R-squared = 0.3651

Source Partial SS df MS F Prob>F

Model 20.6235819 5 4.12471638 3.30 0.0330
states 0.072135557 1 0.072135557 0.06 0.8134
strains 5.46782099 2 2.7339105 2.19 0.1467
interaction 15.4385675 2 7.71928375 6.18 0.0110
Residual 18.7458364 15 1.24972242
Total 39.3694183 20 1.96847091

The Prob>F shows the p-values for the model 0.0330, the states 0.8134, the strains
0.1467, and the interaction 0.0110. The p-values for interaction is fairly low, indicating
an interaction effect for this protein.

In order to illustrate the interaction more intuitively, we draw the following graph
Figure 4.1.

As shown, the two curves are cross-cutting and not parallel. The differences between
two states in different strains depart great from each other, indicating that there is inter-
action in the model.

The two-way ANOVA model we are using in this analysis evaluates mainly the hy-
pothesis that there does not exist any states, strains and interaction effect, that is,
log(Yijk) = µ + εijk and p-value for the model should be larger than the significance
level. If the p-value is lower than the significance level, the analysis aims to find out the
differences caused by certain factors between proteins.
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Figure 4.1: Mean values for different strains at separate states where there is interaction

4.2 Important concepts

4.2.1 Family-wise Error Rate and False Discovery Rate

In this experiment, we will perform 411 tests, so it is necessary to make control for false
significances. Here we introduce two concepts for false significance controlling, Family-
wise Error Rate and False Discovery Rate.

Family-wise error rate (FWER) is the probability for having at least one false positive
decision among all performed tests.

Example 4.2.1. Suppose we want to control one test at 5% significance level. If H0 is
true, it will be rejected wrongly with 5% probability.

Example 4.2.2. Now suppose we want to perform more independent tests, each at 5%
significant level. Say 500, and all of H0 are true. Let V denote the number of false positive
decision.

FWER = P (V ≥ 1) = 1− P (V = 0) = 1− (1− 0.05)500 ≈ 1 (4.2)
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The probability for having at least one false positive decision among all tests is nearly
hundred percent. We are nearly sure that there is at least one false positive decision in so
many tests.

Now we want to control 500 independent tests at 5% FWER level instead, that is, the
probability for having at least one false positive decision among all tests should be 5%. Let
α

′
denote the significance level in each test and V is the number of false positive decision

as before.

FWER = P (V ≥ 1) = 1− P (V = 0) = 1− (1− α′
)500 = 0.05 (4.3)

α
′
= 1− (1− 0.05)1/500 ≈ 0.05

500
= 0.0001. (4.4)

This kind of correction was developed by Italian mathematician Carlo Emilio Bonfer-
roni. Bonferroni correction states that if an experiment is testing n independent hypothe-
ses on a set of data at FWER level α , then each individual hypothesis is tested at α/n
significance level.

The probability to reject one specific test wrongly is very low in this situation. With
other words, it is hard to reject any test with such low significance level. The risk to
accept wrong hypothesis is however very high. If the error from a single false rejection is
not so crucial, the proportion of errors could be controlled instead. It leads us to have a
look at the other measurement - FDR.

The false discovery rate (FDR), suggested by Benjamini and Hochberg (1995) is a
quite new and different point of view for how the errors in multiple tests could be consid-
ered. It is the expected proportion of erroneous rejections among all rejections. In many
applied problems it has been argued that the control of the FDR at some specified level
is the more appropriate response to the multiplicity concern. [4]

Now considering the problem of testing simultaneously m (null) hypotheses, of which
m0 of those are true. R is the number of hypotheses rejected. Table 4.2 summarizes the
situation. The specific m hypotheses are assumed to be known in advance.

The proportion of errors committed by falsely rejecting null hypotheses can be viewed
through the random variable Q = V/(V + S) - the proportion of the rejected null hy-
potheses which are erroneously rejected. Q is an unknown random variable, as V or S
is unknown, even after experimentation and data analysis. When V + S = 0, we de-
fine Q = 0, as no error of false rejection can be committed. The FDR is given by the
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Table 4.2: Hypotheses number

Declared Declared Total
non-significant significant

True null hypotheses U V m0

False null hypotheses T S m1

m−R R m

expectation of Q,

FDR = E(Q) = E{ V

V + S
} = E(

V

R
) (4.5)

and FWER is
FWER = P (V ≥ 1). (4.6)

Two important properties of FDR are easily shown:

• If all null hypotheses are true, the FDR is equivalent to the FWER.
In this case S = 0 and V = R, so if V = 0 then Q = 0; if V > 0 then Q = 1, leading
to E(Q) = P (V ≥ 1). Therefore control of the FDR implies control of the FWER
in the weak sense. [1]

• If not all null hypotheses are true, the FDR is smaller than or equal to the FWER.
We take this case into two situations,

1. There is not any true null hypotheses,m0 = 0.

FWER = P (V ≥ 1) = 0 (4.7)

and

FDR = E(
V

R
) = 0. (4.8)

2. There are some true null hypotheses,m0 6= 0.

Let V = 0, 1, . . . ,m0 and S = 0, 1, . . . ,m1,

FWER = P (V ≥ 1) =

m0∑
i=0

m1∑
j=0

xijP (V = i, S = j), (4.9)

where

xij =

{
1 if V ≥ 1
0 otherwise

(4.10)

and

FDR = E(
V

V + S
) =

m0∑
i=0

m1∑
j=0

i

i+ j
P (V = i, S = j). (4.11)
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Since for i = 0, xij = i
i+j

and for i ≥ 1, xij ≥ i
i+j

,

m0∑
i=0

m1∑
j=0

i

i+ j
P (V = i, S = j) ≤

m0∑
i=0

m1∑
j=0

xijP (V = i, S = j). (4.12)

The result shows that E(Q) ≤ P (V ≥ 1).

In this paper, we perform 411 tests for 411 proteins and chose FDR at level 0.05 which
implies that expected 5% of tests among the rejected tests are incorrectly rejected.

The significance level used in each individual test is computed according to the Ben-
jamini and Yekutieli procedure:

Consider testing H1, H2, . . . , Hm with the corresponding p-values P1, P2, . . . , Pm. Let
P(1) ≤ P(2) ≤ . . . ≤ P(m) be the ordered p-values, and denote by H(i) the null hypothe-
sis corresponding to P(i). Define the following multiple-testing procedure: Let k be the
largest i for which P(i) ≤ i

m
q∗; then reject all H(i), i = 1, 2 . . . , k and the significant level

for each test should be P(k). [1]

Theorem 4.2.3. For independent test statistics and for any configuration of false null
hypotheses, the above procedure controls the FDR at q∗.

Here we will not prove the theorem. If you are interested in the proof, please check
the article ”Controlling the False Discovery Rate: a Practical and Powerful Approach to
Multiple Testing” by Y. Benjamini and Y. Hochberg.

4.2.2 Pooled variance

If we assume that a same phenomenon is generating random error at different situations,
the different error variances can be ”pooled” to express a single estimate of error variance.

We calculate the pooled variance by weighting the individual variance values with the
degree of freedom of the subset at different situations. Thus, the pooled variance is given
by:

S2
p =

f1V1 + f2V2 + . . .+ fiVi
f1 + f2 + . . .+ fi

, (4.13)

where f1, f2, . . . , fi are the degrees of freedom of the data subsets at each situation, and
V1, V2, . . . , Vi are their respective variances. [4]

An example of the pooled variance is to determine reasonable estimation of variances
for each test in ANOVA model, where fi is the degree of freedom and Vi is mean square
(MS).
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4.2.3 Fold change

Fold change is the ratio of the measured value for an experimental sample to the value
for the control sample.

In this paper, fold change is the quota of geometric mean value of normalized optical
density between stressed state and base level.

fold change =
Ystress

Ybase
, (4.14)

where Ystress = (
∏n

i Yi)
1/n and Ybase = (

∏m
j Yj)

1/m.

Yi and Yj are untransformed normalized optical densities at stressed state respective
base level. In order to facilitate the expression, we take log2 fold chang and note that

log2 (fold change) = log2(Ystress)− log2(Ybase) =
1

n

n∑
i

log2(Yi)−
1

m

m∑
j

log2(Yj). (4.15)
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Chapter 5

Analysis and Results

In this chapter, we will describe the fold changes of state effects and the comparisons
of strain differences. In order to understand how the factors affect production level, we
control the 411 proteins at 5% FDR level, pick out and group the significant proteins
according to their different factors p-values in ANOVA models. We will then illustrate
the differences between the groups. At last we will survey whether the pooled variance is
suitable to use in this experiment.

5.1 Description of state effects and strain differences

In order to study the stressed state effects, we calculate the log2 fold change between
stressed state and base level in each strain and the results are shown in Figure 5.1.

Figure 5.1: log2 Fold change for every protein between stressed state and base level in
each strain
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In Figure 5.1, vertical-axel scales are logarithmic. Each unit on the vertical axis cor-
responds to a doubling/halving. If the fold change value falls on zero, there is no effect
of stressed state.

In strain BL21, the production of proteins at stress state can at most be around 64
(26) times as the production at base level, and lowest 0.0156 (2−6) times. But the distri-
bution of the log2 fold change values is very scattered. For some proteins, the stressed
state effect is positive and for some others is negative.

In strain C41, the highest fold change value is approximately 8 and the lowest 0.0625.
And majority of fold change values fall above zero, indicating that the stressed state has
positive effect for majority proteins.

In strain C43, the fold change values are between 0.0078 and 32. The distribution of
log2 fold change values is scattered.

From the overall, it appears that majority log2 fold change values are between −2
and 2 in all of the three graphs, indicating that for majority proteins, the productions at
stressed state is between 0.25 times and 4 times as it at base level.

We then investigate the differences between strains at separate states. The pair wise
comparisons are used according to the formula:

comparison value =
Ystrain1

Ystrain2

, (5.1)

where Ystrain1 and Ystrain2 are geometric mean value of untransformed normalized optical
densities over different strains. The expression will be transformed to log2 in Figure 5.2.

In Figure 5.2, vertical-axel scales are logarithmic. Each unit on the vertical axis
corresponds to a doubling/halving. The points at zero indicate that there are not any
differences between the compared strains for these corresponding proteins.

The first pair is the log2 comparison values between strain C41 and BL21 at different
states. The largest comparison value is approximately 16 and the lowest 0.125 at base
level. And at stressed state the highest is approximately 32 and the lowest 1/16. We
see that at base level, many comparison values fall under zero, indicating that C41 is
less productive than BL21 for many corresponding proteins. The distribution of values is
scattered at stressed state.

The second pair is the log2 ratio between strain C43 and BL21. The highest ratio is
approximately 32 and the lowest 0.125 at both states. At base level, many comparison
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Figure 5.2: Log2 strain effect comparison at base level and stressed state for three strains

values fall under zero, indicating that C43 is less productive than BL21 for many corre-
sponding proteins. At stressed state the distribution is scattered.

As known, C41 and C43 evolve from BL21. In theory, there should not be large
difference between them. For majority proteins in the third pair, their log2 comparison
values fall on zero or very near to zero. Hence we have reason to believe that for majority
proteins, C41 and C43 are the same or almost the same. But at base level, the highest
ratio is approximately 32 and the lowest 0.0313, and at stressed state, the highest value
is approximately 32 and the lowest 0.1768.

5.2 Statistical analysis

We test 411 proteins, their corresponding model p-values in ANOVA are P1, P2, . . . , P411,
with the Benjamini and Yekutieli procedure and the FDR controlled at 5% level, the
significant level is therefore P(k) 0.0214. We have 186 significant proteins since the model
p-values of these proteins are lower than 0.0214.

We use the model 4.1

Yijk = µ+ αi + βj + γij + εijk, εijk ∼ N(0, σ2)

for each protein to evaluate hypothesis that there does not exist any state effect, strains
difference and interaction. So long the model p-value is lower than the significance level;

17



there is state effect, strain difference, interaction or any combination of the three. Now
we survey the kind of effect among these significant proteins. There are no obvious ways
to do that. We choose to divide the proteins in different groups according to their factors
p-values.

In ANOVA we obtain the p-values for every factors of each individual significant
protein. Table 5.1 summarizes the group criteria and the number of proteins is shown in
Table 5.2. [3]

Table 5.1: Group criteria

states strains states and strains interaction

States p-value <0.05 >0.05 <0.05 0-1
Strains p-value >0.05 <0.05 <0.05 0-1
Interaction p-value >0.05 >0.05 >0.05 <0.05

Table 5.2: Significant effects in ANOVA, number of spots
states strains states and strains interaction total

32 29 66 59 186

In Table 5.2, among 186 significant tests of proteins, 32 tests of proteins are affected
(only) by states, 29 (only) by strains, 66 by both states and strains while there exists
interaction in 59 proteins .

In order to illustrate the differences between different groups clearly we choose one
clear out classified protein in each group. The effects/differences are shown in Figure 5.3.

In Figure 5.3, the solid line is the base level and the dotted line is the stressed state.

The first graph of Figure 5.3 shows a protein where there is almost only state effect.
The two curves are far away from each other, but the differences between the strains at
separate states are fairly small and the gaps between states in the three strains depart
not great from each other.

The second graph shows a protein where there is strain difference. The differences
between the BL21 and C41/C43 at separate states are large. The two curves are very
close to each other, indicating that the state effect is not significant. Though the curves
are cross-cutting and not parallel, there is no evidence for the interaction because the
differences between states in separate strains are not large.
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Figure 5.3: effect/differences graphic description

The third graph shows a protein in which there is state effect and strain difference.
The stressed state’s departure is much from base level. The differences between strains are
fairly large at separate states. But the two curves are parallel, so there is no interaction
between strains and states.

The fourth graph shows the interaction. The two curves are cross-cutting and not
parallel, the differences between two states in different strains are great.

5.3 Analysis of pooled variance

The last but not the least interesting question is whether the pooled variance is suitable
to use in this experiment. There are 411 ANOVA models, one for each protein and each
model has its own variance. If there is a common variance, we can use pooled variance to
estimate that, and strengthen the experiment.

The variances estimated from the 411 models have different degree of freedom (df)
from 11 to 17. We group the models according to their df. If there is a common variance,

for each model i with the same df f , the statistic
fS2

i

σ2 should be chi-square distributed

with f degree of freedom. In the statistic
fS2

i

σ2 , f is the degree of freedom; S2
i is the esti-

mation of variance for model i; σ2 is the common unknown-variance and is estimated as
the average variance of the models with the same df f .
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Since there are no more than 10 proteins for df from 11 to 13, we will only investigate
the chi-square plots for the models with df from 14 to 17 in Figure5.4. Chi-square plot is

a graphical tool to investigate whether the statistics
fS2

i

σ2 follow chi-square distribution.

Figure 5.4: Chi-square plots for variance

X-axis are statistics
fS2

i

σ2 , Y-axis is quantiles of chi-square distribution. If the statistics
are chi-square distributed, they should fall approximately along the 45-degree reference
line. In Figure 5.4 the four graphs have a common pattern. The values are over the ref-
erence line at the beginning and then lay under the line and depart from the line, which
indicates that the distributions of the models have longer tails than chi-square distribu-
tion. This situation at df 16 and 17 is particularly evident.

The models with df 16 and 17 are definitely not chi-square distributed and have not
common variance, but the models with df 14 and 15 are in doubt. To confirm our judg-
ment, we use Kolmogorov-Smirnov test to test the assumptions.

P-values for models with df 14 and 15 are 0.758 and 0.111, respectively. At 0.05
significant levels, the null hypotheses that they are chi-square distributed cannot be re-
jected. But whether the p-values are large enough to support the same variance cannot
be promised. P-values for models with df 16 and 17 are both lower than 0.0005, with such
low p-values, the models have not any common variance.
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Chapter 6

Discussion

We have analyzed the different factors in the 411 proteins and illustrated the factors ef-
fect/difference. During the analysis, some things are worth to think about.

First of all there are some defects in data because there is a large number of missing
values. The reason for missing value could be biological, i.e. the amount of proteins is
below the detective level, or technical problem or some other problem. We eliminated 111
proteins for which values are missing in all of the four replicates. However, if the missing
values are caused by the below-the-detective-level protein amount, it is very interesting
and worth to study with these eliminated proteins. We could analyze which factor/factors
cause such low protein amount. Unfortunately, we do not know what the reasons are for
missing values, so we did the analysis in ANOVA without these 111 eliminated proteins.

Figure 6.1: Log2 fold change values of significant proteins affected by states for each strain

When investigating the significant tests of proteins, we find an interesting phenomenon.
In our opinion, the state fold change value for the significant tests affected by states should
fall far away from zero. However, as Figure 6.1 shown, some points are near zero very
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much. We think that the reason leading this phenomenon is the underestimation of the
variances. The variances of the tests with very low fold change are probably not so small,
but we underestimate them in ANOVA models, which leading the tests to be significant,
and their log2 fold change values shown in the graphs are therefore close to zero.

If a common error variance existed, we would have a new significant level and the
experiment would be strengthened. The phenomenon mentioned above could be improved.
These tests with log2 fold change values that are very near zero would no longer be
significant. Unfortunately we cannot assume a common variance for the different proteins
with ANOVA. Maybe we could get a better result with other methods, but here we will
not have further discussion.
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