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Abstract

The aim was to compare proportional hazards models for matched
failure time data in terms of underlying assumptions and requirements
for causal inference. We also wanted to compare the models in terms
of power and performance under model misspecification. Four mod-
els were compared: the stable-Weibull frailty model, the stratified Cox
model, the marginal Weibull model and the marginal Cox model. Strict
assumptions behind the stable-Weibull model makes it less useful for
unmatched data. The stratified Cox model is the most appropriate
model when one wants to make causal inference from unmatched clus-
tered data. Matched data from different frailty models were generated
to compare the methods empirically. The power of the stable-Weibull
model was significantly larger than the power of the stratified Cox.
The performance of the stable-Weibull model was sensitive to misspec-
ification of the baseline hazard. The marginal Weibull model and the
marginal Cox model performed very similar. For small intra-cluster
dependence, they performed similar to the stable-Weibull model in
terms of power. When misspecified, the marginal Cox performed well
for small to moderate dependence.
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1 Introduction

Mathematical statistics gives us models to measure statistical associations.
In applied science, on the other hand, one is often primarily concerned with
causal relations. The fact that there is an association between two factors
does not, in itself, entail that there is a causal relation between the factors.
In order to give a causal interpretation of a statistical association, one has
to be sure that the association is not confounded by other factors. For
example, suppose a statistical association between coffee consumption and
lung cancer is found. Although it might not be wrong to say that high
consumers of coffee run a higher risk of getting lung cancer, we shouldn’t
conclude that coffee or caffeine causes lung cancer. It is well established
that smoking causes cancer. It is also known that high consumers of coffee
generally smoke more than low consumers and non coffee drinkers. Therefore
the association between coffee drinking and smoking may, to some extent,
be caused by the higher prevalence of smoking among high consumers of
coffee than among low consumers. If the variable smoking is measured, this
measure may be used to estimate the effect of coffee drinking conditional on
smoking status. This effect is then unconfounded by the variable smoking.

To increase efficiency, matching is often used in observational studies.
For binary outcomes (event/no event) it’s possible to match on the outcome.
In 1:k matched case-control studies each case (an individual with an event)
is matched to k unrelated controls (individuals without an event) with the
same values of the confounding variables. This procedure aims to maximize
the efficiency when adjusting for the confounding variables. In the above
example, this corresponds to matching each lung cancer case to k controls
without lung cancer such that the cases have a similar history of smoking as
the controls.

In 1:k matched cohort studies the matching is instead made for a binary
exposure. Each exposed individual is then matched to k unrelated controls
with the same values of the confounding variables. In this way, the distri-
bution of the confounding variables will be the same among the exposed
as among the unexposed. Thus the association between the confounding
variables and the exposure is eliminated. In terms of the example, this corre-
sponds to matching the high consumers of coffee with low consumer of coffee
with the same smoking habits. In this report we will only consider 1:k cohort
studies.

In contrast to data matched by design, data may be “naturally” matched,
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as in sibling studies. Siblings share a lot of potential confounders, e.g. child-
hood environment and DNA. For instance, monozygotic twins share all of
their DNA, while other full siblings share (on average) 50 % of their DNA.
By choosing sibling pairs which are discordant on the exposure of interest
(that is one exposed and one unexposed), we get 1:1 matched cohort data. In
this way, the data is matched on many potential confounders, some of which
may be hard or impossible to measure.

Matched data contain clusters of individuals sharing the same values of
the matching variables. Because of this, there will be a correlation between
members of the same cluster. Statistical analysis of matched designs have to
account for this correlation in data. Otherwise estimates may be biased or
the standard errors might be wrong.

One way to deal with this correlation is to measure the association be-
tween the exposure and outcome conditional on cluster membership. The
association is assumed to be of the same magnitude on the chosen scale
across all clusters (e.g. constant conditional odds ratio). Such an associa-
tion is often called a “cluster-specific” association or a “within” association.
Sjölander et al. (2012) have shown that, for 1:1 matched cohorts with binary
exposure and binary outcomes, if the set of matching variables contain all
confounders, the (logistic) within association can be interpreted as the causal
effect in a sub-population defined by the distinct levels of the matching vari-
ables. In general, these methods assume independence within clusters. This
is generally true for data matched by design. For “naturally” matched data,
like twin or sibling data, this is not necessarily true. For instance, if an event
in a twin has an influence on the probablity of an event in his/her co-twin,
their outcomes are dependent conditional on the cluster.

One may also focus on the marginal (over clusters) association between
exposure and outcome, treating the dependence within clusters a nuisance.
Such models are often described as “population averaged” models. For 1:k
matched cohorts, the association between the matching variables and expo-
sure is blocked. Therefore, assuming that the set of matching variables con-
tains all confounders, the marginal association can be interpreted as a causal
effect in a sub-population where the matching variables are distributed as
among the exposed subjects (Sjölander and Greenland, 2013). The stan-
dard errors will have to be adjusted for the correlation within data due to
clustering. This is typically done by a sandwich formula or bootstrapping.

In general, the conditional association and the marginal association do
not coincide, even when both the conditional and the marginal model are
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correctly specified for the problem. This is often referred to as the “non-
collapsability” of effect measures (Greenland et al., 1999). One exception is
the common linear regression model.

For survival outcomes it is common to model the association between the
exposure and outcome as a proportional hazards model, in which exposure
and other covariates are assumed to act multiplicatively on the hazard rate
and with the associations quantified by logarithms of hazard ratios. Through-
out, we let β denote the log hazard ratio of the exposed to the unexposed,
conditional on the cluster. We let β∗ denote the marginal (over clusters) log
hazard ratio of the exposed to the unexposed.

Several modifications of Cox’s original proportional hazards model (Cox,
1972) have been proposed to account for clustered data. Some of these models
estimate β and some estimate β∗. Both of these types of models may be
parametric or semi-parametric.

In the stratified Cox regression model, introduced by Holt and Prentice
(1974), the effect of belonging to a certain cluster (the cluster effect) is mod-
eled with a separate baseline hazard for each cluster which is cancelled out
using a separate conditional likelihood for each cluster.

A common alternative is the family of frailty models, where the cluster-
ing is accounted for by a random effect (Clayton, 1978; Oakes, 1982, 1986;
Hougaard, 1986). This random effect is modeled parametrically and is mostly
assumed to act multiplicatively on a baseline hazard. Clusters with more
“frail” individuals will have a higher hazard, modeled as a higher value of
the random effect. For this reason, the random effect is commonly denoted
“frailty”. Frailty models may be fully parametric (modelling the baseline
hazard) or semi-parametric (leaving the baseline hazard unspecified). The
most common versions of the frailty models will target β like the stratified
Cox model. In addition, the frailty models also give us a measure of the
effect of the cluster and to test if there really is a cluster effect.

Another approach is to target β∗, assuming proportional marginal haz-
ards, and adjust the standard errors to account for the correlations in-
duced by the clustering by a sandwich formula. β∗ may be estimated semi-
parametrically as in Cox original model (Lee et al., 1992) or parametrically
(Huster et al., 1989).

The advantages and disadvantages of each of these two approaches have
been discussed in many articles. However, they are not comparable except in
special cases, since the assumption of proportionality of marginal hazards and
the assumption of proportionality of conditional hazards are not equivalent.
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Therefore, models estimating β may be misspecified for data where models
estimating β∗ are correctly specified, and vice versa. Even when both types
of models are correctly specified, β and β∗ are generally different, due to the
non-collapsability of the hazard ratio (Greenland, 1996).

Several studies have compared different survival models for clustered data.
Lorino et al. (2004) compared marginal models with semi-parametric frailty
models in terms of power and robustness for clustered data. The frailty
distribution was modeled both as gamma and log-normal. Manatunga and
Oakes (1999) compared the stratified Cox model, the parametric frailty model
and the marginal Cox model in terms of efficiency. By simulating from the
stable-Weibull frailty model proposed by Hougaard (1986), all models were
correctly specified, so comparisons between marginal and conditional effect
estimates were fair.

In this report we will provide a detailed comparison between the stratified
Cox model, the stable-Weibull frailty model, the marginal Cox model and a
marginal Weibull model in terms of underlying assumption and their impli-
cations for inference. Using simulations, we will also compare the models in
terms of power when both models are correctly specified. Further, we will
compare the models in terms of performance under model misspecification.

2 Survival models for clustered data

Suppose we observe a cohort of individuals in N clusters, each of size n. Let
Tij and Xij denote the survival time and exposure respectively for the jth
individual in cluster i. The survival function for Tij|Xij is defined as

S(tij|Xij) = P (Tij > tij|Xij)

and the hazard function for Tij|Xij is defined as

h(tij|Xij) = lim
d→0

P (tij ≤ Tij < tij + d|Xij, Tij ≥ tij)

d

Suppose that we have right censoring. We model the censoring with a vari-
able Cij, denoting the time at which individual j in cluster i is censored.
Define the failure indicator as ∆ij = I(Tij ≤ Cij) and let Vij = min(Tij, Cij).
What we actually observe are the realisations (vij, δij, xij) of the random
vectors (Vij,∆ij, Xij). Note that this model is counterfactual, since a fail-
ure (or death) and censoring cannot occur for the same individual. Thus
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the random vectors (Tij, Cij) cannot be observed. The lifetimes Tij can be
considered to be hypothetical quantities that would all be realized if no cen-
soring had occured. Under certain conditions the parameters indexing the
distributions for the lifetimes Tij are still identifiable from the observerved
vectors (vij, δij, xij). We will discuss this further in sections 2.1.1 and 2.2.1
below.

It will be convenient to use boldface symbols to denote random vectors.
We will use T i, Ci, and X i to denote the vectors (Ti1, ..., Tin), (Ci1, ..., Cin)
and (Xi1, ..., Xin) respectively.

2.1 Conditional models

2.1.1 Assumptions

It will be convenient to introduce a scalar random variable Zi, which is sup-
posed to summarize all observed and unobserved factors (i.e. the set of
matching variables) that are shared among the members of cluster i. Condi-
tioning on cluster i is then equivalent with conditioning on Zi. We will refer
to Zi as the “frailty” of cluster i. Since individuals in the same cluster have
the same frailty, their observed outcomes will be dependent (marginally over
the frailty). However, we need to assume that there are no dependencies
between clusters, that is

(T 1,C1,X1, Z1), ..., (TN ,CN ,XN , ZN) are independent (1)

This assumption is generally true for data both matched by design (like 1:k
matched cohort designs) and for naturally matched data (like twin data),
since any two clusters are typically unrelated.

We will also assume independence within clusters, conditional on the
frailty, that is

(Ti1, Ci1, Xi1)|Zi, ..., (Tin, Cin, Xin)|Zi are independent for i=1,...,N (2)

which implies that

p(T i,Ci|X i, Zi) =
n∏
j=1

p(Tij, Cij|Xij, Zi)

for each cluster i. Assumption (2) is generally true for data matched by
design, since the frailty (i.e. the set of matching variables) is all that “ties
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together” individuals from the same cluster. However, it is not necessarily
true for naturally matched data. For instance, if the event in one member
of a twin pair affects the event of the other twin, then the survival times are
not independent. To be able to identify parameters indexing the distribution
for Tij|Xij, Zi, we also need to assume random censoring within clusters

Tij⊥Cij|Xij, Zi (3)

This assumption does not necessarily hold. Further, it is not possible to test
this assumption from any observed data (Tsiatis, 1975).

Finally, we assume proportionality between the conditional (on Zi) haz-
ards

h(tij|Xij, Zi)

h(tij′|Xij′ , Zi)
= eβ(Xij−Xij′ ) (4)

2.1.2 The Stratified Cox model

In the stratified Cox model for clustered data, the hazards in each cluster
are modeled separately. The hazards are assumed to have the form

h(tij|Xij, Zi) = h0i(tij)e
βXij

where Zi is absorbed into the unspecified function h0i(t). This model targets
the conditional log hazard ratio β, assuming (4). The assumptions (1)-(3)
allow us to estimate the parameter β by maximizing the partial likelihood

PL(β) =
N∏
i=1

n∏
j=1

{
h(vij|Xij, Zi; β)∑

(i,j′)∈rij h(vij′ |Xij′ , Zi; β)

}δij

=
N∏
i=1

n∏
j=1

{
h0i(vij)e

βXij∑
(i,j′)∈rij h0i(vij)e

βXij′

}δij

=
N∏
i=1

n∏
j=1

{
eβXij∑

(i,j′)∈rij e
βXij′

}δij

(5)

with respect to β. Here rij = {(i, j′)|vij′ ≥ vij} denotes the risk set for
tij in cluster i. Note that (5) does not contain the cluster specific hazards
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h0i. Therefore, the estimate β̂ does not depend on the Zi’s. For uncensored
matched pair data with no ties, Holt and Prentice (1974) derived simple
expressions for the estimate and its asymptotic variance. Let Ti0 and Ti1
denote lifetimes of unexposed and exposed individuals respectively. Then
the partial likelihood estimate can be written

β̂ = log

(
p̂

1− p̂

)
where p̂ =

∑N
i=1 I(ti1<ti0)

N
is the non-parametric maximum likelihood estimate

of the probability p = P (Ti1 < Ti0). They also showed that in the stratified

Cox model, β is indeed equal to log
(

p
1−p

)
. This means that we only need

the rank statistics I(Ti1 < Ti0) for i = 1, ..., N to estimate β. The asymptotic
variance of this estimate is

V ar(β̂) =
(1 + eβ)2

Neβ

Note that this variance only depends on the real value of β and the number of
clusters N and not on the nuisance functions h0i. In general, we cannot use
these formulas in the presence of censoring, since in this case the distribution
of the observed ranks I(vi1 < vi0) does not coincide with the ranks I(ti1 <
ti0) of the survival times. However, as Holt and Prentice (1974) showed,
simple formulas are still possible in the case where the censoring time is the
same for both pair members (e.g. Type I right censoring). When both pair
members are censored, no contribution is made to the partial likelihood. All
other cases will still contribute information about the statistic I(Ti1 < Ti0).

Let U = {k|max(δk1, δk0) = 1}. Then the estimate β̂ is the same as in
the uncensored case, but with p̂ = 1

|U |
∑

k∈U I(vk1 < vk0). The asymptotic
variance can be written

V ar(β̂) =
(1 + eβ)2

|U |eβ
(6)

2.1.3 Parametric frailty models

The most common version of the frailty model is the shared frailty extension
of the proportional hazards model, where the cluster-specific baseline hazards
have the form

h(tij|Xij, Zi) = Zih0(tij)e
βXij
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where the Zi’s are assumed to be independent samples of some paramet-
ric distribution, most commonly gamma, lognormal or positive stable. For
identification purposes, it makes sense to restrict the paramater space of the
frailty distribution to one dimension, such that the frailty distribution only
depends on one parameter. In frailty models, the conditional hazards are
proportional, in line with assumption (4). The conditional survival functions
have the form

S(tij|Xij, Zi) = exp{−ZiH0(tij)e
βXij} (7)

where H0(t) =
∫ t
0
h0(s)ds. Note that the frailty model can be seen a special

case of the stratified Cox model with hi0(t) = Zih0(t).
The baseline hazard h0(t) may be left unspecified as in Cox models, giving

us a semi-parametric model. The conditional effect β can then be estimated
using the EM algorithm (Klein, 1992). If the baseline hazard is modeled as
the hazard for some parametric distribution, then we get a fully parametric
model. It is then possible to derive the densities marginalized over the frail-
ties. β can then be estimated by maximizing the likelihood based on these
densities. We will henceforth focus on fully parametric frailty models.

There are two assumptions that are required by frailty models, but not
required by stratified Cox models. These two assumptions are often unstated
in the literature. For instance, these assumptions are not mentioned in the
standard textbooks by Hougaard (2000) and Duchateau and Janssen (2008).
The first assumption is that the exposure is independent of the frailty:

X i⊥Zi , for i = 1, ..., N (8)

If this assumption is violated, the effect estimate β̂ is no longer consistent
for β. The assumption (8) is not generally true. For instance, (8) is violated
if Z contains confounders. However, in matched cohort studies, (8) holds
automatically, since the vector X i is constant over i. For instance, in 1:1
matched studies, (Xi1, Xi2) = (1, 0), since the ordering of Xi1 and Xi2 is
unimportant. In section 3 we will discuss the implications of violations of
(8).

The second assumption is that censoring is independent of the frailty
conditional on the exposure, that is

Cij⊥Zi|Xij (9)

The assumption (9) does not necessarily hold for real data. In twin studies
for instance, Zi represents the shared DNA (amongst other factors). It is not
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unreasonable to assume that the shared DNA in a cluster is associated with
elevated levels of competing risks represented by Ci1, ..., C1n.

Together with the assumptions (1)-(3), the assumptions (8) and (9) are
required in order to compute the full likelihood based on the observed data.
To clarify the roles of the assumptions (8) and (9), we will now derive the
likelihood for a fully parametric frailty model. We emphasize that the de-
tailed derivation (starting from observed data) is typically not provided in
standard textbooks on frailty models, e.g. Hougaard (2000) and Duchateau
and Janssen (2008). Suppose that we have observed the vector (vij, δij, xij)
for i = 1, ..., n and j = 1, ..., n. Now

Vij = vij,∆ij = δij, Xij = xij, Zi = zi

⇐⇒{
Tij = vij, Cij > vij, Xij = xij, Zi = zi when δij = 1

Tij > vij, Cij = vij, Xij = xij, Zi = zi when δij = 0

so the likelihood can be expressed in terms of Tij, Cij, Xij, and Zi. By as-
sumption (1) the likelihood factorizes to clusterwise contributions. To make
notation more reader friendly, we can therefore drop the cluster specific sub-
scripts i. Let k denote the number of observations in a cluster that are not
censored. Since the ordering of the observations is arbitrary, we can assume
that δ1 = ... = δk = 1 and δk+1 = ... = δn = 0. Then, conditional on X, the
clusters contribution to the likelihood is

p(T1 = v1, ..., Tk = vk, Tk+1 > vk+1, ..., Tn > vn,

C1 > v1, ..., Ck > vk, Ck+1 = vk+1, ..., Cn = vn|X)

= EZ|X{p(T1 = v1, ..., Tk = vk, Tk+1 > vk+1, ..., Tn > vn,

C1 > v1, ..., Ck > vk, Ck+1 = vk+1, ..., Cn = vn|X, Z)}

By assumption (2) of conditional independence, this equals

EZ|X

{
k∏
j=1

p(Tj = v1, Cj > vj|Xj, Z)
n∏

j=k+1

p(Tj > v1, Cj = vj|Xj, Z)

}
(10)
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By assumption (3) the lifetimes and censoring times are independent condi-
tional on Z and X. Therefore

p(Tj = vj, Cj > vj|Xj, Z) = p(Tj = vj|Xj, Z)p(Cj > vj|Xj, Z)

and

p(Tj > v1, Cj = vj|Xj, Z) = p(Tj > vj|Xj, Z)p(Cj = vj|Xj, Z)

By assumption (9), censoring is independent of the frailty, so

p(Cj > vj|Xj, Z) = p(Cj > vj|Xj)

and
p(Cj = vj|Xj, Z) = p(Cj = vj|Xj)

Therefore, (10) equals

EZ|X

{
k∏
j=1

p(Tj = vj|Xj, Z)
n∏

j=k+1

p(Tj > vj|Xj, Z)

}
k∏
j=1

p(Cj > vj|Xj)
n∏

j=k+1

p(Cj = vj|Xj) (11)

Thus, the censoring times only contributes to the likelihood with a factor that
does not dependend on the parameters of the distributions for the lifetimes
Tj and the frailty Z. Without assumptions (3) and (9), we would not be able
to factorize out the “censoring” part from the expectation in (10).

Assumption (8) of independence between X and Z now implies that we
can use the unconditional distribution of Z when integrating out Z, that is

EZ|X

{
k∏
j=1

p(Tj = vj|Xj, Z)
n∏

j=k+1

p(Tj > vj|Xj, Z)

}

= EZ

{
k∏
j=1

p(Tj = vj|Xj, Z)
n∏

j=k+1

p(Tj > vj|Xj, Z)

}
(12)
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If the distribution of Z|X is unknown, we will not be able to compute the
likelihood marginalized over Z|X. The assumption (8) means that Z|X have
the same distribution as Z.

Since
p(Tj > vj|Xj, Z) = S(tj|Xj, Z)

and

p(Tj = vj|Xj, Z) = − ∂

∂tj
S(tj|Xj, Z)

we can rewrite (12) in terms of the conditional survival functions:

EZ

{
(−1)k

∂k

∂v1, ..., vk

n∏
j=1

S(vj|Xj, Z)

}

By switching integration and derivation we then get

EZ

{
(−1)k

∂k

∂v1, ..., vk

n∏
j=1

S(vj|Xj, Z)

}
= (−1)k

∂k

∂v1, ..., vk
EZ

{
n∏
j=1

S(vj|Xj, Z)

}

Now,

EZ

[
n∏
j=1

S(vj|Xj, Z)

]

= EZ

[
n∏
j=1

exp{−ZH0(vj)e
βXj}

]

= EZ

[
exp{−Z

n∑
j=1

H0(vj)e
βXj}

]

= LZ

{
n∑
j=1

H0(vj)e
βXj

}

where LZ is the the Laplace transform of the density of Z. Thus the likelihood
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contribution is

(−1)k
∂k

∂v1, ..., vk
LZ

{
n∑
j=1

H0(vj)e
βXj

}

= (−1)k
k∏
j=1

{
h0(vj)e

βXj
}
L
(k)
Z

{
n∑
j=1

H0(vj)e
βXj

}
Reintroducing the cluster subscripts i and letting Di =

∑n
j=1 δij, we can now

write the full likelihood as

L(β) =
N∏
i=1

[
(−1)Di

{
n∏
j=1

h(vij|Xij)
δij

}
L
(Di)
Z

{
n∑
j=1

H(vij|Xij)

}]

2.1.4 The stable-Weibull model

In this report we will use a parametric frailty model with Weibull baseline
hazards and positive stable frailties (Hougaard, 1986). The reason is that
in this model, both the conditional hazards and the marginal hazards are
proportional. In the stable-Weibull model, the baseline hazard is modeled
parametrically as a Weibull hazard:

h0(t) = λ0ct
c−1

This gives us the cumulative hazards

H(t|X) = λ0e
βXtc

The frailty is assumed to belong to the family of positive stable distributions
and has density

fZ(z) = − 1

πz

∞∑
k=1

Γ(kα + 1)

k!
(−z−α)ksin(kαπ)

where 0 < α < 1. Fortunately, the Laplace transform has a simpler ex-
pression: L(s) = e−s

α
. Therefore, the likelihood from each cluster with k

uncensored observations is

(−1)k
∂k

∂v1, ..., vk
LZ

{
n∑
j=1

H0(vj)e
βXj

}

= (−1)k
∂k

∂v1, ..., vk
exp

{
−

(
n∑
j=1

λ0e
βXjvcj

)α}
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2.2 Marginal models

In marginal models for clustered data, the estimation of β∗ is based on the
marginal (over Z) density of the lifetimes. Standard errors are then corrected
for the correlations due to clustering in data. In the parametric case, this
means that the likelihood is based on the marginal distributions. In the
semi-parametric case this means that we use the partial likelihood from the
ordinary Cox regression model. It can be shown that this procedure gives
consistent estimates of β∗ both in the parametric case (Huster et al., 1989)
and in the semi-parametric case (Lee et al., 1992). The standard errors
are then corrected for the correlations within the clusters, using a sandwich
formula or a grouped jackknife procedure.

2.2.1 Assumptions

Since marginal models does not include a random component Z different
assumptions are needed for marginal models. We will still need to assume
independence between clusters, that is

(T 1,C1,X1), ..., (TN ,CN ,XN) are independent (13)

This assumption actually follows from (1).
We also need to assume that independent censoring for each individual,

that is
Tij⊥Cij|Xij (14)

We will also need to assume proportional marginal hazards, that is

h(t|X)

h(t|X ′)
= eβ(X−X

′) (15)

Note that the assumption (15) is neither implied by nor implies the as-
sumption (4) of conditional proportionality.

We don’t need to assume that X is independent of cluster membership
for valid inference. However, violations of this assumption will have conse-
quences for the interpretation of the estimate. This will be further discussed
in section 3.
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2.2.2 The marginal Cox model

The marginal Cox model specifies that

h(tij|Xij) = h0(tij)e
β∗Xij

where h0 is left unspecified. β∗ is then estimated by maximizing the partial
likelihood

PL(β∗) =
N∏
i=1

n∏
j=1

(
h(vij|Xij)∑

vi′,j′≥vij
h(vi′,j′ |Xi′,j′)

)δij

=
N∏
i=1

n∏
j=1

(
eβ
∗Xij∑

vi′,j′≥vij
eβ
∗Xi′,j′

)δij

(16)

Note that this is not a proper partial likelihood, since it ignores the correla-
tions due to clustering. However, Lee et al. (1992) showed that the estimator
based on (16) is consistent for β∗ provided that the marginal distributions
are correctly specified. They also derived an sandwich estimator to correct
the standard errors for the correlations due to clustering.

2.2.3 The marginal Weibull model

Parametric marginal modelling only requires a specification of the marginal
survival times along with information of cluster membership. The marginal
survival times can also be modeled as following some parametric distribu-
tion, most often exponential, Weibull, normal or lognormal. A marginal
parametric model may be derived from a parametric frailty model by taking
the expectation over the conditional survival functions:

S(t|X)

= EZ|X [S(t|X,Z)]

= EZ [S(t|X,Z)]

= EZ
[
exp

{
−ZH0(t)e

βX
}]

= LZ
{
H0(t)e

βX
}

Then the marginal hazard functions are

h(t|X) =
∂

∂t
[−log{S(t|X)}]
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Note that the marginal hazard functions derived from a parametric frailty
model need not be proportional. An exception is the stable-Weibull model,
where the marginal survival functions are

exp
(
−λα0 eαβXtαc

)
with marginal hazards

h(t|X) = λα0 e
αβXαctαc−1

This corresponds to Weibull distributed survival times with scale parameters
λα0 e

αβX and shape parameter αc. The log hazard ratio is β∗ = αβ, which is
the same parameter as the one targeted in the marginal Cox model.

We will now derive the likelihood for individual j in cluster i, based on
the marginal density under the Weibull model. We have that

p(Vij = vij,∆ij = δij|Xij)

= {p(Tij = vij, Cij > vij|Xij)}δij {p(Tij > vij, Cij = vij|Xij)}1−δij

= {p(Tij = vij|Xij)}δij {p(Tij > vij|Xij)}1−δij

{p(Cij > vij|Xij)}δij {p(Cij = vij|Xij)}1−δij

where the last equality follows from the assumption (14) of random censoring.
Multiplying over all clusters and individuals, and ignoring the terms involving
Cij, gives

L(β) =
N∏
i=1

n∏
j=1

{p(Tij = vij|Xij)}δij {p(Tij > vij|Xij)}1−δij

=
N∏
i=1

n∏
j=1

f(vij|Xij)
δijS(vij|Xij)

1−δij

=
N∏
i=1

n∏
j=1

h(vij|Xij)
δijS(vij|Xij)

=
N∏
i=1

n∏
j=1

(
λα0 e

αβXijαctαc−1ij

)δij
exp

(
−λα0 eαβXij tαcij

)
(17)
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The parameters α, β, λ0 and c are not identifiable by maximizing this ex-
pression. To see this, suppose that α, β, λ0 and c maximizes the expres-
sion. Then, for any p > 0, the parameter combination αp = pα, βp = β/p,
λp = (λ0)

(1/p) and cp = c/p will also maximize the expression. Letting
β∗ = αβ, λ∗ = λα0 and c∗ = αc, we can rewrite the the product (17) as

N∏
i=1

n∏
j=1

(
λ∗eβ

∗Xijc∗tc
∗−1
ij

)δij
exp

(
−λ∗eβ∗Xij tc∗ij

)
which is a likelihood for independent Weibull distributed survival times.
From this product, the parameters β∗, λ∗ and c∗ are identifiable. The uniden-
tifiability of α from the marginal distributions was a motivation behind the
stable-Weibull model. If the dependence parameter is identifiable from the
marginal distributions (as in other common frailty models), then it mea-
sures something more besides dependence, which is an undesirable property
(Hougaard, 1986).

We note that (17) is not a proper likelihood for the data, since it ig-
nores the clustering. However, as Huster et al. (1989) have demonstrated,
maximizing this expression with respect to (λ∗, β∗, c∗) will yield a consistent
estimate of β∗.

3 Matched data and general clustered data

For data that is matched on the exposure, the exposure vector is fixed over
the clusters. Therefore there can be no dependence between the cluster effect
Z and the exposure vector X, meaning that assumption (8) is always fulfilled
for matched data. For general data, there may be dependence between the
frailty Z and the exposure X. Therefore, the association between the expo-
sure and survival is confounded by Z. This will have different consequences
for different models.

For instance, the parametric frailty models are misspecified when (8) is vi-
olated, since the equality (12) does not hold. Ignoring violations of (8) may
therefore lead to biased effect estimates when applying the frailty model
(Sjölander et al., 2013). A possible workaround to the problem might be
to use a within-between decomposition of the covariate effect, in analogy
with a method for generalized linear mixed models proposed by Neuhaus
and Kalbfleisch (1998). For generalized linear mixed models, they decom-
posed βXj into the components βbetweenX̄ and βwithin(X̄ −Xj), where X̄ =
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1
n

∑n
j=1Xj. They showed that the estimate β̂within consistently estimates the

conditional effect β, even when there was dependence between the cluster ef-
fect Z and the covariates X1, ..., Xn. However, few attempts have been made
to extend this method to models for survival data.

For marginal methods, violation of (8) will still lead to valid estimates
in the sense that the estimate measures the population averaged association.
However, one may no longer be able to give a causal interpretation of this
association, since it is confounded by Z.

The stratified Cox model does not rely on assumption (8). In the stratified
Cox model, the effect β is calculated conditionally on Z. Since Z is canceled
out in the conditional likelihood, the stratified Cox model will still estimate
an association that is unconfounded by Z (Sjölander et al., 2013). However,
the efficiency gains of using general data instead of matched data with the
stratified Cox model may be small. For twin data with one binary exposure
and no other covariates, pairs concordant on the exposure will contribute
to the partial likelihood by a constant. Therefore, the estimate and the
variance will be the same as when only matched pair data are used. With
other covariates in the model, some increase in efficiency might be achieved.

4 An important special case of parametric

frailty models

As the distribution of Z becomes degenerate at some point c > 0, that is
when Z = c for some constant c, the multivariate survival function becomes

S(t1, ..., tn|X1, ..., Xn, Z = c) = exp

(
−c

n∑
j=1

H(tj|Xj)

)
which factorizes, implying marginal independence between the lifetimes. In
general, this corresponds to the case when the frailty variance approaches 0.
The positive stable distribution used here have no finite mean or variance,
but is degenerate for α = 1 at 1 (Hougaard, 2000), meaning that c = 1. This
also means that the marginal hazards

h(t|X) = ch0(t)e
βX

are proportional. From the form of the marginal hazard function we can
also see that the the conditional and marginal associations under the stable-
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Weibull model coincide, that is β = β∗.

5 Simulations

Four estimation methods were compared: A fully parametric stable-Weibull
model, a stratified Cox model, a marginal Cox model and a marginal Weibull
model. These methods were compared in terms of statistical power (section
5.1) and performance under model misspecification (section 5.2).

The simulations were performed with varying amount dependence be-
tween individuals in the same cluster. The dependence was measured with
Kendall’s τ , defined as

τ = E[sign{(Tij − Ti′j)(Tij′ − Ti′j′)}]

where i 6= i′ and j 6= j′. This dependence measure is similar to the Pearson
correlation in that it has the range [−1, 1] and that Tij⊥Tij′ for j 6= j′

implies that τ = 0. However, Kendall’s τ makes less assumptions about the
dependence structure than the Pearson correlation. Like the Cox regression
methods, this measure is based on the ranks and not on the actual values of
the observations. In frailty models, τ can be calculated from the parameter
of the frailty distribution. As we will only look at positive dependence,
Kendall’s τ will be non-negative.

Uniform censoring was used in all censoring, with parameter chosen to
achieve the desired amount of censoring. For example, suppose the marginal
univariate survival function is S(t|X). If we want to achieve a censored
proportion of pc when generating clusters with 1 exposed and k unexposed
with C ∼ U(0, cmax), then we can find the parameter cmax of the censoring
distribution by solving the equation

pm = P (C < T ) =

∫ cmax

0

1

cmax

{
1

k
S(t|X = 1) +

k − 1

k
S(t|X = 0)

}
dt

for cmax
In all simulations, data were generated under the key assumptions (1),

(2), (3), (4), (8) and (9).
The software package R version 2.15 was used to simulate the data. For

estimation from the stable-Weibull method, package parfm version 2.02 was
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used. For the stratified Cox, the marginal Cox and the marginal Weibull
methods the package survival version 2.36 was used. The standard errors
for the marginal Weibull estimates was calculated using a ’sandwich’ esti-
mator. For the marginal Cox method, standard error was calculated using a
grouped jackknife procedure, which is asymptotically equivalent (Lipsitz and
Parzen, 1996) to the sandwich estimator proposed by Lee et al. (1992).

5.1 Statistical power

As both conditional and marginal models are correctly specified under the
stable-Weibull model, we simulated data from this model to compare the
models in terms of statistical power. Although the methods target different
parameters (β and β∗), they are comparable in terms of power when testing
the hypothesis H0 : β = 0 since β = 0 iff β∗ = 0.

For values of τ between 0.1 and 0.8, lifetimes of 200 clusters were gener-
ated 1000 times from to the model

α = 1− τ
Zi ∼ Ps(ατ )

Tij|Xij, Zi ∼ Weibull(Ziλ0e
βXij , c)

The baseline hazard scale and shape were set to λ0 = 0.75 and c = 2 re-
spectively. To study the impact of different cluster sizes, both 1:1 and 1:5
matched cohort data were generated. Censoring was either 10 % or 50 %. In
all simulations β was set to 0.2. For each value of τ , and each combination
of cluster size and censoring fraction, the empirical power was computed; i.e.
the probability (over 1000 samples) to reject the hypothesis H0 : β = 0, using
a Wald test at 5 % significance level. The results are shown in Figure 1.
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Figure 1: Power rejecting the hypothesis H0 : β = 0 when β = 0.2 under the
stable-Weibull model

The power of the stable-Weibull model was the highest for all models.
This was expected, since this is the fully parametric model for data. The
power of stratified Cox model was substantially smaller in all scenarios. The
power of the stratified Cox model was stable over τ in all four scenarios
(a)-(b). As we saw in section 2.1.2, neither the estimate β̂ nor the variance

V ar(β̂) for the stratified Cox model depend on the amount of dependence
due to the clustering when we have uncensored matched pairs data. Figure
1 suggests that both the estimate and its variance is also insensitive to this
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dependence when clusters a larger and when data are censored.
In contrast, the power of the marginal Cox model was very similar to

the fully parametric marginal Weibull model. As the dependence approaches
0, the marginal methods approached the same power as the stable-Weibull
model. This was expected from theory, as discussed in section 4. As the
dependence increased, the power of the marginal models decreased substan-
tially.

In all scenarios, the power of the marginal models was smaller compared
to the stratified Cox model for higher values of τ with lines intersecting close
to some value of τ . This value of τ was less influenced by the amount of
censoring than by the cluster size. It appears that the stratified Cox model
gains relatively more power when the cluster size is increased.

The same simulations were repeated with β = 0. By construction of
the statistical test, the (asymptotic) ”power” should in this case equal the
significance level, i.e. 5 %. As seen in Figure 2, all models have a power close
to 5 % for all values of τ in all scenarios.
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Figure 2: Probability rejecting the hypothesis H0 : β = 0 when β = 0 under
the stable-Weibull model

5.2 Performance under model misspecification

To compare the stable-Weibull model, the stratified Cox model, the marginal
Cox model and the Weibull model in terms of performance under model
misspecification, data were generated from four different models - a stable-
Weibull model (included as a comparison), a stable-Gompertz model, a
gamma-Weibull model and a gamma-Gompertz model (see the appendix for
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a description of these models). For the Weibull baseline hazard, the scale
and shape was λ0 = 2 and c = 2 respectively. For the Gompertz baseline
hazards, the scale and shape was set to b = 0.75 and η = 2 respectively. β
was set to 0.2 for all models. For each model, Kendall’s τ was varied between
0.1 and 0.8. For each value of τ , 1000 samples of 200 1:1 matched pairs were
simulated with 10 % uniform censoring. As in section 5.1 the empirical power
was calculated. The results are shown in Figure 3.
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Figure 3: Power rejecting the hypothesis H0 : β = 0 when β = 0.2 under
different frailty-models
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Under the stable-Weibull model all models were correctly specified. When
data were generated from other frailty models, only the stratified Cox model
was correctly specified. In spite of this, the power for the stratified Cox
model was relatively low in all scenarios. The stable-Weibull performed well
when only the frailty was misspecified under the gamma-Weibull model, but
appeared to be sensitive to misspecification of the baseline hazard in the sense
that the power was low when when the baseline hazard was misspecified.

The marginal models performed very similarly under the stable-Gompertz
model and the gamma-Gompertz model. Under the gamma-Weibull model
the power for the marginal Weibull model decreased rapidly with increasing
τ . Compared to the stable-Weibull model, the marginal methods performed
well when the baseline hazard was misspecified for the stable-Weibull model.

Next, the simulations were repeated with β = 0 and the empirical ”power”
of testing H0 : β = 0 was computed as in section 5.1. The simulation results
are shown in Figure 4.
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Figure 4: Probability rejecting the hypothesis H0 : β = 0 when β = 0 under
different frailty models

The simulation under the stable-Weibull model from Figure 2(a), was
included here as a comparison. Under the other frailty models, only the
semiparametric models are correctly specified, since both conditional and
marginal models are proportional. In spite of this, the parametric Weibull
model worked well in all scenarios (power around 5 %). For models with
Gompertz baseline hazards, the power for the stable-Weibull method was
smaller than 5 % from moderate and large values of τ .
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6 Discussion

During the last two decades, models for clustered survival data have gener-
ated a lot of interest. However, few authors have focused on the consequences
of model choice on causal inference. In this report, we have compared the
stratified Cox model, parametric frailty models, the marginal Cox model and
marginal parametric models in terms of their underlying assumptions. In
particular, we demonstrated that parametric frailty models requires stricter
assumptions than the stratified Cox model regarding independence between
the frailty and exposure. A previous simulation study have shown that the
gamma-Weibull frailty model gives biased estimates of β when (8) is violated
compared to estimates from stratified Cox (Sjölander et al., 2013). There are
no reasons to assume that this is unique for the gamma-Weibull model, but
also extends to other frailty models. The stratified Cox model does not re-
quire this assumption, which may often be violated for real data. Further,
the stratified Cox model makes less strict assumptions regarding the inde-
pendence between censoring and the frailty. The stratified Cox model is thus
more robust than the parametric frailty model for general data, and may
therefore be preferable for general unmatched data.

With matched data, the assumption (8) is automatically fulfilled, so a

causal interpretation of the frailty estimate β̂ is more plausible. By choosing
a frailty model (parametric of semi-parametric) over a stratified Cox model,
gains in power can be expected. As Wild (1983) noted, the stratified Cox
model can be quite inefficient when compared to the gamma-Weibull frailty
model, since it does not utilize between-cluster information. The results in
section 5.1 showed considerable loss of power when the stratified Cox was
compared to the stable-Weibull model.

In applications, the marginal Cox model still dominates. Marginal models
does not require the assumption (8), and the estimated log hazard ratios can
be interpreted as population averaged association. As discussed in section
3, violations of (8) will have consequences for causal interpretation of the
association. If the cluster membership is both associated with exposure and
the outcome, then the association is confounded and cannot be given a causal
interpretation. However, when data are matched on all confounders, the
marginal association can have a causal interpretation. In section 5.1 we saw
that marginal models have good power relative to the fully parametric stable-
Weibull model when the dependence is small, but performs badly when the
dependence is larger.
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As Efron (1977) have demonstrated, the Cox regression estimate is asymp-
totically fully efficient for independent Weibull distributed data. The results
in section 5.1 suggest that this result also translates to clustered data, if
we by “fully” efficient mean the efficiency that can be achieved by the right
specification of the marginal distribution.

Previous authors have suggested that, since a frailty is often present in
real life data, marginal models are more often misspecified which might lead
to substantial bias for the estimates (Henderson and Oman, 1999). On the
other hand, inference from frailty models requires more assumptions regard-
ing the dependence structure. In frailty models we assume a parametric form
for the frailty and we also assume that it acts multiplicatively on a baseline
hazard. The semiparametric gamma frailty have been found to be robust
(Glidden and Vittinghoff, 2004). In section 5.2 we found that the stable-
Weibull model performed well (in terms of high power) when the frailty
distribution was misspecified. However, the performance was sensitive to
misspecification of the baseline hazard. This suggests that a semi-parametric
frailty model, with positive stable distributed frailty might perform better in
this scenario.

In this report we have focused on measures of association, that is the
marginal and the conditional log hazard ratios. The frailty parameter have
therefore been treated as a nuisance parameter. If the intra-cluster depen-
dence is of interest, frailty models gives a measure of this dependence through
the frailty parameter. In this situation, the positive stable distribution may
be preferable, since it is the only frailty distribution the parameter of which
is not identifiable from the marginal distribution and thus does not measure
anything else besides dependence (Hougaard, 1986).

7 Conclusions

The stratified Cox model makes few model assumptions and is thus very
robust. However, compared to other methods, the stratified Cox have rela-
tively poor performance in terms of power, especially when the cluster size
is small and when the dependence is small.

The stable-Weibull model makes many assumptions and may give biased
results when there is an association between exposure and dependence. When
data are matched, the stable-Weibull performs well in terms of power. It is
robust against model misspecification, although it gives lower than expected
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power when the baseline hazard is misspecified.
No substantial improvements in terms of power were seen for the marginal

Weibull model when it was compared to the marginal Cox model. The
marginal Cox model performed well for small dependence, but the power
decreased with increasing dependence. The marginal Cox model performed
similarly under model misspecification.
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A Distributions

A.1 The positive stable distribution

Positive stable distributions are a family of distributions with the property
that for n i.i.d positively stable distributions Z1, ..., Zn, there exists a function
c(n) such that c(n)Z1 has the same distribution as Z1+ ...+Zn. The function
c(n) has the form n1/α. The distribution has two parameters:α and δ with
Laplace transform L(s) = exp{−δsα/α} In this report, we will set δ = α and
let 0 < α ≤ 1. For α = 1, the distribution is degenerate. For 0 < α < 1 it
has density

f(y) = − 1

πy

∞∑
k=1

Γ(kα + 1)

k!
(−y−α)ksin(kαπ)

Even thought this distribution is a proper density for 0 < α < 1, it does not
have a finite mean. This distribution will be denoted Posstab(α) and has
Laplace transform

L(s) = e−s
α

(18)

For positive stable frailties with parameter α, Kendall’s τ is 1− α.

A.2 The gamma distribution

The Gamma distribution with shape parameter α and rate parameter θ, has
density

fZ(y) = θαyα−1e−θy/Γ(α)

with Laplace transform

L(s) =

(
θ

θ + s

)α
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In this report, we will set θ = α, so both shape and rate is α and density is

fZ(y) = ααyα−1e−αy/Γ(α)

The Laplace transform then becomes

L(s) =

(
α

α + s

)α
=
(

1 +
s

α

)−α
(19)

For gamma distributed frailties with shape and rate α, Kendall’s τ is 1
1+2α

.

A.3 The Weibull distribution

The cumulative hazard function for a Weibull distribution with shape pa-
rameter c and scale parameter λ has the form

H(t) = λtc

The cumulative hazard function

A.4 The Gompertz distribution

The Gompertz distribution with shape η and scale b have the hazard function

h(t) = ηe
t
b

and cumulative hazard function

H(t) = bη(e
t
b − 1)

B Parametric frailty models

If both the baseline distribution and the frailty distribution have scale param-
eters, all parameters are not indentifiable. That is why whe have to restrict
the parameters of the positive stable and gamma distributions.
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B.1 The stable-Weibull model

The conditional survival function can then be written

S(t1, ..., tn|X1, ..., Xn, Z) = exp

(
−Z

n∑
j=1

λeβXitci

)

Since the Laplace transform of the positive stable distribution is L(s) = e−s
α

and the cumulative hazard functions for the Weibull distribution is M(t) =
λtc, the unconditional survival function can be written as

S(t1, ..., tn|X1, ..., Xn) = exp

{
−

(
n∑
j=1

λeβXj tcj

)α}

The marginal lifetimes are Weibull distributed:

S(tj|Xj) = exp
(
−λαeαβXj tαcj

)
In the stable-Weibull model both the conditional and the marginal hazards
are proportional. The fact the dependency parameter α cannot be identified
from the marginal lifetimes is also unique for this model.

B.2 The gamma-Weibull model

The unconditional survival function can be written as

S(t1, ..., tn|X1, ..., Xn) =

(
1 +

∑n
j=1 λe

βXj tcj
α

)−α
This distribution has marginal distributions that are Burr distributed

S(tj|Xj) =

(
1 +

λeβXj tcj
α

)−α

B.3 The stable-Gompertz model

Conditional on X and Z the cumulative hazard function is defined as

H(t|X,Z) = ZeβXbη(e
t
b − 1)
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Since the Laplace transform of the positive stable distribution is L(s) = e−s
α

and the cumulative hazard functions for the Weibull distribution is M(t) =
λtc, the unconditional survival function can be written as

S(t1, ..., tn|X1, ..., Xn) = exp

[
−

{
n∑
j=1

eβXjbη
(
e
tj
b − 1

)}α]

The marginal survival functions are:

S(tj|Xj) = exp
{
−eαβXjbαηα

(
e
tj
b − 1

)α}
B.4 The gamma-Gompertz model

The unconditional survival function can be written as

S(t1, ..., tn|X1, ..., Xn) =

1 +

∑n
j=1 e

βXjbη
(
e
tj
b − 1

)
α


−α

This distribution has the marginal survival functions:

S(tj|Xj) =

1 +
eβXjbη

(
e
tj
b − 1

)
α


−α

C Kendall’s τ

Kendall’s τ (Kendall, 1938) is defined as

τ = E[sign{(Ti,j − Ti′,j)(Ti,j′ − Ti′,j′)}]

where i 6= i′ and j 6= j′. The first indices i and i′ numbers clusters and j and
j′ numbers individuals within clusters.

Let
p = P [(Ti,j − Ti′,j)(Ti,j′ − Ti′,j′) > 0]

Then, for continous distributions, τ = 2p− 1
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