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Abstract

The optical properties of a paper, such as refectance, whiteness,

brightness and opacity are of great importance to a paper maker. The

ISO brightness is a measure of the radiance factor in the blue region.

In a hierarchy of laboratories producing reference standards for the

ISO brightness, it is of interest to find a measure of reproducibility

between laboratories. This in order of giving a quality warranty state-

ment to their customers. The objective in this thesis is to, through

modeling, produce a statement in the form of an interval that incor-

porates the concepts of conservative and robust estimation. A con-

servative interval of measurement will be an interval that based on

any one laboratorys measurement is of that length that it will contain

a measurement from any other laboratory with a certain probability.

The methods of estimating the key components of that interval are ro-

bust. This for the purpose of keeping the conservative concept in the

statement made. A model is chosen to represent the monthly bilateral

comparisons, between Authorized laboratories during the year 2005.

The results produced are the estimates of reproducibility, systematic

error and a conservative interval of measurement.
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Abstract

De optiska egenskaperna hos ett papper, t.ex. re�ektans, vithet, ljushet och opa-
citet är av stor betydelse för en papperstillverkare. ISO- ljusstyrka är ett mått
på strålningsfaktorn i den blå regionen. I en hierarki av laboratorier som produ-
cerar referensnormer för ISO- ljusstyrka, är det av intresse att hitta ett mått för
reproducerbarhet mellan laboratorier. Detta för att ge ett kvalitetsuttryck som
garanti till sina kunder. Syftet med denna uppsats är att, genom modellering,
producera en utsaga i form av ett intervall som innefattar begreppen konservativa
och robusta skattningar. Ett konservativt intervall för en mätning, kommer att
vara ett intervall som, baserat på något laboratoriums mätning, är så långt att det
kommer att innehålla en mätning från ett annat laboratorium med en viss sanno-
likhet. Metoderna för att skatta de viktigaste beståndsdelarna i detta intervall är
robusta. Detta för att upprätthålla ett konservativt begrepp i uttalandet.
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1. INTRODUCTION

1 Introduction

This thesis is written at Innventia AB.
Innventia AB is one of the world�s leading research and development companies

in the �elds of pulp, paper, graphic media, packaging and logistics. Innventia
AB covers the whole value chains from the raw material to print and media, to
packaging and to bio-based energy and chemicals. The activities of Innventia AB
range from basic research to direct commissions, where their expert skills and
know-how are utilized to �nd solutions for customers to apply in operations [12].

1.1 Optical characteristics of paper

The fundamental optical property of paper is its spectral radiance factor, which
for papers without optical brighteners is the same as its spectral re�ectance factor.
From the spectral radiance factor other optical characteristics, such as whiteness,
brightness, colour, opacity, light scattering coe¢ cient and light absorption coef-
�cient are calculated [13], [Figure 1]. Since, these characteristics are important
sales points for a paper maker, it is crucial to report these values in an accurate
and standardized way. An essential part of performing an accurate measurement
is ensuring that the calibration of the instrument is correct [12],[24],[26].

Figure 1: Optical characteristics are important properties of a paper. They are determ-
ined by detection of the light re�ected and, in the case of �uorescent papers, emitted
from the paper when it is illuminated in a well de�ned way

1.2 Calibration system

Calibration is the validation of speci�c measurement techniques and equipment.
At the simplest level, calibration is a comparison between measurements, one
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1.3 MEASUREMENT UNCERTAINTY

of known magnitude or correctness made or set with one device, and another
measurement made in as similar a way as possible with a second device. The
device with the known or assigned correctness is called the reference standard
A laboratory usually calibrates to adjust the reading of the instrument to the

reference standard. Optical radiance factor measurements are typically based on
determination of the ratio of the instrumental reading of the test sample to the
instrumental reading of a calibrated standard [14].
ISO is the International Organization for Standardization and is the recognized

body that provides the guidelines for the standardization of all measurements and
calibration procedures referred to in this thesis. All measurements of pulp, paper,
and board within ISO, are under the jurisdiction of technical committee number
6, TC 6. ISO has established a hierarchy of calibration as follows [26]:

� Level 1- Standardizing Laboratory (abbreviated SL)
The Standardizing Laboratories calibrate their instruments in relation to
the abstract concept of the perfect re�ecting di¤user, also called IR1. The
standards calibrated at the Standardizing Laboratories are called IR2.

� Level 2- Authorized Laboratory (abbreviated AL )
The Authorized Laboratories use IR2 standards to calibrate their instru-
ments. The standards issued by the Authorized Laboratories are called IR3
standards [Figure 2].

� Level 3 - Industrial Laboratory (abbreviated IL)
The Industrial Laboratories are also referred to as Testing Laboratories. The
calibration hierarchy is illustrated in Figure 3. For the purpose of optical
calibration there is in practice only one SL in the world and only �ve ALs.
The IR2 standards are sent from the SL . The ALs use the IR2 standard to
calibrate their instrument and produce IR3 standards which are sent to the
ILs. The ILs can buy IR3 standards from any of the ALs. The ILs use the
received IR3 standards to calibrate their instruments, which are used for the
measurement of the optical properties of paper, color print, coating pigments
etc.

1.3 Measurement Uncertainty

Every physical quantity with an a priori range of numerical values constituting
a continuum is subject to error in its measurement. It is important to report the
highest amount by which any measured quantity might be in error. There are
random and systematic errors in both the instrumental readings and the calibra-
tion values. It is important to explore the origin and the nature of the errors in
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1.4 THE NEED FOR RELIABLE MEASUREMENTS

Figure 2: IR 3 Reference Standards

measurement to minimize the error propagation and hopefully giving the customer
more reliable measurement standards. The international guideline Guide to the
expression of uncertainty in measurement [18], generally referred to as GUM, is
often used in order to make uncertainty estimates in a structured way. For ac-
credited calibration laboratories within the EU, such as the Optical Calibration
Laboratory at Innventia AB, it is complemented by a document referred to as
EA-4/02 [15].
These aspects will be explored in more detail in sections, 2.4 and 3.3.

1.4 The need for reliable measurements

To understand why the ILs need to know the uncertainties of the calibration
data assigned to the reference standards one needs to look at the purpose of the
measurements, which can be very di¤erent. The following categories cover the
most common.

1. Use of the measured data in process control.

In this case the absolute calibration of the instrument is of little importance
since the results will not be compared to the results from another instru-
ment. The focus here is the closeness of the agreement between the results
of successive measurements of the same sample carried out under the same
conditions of measurements. These are called repeatability conditions
and include

� the same measurement procedure
� the same operator
� the same measuring instrument

3 cGustaf Sporrong



1.4 THE NEED FOR RELIABLE MEASUREMENTS

� a short interval of time

The second requirement may be relaxed if the operator dependence is negli-
gible, e.g. when the measurement is fully automated. The last requirement
may be relaxed if some means to ensure the stability of the instrument is
employed.

2. Use of the measured data for inter-IL communication

In this case the important thing is the agreement between the results of
measurements of the same sample carried out in di¤erent ILs, i.e. under
somewhat di¤erent conditions. The changed di¤erence in conditions, called
reproducibility conditions, may include

� di¤erent instrument designs within the limits set by the international
standard ISO 2469 [24]

� di¤erence between instrument age, wear etc.
� di¤erent operators
� di¤erent environmental conditions
� di¤erent location
� di¤erent time

Therefore a calibration procedure has to be used. The traceability of the cal-
ibration a¤ects the agreement between the ILs. In a general case when eval-
uating the signi�cance of deviations found when making an inter-comparison
between two ILs, one must consider all sources of deviations listed above

3. Use of the measured data for communication between harmonized ILs.

If there is an especially demanding requirement on the agreement between
two ILs, it is possible to take di¤erent actions to harmonize procedures in the
involved ILs. Examples of such actions are the use of the same AL, the use of
instruments of the same brand and model etc. This situation is special case
of item 2, where one or several causes of deviation is more or less eliminated
thereby improving the agreement.

4. Use of the measured data as estimates of an absolute physical quantity

In most industrial applications, there is little need to know the measurement
uncertainty in relation to the perfectly re�ecting di¤user, which is the fun-
damental reference for measurements based on the re�ectance factor or the
radiance factor. It corresponds to the metre de�nition in length measure-
ments. However, in e.g. research this fundamental physical relation may
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1.5 PROBLEM STATEMENT

Figure 3: Directions of trade of reference standards from ALs to ILs and trade between
ILs

be important. In such a case, all types of errors have to be included in the
measurement uncertainty. This includes the systematic errors in the IR2 cal-
ibrations. The SL reports an expanded uncertainty of 0.4 percentage points
in re�ectance. At the same time the reproducibility is approximately 0.1
percentage points, which means that the IR2s sent to di¤erent ALs are im-
paired by common errors which will cancel out when calculating di¤erences
between the ALs.

1.5 Problem statement

As a quality warranty the ALs would like to give an estimate of the inter-AL
reproducibility, to be used by the IL in their calculation of the inter-IL repro-
ducibility. The reproducibility between the industrial labs depends on the devi-
ations between the ALs. For the purpose of making it possible to estimate the
inter-IL agreement in point 2 and 3 in section 1.4 above, the ALs are making
inter-laboratory comparisons of the optical characteristics of paper every month
by sending IR3 Standards to each other. Due to the fact that the number of ALs
is small, the assumptions made in standard methods, [6], [4] and [5] , do not apply.
Other more appropriate methods need to be found and tested.
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1.6 RESEARCH OBJECTIVE

1.6 Research Objective

The objective of this thesis is to develop a conservative and robust model for
the inter-AL reproducibility and to test the model on existing data from multi
bilateral inter-laboratory comparisons.

6 cGustaf Sporrong



2. DATA

2 Data

2.1 Variable measured

The optical properties of a paper, such as re�ectance, whiteness, brightness and
opacity, is described by the ALs through measurements of 9 classes of variables
(see Appendix section A.1).
For the purpose of this thesis only one of those will be studied. The name of

that variable is R457NF90 and represents the ISO brightness measured according
to ISO 2470 on a non-�uorescent paper. The ISO brightness is a measure of the
radiance factor in the blue region and is usually expressed in percentage points.
From now on this variable will be referred to as Y with various indexation.

2.2 The IR3 reference standards

The IR3 standards are designed as a small booklet of optically stable and
non�uorescent paper [25]. The size is approximately 70 � 140 mm. The �rst sheet
of the booklet is a protective cover. The second sheet is the sheet upon which the
calibration measurements are made. The rest of the sheets in the booklet are an
optical backing ensuring that the IR3 standard is opaque.

2.3 Measurement Procedure

Each AL produces IR3 standards as a batch once per month. The calibration of
these IR3 standards is preceded by a careful calibration of the reference instrument
and calibration checks are made regularly during the time it takes to measure the
batch if IR3 standards.
The value is measured, read and recorded to the nearest 0.01% re�ectance

factor.

2.4 Experimental Layout

Every month 20 bilateral measurement comparisons are made. Each AL sends
IR3 standard to each of the other ALs. The receiving ALs measure on these
IR3s and the measurement data can be compared with the data assigned by the
sending lab. This makes it possible to build up a data set comprising bilateral
comparison data for all possible pairwise combinations of ALs. Normally one data
set includes data from one calendar year. The data set is used to estimate the
inter-AL agreement and to trace events and trends in the radiance factor scales as
well as possible stability problems with the material of the IR3 standards.
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2.4 EXPERIMENTAL LAYOUT

Pariwise measurements

AL1 AL2 AL3 AL4 AL5
AL1 � (91.37,91.16) (91.40,91.36) (91.38,91.11) (91.22,91.20)
AL2 (91.33,91.35) � (91.42,91.37) (91.37,91.30) (91.32,91.38)
AL3 (91.36,91.31) no data � no data no data
AL4 (91.15,91.32) (91.08,91.17) (91.13,91.31) � (91.15,91.34)
AL5 (91.45,91.34) (91.85,91.70) (91.42,91.20) (91.15,90.89) �

Table 1: Pairwise collected data during one month. The table is organized such that
each sending laboratory corresponds to a row, and each receiving laboratory corresponds
to a column.

Number of Comparisons

AL1 AL2 AL3 AL4 AL5
AL1 � 12 12 11 12
AL2 12 � 12 12 12
AL3 8 8 � 8 7
AL4 12 12 12 � 12
AL5 5 10 10 12 �

Table 2: Number of comparisons made between each pair, during a whole year. The
table is organized such that each sending laboratory corresponds to a row, and each
receiving laboratory corresponds to a column

8 cGustaf Sporrong



3. THEORETICAL DISCUSSION

3 Theoretical discussion

3.1 Theoretical objective

The research objective, mentioned in section 1.6, will be divided in parts, for
the purpose of �nding theoretical foundations for each part. The three parts chosen
are:

1. Designing a Model.

A model that represents the result of measurement of each laboratory, has
to be found.

2. Representing reproducibility.

A way of representing the reproducibility in every model has to be found. In
case an estimate of reproducibility is needed, robust methods of estimation
will be used.

3. Finding a conservative Interval of measurement

Using points 1 and 2 above, along with the concept in section 3.3.7 above,
to give an interval based on a certain laboratory�s measurement, that will
include the measurement of any other laboratory, with a certain probability.
The estimates used, e.g. reproducibility or standard deviation, will be robust.
One of the purposes of that is to reduce the loss of the conservative status
of the interval.

3.2 Designing a measurement model

In model �tting the aim is to replace our observed data with a set of �tted
values from a model. Thinking about which model to use some delimitations have
to be made. The delimitations made must have some ground in the experimental
design, and knowledge about the nature of the speci�c problem is necessary.
The advantage of linear models and their restrictions include computational

simplicity, an interpretable model form, and the ability to compute certain dia-
gnostic information about the quality of the �t. Linear models make a set of
restrictive assumptions, most importantly, that the target, dependent variable Y,
is normally distributed conditioned on the value of predictors with a constant vari-
ance regardless of the predicted response value. Generalized linear models, GLM,
relax these restrictions, which are often violated in practice [16][21]. The GLM is
one of the most important tools in the statistical analysis of data.
There is though one more extension, of the GLM, that will be made and that

is the inclusion of random e¤ects. This extension is made by a particular type of
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3.3 DEFINITIONS

mixed model, namely the generalized linear mixed model, GLMM. These random
e¤ects are still assumed to have a normal distribution. In classical statistics a
typical assumption made is that observations are drawn from the same general
population, are independent and identically distributed. Mixed model data have
a more complex, multilevel hierarchical structure. Observations between levels
or clusters are independent, but observation within each cluster are dependent
because they belong to the same subpopulation [11][21].
A possible point of confusion has to do with the distinction between generalized

linear models and the general linear model, two broad statistical models. The
general linear model may be viewed as a case of the generalized linear model with
identity link. As most exact results of interest are obtained only for the general
linear model, the general linear model has undergone a somewhat longer historical
development. Results for the generalized linear model with non-identity link are
asymptotic, tending to work well with large samples.
In this thesis very few and small steps will be made towards �nding a model

but the ideas are derived from GLM and GLMM. The steps aim to help �nding
the theoretical objective mentioned above. The order will be, starting with a basic
model and slowly making the necessary adjustments with the purpose of making
a correct representation of the experimental design producing the monthly data in
this thesis.

3.3 De�nitions

When creating a model it is practical to introduce a notation that will help
expressing the model to be analyzed and evaluated. The tool preceding such
notation is a speci�c set of de�nitions that contribute to the formulation of the
objective of this thesis.

3.3.1 True Value

The true value of a measurement is the value that would be obtained by a
perfect measurement. It is important to realize that the true value is an idealized
concept and that the exact value of the measurand is unknown.

3.3.2 Accuracy

The closeness of the agreement between the result of a measurement and a true
value of the measurement will be referred to as accuracy of measurement.

10 cGustaf Sporrong



3.3 DEFINITIONS

3.3.3 Error

As mentioned in the introduction it is common for a measurement to be asso-
ciated with a measurement error. Error is an idealized concept and errors cannot
be known exactly. These errors can be seen as additions to the true value. They
are referred to as, systematic or random depending on their origin and behavior.
The random error arises from unpredictable variations of in�uence quantities. The
variations of such e¤ects give rise to variation in repeated observations of the meas-
urand. By increasing the number of observations the magnitude of the error can
be reduced. A systematic error is that part of the inaccuracy of a measurement, or
statistical estimate of a parameter, that is due to a single cause or small number of
causes having the same sign, and hence, in principle, is correctable, a bias or con-
stant o¤set from the true value if the cause can be isolated [10]. From a practical
standpoint, systematic errors are usually much more serious nuisance factors than
random errors, because their magnitude cannot be reduced by simple repetition of
the measurement procedure [29].

3.3.4 Factor and level

A factor of an experiment is a controlled independent variable, a variable whose
levels are set by the experimentalist.
A �xed level of a factor or variable means that the e¤ects or levels in the

experiment are the only ones we are interested in. When the levels of a factor
are random, such as operators, days, locations, where the levels in the experiment
might have been chosen at random from a large number of possible levels, the
model is called a random- factor model, and inferences are to be extended to all
levels of the population [30][19].

3.3.5 Uncertainty

Standard deviation is a measure of uncertainty and is characterized by the
dispersion of the values that could reasonably be attributed to the measurand. The
conclusion now will be that the result of measurement is only an approximation or
estimate of the value of the measurand. It gets complete only when a statement
of uncertainty, of that estimate, is supplied.

3.3.6 Reproducibility

Reproducibility is a measure of agreement between independent test results
under reproducibility conditions. As mentioned in section 1.4, point 2, those are
conditions where test results are obtained with the same method, on identical test
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3.3 DEFINITIONS

items, in di¤erent laboratories, with di¤erent operators, using di¤erent equipment
[3].
There is no clear de�nition of reproducibility. One measure of reproducibility of

a measurement produced by a laboratory, is the standarddeviation of the assumed
error in measurement. Another common measure of reproducibility of measure-
ment is, the standard deviation of the error of the di¤erence between them.
If the laboratories to be compared can be thougt as drawn from a big population

of laboratories then the error of measurement di¤erence of a pair is asumed to
be random. In the case where the number of laboratories constitute the whole
population, then a part of the error can be considered as systematic. In this
case it is not uncommom to let the absolute value of the di¤erence, represent the
reproducibility.

3.3.7 Conservative estimate and interval

A conservative estimate is a cautious, avoiding excess, approximate calculation
of quantity or degree or worth of something. Avoiding excess will mean, when
making statements the statement that will have high probability of being true
will be chosen. The estimates included in the interval must chosen so that they
contribute in making the interval conservative. This type of interval will be broader
than a usual con�dence interval.

3.3.8 Robustness of estimation

The idea of robustness in statistics is to make statements that will give sat-
isfactory results even if the assumptions are violated. This means that if the
assumptions made are only approximately met, the robust estimators will still
have a reasonable e¢ ciency, and reasonably small bias, as well as being asymptot-
ically unbiased, meaning having a bias tending towards 0 as the sample size tends
towards in�nity [28].
An assumption could be that the data are generated from a certain model hav-

ing a certain distribution. When deviation of those assumption are made and the
errors are still small then distributional robust and outlier-resistant are e¤ectively
synonymous.
Trimmed estimators and Winzorised estimators are general methods to make

statistics more robust [22]. One example is the median being a robust measure of
central tendency, while the mean is not [1].
As seen in section 3.3.5 the standard deviation, or variability, is a measure

of uncertainty. As with other robust statistics, a robust estimate of variability is
minimally a¤ected by a small fraction of outliers, at the cost of lower statistical
e¢ ciency when outliers are not present. There are several robust estimates of
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variability with the most familiar being, the interquartile range, IQR, and the
median absolute deviation, MAD [9][22][20].
The IQR is the di¤erence between the 75th percentile and the 25th percentile

of a sample, and the MAD is the median of the absolute values of the di¤erences
between the data values and the overall median of the data set.

3.4 Model 1

3.4.1 Design

The following notation will bring structure in representing the measurement:
i = the measuring laboratory, i = 1; ::; 5:
j = the measurement number of the measuring laboratory
� = the true value of the sample
"ij = the deviation of the measurement of the sample within a laboratory
�i = the deviation of the i :th laboratory in a between- laboratory
comparison of measurement
Yij = the stochastic representation of the j :th measurement by laboratory i
The assumptions made in this model are:

1. each laboratory is seen as a sample taken from a common probability distri-
bution of laboratories

2. every laboratory is measuring on the same sample

3. �i is IND, independently normally distributed, (0; �2�) 8 i

4. "ij is IND, independently normally distributed, (0; �2") 8 i; j

5. �i and "ij are independent between themselves 8 i; j

The measurement will then have the form

Yij = �+ �i + "ij| {z }
Total random error

(3.1)

Expression 3.1 represents a measurement made once. If measurements are
made more than once with speci�c time intervals between the measurements then
one must add indexation representing that.
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3.4.2 Reproducibility

As a consequence of assumptions 1-5, in section 3.4.1 above and the de�ni-
tion made in 3.3.6, the reproducibility is the standarddeviation of the di¤erences
between laboratories. This is commonly represented by the standard deviation of
the same di¤erence and is

p
2
p
�2� + �

2
":

Without any analysis of data one can see that this model does not represent the
conditions of the experimental layout the data are based on, and for that reason
no more work will be done based on this model. The importance of this model lies
in seeing the notation of a simple model and the reproducibility representation.
This for the purpose of extending to models more close to the speci�c layout of
the experiment.

3.5 Model 2

3.5.1 Design

Let
i = the sending laboratory which =1; ::; 5
j = the receiving laboratory which =1; ::; 5
k = the measuring laboratory, i or j from above
�ij = the true value of the sample measured by i and j
"ijk = the random error of the measurement on the sample sent by i, received
by j and measured by k; k = i; j and i 6= j
�k = the systematic error of measurement, produced by sending laboratory k
Yijk = the stochastic representation of the sample measurement from i to j
measured by k; k = i; j and i 6= j

The assumptions made are:

1. the laboratories are measuring pairwise on the same sample

2. there is a systematic error among the measuring laboratories with size �k for
laboratory k; k = 1; ::; 5:

3. "ijk is IND, independently normally distributed, (0; �2) 8 i; j; k

The measurement will then have the form

Yijk = �ij + �k + "ijk; 8i; j; k; k = i; j and i 6= j (3.2)

The representation of measured data, pairwise compared, will be important to
visualize for the purpose of �nding an estimate of the reproducibility (see Table
3).
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Measurement of samples

AL1 AL2 AL3 AL4 AL5
AL1 � (Y121; Y122) ... ... ...
AL2 (Y212; Y211) � ... ... ...
AL3 ... ... � ... ...
AL4 ... ... ... � (Y454; Y455)
AL5 ... ... ... (Y545; Y544) �

Table 3: Representation of the pairwise collected data during one month. The table is
organized such that each sending laboratory corresponds to a row, and each receiving
laboratory corresponds to a column.

Expression 3.2 represents a measurement made once. If measurements are
made more than once with speci�c time intervals between the measurements then
one must add indexation representing that.
It should also be noted that the assumptions, for the representation of meas-

urement, in this model are far less than those in model 1. Assumptions 1-3 for
model 1, in section 3.4.1, are here replaced by the true layout of the experiment.
Here an assumption about a systematic error is made. Further on assumption 4,
in 3.4.1, still holds. Namely that the random errors, for every sample measured by
every laboratory in every pairwise combination, have the same distribution with
expected value zero and variance �2.

3.5.2 Reproducibility

Since a systematic error is assumed to be present, based on section 3.3.6, the
pairwise reproducibility will be represented by the absolute value of the di¤erence
between two laboratories measuring on identical material.
The di¤erence will have the form

Dij = Yijj � Yiji = �j � �i + "ijj � "iji for i 6= j; (3.3)

and the pairwise reproducibility for the pair (i; j) will be denoted as

jE(Dij)j = j�j � �ij ; (3.4)

Table 4 is symmetrical in the sense of

E(Dij) = �E(Dji) (3.5)

which is a condition that must be satis�ed by the di¤erences for the model 2
to be used.
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Pairwise di¤erences

AL1 AL2 AL3 AL4 AL5
AL1 � �2 � �1 ... ... ...
AL2 �(�2 � �1) � ... ... ...
AL3 ... ... � ... ...
AL4 ... ... ... � �5 � �4
AL5 ... ... ... �(�5 � �4) �

Table 4: Representation of the expected values of the pairwise di¤erences, E(Dij):The
table organized such that each sending laboratory corresponds to a row, and each re-
ceiving laboratory corresponds to a column.

3.5.3 Estimation of reproducibility

The di¤erence in expression (3.3) has the form of the general linear model,
for which methods of estimates are derived and presented in [19]. The method of
Least Squares is chosen for this speci�c purpose.
Let
WT = (W1; ::;WN) =the vector representing the stochastic quantity of interest
wT= (w1; ::; wN) =the vector of observed values ofW
�T = (�1; ::; �k) =the vector of the k variables to be estimated
eT= (e1; ::; eN) =the vector of random errors
A =N � k- sized matrix with coe¢ cients representing the linear combinations

of the estimates of interest.

IN = N �N identity matrix
The general linear model has the formW = A � � + e; where e �N(0; �2IN)

where
The Least Square, LS, estimate of � is

b� = (ATA)�1ATw (3.6)

Converting the di¤erences in expression (3.3) to the notation used in the general
linear model, leads to the following notations:
WT = (W1; ::;W20) = (D12; ::D15; ::; D51; ::; D54) = the stochastic representa-

tion of di¤erences
w = (w1; ::; w20) = (d12; ::; d15; ::; d51; ::; d54) =observed di¤erences
�T = (�1; ::; �5) = (�1; ::; �5)
eT= (e1; ::; e20) = ("122 � "121; ::; "544 � "545) = (

p
2�; ::;

p
2�)

A is the 20� 5 matrix that for which the, 20� 1 sized, matrix A � � satis�es
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(A � �)T =
= (�2 � �1; ::; �5 � �1; ::; �5 � �4;�(�2 � �1); ::::;�(�5 � �4)) (3.7)

The estimates, (b�1; ::; b�5) = b�T ; are derived by using expression (3.6) under
the constraint �i�i = 0. These estimates are used to estimate the reproducibility,
E(Dij); with

bE(Dij) = b�j � b�i (3.8)

Figure 4: The �gure shows one possible combination of order between the �i; i = 1; ::; 5;
that are to be estimated

3.5.4 Estimation of dispersion

In a conservative interval of measurement, the next key component will be the
standard deviation SD(Dij) which has the following form:

SD(Dij) =
q
Var(Dij) =

q
Var("ijj � "iji) =

= [assumption 3 in section 3:5:1] =
q
�2j + �

2
i =

=
p
�2 + �2 =

p
2� (3.9)

The estimation of � is is done by using the residual in the estimation of the
general linear model. The estimate is given by
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b� =rbeT � be
2 � 16 =

s
(w �Ab�)T (w �Ab�)

2 � 16 (3.10)

3.5.5 Estimation of conservative interval of measurement

Following the outlines drawn above in section 3.3.7 and 3.1, a conservative
interval of measurement will be an interval that based on any one laboratory�s
measurement is of that length that it will contain a measurement from any other
laboratory with a certain probability, say 1� �:
Now let
M = a measurement made by any laboratory at any time
A conservative interval, with level 1-�; of measurement can have the following

form:

IC = (M � (max
i
�i �min

i
�i)� z�

2

p
2�; M + (max

i
�i �min

i
�i) + z�

2

p
2�)

Based on the estimations of reproducibility, found in section 3.5.3, a conser-
vative interval will be estimated by

bIC = (M � (max
i
b�i �min

i
b�i)� z�

2

p
2b�; M + (max

i
b�i �min

i
b�i) + z�

2

p
2b�)

3.6 Model 3

3.6.1 Design

Let
i = the sending laboratory which =1; ::; 5
j = the receiving laboratory which =1; ::; 5
k = the measuring laboratory, i or j from above
�ij = the true value of the sample measured by i and j
"ijk = the random error of the measurement of the sample between i and j
measured by k; k = i; j and i 6= j
�ik = the systematic error of measurement, produced by sending laboratory i
and measured by k; where k = 1; ::; 5
Yijk = the stochastic representation of the sample measurement from i to j
measured by k; k = i; j and i 6= j

Visualizing then the representation of pairwise collected measurement, see table
3, the measurement will have the form
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Yijk = �ij + �ik + "ijk; 8i; j; k; k = i; j (3.11)

The assumptions made in this model are:

1. the laboratories are measuring pairwise on the same sample

2. 8 i; j; k the "ijk:s are independently normally distributed with E("ijk) = 0;
and Var("ijk) = �2ik

Expression 3.11 represents a measurement made once. If measurements are
made more than once with speci�c time intervals between the measurements then
one must add indexation representing that.
The di¤erence between assumption 2 above and assumption 3 in 3.5.1 is the

abandonment of limitations. It should be noticed that the assumption of equal
distribution is gone along with the assumption on equality of variance. This is
a big step towards making more robust statements about the reproducibility of
measurements.

3.6.2 Estimation of reproducibility

As for model 2 in section 3.5.3, the choice of representing reproducibility will
be by the use of the pairwise di¤erences. The di¤erence in this model has the form

Dij = Yijj � Yiji = �ij � �ii + "ijj � "iji (3.12)

and the pairwise reproducibility is

jE(Dij)j = j�ij � �ijj (3.13)

The estimation of E(Dij) is done by estimating the di¤erence, �ij��ii. When
the values of the di¤erences are available a linear system of equations will give
those estimates, under the condition �j�ij = 0:

3.6.3 Estimation of dispersion

For the purpose of creating a conservative interval a way of estimating �ij must
be chosen.
If there is no possibility of estimating the �ij:s separately, the variance of the

di¤erence must be examined more closely as to �nd approaches towards conser-
vative estimates. The variance of the di¤erence can be written as follows

Var(Dij) = Var(Yijj � Yiji) = Var("ijj � "iji) =
= [assumption 2 in section 3.6.1] = �2ij + �

2
ii (3.14)
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Since �ij �
q
�2ij + �

2
ii =

qdVar(Dij)and �ii �
q
�2ijj + �

2
iji =

qdVar(Dij);one

way of making a conservative estimation b�ij; of �ij; is by setting
b�ij =qdVar(Dij) (3.15)

3.6.4 Estimation of conservative interval of measurement

As mentioned in section 3.1 and seen in section 3.5.5, a conservative interval,
of level 1-�; of a measurement will be one that based on any one measurement,
taken from any laboratory, will contain a measurement from any laboratory with
a probability of 1-�
Let
M = a measurement made by any laboratory at any time
A level 1- �; conservative interval of a measurement, could have the form of

IC=

= (M�(max
ij

�ij�min
ij
�ij)� z �

2

p
2max

ij
�ij;M+(max

ij

�ij�min
ij
�ij) + z �

2

p
2max

ij
�ij)

(3.16)

and the estimate, based on robust estimates of the dispersion, of that conser-
vative interval will be

bIC=
= (M�(max

ij

b�ij�min
ij
b�ij)� z �

2

p
2max

ij
b�ij;M+(max

ij

b�ij�min
ij
b�ij) + z �

2

p
2max

ij
b�ij)
(3.17)
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4 Analysis and Results

Now an analysis of the collected data is required as to determine which model
will be applied and why.

4.1 Model 1

The experminetal layout behind this model is to use a sample, measure it and
send it to the next laboratory who measures and sends to the next. This method
of collecting data is called Round Robin. This method was actually used at some
point by Innventia but is now abandoned in favor for the the method being used
now namely, the bilateral design of the experiment where laboratories measure
pairwise on the same sample. Model one is thereby rejected as a candidate for
representing the data collected.

4.2 Model 2

4.2.1 Assumptions

Assumption 1 in section 3.5.1 about the laboratories measuring pairwise on the
same sample, is valid for this model.
Since the �ve laboratories participating in the experiment constitute the whole

population of laboratories, it is reasonable to assume a systematic error between
the laboratories. Innventia recognizes this fact studying the data and sees e.g.
that they always get higher measurement values than certain other laboratories.
Assumption 3 in section 3.5.1, about the distribution of errors being normal,

is accepted as valid without any speci�c tests.
Both assumptions in model 2 are valid leading to the next of estimating repro-

ducibility.

4.2.2 Estimation of reproducibility

Under the assumptions of model 2, the relation E(Dij) = �E(Dji); must be
seen in the data. Examining Table 5, pairwise hypotheses tests can be set up to
check if E(Dij) = �E(Dji); is valid for all pairs. The result of those tests, seen in
Appendix section A.3, suggest that it can not be said that, E(Dij) = �E(Dji) for
every pair since there are three cases of rejection.
Model 2 is therefore discarded as a candidate and no more validation tests, e.g.

for equality of standard deviations in assumption 3, are necessary.
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Mean of di¤erence Standard deviation of di¤erence

AL1 AL2 AL3 AL4 AL5 AL1 AL2 AL3 AL4 AL5
AL1 � -0.22 -0.040 -0.32 0.040 � 0.03 0.11 0.04 0.05
AL2 0.050 � 0.050 -0.080 0.070 0.02 � 0.09 0.02 0.08
AL3 -0.040 -0.10 � -0.22 -0.12 0.04 0.04 � 0.05 0.12
AL4 0.15 0.080 0.14 � 0.20 0.03 0.03 0.09 � 0.12
AL5 -0.080 -0.16 -0.15 -0.24 � 0.06 0.05 0.07 0.04 �

Table 5: The tables show the mean of estimates of the systematic erros and the standard
deviation of the same, for a whole year. The table is organized such that each sending
laboratory corresponds to a row, and each receiving laboratory corresponds to a column

4.3 Model 3

4.3.1 Assumptions

Model 3 makes the extension of representing a systematic error separately for
each pair of laboratories. This is an additional step in trying to capture di¤er-
ent patterns in di¤erent pairs of di¤erence. Since the di¤erence is chosen as a
measure of reproducibility this is a step of giving more accurate description of
reproducibility.
Further on assumptions 1 and 2 in section 3.6.1 for model 3, are valid for

the same reason as for model 2 in section 4.2.1. These assumptions concern the
experimental layout and the distribution of errors.

4.3.2 Estimation of reproducibility

Using data collected for the whole year the need to use the mean value over
the year arises, and with that also the need to estimate that mean. Experience
shows that there are usually a few errors in the reporting of the bilateral data
due to mistakes by the persons inserting the data into the Excel sheets. Most of
these outliers are detected by studying time plots of the data, i.e. by a manual
validation of the data. However, robust methods for the estimation of the means
and standard deviations reduce the need for this time-consuming work. Another
reason was given in 3.1. For the estimation of the mean di¤erence, reproducibility,
the choice of estimate will be the median, as mentioned in section 3.3.8.
Let
Dij = �ij � �ii= the monthly di¤erence between i sending
and j receiving, i 6= j
dij = the observed di¤erence, during a month, between
sending laboratory i and j receiving, i 6= j:
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Clearly the reproducibility between pair (i; j) can be estimated by

b�ij � b�ii = median
whole year

dij (4.1)

Median of Di¤erences

AL1 AL2 AL3 AL4 AL5
AL1 - -0.22 0.050 -0.32 0.050
AL2 0.040 - 0.040 -0.080 0.080
AL3 -0.050 -0.10 - -0.22 -0.13
AL4 0.14 0.090 0.14 - 0.20
AL5 -0.080 -0.15 -0.15 -0.25 -

Table 6: The table shows bE(Dij). The table is organized such that each sending
laboratory corresponds to a row, and each receiving laboratory corresponds to a column.

In Table 6 the estimates of reproducibility are presented.

4.3.3 Estimation of dispersion

It was seen in section 3.6.3 and 3.6.4, that there is need to estimate the dis-
persion of di¤erences between measurements. There is no possibility of estimating
the �ij:s separately due to insu¢ cient amount of data. Therefore the choice of a
conservative estimate of �ij; as seen in section 3.6.3, is made to be

b�ij =qdVar(Dij) (4.2)

As in section 4.3.2, and for the same reasons, a robust estimate will be used.
Using the notation of section 4.3.2 a small addition in notation will be made,
namely
sij =estimation of standard deviation of the di¤erence, using yearly data,

between sending laborataory i and measuring j:
Innventia required an estimate of dispersion being more resilient to outliers in

a data set than the standard deviation. In the standard deviation, the distances
from the mean are squared, so on average, large deviations are weighted more
heavily, and thus outliers can heavily in�uence it. In the MAD, the magnitude of
the distances of a small number of outliers is irrelevant. Therefore MAD is choosen
to estimate the standard deviation of the di¤erence. For a symmetric distribution,
as in this thesis, the MAD is the distance between the 1st and 2nd (equivalently,
2nd and 3rd) quartiles, so for a symmetric distribution about the mean, the MAD
is the 3rd quartile. Thus MAD for the normal distribution can be seen in,
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MAD

�
= z3=4 )

) � =
MAD

z3=4

In order to use the MAD as a consistent estimator for the estimation of the
standard deviation �ij, a correction must be made so that

sij =
1

z3=4
�MADij = 1:48 �median

all year

���dij � bE(Dij)
��� (4.3)

The results of estimation are shown in Table 7

MAD estimation of di¤erence

AL1 AL2 AL3 AL4 AL5
AL1 � s12 = 0:030 s13 = 0:030 s14 = 0:030 s12 = 0:059
AL2 s21 = 0:030 � s23 = 0:059 s24 = 0:030 s12 = 0:059
AL3 s31 = 0:059 s32 = 0:044 � s34 = 0:030 s12 = 0:13
AL4 s41 = 0:030 s42 = 0:015 s43 = 0:044 � s12 = 0:059
AL5 s51 = 0:044 s52 = 0:015 s53 = 0:0889 s54 = 0:044 �

Table 7: Table of estimates of the dispersion using yearly data. The table is organized
such that each sending laboratory corresponds to a row, and each receiving laboratory
corresponds to a column

4.3.4 Conservative interval of measurement

In 3.6.4,

bIC=
= (M�(max

ij

b�ij�min
ij
b�ij)�z �

2

p
2max

ij
sij;M+(max

ij

b�ij�min
ij
b�ij)+z �

2

p
2max

ij
sij)

(4.4)

was derived as the 1-��level conservative interval to be used. The components
remaining to be estimated are the �ij : s: The �ij:s are solved using Table 6, see
appendix section 4.3.2, and the results are shown in Table 8
Using Table 8 and Table 7 the following important results are seen
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Estimates of systematic errors

AL1 AL2 AL3 AL4 AL5
AL1 b�11 = 0:108 b�12 = �0:112 b�13 = 0:058 b�14 = �0:212 b�15 = 0:158
AL2 b�21 = 0:024 b�22 = �0:016 b�23 = 0:024 b�24 = �0:096 b�25 = 0:064
AL3 b�31 = 0:05 b�32 = 0 b�33 = 0:1 b�34 = �0:12 b�35 = �0:03
AL4 b�41 = 0:026 b�42 = �0:024 b�43 = 0:026 b�44 = �0:114 b�45 = 0:086
AL5 b�51 = �0:206 b�52 = �0:276 b�53 = �0:376 b�54 = 0:276 b�55 = 0:126

Table 8: Table of estimates of systematic errors. The table is organized such that each
sending laboratory corresponds to a row, and each receiving laboratory corresponds to
a column

Expression 4.4 in 4.3.4 needs to be evaluated. Using Table 8, Table 7 and
choosing � = 0:05 so that z�

2
= 1:96; the following can be derived

min
ij
b�ij = �0:38 ;max

ij
b�ij = 0:276 and max

ij
sij = 0:13 )

(max
ij
b�ij �min

ij
b�ij) + 1:96 � p2max

ij
sij = 0:656 + 1:96 �

p
2 � 0:13 = 1:0163 (4.5)

Expression 4.5, leads to the resulting interval being,

(M � 1:02;M + 1:02) (4.6)

4.3.5 Final Statement

The objective in this thesis was, through modeling, to produce a statement in
the form of an interval that incorporates the concepts of conservative and robust
estimation.
Expression 4.6 is a conservative interval that, based on any one laboratory�s

measurement M , will contain a measurement from any other laboratory with a
95% probability. This would be the statement given to Innventia, based on the
data set from 2005.
The objective of this thesis is thereby achieved.
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5 Summary and discussion

Using 20 monthly bilateral comparisons, between ALs during the year 2005, it
was of interest to �nd a measure of reproducibility between the authorized labor-
atories. This for the purpose of giving a quality warranty statement to their cus-
tomers. In this thesis the goal was, through modeling, to derive a statement in the
form of a conservative interval that, based on any one laboratory�s measurement,
is of that length that it will contain a measurement from any other laboratory with
a certain probability. Robust methods of estimation of the key components of that
interval were used. This for the purpose of keeping the conservative concept in the
statement made and for the reason mentioned in section 4.3.2, namely to reduce
the amount of time-consuming work.
The choice of three models was made to suggest a working procedure in �nding

robust estimators of reproducibility which would lead to conservative intervals. Of
those three models models the �rst two were rejected in favor for the third one.
The third model was true to experimental design with more realistic assumptions
about the systematic error and the variance of the random error not being equal for
all laboratories. One can speculate that there may be practices in the handling of
the paper before and after measurement, that could be the cause of the systematic
error. That di¤erent laboratories have di¤erent regulatory climate conditions,
routines in measuring, or transportation arrangements.
A more conservative interval, than the one derived in expression 4.6, can be

created by examining the standard deviations of the estimates of the systematic
errors. Incorporating those in the estimation of the total standard deviation will
give rise to a broader interval.
One can argue that the interval produced is too broad. Maybe Innventia is

interested in �nding a more precise and e¤ective interval for prediction instead
of a broad one. A more narrow interval could be produced, by choosing the
maximum and the minimum systematic error, along with the maximum standard
deviation estimated for each row of sending laboratories. This would also produce o
conservative interval. More di¤erent adjustment can be made to produce di¤erent
conservative intervals for measurement made by laboratories.
Another important aspect is time. Could time be of signi�cance for the values

produced? Is there a drift and does this drift spread? Just by checking the �gures
in Appendix section A.2, a suggestion could be made to check for e.g. the existense
of a drift leading to higher or lower values for certain pair of laboratories. A model
including the aspect of time could be included to bring light to these questions.
Time series analysis would be a tool for that.
One could also examine robust estimation in more detail as to use the most

e¤ective robust estimators.
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Doing all of the above would of course demand more time than was set aside
for this thesis.
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A. APPENDIX

A Appendix

A.1 Classes of Variables

A.1.1 CIE Whiteness

The CIE whiteness according to ISO 11475 measured on a �uorescent paper.
Illuminant: CIE standard illuminant D65. Observer: 10� (CIE 1964 standard
observer). The value 100 corresponds to the perfect re�ecting di¤user. A normal
o¢ ce paper has a whiteness value in the range 140�165.

A.1.2 LabC2

The CIE L*, a* and b* value. L* corresponds to the lightness on a scale
from 0 to ~100. Positive values of a* is a measure of the redness. Negative
a* corresponds to greenness. Positive values of b* is a measure of the yellowness.
Negative b* corresponds to blueness. The colorimetric evaluation is made with the
C/2� condition (CIE illuminant C and CIE 1931 standard observer). Dimension 4
is: L*, a*, b*. Total of three variables

A.1.3 LabD6510

The colorimetric evaluation is made with the D65/10� condition (CIE standard
illuminant D65 and CIE 1964 standard observer). Dimension 4 is: L*, a*, b* Total
of three variables

A.1.4 R10N

The spectral re�ectance factor measured every 10 nm with a spectral band-
width of 10 nm. Dimension 4 is: R(400), R(410),. . . ,R(700). Total of 31 variables

A.1.5 R20N

The spectral re�ectance factor measured every 20 nm with a spectral band-
width of 20 nm. Dimension 4 is: R(400), R(420),. . . ,R(700). Total of 16 variables

A.1.6 R457FL90

The ISO brightness measured according to ISO 2470 on a �uorescent paper.
The ISO brightness is a measure of the radiance factor in the blue region and
is usually expressed in percentage points. When the measurement is made on
�uorescent samples, the illumination in the instrument needs to be adjusted with
regard to its UV content.
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A.1.7 R457NF90

This is the variable studied in this thesis
It is the ISO brightness measured according to ISO 2470 on a non-�uorescent

paper. The ISO brightness is a measure of the radiance factor in the blue region
and is usually expressed in percentage points. When the measurement is made on
non-�uorescent samples, the illumination in the instrument does not need to be
adjusted with regard to its UV content.

A.1.8 TristimC2

The Zeiss Elrepho tristimulus values Rx, Ry, Rz and CIE tristimulus values
X, Y, Z. The tristimulus values are weighted averages of the spectral re�ectance
factors, e.g. . The colorimetric evaluation is made with the C/2� condition (CIE
illuminant C and CIE 1931 standard observer). Dimension 4 is: Rx, Ry, Rz, X,
Y, Z. Total of 6 variables

A.1.9 TristimD6510

The Zeiss Elrepho tristimulus values Rx, Ry, Rz and CIE tristimulus values
X, Y, Z. The tristimulus values are weighted averages of the spectral re�ectance
factors, e.g. . The colorimetric evaluation is made with the D65/10� condition
(CIE standard illuminant D65 and CIE 1964 standard observer). Dimension 4 is:
Rx, Ry, Rz, X, Y, Z.. Total of 6 variables
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A.2.2 AL2 sender
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A.2.3 AL3 Sender
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A.2 GRAPHS

AL5 vs AL1

90,4
90,6
90,8

91
91,2
91,4
91,6
91,8

1 2 3 4 5 6 7 8 9 10 11 12

Month

M
ea

su
re

m
en

t

AL5 AL1

AL5 vs AL2

90,5

91

91,5

92

1 2 3 4 5 6 7 8 9 10 11 12

Month

M
ea

su
re

m
en

t

AL5 AL2

AL5 vs AL3

90

90,5

91

91,5

92

1 2 3 4 5 6 7 8 9 10 11 12

Month

M
ea

su
re

m
en

t

AL5 AL3

AL5 vs AL4

90,00

90,50

91,00

91,50

92,00

1 2 3 4 5 6 7 8 9 10 11 12

Month

M
ea

su
re

m
en

t

AL5 AL4

38 cGustaf Sporrong



A.3 RESULTS FOR SECTION 4.2.2

A.3 Results for section 4.2.2

Assumptions here are inherented from section 3.5.1
Here follows pariwise tests of the notion of symmetri mentioned in expression

3.4 in section 3.5.2. Double sided t-tests are made with a 5% level of signi�cance.
The data needed for obtaining the test statistics are taken from Table 2 and 5.

1. H0 : �2 � �1 = 0 vs H1 : �2 � �1 6= 0
reject if jb�2�b�1jp

2b� > t0:025(12 + 12� 2)=2.074
p
2b� = p2 �q 11�(0:032+0:022)

(12�1)+(12�1) =
p
2 � 2: 549 5� 10�2 = 3: 605 5� 10�2

jb�2�b�1jp
2b� = 0:22�0:05

3: 605 5�10�2 = 4 : 715 > t0:025(12 + 12 � 2 ) = 2 :074
Decision : reject H0

2. H0 : �3 � �1 = 0 vs H1 : �3 � �1 6= 0
reject if jb�3�b�1jp

2b� > t0:025(11 + 7� 2)=2.120
p
2b� = p2 �q11�0:112+7�0:042

(12�1)+(8�1) =
p
2 � 8: 953 6� 10�2 = 0:126 62

jb�3�b�1jp
2b� = 2�0:04

0:126 62
= 0 :631 81 < t0:025(11 + 7 � 2 ) = 2 :120

Decision: Do not reject H0

3. H0 : �4 � �1 = 0 vs H1 : �4 � �1 6= 0
reject if jb�4�b�1jp

2b� > t0:025(11 + 12� 2) = 2:080
p
2b� = p2 �q10�0:042+11�0:032

(11�1)+(12�1) =
p
2 � 3: 511 9� 10�2 = 4: 966 6� 10�2

jb�4�b�1jp
2b� = 0:32�0:15

4: 966 6�10�2 = 3 : 422 9 > t0:025(11 + 12 � 2 ) = 2 :080
Decision : reject H0

4. H0 : �5 � �1 = 0 vs H1 : �5 � �1 6= 0
reject if jb�5�b�1jp

2b� > t0:025(12 + 5� 2)=2.131
p
2b� =q11�0:052+4�0:062

(12�1)+(5�1) =
p
2 � 5: 285 2� 10�2 = 7: 474 4� 10�2

jb�5�b�1jp
2b� = 0:08�0:04

7: 474 4�10�2 = 0 :535 16 < t0:025(12 + 5 � 2 ) = 2 :131
Decision: Do not reject H0
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5. H0 : �3 � �2 = 0 vs H1 : �3 � �2 6= 0
reject if jb�3�b�2jp

2b� > t0:025(12 + 8� 2)=2.101
p
2b� =q11�0:092+7�0:042

(12�1)+(8�1) =
p
2 � 7: 464 7� 10�2 = 0:105 57

jb�3�b�2jp
2b� = 0:05

0:105 57
= 0 :473 62 < t0:025(12 + 8 � 2 ) = 2 :101

Decision: Do not reject H0

6. H0 : �4 � �2 = 0 vs H1 : �4 � �2 6= 0
reject if jb�4�b�2jp

2b� > t0:025(12 + 12� 2) = 2:074

p
2b� = p2 �q11�(0:022+0:032)

(12�1)+(12�1) =
p
2 � 2: 549 5� 10�2 = 3: 605 5� 10�2

jb�4�b�2jp
2b� = 0 < t0:025(12 + 12 � 2 ) = 2 :074

Decision: Do not reject H0

7. H0 : �5 � �2 = 0 vs H1 : �5 � �2 6= 0
reject if jb�5�b�2jp

2b� > t0:025(12 + 10� 2)=2.086
p
2b� = p2 �q11�0:082+9�0:052

(12�1)+(10�1) =
p
2 � 6: 815 4� 10�2 = 9: 638 4� 10�2

jb�5�b�2jp
2b� = 0:16�0:07

9: 638 4�10�2 = 0:933 76

Decision: Do not reject H0

8. H0 : �4 � �3 = 0 vs H1 : �4 � �3 6= 0
reject if jb�4�b�3jp

2b� > t0:025(8 + 12� 2)=2.101
p
2b� =q7�0:052+11�0:092

(8�1)+(12�1) =
p
2 � 7: 695 6� 10�2 = 0:108 83

jb�4�b�3jp
2b� = 0:22�0:14

0:108 83
= 0 :735 09 < t0:025(8 + 12 � 2 ) = 2 :101

Decision: Do not reject H0

9. H0 : �5 � �3 = 0 vs H1 : �5 � �3 6= 0
reject if jb�5�b�3jp

2b� > t0:025(7 + 10� 2)=2.110
p
2b� =q6�0:122+9�0:072

(7�1)+(10�1) =
p
2 � 9: 327 4� 10�2 = 0:131 91

jb�5�b�3jp
2b� = 0:15�0:12

0:131 91
= 0 :227 43 < t0:025(7 + 10 � 2 ) = 2 :110

Decision: Do not reject H0

10. H0 : �5 � �4 = 0 vs H1 : �5 � �4 6= 0
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reject if jb�5�b�4jp
2b� > t0:025(12 + 12� 2)=2.074

p
2b� =q11�(0:122+0:042)

(12�1)+(12�1) =
p
2 � 8: 944 3� 10�2 = 0:126 49

jb�5�b�4jp
2b� = 0:27

0:126 49
= 2 : 134 6 > t0:025(12 + 12 � 2 ) = 2 :074

Decision: Reject H0
Three hypothesis are rejected. Enough for not accepting the symmetri condi-

tions. Joint test can be performed to investigate this more

A.4 Results for section 4.3.2

Now solving in Table 6 for:

1. row AL1 will give :

b�12�b�11 + b�13�b�11 + b�14�b�11 + b�15�b�11 =
= [�j�ij = 0] = �b�11 � b�11 � b�11 � b�11 � b�11 =

= �5b�11 = �0:22� 0:05� 0:32 + 0:05 (A.1)

b�11 = 0:108 and thereby every column in row 1 gets a solution. The solutions
areb�12 = �0:22 + 0:108 = �0:112b�13 = �0:05 + 0:108 = 0:058b�14 = �0:32 + 0:108 = �0:212b�15 = 0:05 + 0:108 = 0:158

2. row AL2 will give :

b�21�b�22 + b�23�b�22 + b�24�b�22 + b�25�b�22 =
= [�j�ij = 0] = ��b�22�b�22�b�22�b�22�b�22 =

= �5b�22 = 0:04 + 0:04� 0:08 + 0:08 (A.2)

b�22 = �0:016b�21 = 0:04� 0:016 = 0:024b�23 = 0:04� 0:016 = 0:024b�24 = �0:08� 0:016 = �0:096b�25 = 0:08� 0:016 = 0:064
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3. row AL3 will give :

b�31�b�33 + b�32�b�33 + b�34�b�33 + b�35�b�33 =
= [�j�ij = 0] = �b�33 � b�33 � b�33 � b�33 � b�33 =

= �5b�33 = �0:05� 0:10� 0:22� 0:13 (A.3)

b�33 = 0:1b�31=�0:05+0:1 = 0:05b�32=�0:10+0:1 = 0:0b�34=�0:22+0:1 = �0:12b�35=�0:13+0:1 = �0:03
4. row AL4 will give :

b�41 � b�44 + b�42 � b�44 + b�43�b�44 + b�45�b�44 =
= [�j�ij = 0] = �b�44 � b�44 � b�44 � b�44 � b�44 = (A.4)

= �5b�44 = 0:14 + 0:09 + 0:14 + 0:20 (A.5)

b�44 = �0:114b�41 = 0:14� 0:114 = 0:026b�42 = 0:09� 0:114 = �0:024b�43 = 0:14� 0:114 = 0:026b�45 = 0:20� 0:114 = 0:086
5. row AL4 will give :

b�51 � b�55 + b�52 � b�55 + b�53�b�55 + b�54�b�55 =
= [�j�ij = 0] = �b�55 � b�55 � b�55 � b�55 � b�55 =

= �5b�55 = �0:08� 0:15� 0:15� 0:25 (A.6)

b�55 = 0:126b�51 = �0:08� 0:126 = �0:206b�52 = �0:15� 0:126 = �0:276b�53 = �0:15� 0:126 = �0:276b�54 = �0:25� 0:126 = �0:376
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A.5 Results for section 5

Groups of Systematic errors

j�ijj j � max
ij
sij 1:6 �max

ij
sij � j�ijj j � 2:8 �max

ij
sijb�11 = 0:11 b�14 = �0:21b�12 = �0:11 b�15 = 0:16b�13 = 0:058 b�51 = �0:21b�21 = 0:024 b�52 = �0:28b�222 = �0:016 b�53 = �0:37b�23 = 0:024 b�54 = 0:28b�24 = �0:096b�25 = 0:064b�311 = 0:05b�32 = 0b�33 = 0:10b�344 = �0:12b�35 = �0:03b�41 = 0:026b�42 = �0:024b�43 = 0:026b�44 = �0:11b�45 = 0:086b�55 = 0:13

Table 9: The systematic errors are here divided in three groups, relating the size of
their absolute values to the estimate of the standard deviation
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