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Abstract

Dengue fever is a widely dispersed vector-borne infectious disease with
an uncertain global geographic distribution. Recent studies have created
risk maps identifying global risk areas of dengue transmission to enhance
surveillance, control, risk awareness and local and international policies.
Being a climate sensitive disease, the potential change in the risk area of
dengue has also been studied under climate change projections to the end
of the 21st century. The validity of prediction and projections of dengue
depends on the data quality, how researchers avoid systematic bias, and
the type modeling approach taken. Boosted regression tree (BRT) model-
ing has been credited to perform species distributions and disease presence
and absence mapping. Here a BRT model is used to investigate climatic
conditions and human population as possible predictors of dengue fever
transmission. There are two forms of information about dengue fever uti-
lized: presence only (PO) and pseudo absence (PA) data. The locations
where dengue fever has been reported globally (totally 1537 different ge-
ographical locations) is referred to as presence only (PO) data. The set
of geographical locations where dengue has not been reported constitutes
a set of potential, but not confirmed is pseudo absence (PA) data. This
thesis aims to 1) model the spatial distribution for dengue fever; 2) use
different methods to generate pseudo absence data in order to compare
how different strategies of simulating PA data affect BRT model fits and
the importance of predictor variables; and 3) discuss the implications of
this to risk mapping strategies of dengue. Two combinations of strategies
are used to randomly select PA data. One strategy uses a selection based
on the geographical distance to PO, the other strategy selects the data
according to evidence based consensus regions of dengue absence. The
result shows that different PA selection methods do affect the distribu-
tion of dengue. The risk maps show that the risk areas of dengue are
larger under selection according to evidence-based consensus compared to
selection at random.
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1 Introduction 

Dengue is a widely dispersed vector-borne viral infectious disease. It is transmitted between hu-

mans via mosquitoes. Symptoms of dengue include high fever, headaches, joint and muscle pain, 

vomiting and a rash 
[1]

. Dengue can develop into a hemorrhagic fever with life threatening com-

plications in humans. WHO reports that although there is no specific treatment to cure dengue 

fever, fatality rate can be reduced below 1% by early detection and access to proper medical care 
[2]

. The global burden of dengue becomes larger and larger because effective spread and adapta-

tion of the disease to urban areas. WHO estimates approximately 50-100 million infections 

worldwide per year 
[2]

, however, new estimates are around 4 times higher 
[3]

. It is important to 

study dengue fever so as to investigate and outline its spatial distribution and risk areas for at-

tracting the disease. Several research studies have attempted to do so 
[3] [4] [5] [6] [7]

. Since it is 

spread by mosquitoes, dengue fever is climate sensitive. It is also important to better understand 

the impact of climate and climate change on dengue expansion into previously uninfected areas. 

This has been attempted by several studies 
[5] [7]

.  

Species and disease distributions can be studied with the help of various analytical methods 
[8]

. 

The analytical methods have been evaluated on presence only (PO) data corresponding to geo-

graphically coded confirmed observations of dengue. Sometimes they also have been used with 

true absence observations or in disease mapping often with pseudo absence (PA). The PO data 

corresponds to locations where the species or disease has been reported. The set of geographical 

locations where dengue has not been reported constitutes a set of potential, but not confirmed, 

dengue absence. These observations therefore fall into the category of data for selection for use 

as pseudo absence (PA) data. Alternatively, the absence observations have been confirmed ab-

sence and constitute the true absence. If the selection of PA includes a systematic bias with re-

spect to the true absence or to the predictors used in forming the predictions and projections from 

the models, the resulting risk maps from these models will be incorrect and biased.  

Using presence-only and presence-absence data to model the species distribution of animal spe-

cies, general linear models (GLM), boosted regression trees (BRT), and various other analytical 

methods have been used 
[8]

. Comparing BRTs and GLMs, both can be used to do regression anal-

ysis. However, BRT modeling differs from GLMs, which aim to fit a single parsimonious model. 

BRT modeling involves many single models for each predictor variable by recursive binary splits 

and combines these models to form a final additive regression model, which has a better predic-

tive performance that GLM 
[8]

. Studies have shown BRT can also provide better fits than GLM 

and various other methods, 
[8] 

therefore it is widely recommended and used to fit and study the 

distribution of vector-borne disease 
[3]

. Modeling the spatial distribution of a vector-borne disease 

has similarities to modelling a species distribution. The use of BRT to model the distribution of 

species and disease has been suggested to provide better fits than many other methods 
[8]

. 
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Observations of dengue fever have been reported and collected in global data bases traditionally 

by WHO at a country and sub-country level, later by researchers, MEDLINE, Google and institu-

tions such as the U.S. Centers for Disease Control and Prevention (CDC) and the European Cen-

tre for Disease Prevention and Control (ECDC). In 1970 there were only 9 countries who report-

ed their dengue activities. Now more than 100 countries report dengue 
[2]

. Dengue has increased 

by urbanization and international trade. ECDC initiated a collection of all dengue presence data 

(PO) constituting credible reports from various sources. This data was later extended and de-

scribed by Simmonds et al 
[4]

 and Brady et al 
[6]

. According to the passive collection method, 

some locations may have incidence, but they are not reported. In particular, gaps in reporting may 

occur in areas of low and middle income countries with inadequate surveillance and disease di-

agnostic tools, e.g. in many regions of Africa. Therefore the disjunct set of non-presence observa-

tions may be either simply non-reported presence or true absence. Handling of all of this data as 

if it was true absence (or pseudo-absence) may potentially give rise to bias. Since taking the true 

absence data (or PA data) as the PO data to fit the model will give bias to the data sample. Fur-

thermore, the estimated statistic from the fitted model, which is modelled under the biased data 

sample, will differ from the true parameter of dengue fever in reality. If the estimated statistic 

from a fitted model is not equal to the true parameter, then, according to a statistical definition of 

bias, this statistic contains a bias.  

Pseudo absence data is being used to evaluate the model fit when actual instances of confirmed 

absence are missing. The methods for generating the pseudo absence may have great impact on 

the fitted relationship and resulting risk maps and the corresponding estimate of the spatial distri-

bution of the disease. It is unknown but important to understand how model fits vary according to 

sample bias in the selection of the pseudo absence for vector-borne diseases, such as dengue. In 

this study we will find out how the selection of pseudo absence data and how the bias of such da-

ta affects the fit of the spatial distribution of dengue fever. There are some different approaches 

for choosing pseudo validation for dengue fever, such as random selection 
[9]

 and systematic se-

lection related to the distance from PO 
[4]

 locations. Alternatively data can be selected from evi-

dence based consensus data 
[3]

. When generating PA data, choosing the same number of PA ob-

servations as the available PO data, has been identified to provide a better predictive accuracy 

when using the BRT method 
[10]

. Using too little PA data does not supply enough useful infor-

mation, whereas using too much PA data automatically increases the number of false absences. 

Both will decrease the predictive accuracy of the fitted model.  

Climatic conditions and weather variability are important determinants of dengue disease prolif-

eration, although other factors can also be of importance, such as population densities and inter-

ventions to control mosquitoes and disease. Climate factors influence and lay the ground for the 

successful life cycle and growth of the mosquitoes transmitting dengue. They determine the vec-

torial capacity (life expectancy of vectors, biting rate, extrinsic incubation period etc.) and the 

vector competence (how well the virus replicates in the vector) 
[11]

 
[12]

. Thus, without the climate 

conditions being suitable dengue cannot proliferate. However, in addition to this there are obvi-
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ous other factors that are important for the disease spread and that modify the intensity of trans-

mission such as urbanization, population growth and human interventions. Also, the spread of 

dengue vectors and virus to new areas is depending on human transportation (e.g. migration) and 

mobility networks (e.g. air travel network) 
[13] [14] [15][16]

. 

Moreover, in a study of distribution of dengue fever, the actual case reports can only come from 

places where people live. Thus, case reports (presence of dengue) and population density should 

be correlated. Also population density may be correlated with climate variables because people 

have a tendency to habituate and reproduce more effectively in certain climate zones. Therefore 

population density should be considered as a factor in the spatial distribution of dengue fever in 

order to avoid confounding bias. Since dengue fever is a vector-borne disease which is transmit-

ted through mosquitoes, the spatial distribution of the mosquitos could also be a confounder. 

However, in the PO data it is inherit that all factors important for the disease proliferation are 

present. This is not to say that all areas with population and suitable climate absolutely are areas 

with dengue transmission. However, at present it appears this may be more likely than the alter-

native situation as dengue vectors and virus has been incredibly efficient in spreading to most ar-

eas of its climate niche that are habituated by humans.   

 

2 Objectives 

1) Use BRT models to fit the spatial distribution for dengue fever. 

2) Find out how the most influential variables change and prediction maps change according 

to different PA selection strategies, e.g. the distance from PO and confidence based con-

sensus level.   

3) Discuss the implications of this to risk mapping strategies of dengue.  

 

3 Scope of this study 

This thesis studies the dengue distribution and its relationships with 30 climatic factors and popu-

lation density. It investigates how the predictors change due to different validation schemes based 

on the selection of pseudo absence data.  

Since dengue fever is a vector-borne disease, the vectors and its population density are important 

influencing factors. Mosquitoes are directly influenced by climatic variables 
[15]

. However, the 

factor “presence of mosquito” is difficult to know accurately. A limitation of this thesis is that 

mosquitoes are not taken into account explicitly. Its consequence may be that climatic factors and 

population density account for more of the variance of the dengue distribution in the model. 
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Therefore, the model should also work without the information of where the mosquito is present. 

In the longer run (long time perspective) the mosquito is only an intermediate of climate as the 

mosquito has spread basically to all climate regimens they can inhabit. This is because certain 

climate is necessary for the survival of mosquitoes.   

 

4 Data description 

There are two different kinds of data sets used in this thesis. One kind of the data sets is raw data 

set and the other is called the created data set for validation, which is described in chapter 6. The 

raw data sets include global climate data set and Brady data set. They are two distinct data sets.  

4.1 Global climate data set 

The global data set is made of dengue data and predictor data which contains climatic predictors 

and population density. 

Dengue data 

A global dengue observation data set referred to as presence only (PO) with 1537 unique geo-

graphical observations was obtained for this study through collaboration with the European Cen-

tre of Disease Control and Prevention (ECDC). It was collected from publication in scientific lit-

erature and online resources including Medline and HealthMap reports, 1960 and 2012 
[3]

. The 

PO data was obtained on a 0.5*0.5 arc degree (1 arc degree is approx. 111km) latitude/longitude 

global geographical grid. 

Figure 1 Geographic position plot for the PO data. This figure shows the geographic locate for 
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the 1537 unique presence only observations. The red points represent PO observations. All of 

these PO observations are located in the tropical or sub-tropical areas. 

Figure 2 Geographic position plot for the non-presence data. This figure shows the geograph-

ic locations for the non-presence observations. The green dots represent the global non-presence 

observations. 

Predictor data 

 

Climatic data was obtained from the Climate Research Unit of East Anglia (CRU) 
[17]

. All climat-

ic data was obtained on a 0.5*0.5 arc degree latitude/longitude global geographical grid. The 

global climate data set contains thirty climate predictor variables. Climatic variables of potential 

predictive ability on the global dengue distribution were aggregated and studied in terms of their 

relationship with dengue PO and PA observations.  

 

The climatic predictor variables and population density variable are listed in Table 1. Each of the 

ten weather-variables recorded monthly was aggregated to annual average 30 year mean, as well 

as their 30 year annual average maximum or minimum values for the period 1980-2009. We use a 

number of 1 to denote minimum, 2 for mean, and 3 to denote maximum for each climate predic-

tor in Tables and Graphs. For instance, Cld1 is the minimum value for predictor Cld (cloud cover) 

and Cld3 is the maximum value. Cloud cover data is synthesized from Dtr in areas where sun 

hours are not measured 
[17]

. A frost day is a period of 24 hours in which the minimum tempera-

ture falls below 0°C 
[17]

. Observations’ statistical descriptions such as mean, median, min and 

max values are displayed in Table 1. In the global climate data set there are 4937 missing values 

in the factor potential Evapo-Transpiration. The reason for these missing values is because some 

of the monthly average data that was generated from the daily data was not recorded if the daily 

data of that month were less than 28 days. 
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Population data was obtained from the ISI-MIP project gridded to a 0.5*0.5 arc degree lati-

tude/longitude global geographical grid 
[18]

. 

 

Table 1: Descriptions of original predictor variables and scale 

Variable      Description  Mean Minimum Maximum      Unit  

cld cloud cover 57,11 11,45 92 % 

dtr 
diurnal tempera-

ture range 
11,33 2,68 29 

o 
C 

frs 
frost day frequen-

cy 
14,64 0 30 days 

pet 
Potential Evapo-

transpiration 
2,73 0,35 8 millimeters 

pre precipitation 54,61 0 617 millimeters 

tmp 
daily mean tem-

perature 
8,57 -27,61 31 

o 
C 

tmn 

monthly average 

daily minimum 

temperature 

2,91 -41,97 26 
o 
C 

tmx 

monthly average 

daily maximum 

temperature 

14,25 -23,16 38 
o 
C 

vap vapour pressure 10,71 0,1 32 hPa 

wet wet day frequency 9,02 0 30 days 

pop 
population count 

of people 
92158,78 0 17259910 people 

      

 

4.2 Brady data set  

A global national or sub-national dengue evidence based consensus dataset was obtained on a 

0.5*0.5 arc degree latitude/longitude global geographical grid 
[6]

. Creating the dataset of evidence 

based consensus, Brady et al. utilized all available information on dengue occurrence to produce 

a global dengue map of uncertainty-certainty of dengue presence and absence. They obtained ev-

idence for indigenous dengue virus transmission from four different ways: health organizations, 

case data, peer-reviewed evidence and supplementary evidence. Sources of peer-reviewed evi-

dence were for the period 1960-2012. Based on evidence quality, accuracy and contemporariness, 

and expert judgments, they gave each country an evidence consensus score. Based on these 

scores they divided dengue transmission evidence consensus into 9 categories globally going 

from complete absence of transmission to complete presence (see Table 2). The map provided a 
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list of dengue status for 128 countries 
[6]

. The difference between the Brady dataset and the global 

climate dataset is their dengue data. In the Brady dataset, the dengue data is dengue evidence 

consensus score, which scale is from 0 to 200. However, in the global climate dataset, its dengue 

data was obtained from ECDC and denoted by 0 and 1 where 1 denotes for presence and 0 de-

notes for non-presence.  

Table 2: Evidence consensus category  

 

 

 

 

 

 

 

Brady et al. had displayed current global dengue evidence of ASCII data which has 720 columns 

and 360 rows per time step and presents exactly 360 latitude x 720 longitude. The first row in 

each grid is the southernmost (centred on 89.75S) and the first column is the westernmost (cen-

tred on 179.75W) 
[17]

. In this ASCII data Brady used score scales to identify the status of dengue 

fever and used -9999 to denote missing values. The missing values are some locations which not 

included in these 128 countries. If Brady’s global dengue map is correct, it will provide an excel-

lent reference for dengue status in global scales. This is much better than PO data, because it not 

only provides the dengue presence but also dengue absence as well as poor, intermediate etc. sta-

tus.  

 

5 Statistical method-BRT  

Boosted regression tree is a powerful machine-learning method. In this study, it is used to fit spa-

tial distribution for dengue (presence-absence) and find out the relationship between it and pre-

dictors. Using BRT to fit models, we can study the strength of statistical predictor variables and 

investigate how model fits vary according to different PA selection strategies. BRT models disen-

tangle the contribution of each predictor variable into percent of all explanatory power adding up 

to a total of 100%. The percent of each predictor variable is called relative importance of predic-

tor variables. Larger numbers for relative importance of given predictor variables indicate that 

these given predictors have stronger influences on the response variable. The 10-fold cross-

validation is also applied to prevent overfitting to the data.   

Evidence consensus category  

Complete (absence) 

Good      

Moderate  

Poor 

Indeterminate  

Poor 

Moderate 

Good 

Complete (presence) 
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5.1 Background 

 

BRT is rarely used to fit spatial distribution since it is a new technique 
[19]

. It is identified that 

BRT model has strong predictive performance and is flexible to include nonlinearities and higher 

level interactions. More and more studies of spatial distribution use this method, especially in 

ecology and disease. Year 2006, Elith et al. used some different methods to fit species distribu-

tion (e.g. BRT and GLM) and found out that BRT was better than the traditional statistical meth-

ods 
[8]

. Several studies of global dengue applied BRT models to fit the species distribution of 

dengue.  

 

Year 2012, Simmons et al. used BRT to model the suitability of dengue transmission based on 

the climatic and environmental predictors 
[4]

. The predictors used in this study are land surface 

temperature, enhanced vegetation index, precipitation, dengue temperature suitability index, ele-

vation and urban extent. The data set contains 1537 (with 0.5*0.5 grid) occurrence records of 

dengue from the period 1956 to 2009. According to the expert opinion consensus, Simmons et al. 

randomly generated PA data within 2 arc degrees to 10 arc degrees at the distance from PO data.  

 

Bhatt et al. in 2013 also applied BRT to build dengue distribution by using 1537 (with 0.5*0.5 

grid) dengue occurrence records between 1960 and 2012 
[3]

. They built 336 BRT models and av-

eraged predictions to produce a mean predicted global risk map. The PA data in Bhatt’s study 

was generated by four steps. 

1) Apply the national and sub-national evidence consensus of dengue fever. It has a consen-

sus scale from absence to presence [-100,…, 100], with -100 indicating complete absence 

and 100 indicating complete presence.  

2) Create a random point and restrict it to a maximum distance c from any PO data.  

3) Generate a uniform random variable t on the scale -100<d<100. If t>d then the random 

point in step 2 is accepted as a PA data. If t<d and d>-25 then accept it as a pseudo-

presence data. 

4) Repeat step 2 and step 3 to generate pseudo-absence and pseudo-presence.  

The chosen proportions of PA to the total number of data set were 1:1, 2:1, 4:1, 6:1, 8:1, 10:1, 

and 12:1. The chosen proportions for pseudo-presence were 0:1, 0.01:1, 0.025:1, 0.075:1 and 

0.1:1. The maximum distance c values were 5, 10, 15, 20, 25, 30, 35 and 40 arc degrees.  

 

Rogers et al. used BRT method to fit the distribution of dengue fever. They applied the bootstrap 

tool for evaluating the accuracy of model. 100 sample datasets were randomly drawn with re-

placement from the original dataset and with the same size. The 100 different models were fitted 

by these sample datasets. The predictions were average values of these models which were used 

to conduct a single global risk map. The two modelled distributions of vector species Aedes ae-

gyptii and Aedes albopictus were also used as predictors to produce the map. Rogers et al. gener-

ated the PA data with combining geographic distance and Mahalanobis distance. First, select the 

PA data randomly at the distance scale [0.5 arc degrees, 5 arc degrees] from any of the PO data. 
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Second, apply the Mahalanobis distance method: if the Mahalanobis distance between a non-PO 

data and PO data is larger than 7 then choose this non-PO data as PA data. There are 2927 PO 

data of dengue fever and 14000 PA data was generated. 100 bootstrap samples were selected with 

equal numbers of the PO and PA data with replacement, and were used to conduct species distri-

bution.  

  

5.2 Boosted regression trees 

  

A BRT model comprises two methods-boosting and regression trees. Firstly the data set is parti-

tioned into a set of partitions; secondly each partition is fitted to a simple model 
[20]

:  ( )  

   (    ), there    is a constant in partition j.                        

The recursive binary partition is used to split the space into different partitions which are called 

regions. The region is also called (terminal) node or leave of the tree. It is a unit interval of ex-

planatory values. 

Assume a dataset, which has a response variable, k explanatory variables and N paired observa-

tions (     ), i=1…N. For     it equals to vector (              )  Suppose J regions     …, 

   were split by the previous process-binary partitions.  The response variable y can be modeled 

as a constant in each region 
[20]

: 

                       ( )  ∑   
 
    (    ) 

[20]
                                                                                  (5.1) 

 

Using the minimization of the sum of squares ∑ (     (   ))
  

    as the split criterion, the best 

fitted constant    for region   is the mean value of   . Since the average value of y can give the 

sum of squares the minimum value. 

                            (  |     ) 
[20]

                                                                                       (5.2) 

 

Now with all the data, we start to find out how the regression trees are built.  

Step 1: Assume a splitting variable m, and a split point n, then the half-planes can be defined as  

                           (   )  { |    } and   (   )  { |    }                                        (5.3) 

There X represents explanatory variable, and    is one of the explanatory variables. For instance, 

the whole data was first split at       where    is a value of   . Then we got two regions    

and    there   (    )  {     } and   (    )  {     }.  

 

Step 2: Find the best pair of (m, n). Since minimization of the sum of squares is used as the split 

criterion, the best m and n should minimize the formula below: 

                 
   

[   
  
∑ (     )

 
     (   )

    
  
∑ (     )

 
     (   )

] [20]
                                (5.4) 

The minimization constants   ̂ and   ̂ are computed as 

          ̂     (  |     (   )) and   ̂     (  |     (   )) 
[20]  

                                    (5.5) 



14 
 

All the explanatory data is scanned through for each splitting variable m to determine the best 

pair (m, n). The order of the data to be scanned through will not affect the results based on this 

step.  

 

Step 3: Based on the best pair of (m, n), the data is partitioned into two regions. Repeat the previ-

ous step on both of the regions   (   ) and   (   ) to split two more regions. Then repeat the 

same process on all resulting regions 
[20]

. 

 

Step 4: Stop step 3 if the minimum node size (the total number of regions) is achieved.  

 

Step 5: Find the optimal tree size. The previous steps grow a large tree T with several nodes. 

Cost-complexity pruning is a strategy that prunes the large tree T to get an optimal tree which is 

smaller than T.  

The cost-complexity criterion is defined as: 

                   (    )  ∑     
|    |
   (    )   |    | 

[20]
                                                           (5.6) 

            is a sub tree of T and it can be any sub tree of T through pruning T. f represents the 

terminal node f. |    | represents the nodes number in         

{
 

 
   {     }

  ̂  
 

 
∑        

  (    )  
 

 
∑ (     ̂)

 
     

[20]                      
                                                                             (5.7) 

The cost-complexity criterion aims to seek a sub tree Tsub for   0 which can minimize   (    ). 

  is the tuning parameter and manages the tradeoff between the goodness of fit to the data and 

size of tree 
[20]

. The larger   is, the smaller Tsub we will get. For each   there is only one smallest 

sub tree T  corresponding to it 
[20]

.  

By collapsing the internal node, the smallest per-node increase is produced in ∑    (     )  

Continue this process until the single-node is obtained and it contains    
[20]

. The estimation of    

is obtained by n-fold cross-validation. Therefore   ̂ is the final tree.  

 

BRT has various distribution options 
[21]

, such as Gaussian, Bernoulli, Poisson, AdaBoost, La-

place and Cox Proportional Hazard. In this thesis, a Poisson BRT model is built, since the re-

sponse variable dengue has two values: 0 and 1.  

 

5.3 Important characteristics 

 

BRT has three important characteristics, each of which can affect modeling fitness: the number of 

trees (nt), learning rate (lr), and tree complexity (tc). The learning rate is used to shrink the con-

tribution of each tree as it is added to the model. For instance, a model has 2000 trees and is fitted 

with lr =0.05, then the produced predictions are the sum of predictions from each of the 2000 

trees multiplied by 0.05 
[19]

. Tree complexity is used to control the number of nodes in a tree
 [19]

. 
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When tc =1, the model only has main effects; when tc =2 or 3, it has up to 2-way or 3-way inter-

actions, etc. 
[22]

. The nt, which can optimize model’s prediction, is determined by parameters lr 

and tc, because the best nt is estimated by minimizing the deviance through adding signal trees 

with fitted lr and tc.  

Gbm package of statistical software R is used in this study, with a learning rate of 0.005 and a 

tree complexity of 5. The best number of trees is calculated automatically then. Thus different 

BRT models have different nt. Based on these 5-way interactions are also included in results. The 

smaller lr we choose the more stable prediction of BRT model can we get 
[19]

. However, the 

smallest lr also requires a great number of trees (usually over thousands) and reaches the best 

predictive performance slower than when using a larger lr. Therefore we choose lr=0.005 which 

is a good rate. If a higher tc is used to model a data set, it will take longer time to get reliable es-

timates; if a lower tc is used to model a data set, it has a larger predictive deviance 
[19]

. So we 

choose tc=5 which has been identified that model’s estimates are reliable if value of tc is between 

3 and 7 
[23]

. 

 

5.4 Interaction 

 

The maximum level of interaction of a model is determined by the tc. The value of interaction is 

called interaction size. In gbm, all possible pairs of interactions of predictors along with their 

range are estimated automatically at the same time. For each pair of interactions, setting other 

predictors to their mean values, the predictions of the predictor pair are formed on the linear scale. 

Then using the predictors as factors, a linear model was built to relate these predictions to the 

marginal predictors. Finally, the relative size of interaction is represented by the residual variance 

of this linear model 
[19]

. An interaction size of zero indicates no interaction between the marginal 

predictors. The largest interactions are ranked and listed in the gbm output. 

  

5.5 Area under the receiver operating characteristic curve (AUC)  

 

The predictive performance of the model is measured by the area under the receiver operating 

characteristic curve (ROC). ROC is a plot of the true positive rate versus the false positive rate 
[3]

. 

It has the ability to determinate between presence data and absence data 
[3]

. AUC is a measure for 

the median difference between the prediction scores in two groups 
[20]

.  

The value of the area under the ROC is from 0 to 1. It is used to describe models predictive accu-

racy. The predictive performance of model is good if its AUC value is between 0.9 and 1; if its 

value is between 0.7 and 0.9, it indicates that predictive performance is reasonable; if the value is 

between 0.5 and 0.7 it indicates poor; if the value is equal to 0.5, it means the model has a ran-

dom performance
 [24]

.  
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6 Datasets created for validation 

 

6.1 Brady data set 

We wanted to compare how the selection of pseudo absence affected the fitted model. In particu-

lar, we wanted to see if the selection based on distance and evidence based consensus scoring 

changed the model fit. Therefore, we converted the Brady’s ASCII data into a new dataset with 

three variables: latitude, longitude and scores of dengue fever transmission evidence based con-

sensus areas. We re-classified the evidence consensus categories into three groups and created a 

new column which was named “class.” In Table 3 the frequencies of the different classes have 

been described.  

Table3: Brady data set 

 

In this data set there are four variables: score, class, longitude and latitude. Categories of dengue 

evidence consensus complete-, good-, and moderate- absence are classified as class 0, which de-

notes for complete absence; complete-, good-, and moderate- presence are classified as class1 

which denotes for complete presence, class 2 was made of categories poor- absence and poor- 

presence as well as indeterminate, which describes the uncertain locations of dengue status. 

Complete absence/presence observations mean that the dengue status for these locations are ex-

plicit and trustable. Classifying complete, good and moderate absence/ presence into category 

complete absence/presence is logical since these evidence consensus categories of absence or 

presence are reliable. Class 2 namely uncertain data represents the ambiguous locations for den-

gue. So there are totally 61495 observations in this data set, including 41197 complete absence 

observations, 13427 complete presence observations and 6871 uncertain observations.  

In the last step, we merged this data set with the PO data, the climate data, and the population da-

tasets based on longitude and latitude. Merging 67420 observations from global climate data set 

and 61495 observations from the Brady data set, there are 61463 observations left in the new 

Brady data set. 32 observations from Brady’s data are missing after merging because these loca-

tions are not in the global climate data set.  

The frequencies of reports versus no reports of dengue transmission in the classes of evidence 

based consensus are described in Table 4.  

 

Dengue        Evidence consensus category     Score  Class Frequency  

Absence Complete, good, moderate (absence)    0-43 0 41197 

Presence  Complete, good, moderate (presence)   157-200 1 13427 

Uncertain  Poor absence, indeterminate, poor presence     44-156 2 6871 

Total     61495 
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Table 4: Brady data set vs. global climate data set 

                   Dengue reporting’s in relation to 

evidence based consensus groups   

 

Dengue                                                  no presence report presence Total    (Brady’s data) 

Class=0 41171 9 41180    (41197)
1 

Class=1 12146 1266 13412    (13427)
2 

Class=2                        6854 17 6871      (6871) 

Total  60171 1292 61463 

1. 17 observations are missing after merging with population data for class 0. 

2. 15 observations are missing after merging with population data for class 1. 

 

 
Figure 3 Geographic location plot for the complete absence data. This figure shows the geo-

graphic locations for the 41180 complete absence data in the Brady data set. These observations 

which were represented by the green points were used as the PA data.  

 

A more precise description of the validation datasets can be found below.  

6.2 Brady1537 data set 

To evaluate how different PA selection strategies affect model fits, we need to create some com-

binations of PO and PA data by using certain algorithms for the selection of the PA observations. 

We created one dataset including all 1537 PO observations, where the same number of the pseu-

do absence observations (PA) is selected randomly in areas where the evidence based consensus 

maps by Brady et al. supported no transmission. The selected locations were then merged with 

the population and climate data for the selected grid locations. This combination of PO and PA is 

referred to as Brady1537, see Figure 4 below.  
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Figure 4 Geographic position plot of dengue in the Brady1537 data set. This figure shows the 

geographic positions for the dengue presence and absence points in the dataset Brady1537. The 

points in green are absence and the points in red are presence. The absence points are randomly 

chosen in the global scale from the Brady data set. All the presence points (in blue) are from the 

PO data set. 

 

6.3 Brady5
o
 data set 

We created another dataset including all 1537 PO observations, where the same numbers of the 

pseudo absence observations (PA) were selected randomly in areas where the evidence based 

consensus maps by Brady et al. supported no transmission with a maximum distance of 5 degree 

latitude/longitude between the PO´s and the PA΄s. The selected locations were then merged with 

the population and climate data for the selected grid locations. This combination of PO and PA is 

referred to as Brady5
o
.  

The data set Brady5
o
 was generated by two steps. Firstly, generate PA data at distance of no 

greater than 5 degrees and no less than 0.5 degrees from the PO data set. This was achieved by 

creating PA data with PO data’s latitude and longitude:   

               Longitude pa= longitude po +i 

               Latitude pa   = latitude po +j 

There i and j are equal to 0, 1, 2…10.  

Thus, PA data was generated, including the original 1537 PO observations, since when i and j =0 

the latitude and longitude are not altered. Secondly, the generated PA data was merged with the 

Brady data set based on longitude and latitude. Finally, the randomly selected 1537 observations 

form the generated PA data, and combine with the PO data set. Therefore the Brady5
o
 data set 

was constructed by a total of 3074 observations. 
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Figure 5 Geographic position plot of dengue in the Brady5
o
 data set. This figure shows the 

geographic positions for the dengue presence and absence points in Brady5
o
. The points in green 

are absence and the points in red are presence. All the presence points (red points) are from the 

PO data set. 

6.4 Brady10
o
 data set 

The Brady10
o
 data set was built up by using the same method as Brady5

o 
data set. However, in 

this data set the PA data was generated at distance no greater than 10 degrees and no less than 0.5 

degrees from the PO data. Total number of this data set is also 3074. 

Figure 6 Geographic position plot of dengue in the Brady10
o
 data set. This figure shows the 

geographic positions for the dengue presence and absence points. The dots in green are absence 

and the dots in red are presence. All the presence points in this data set are from the PO data set. 
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6.5 Random data set 

We created one data set including all 1537 PO observations, where the same numbers of the 

pseudo absence observations (PA) were selected randomly from the global climate data set. This 

combination of PO and PA is referred to as Random.  

Randomly we selected 1537 observations from non-presence data of global climate data set, so 

that the number of absence observations is the same as the PO data set. Combining these newly 

selected absence observations with the PO data set, the random data set was made up, having 

3074 observations. 

Figure 7 Geographic position plot of dengue in the random data set. This figure shows the 

geographic positions for the dengue presence and absence points. The points in green are absence 

and the points in red are presence. The absence points are randomly chosen in the global scale 

from the global climate data set. All the presence points are from the PO data set. 

6.6 Random5
o
 data set 

We combined in a similar way PA΄s selected from a 5 arc degree latitude and longitude from the 

PO΄s and refer to this combination of dengue, climate and population data as Random5
o
. 

We used the same method to create Random5
o
 data set as Brady5

o
 data set, with the exception of 

the PA data being chosen from the global climate data set. 
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Figure 8 Geographic position plot of dengue in the random5 data set. This figure shows the 

geographic positions for the dengue presence and absence points. The points in green are absence 

and the points in red are presence. All the presence points are from the PO data set. 

6.7 Random10
o
 data set 

We created another dataset including all 1537 PO observations, where the same number of the 

pseudo absence observations (PA) was selected randomly with a maximum distance of 10 arc de-

gree latitude/longitude between the PO΄s and the PA΄s 
[7]

. This combination of PO and PA is re-

ferred to as Random10
o
. We used the same method to create Random10

o
 data set as Brady10

o
 da-

ta set, however, the PA data was chosen from the global climate data set.

Figure 9 Geographic position plot of dengue in the random10 data set. This figure shows the 

geographic positions for the dengue presence and absence points. The points in green are absence 

and the points in red are presence. All the presence points are from the PO data set. 

An overview of the validation data sets created is provided in Table 5. 



22 
 

Table 5: overview of created data sets  

Data set  Description  

Brady1537 Random selection of 1537 PA data from regions of evidence consensus ab-

sence (Brady et al.) 

Brady5 Random selection of 1537 PA data from regions of evidence consensus ab-

sence (Brady) at distance of [0
o
, 5

o
] from PO data 

Brady10 Random selection 1537 PA data from regions of evidence consensus absence 

(Brady) at distance of [0
o
, 10

o
] from PO data 

Random Random selection of 1537 PA data from the global climate data set  

Random5 Random selection of 1537 PA data (in global climate data set) at distance of 

[0
o
, 5

o
] from PO data 

random10 Random selection of 1537 PA data (in global climate data set) at distance of 

[0
o
, 10

o
] from PO data 

 

 

 

7 Results 

 

In this chapter we use BRT to model different dengue data sets and find out the strongest statisti-

cal predictor, interactions, and use AUC to determine predictive accuracy. Based on the plots of 

predictors we can also see how the predictors associated to the presence of dengue. Comparing 

the difference among model fits, we can find out how the model fits and coefficients vary accord-

ing to different PA selection methods or the sample bias of data sets. Table 6 shows all the fitted 

BRT models in this study, and data set, importance value, interaction strength and AUC.  

Table 6: Overview of all BRT models in this study 

Model  Data set  Importance (%) Interaction        AUC 

A Brady1537 vap 84.6 Vap*tmx1  1 

A1 Brady5
o 

vap 41.6 Tmp1*cld1  1 

A2 Brady10
o 

vap 36.4 Pop*tmx1  1 

B Random vap 41.7 Tmx3*pet3  0.99 

B1 Random5
o 

pop 45.6 Tmx1*cld1  0.96 

B2 Random10
o 

Pop                     46.5 Pop*tmx1         0.97 

 

7.1 Model A  

The fits of Model A show that the most important predictor is vapor pressure and its value is 

84.6%, using the Brady1537 data set. From the left plot of Figure 1, we can find out that vapor 

pressure has a positive influence on outbreak of dengue. Especially if the vapor pressure is larger 

than 15 hPa in a location, the risk for occurrence of dengue will increase. The tropical areas have 
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a larger vapor pressure, which is higher than 30 hPa, while the desert areas have a lower value, 

around 10 to 15 hPa. This result also shows that the largest interaction of dengue fever is the in-

teraction of vap and tmx1. This high degree of interaction highlights that the combination of two 

variables, lowest monthly average daily maximum temperature (tmx1) ad vapor pressure (vap) 

can account for an increase in the suitability of dengue outbreak by 90%, compared the BRT 

model having no interactions. See the right plot in Figure 1. AUC value for Model A is 1, which 

indicates that this model has an excellent predictive performance.  

Global predicted risk map for dengue fever is also produced, see Figure 10. This risk map is plot-

ted by using fitted predictions of Brady1537. Taking background predictors from the global cli-

mate data set as a new background data set, the fitted predictions are used to predict global den-

gue transmission in the background data set.  

 

Figure 10 Plots for the most important predictor and interaction. The left figure is the plot of 

the most important predictor, vapor pressure, with the importance value of 84.6%. The fitted 

function on the Y-axis is the logarithmic scale of response variable dengue. When vapor pressure 

is larger than15 hPa, the fitted function increases rapid. The right figure is the three-dimensional 

plot of the largest pairwise interaction: tmx1 and vap. The top panel indicates model with interac-

tions, the bottom panel indicates model without interactions. Predicted suitability of dengue will 

increase 90% with combining the lowest monthly average daily maximum temperature and high-

er vapor pressure, compare with no interactions modeled in the BRT model.  
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Figure 11.Global risk map for Brady1537 data set. The predicted probability for the transmis-

sion of dengue fever is from 0 to 1. The locations in dark green are those areas have the highest 

risk for dengue occurrence (with probability=1). The locations in white are those zones, which 

are not at risk for dengue. 

 

7.2 Model A1 

Using the Brady5
o
 data set to fit Model A1, the most important predictor is also vapor pressure, 

with the importance value of 41.6%. It has a positive effect on the suitability of dengue. When 

vapor pressure is larger than 18, the risk for outbreak of dengue could also become higher. The 

largest interaction is tmp1combining with cld1. Combining of the low daily mean temperature 

and high cloud cover will increase the suitability of dengue 94% compared with no interaction is 

allowed in the BRT model. AUC is 1, which means Model A1 has a great predictive performance. 

          
Figure 12 Plots for the most important predictor and interaction. The left figure is the plot of 

the most important predictor vapor pressure, with the importance value of 41.6%. When vapor 
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presure is larger than 18, the fitted function increases rapidly. The right figure is the plot of the 

largest pairwise interaction: combining of tmp1 and cld1 will increase the suitability of dengue 

94% compared with the model without interactions. 

 

Figure 13 Global risk map for Brady5
o
 data set. The predicted probability for the outbreak of 

dengue fever is from 0 to 1. The locations displayed in dark green are those locations, which have 

the highest risk for dengue occurrence (with probability=1). The locations in white are those 

zones that are not at risk for dengue. 

 

7.3 Model A2 

Model A2 is fitted by data set Brady10
o
, and its most important predictor is vapor pressure with 

importance value 36.4%. Vapor pressure has a positive effect on outbreak of dengue. This means 

when its value is greater than 16, the probability for outbreak of dengue will increase. The 

strongest interaction is pop combining tmx1. Large population and low daily maximum tempera-

ture can increase by 97% the risk of dengue outbreak, as compared to when interactions are not 

allowed, see Figure 14.  
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Figure 14 Plots for the most important predictor and interaction. The left figure is the plot of 

the most important predictor vapor pressure, with value of 36.4%. When vapor pressure is larger 

than16 hPa, the fitted function increases rapidly. The right figure is the plot of the largest pair-

wise interaction: combination of tmx1 and pop with the maximum value of 0.97. Compared with 

no interactions in the BRT model, the interaction of population and the lowest monthly average 

daily maximum temperature will increase the occurrence of dengue fever by 97%. 

 

 

Figure 15 Global risk map for Brady10
o
 data set. The predicted probability for the outbreak of 

dengue fever is from 0 to 1. The locations in dark green have the highest risk for dengue occur-

rence (with probability=1).The locations in white are not under risk for dengue. 

 

7.4 Model B 

When using random data set to fit Model B, the model fits show that: the most important predic-

tor for dengue fever is vapor pressure of the importance value 41.7%. It has a positive influence 
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on the suitability of dengue. The largest interaction is tmx3 combining with pet3. Their maximum 

fitted value is 0.83, which means that combining will increase the risk for dengue by 83%, com-

pared to no interaction. AUC value is 0.99, thus indicating Model B has a good predictive per-

formance.  

 

Figure 16 Plots for the most important predictor and interaction. The left figure is the plot of 

the most important predictor vapor pressure, with the importance value of 41.7%. When vapor 

pressure is larger than 15, the fitted function increases rapidly. The right figure is the plot of the 

largest pairwise interaction: the combination of tmx3 and pet3 increases the occurrence of dengue 

fever by 83% in comparison to the model with no interactions allowed. 

 

 

Figure 17 Global risk map for random data set. The predicted probability for the outbreak of 

dengue fever is from 0 to 1. The locations in dark green have the highest risk for dengue occur-

rence (with probability=1). The locations in white are not at risk for dengue. 
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7.5 Model B1 

Using random5
o
 data set, the most important predictor for Model B1 is population with value of 

45.6%. Predictor population has a positive influence on outbreak of dengue, which means the 

larger population a zone has, the higher the probability for outbreak of dengue. The largest inter-

action is the combination of cld1 and tmx1. Their interaction will increase the suitability of den-

gue outbreak by 84%, in comparison with no interaction.  

 

Figure 18 Plots for the most important predictor and interaction. The left figure is the plot of 

the most important predictor population, with the importance value of 45.6%. The right figure is 

the plot of the largest pairwise interaction: combining tmp1 and cld1 will increase the suitability 

of dengue by 84% compared with the BRT model with no interactions. 

 

 

Figure 19 Global risk map for random5
o
 data set. The predicted probability for the dengue 

fever transmission is from 0 to 1. The locations in dark green have the highest risk for dengue oc-

currence (with probability=1). The locations in white are not under risk for dengue. 
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7.6 Model B2 

Using random10
o
 data set, the most important predictor for Model B1 is population of the im-

portance value of 46.5%. Predictor population has a positive influence on outbreak of dengue, 

which means the larger population a zone has, the higher probability for outbreak of dengue. The 

largest interaction is results from combining pop and tmx1. Their interaction will increase the fit-

ted value of dengue occurrence 0.94%, compared with if there is no interaction in the model.  

 

Figure 20 Plots for the most important predictor and interaction. The left figure is the plot of 

the most important predictor vapor pressure, with the importance value of 46.5%. When vapor 

pressure is large, the risk for dengue occurrence will also increase. The right figure is the plot of 

the largest pairwise interaction: combining tmx1and population density increases the suitability 

of dengue by 94% compared with no interaction being allowed in the BRT model.  

 

Figure 21 global risk map for random10
o
 data set. The predicted probability for the outbreak 

of dengue fever is from 0 to 1. The locations in dark green have the highest risk for dengue oc-

currence (with probability=1). The locations in white are not at risk for dengue. 
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7.7 Global Risk maps for all models  

All BRT model fits are tabulated in Table 7 (see Appendix). When selecting the PA data within 

five degrees from the PO data in the Random5
o
 data set, the five most important predictor are 

population (44.8%), vap1 (10.6%), wet (5.5%), vap (5.2%) respectively tmx1 (4.1%); When us-

ing the Brady5
o
 data set, the five most important predictors are vap (41.6%), population (15.3%), 

tmp1 (10.1%), tmx1 (5.8%) and tmn1 (5.5%). When using the Random10
o
 data set, the five most 

important predictor are respectively population (46.3%), vap1 (14.7%), tmx1 (6.3%), wet (5.7%) 

and vap (4.2%). Using the Brady10
o
 data set, the five most important predictors are vap (36.4%), 

vap1 (28%), population (9.8%), pet (6.5%) and tmx1 (5.7%). The five most important predictors 

for the Random data set are vap (41.6%), vap1 (20.3%), population (17.2%), tmx1 (6.6%) and 

wet (2%). When using the Brady1537 data set to model distribution for dengue, the five most 

contributed predictor are vapor pressure (84.6), tmx1 (3.6%), population (2.5%), vap1 (1.5%) re-

spectively cld (1.5%) . However, the important value of vapor pressure varies based on different 

PA selected scales: In the Brady1537 data set, the value of vapor pressure is 84.6%, and its PA 

data is selected with global scale; in the Brady5
o
 data set, the value reduces to 41.6%; in 

Brady10
o
 it reduces to 36.4%. In comparison with the Brady data set, the most important predic-

tor for random5
o
 and random10

o 
data set is population. Using the random data set, the most im-

portant predictor is also vapor pressure.  

We plot global risk maps for all the data sets in this study, in order to find out the how sensitive 

these maps are to the different PA selection methods. Using the fitted BRT models and 31 predic-

tors in the global climate data set, we have predicted the probability of dengue transmission glob-

ally. It is obvious to see that six risk maps are different, which indicates that prediction of global 

dengue is very sensitive to the different PA selection strategies.  

To see the difference of predictions between risk maps, three difference maps were plotted.  

 

Figure 22 difference plot for predictions between Brady1537 and random data set. The dif-

ference between risk map Random1537 and random is shown. The difference of dengue risk pre-

diction is larger in the middle of Africa, South America and south Asia, as depicted by these loca-
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tions being displayed in dark green and green. The remaining regions show no obvious differ-

ences.  

Figure 22 shows when using different datasets random and Brady1537, the predicted risk map is 

different. Recall risk map A and B: the dengue transmission locations in the risk map A are larger 

than the risk map B. Therefore this difference map clearly points out the potential risk locations 

for the risk map B. In the Brady1537 data set, the PA data is the complete absence data, which 

was analyzed and scored by Brady et al. In the random data set, the PA data is non-presence data, 

which could be a biased sample since it may include some unfound presence data.  

Using the same data set, we can find out how the different geographic distances for selecting the 

PA data affect the predicted risk map.  

Figure 23 stands for the difference between risk map random5 and random. The difference for 

these two risk maps is that one uses PA data, which is randomly selected worldwide, while the 

other is selected within 5 degrees from the PO data. For this difference map, the difference of 

predictions is small. In the tropical and sub-tropical areas, the random5 has a smaller probability 

than the random risk map, since the difference value is negative. Therefore there is a negative bi-

as for the fitted statistic when the PA data was selected from 5 degree distance from the PO data 

to the global scale.  

 

Figure 23 difference plot for predictions between random5 and random data set. This risk 

map shows the difference of risk predictions between random5 and random risk map, by using 

predictions of random5 minus predictions of random risk map. Its scale is from -0.8 to 0.6. In 

dark green locations the difference of predicted risk maps between random5
o
 and random is 60%. 

In white locations it is -0.8, which means that in such areas the predicted risk map of random5
o
 is 

80% weaker than the random risk map.  

When using the Brady data set, the difference plot between the risk map of Bradty5 and 

Brady1537 is shown below. It is obvious to see that some locations in the South Africa and Asia 

are in dark green, which means in these locations the difference of prediction is almost 100%. 
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The majority of areas on this difference map are yellow, which means that the difference for 

these two risk maps is small. It is obvious too find out that when the selection scale of PA data is 

enlarged from 5 degree to the global, it causes a positive bias for the fitted statistic.  

 

Figure 24 difference plot between Brady5 and Brady1537 data set. This risk map shows the 

difference of risk predictions between Brady5 and Brady1537 risk maps, by using predictions of 

random5 minus prediction of random risk map. Its scale is from -1 to 1. In dark green areas the 

predicted risk of Brady5
o 

is 100% higher than Brady1537. In white areas the predicted risk of 

Brady5
o
 is 100% lower than Brady1537. 

 

8 Conclusions and discussion  

8.1 Alternative method-GLM  

In this thesis we use BRT method to predict distribution of dengue fever, while other applicable 

methods, such as GLM which is not used. There are some reasons for BRT being chosen over 

GLM: 

1) For GLM, it fits a single appropriate data model and estimates model parameters. By contrast, 

BRT does not start by fitting a single data model but partitioning and fitting lots of single tree 

models and combines them adaptively for prediction 
[19]

. Therefore BRT has a stronger predictive 

performance than GLM.  

2) BRT has been identified to provide better fits of species distributions than GLM
 [8] [23]

.  

3) BRT is better at investigating complex responses 
[3]

. GLM allows only one signal response 

variable. By contrast, BRT allows more than two response variables.  

4) In BRT, there was no need for prior transformation or outliers’ elimination. Besides, interac-

tions for predictors are modelled automatically 
[19]

.  
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5) BRT trees can also use surrogates to accommodate missing data of predictor 
[19]

. 

Therefore we only use BRT to model the spatial distribution of dengue fever based on different 

PA selection methods and to compare the model fits which are calculated by the same statistical 

method. 

8.2 How the different PA selection strategies affect model fits. 

From the table of model fits, we can find out that different PA data selection methods do affect 

model fits. When the PA data was selected from Brady data set by using random selection, the 

most important predictor is vapor pressure with the importance value of 84.6%; when PA data 

was randomly selected from the global climate data set, the most important predictor is also va-

por pressure, but its importance value is 41.7%. The difference is because the PA data in the 

Brady data set is estimated by evidence of dengue consensus; in contrast, the PA data in the glob-

al climate data set is collected from publications. Since the evidence consensus is more trustable, 

using the Brady data set to model the distribution of dengue is better. 

The most important predictor is vapor pressure when PA data was selected within geographic dis-

tance 5
o
 and 10

o 
from the PO data in the Brady data set. When the geographic distance has been 

reduced from 10 degree to 5 degree, the importance value of vapor pressure has increased from 

36.4% to 41.6%. This indicates that the true climate parameters have a positive climate parameter 

bias when PA data is selected systematically closer to the PO data. In contrast, when PA data is 

selected systematically closer to the PO data of the Brady data set-from 10 degree to 5 degree, the 

true climate parameters have a negative bias, because the importance value of population de-

creases from 46.5% to 45.6%. In both data sets, the importance values do not change too much, 

as the difference of distance between 10 degree and 5 degree is small and the climate will not 

vary too much. 

According to the AUC value, we can see that when using Brady data set to fit models, the AUC 

value is 1, which is higher than using the global climate data set. It indicates that using Brady da-

ta set to fit the spatial distribution of dengue is a better choice. 

8.3 Predicted global risk maps 

Several studies have used the methods applied here and selected PA according to different strate-

gies (e.g. Simmonds et al, Bhatt et al, Brady et al, Rogers et al). This study clearly highlights that 

the way of selecting PA is important and may lead to large differences and bias in risk maps and 

predictions based on climatic factors. We find that if PA data are chosen closer to the PO the cli-

matic associations to the disease risk areas become much weaker. Such approaches may be ap-

propriate if fitting local models, but often such models have been fitted and predicted global risk 

areas for dengue. Simmonds et al. is one of such examples, and clearly shows similar results as 

the Random5 models. Such risk maps are thus suspected to be biased, and maybe the true risk 

map would be better described by the Brady10 or Brady1537 model predictions as they are based 
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on evidence based consensus absence to remove the influence of non-reporting bias together with 

the close distance selection resulting in potential climate bias.  

Future studies for global risk maps should carefully consider these matters, to avoid bias arising 

from the selection of PA. Also, studies making projections of dengue with climate change scenar-

ios should carefully consider the use of distance as a selection strategy for PA as the climate to 

dengue association appear to potentially become severely biased. 
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Appendix 

Table 7: Importance of predictors (%) for different datasets  

 
Random5

o
 Random10

o 
Random Brady5

o 
Brady10

o 
Brady1537 

pop  44.8 46.3 17.2 15.3 9.8 2.5 

vap1 10.6 14.7 20.3 5.1 28 1.5 

wet 5.5 5.7 2 0.3 0.1 0 

vap 5.2 4.2 41.6 41.6 36.4 84.6 

tmx1 4.1 6.3 6.6 5.8 5.7 3.6 

cld1 3.8 1.8 0.6 0.8 0.6 0.2 

cld 2.8 1.9 0.6 2.6 2.1 1.5 

dtr1 2.6 1.2 0.9 0 0 0 

cld3 2.1 1.9 0.5 0.1 0.2 0.4 

pre1 1.9 1.3 0.8 0.1 0.7 0.1 

dtr3 1.8 1.5 0.2 0.1 0 0.2 

wet1 1.8 1.8 0.7 0.7 0.2 0 

pre 1.4 1.3 0.8  1.1 0.4 0.1 

frs3 1.2 0.7 0.4 0.2 0.1 0 

pre3 1.2 1.7 0.9 0.4 0.5 0 

frs 1.1 0.6 0.2 0 0.2 0.3 

pet3 0.9 0.7 0.6 4.4 1.8 0.3 

dtr     0.8 0.8 0.9 0.1 0 0.1 

vap3 0.7 0.6 0.8 0.4 1.1 0.4 

frs1 0.6 0.6 0.2 0 0 0.1 

tmp3 0.6 0.3 0.3 0.1 0 0.1 

pet 0.6 0.3 0.2 4.3 6.5 1.3 

wet3 0.6 1 0.6 0.2 0.1 0 

tmx3 0.5 0.3 0.2 0.1 0.1 0.1 

tmn3 0.5 0.2 0.4 0.1 0.1 0.1 

tmp1 0.5 0.7 0.2 10.1 3.8 1 

tmp 0.5 0.2 0.1 0.1 0.1 0 

pet1 0.4 0.3 0.4 0 0 0.1 

tmn1 0.4 0.2 0.4 5.5 1 1.4 

tmn 0.4 0.1 0.1 0 0.1 0 

tmx 0.4 1 0.4 0.1 0.2 0 

 

 

 


