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Abstract

The aim of this thesis is to investigate possible features of ice shelves
in the Arctic about 140000 years ago. The ice shelves have a critical role
in the global climate system and since the human carbon emissions will
increase the temperature in the future it is important to understand
more about how the ice sheet interacts with the global climate. Today
most ice shelves are found in the Antarctic. The Antarctic data are
being used as plausible relations between several parameters under the
presumption that the ice shelves in the Antarctic today have similar
features as ice shelves in the Arctic 140000 years ago. Seafloor findings
suggest that the Arctic has been covered with huge ice shelf complexes.
Markov Chain Monte Carlo, MCMC, is a general simulation method
that draws values from approximate distributions. The Markov chain
used here is the Gibbs sampler and the software OpenBUGS has been
performing the simulations. The results suggest that huge ice shelf
complexes were extreme events but support the idea of ice shelves in
the Arctic in the past.
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2 Introduction 

2.1.1 Ice Shelves 

Ice shelves develop when grounded inland ice masses reach the coast and become afloat 

on the ocean. Today most ice shelves are found along the Antarctic coast line. Research 

suggests that there have been huge ice shelf complexes covering large parts of the Arctic 

Ocean, fed by large ice masses on the surrounding continental land masses and high Arctic 

Archipelago. Ice shelves are dynamic and undergo extremely slow creeping motions due to 

the action of gravity and in response to climate. The ice shelves have a critical role in the 

global climate system; if their feeding inland ice masses melt, sea level will rise. Therefore 

more ice shelf research have been performed since the mid 1970’ies (Kirchner et al. [2011]).  

A very important part of the climate system is the ice sheets. Still they are among the least 

understood. In the past there have been dramatic changes to the global climate which was 

affected by the evolution of large ice sheets. The human carbon emissions will increase the 

temperature on earth in the future and it is important to understand how the ice sheet interacts 

with the climate. Increases in atmospheric or ocean temperatures might lead to thresholds on 

ice sheet stability being surpassed and the earth could become irreversibly committed to near-

permanent ice sheet decay or sea level rise. What this would mean to humanity is not fully 

understood (Fyke et al. [2011]). 

2.1.2 Seafloor Erosion From Ice Shelves 

Large parts of polar continental margins and some submarine ridges in the central Arctic 

Ocean have been impacted by ice sheets and, occasionally by grounding ice sheets. Images of 

those impacted seafloors are important to our understanding of the history of these ice sheets. 

In the last years there have been new advances in geophysical mapping technologies which 

provide even clearer views of the seafloor. The reconstruction of the history and dynamics of 

ice masses in the Arctic Ocean are so far poorly understood. There is a hypothesis of a thick 

floating ice shelf over the entire Arctic Ocean in the Pleistocene. More analysis is needed to 

test this and other hypotheses.    

In the Arctic Ocean there are dramatic changes between glacial and interglacial periods. 

The ice and melt-water discharge from the ice sheets had a high impact on the Arctic Ocean 

circulation and sedimentation regimes. Seafloor mapping data indicate glacial erosion at 

depths reaching 1000 meters below the sea level. There is convincing evidence that eroded 

areas of Lomonosov Ridge and Chukchi Borderland depicts a dramatic impact of large ice 

masses that once invaded the central Arctic Ocean from both the Laurentide (over present 
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areas of Canada) and Eurasian ice sheets. Seafloor features in the polar areas are ice keel 

scours, also called plowmarks. Sea ice can affect the seafloor to water depths of less than 

approximately 50 meters. Iceberg erosion, on the other hand, can extend to depths of several 

hundreds of meters (Jakobsson et al.[2008]).  

Widespread findings of glaciogenic bedforms on ridges and plateaus in the central Arctic 

Ocean suggest that large masses of thick ice covered great parts of this basin several times 

during the Pleistocene. The findings indicate that most of these features were formed by ice 

masses grounded on the seafloor rather than by disparate icebergs (Jakobsson et al.[2008]). 

2.2 The   Aim of This Thesis 

The aim of this thesis is to investigate possible features of ice shelves in Arctic about 

140000 years ago. There are signs on the central Arctic Ocean seafloor of erosion of deep 

drafting icebergs, which might have come from nearby ice shelves. The extent of ice shelves 

is not known and in this thesis statistical methods are being used to find reasonable 

parameters for ice shelves in the Arctic 140000 years ago. Today most ice shelves are found 

in the Antarctic. Under the presumption that the ice shelves in Antarctic today might have 

similar features as ice shelves in the Arctic in the past, the Antarctic data are used as plausible 

relations between the parameters.    

 

2.3 Statistical Methods for the Analysis 

 

2.3.1 MCMC 

 

Multidimensional computations of the form  

   [ ( )]  ∑  (  ) (    )
 
   , 

with a discrete random vector X, with possible values xj, j ≥ 1, and probability mass function, 

P(X = xj) and a function h(xj) can be difficult to evaluate. To solve the problem simulations 

are often being used. A Monte Carlo simulation uses random numbers to generate a sequence 

of independent and identically distributed random vectors X1, X2, . . . Xn with the mass 

function P(X = xj). The strong law of large numbers yields  

   
   

∑
 ( )

 
  

 

   

 

and hence   can be evaluated when n is sufficiently large (Ross [2000, p.216]). 
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It can be difficult to draw from the posterior distribution directly, for multidimensional 

Bayesian models. With Markov Chain Monte Carlo, MCMC, there is a general simulation 

method that draws values from approximate distributions. The draws are then corrected to 

better approximate the target posterior distribution. The samples are from a Markov chain and 

hence the sampled draws only depend on the last value drawn. The approximate distribution 

converges towards the target distribution and the distribution is thus improving at each step in 

the simulation. The Markov chain used here is the Gibbs sampler (Gelman et al. [2004, p. 

283-287]). 

2.3.2 The Gibbs Sampler 

 

The Gibbs sampler can be used on the vector X where X is divided into n components X1, 

X2, … Xn. One component is sampled conditional on all other components of X. The Gibbs 

sampler cycles through the subvectors of X and there are n steps in each iteration. The 

conditional density of X is thus 

 (      
   )        , 

where   
    represents all components of X, except Xi, at their current values. That is  

  
    (  

    
        

      
        

   )  

Thus the first i-1 components has been updated in iteration t and the components 

    
        

    consists of the values from last iteration t-1 and Xi are being sampled 

conditional on those values (Gelman et al. [2004, p.287-288]). 

 

2.3.3 OpenBUGS 

 

The simulations have been performed in OpenBUGS.  OpenBUGS is a free of charge 

program on the internet page www.stat.columbia.edu/~gelman/bugsR. It is a high-level 

language and the user can specify a model and starting values and the program performs a 

Markov chain simulation which is automatically implemented for the resulting posterior 

distribution (Gelman et al. [2004, p. 591]).  

There is no prior information about the distributions of the parameters. Using OpenBUGS 

there is a need for proper prior distributions and hence the parameters are being given proper 

distributions with large uncertainties (Gelman et al. [2004, p. 593]). This implies that the prior 
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distribution have a minimal role in the posterior distribution with the aim to let the data speak 

for themselves (Gelman et al. [2004, p. 61]).  

 

2.3.4 Starting Values 

 

The Gibbs sampler should be run long enough to make the starting values unimportant. To 

make sure that it has been run long enough it is useful to perform several runs with widely 

dispersed starting values. The conclusions drawn from the different runs should not be 

sensitive to the choice of the starting values (Spiegelhalter et al. [1996, p. 29]). 

It is useful to discard early iterations to decrease the effect of the starting values. Those 

discarded iterations are called “burn-in” and the length of appropriate burn-in fractions 

depends on the simulated results (Gelman et al. [2004, p. 295]). 

2.3.5 The Deviance Information Criterion 

 

To compare the performance of different models it is convenient to measure prediction 

errors. How well the models fit the data is computed through the deviance, which is defined 

as 

D( y ,θ ) = - 2log p ( y , θ ), 

where y are the data, θ are the population parameters and p is the density function. If the 

model is normal with constant variance then the deviance is proportional to the mean squared 

error.  

A summary that only depends on y is defined as  

 (y)=D(y, (y)), 

which uses a point estimate for θ, for example the mean of the posterior simulations, to get the 

minimal deviance. The average discrepancy over the posterior distribution is 

Davg(y)=E(D(y, θ) y). 

Using posterior simulations θi can be estimated by 

 ̂avg(y)=(1/L)*∑  (   
    θi). 

For replicated data y
rep

 the expected deviance can be computed as 

    
    ( )=E [ D (y

rep
,  (y))], 

where 

D (y
rep

, θ) = - 2log p (y
rep  θ) 
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is the expectation averages over the distribution of y
rep

 under the true sampling of the 

unknown model.  is a parameter estimate like the posterior mean. 

To choose a model with the best out-of-sample predictive power the deviance information 

criterion (DIC) can be computed through 

DIC= ̂   
    ( )     ̂   ( )   ( ), 

which is an approximation of     
    ( ) above. The model with the smallest DIC value is the 

best (Gelman et al. [2004, p. 180-183]). 

 

 

3 Data and Previous Work 

3.1.1 Data From the Antarctic 

The aim here is to find a relation between different variables from the ice shelves in 

Antarctica. There are no presumptions of a cause and effect relation between the different 

parameters. 

The ice shelves that are considered here are of two different types, open and embayed. An 

embayed ice shelf is like an ice covered bay and in figure 3.2 it contains the area C and D. An 

open ice shelf is situated along the coast without a proper bay form. The calving front is the 

edge of the ice towards the sea water. The points A and B in figure 3.1 and 3.2 are the points 

where the grounding line meets the calving front. The cordal length is the shortest distance 

between those points. Other parameters that are being used are the maximal ice thickness at 

grounding line and the sea water temperature at the calving front. The number of ice rises are 

also counted and used in the computations. The ice rises are like islands under the ice shelves 

that are affecting the form of the ice and the ice movements. 

 Characteristics 

L Length of calving front 

Lc Cordal length 

P1 Length of grounding line 

P2 Maximal ice thickness at grounding line 

P3 Number of ice rises 

P4 Ice shelf geometry (Class, open=0, embayed=1) 

P5 Water temperature at calving front 

Table 3.1. 
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Figure 3.1. 

 

Figure 3.2. 

 

The Antarctic data variables L, P1, P2, P3 and P4 are derived from Bohlander and 

Scambos’ [2007] MODIS Mosaic of Antarctica, together with DiMarzio et al.’s [2007] digital 

elevation model, which were obtained from observation campaigns of the Geoscience Laser 

Altimeter System instrument aboard ICESat and an algorithm from Zwally et al.’s [2005] to 

compute ice-shelf thickness. The ice-fronts and grounding-lines were compiled from satellite 

imagery and have a resolution of 250 meter and better. The water temperatures, P5, were 

derived from the World Ocean Circulation Experiment Southern Ocean Data Base [Orsi and 

Whitworth, 2004].  
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Figure 3.3 from Kirchner et al. [2011]. 

The coupled ice sheet-ice shelf system can be seen in figure 3.3. Ice on the ground, flow 

towards the sea, which is depicted with an arrow in the figure. Floating ice shelves fed by 

large ice sheets get thinner with increasing distance from the grounding line. When the ice 

shelves are calving it involves the propagation of a fracture through the ice. Icebergs calve 

from an ice shelf when the thickness is about 200 meters (Jakobsson et al.[2008]) . 

3.1.2 Data From the Arctic 

 

 

Figure 3.4. Picture from Kirchner et al. [2012]. 
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Like Kirchner et al. [2012] the assumptions are made that the Laurentide ice sheet reached 

the continental shelf break and that an ice shelf extended from there. The present location of 

the shelf break is taken as an assumed grounding line for the ice shelf 140000 years ago. This 

was during a period called MIS 6 (Marine Isotope Stage 6) which extends from 190000 – 

130000 years ago. The extent of the ice shelf is not known and five points A-E are depicted in 

the figure above, along the grounding line, making up possible segments of ice shelves in the 

statistical analysis. Those assumptions give the values of P1, P3 and P4. The values of P2 and 

P5 are not known but some plausible values are used in the statistical computations. Like 

Jakobsson et al. (2010) the sea level in MIS 6 is assumed to be 92 meters below the present 

sea level (Jakobsson et al. [2010]). 

3.2 Previous Works 

Nina Kirchner et al. [2012] have performed statistical modeling of a former Arctic Ocean 

ice shelf complex using Antarctic analogies. There are evidence from geophysical mapping 

and coring of the central Arctic Ocean seafloor that there have been ice sheet/ice shelf 

complexes during previous glacial periods. There are signs of erosion from deep drafting 

icebergs. The largest ice shelf complex is believed to have been confined to the Amerasian 

sector of the Arctic Ocean during Marin Isotope Stage (MIS) 6. To better understand the 

extent of those ice shelves a statistical analysis is performed to predict configurations of the 

Arctic Ocean ice shelves based on relations between characteristics from contemporary 

Antarctic ice shelves. To determine potential sources of deep-draft icebergs extreme value 

theory is employed. This analysis supports the idea of an extensive MIS 6 ice shelf complex 

(Kirchner et al. [2012]). 

4 Antarctic Analysis 

4.1 Shapes of Ice Shelves 

The shapes of ice shelves can have a variety of forms and since it is not known for the ice 

shelves in the Arctic in MIS 6, certain approximations needs to be done. Inspecting the ice 

shelves in the Antarctic can give some clues about what shapes are reasonable. The ice 

shelves in Antarctic are not clearly wider outside the cordal line and hence the ice shelves in 

the Arctic are assumed not to be broader than the cordal line. It is possible that the ice shelves 

are thinner further away from the coast. Hence two shapes taking this into account are 

approximated, a triangle and a rectangle like in figure 4.1. 
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Inspecting the ice shelves in the Antarctic shows that the triangular and rectangular shapes 

are simplifications that sometimes have similarities with the real ice shelves but sometimes 

are different. The ice shelves Shackleton, Amery, Fimbul and Riieser Larsen have a triangular 

shape, but sometimes the point E in figure 4.1 is more to the left or right. A rectangular shape 

is seen in Merz and Drygalski ice shelves. Some ice shelves have calving front lengths that 

are not much larger than the cordal length, for example Filchner, Ronne, Ross and Dotson. Ice 

shelves with other forms are Ninnis, West and Brunt that could to some extent be seen to have 

a shape in between a triangular and rectangular shape. Some ice shelves, like Abbot and Getz, 

have different shapes because of islands interrupting the calving front. Under the present 

circumstances the triangular and rectangular simplification is acceptable approximation of the 

MIS 6 Arctic ice shelves.  

 

Figure 4.1 

Since the approximated calving front using a triangle or rectangle shape are smoother than 

the true shape a factor called wiggliness is computed. In reality the ice shelf front consist of 

cape- and bay-like structures. To find an appropriate wiggliness factor the Antarctic ice 

shelves data are used. The rectangle shape can be thought of as consisting of three line 

segments outside of the cordal length. In figure 4.1 this would be segments AF, FG and GB. 

Approximating the Antarctic ice shelves calving fronts with three line segments and four node 

points has been performed using the first and last points and two points in between. The 

approximated points F and G are chosen from the 1/3 and 2/3 counts from the file consisting 

of data from points between A and B along the true calving fronts. The triangle shape can 
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accordingly be thought of as two line segments outside the cordal line with 3 node points, 

which are the A, B and E in figure 4.1. Those have been computed for the Antarctic ice 

shelves using the first, the middle and the last point in the data file.  

Those approximations are arbitrary but there are no reasons to believe that other node 

points would be better approximations of E, F and G, and hence those points are chosen. The 

wiggliness factor is then computed from dividing the true calving front with the sum of the 

three line segments for the rectangular shape and the sum of the two line segments for the 

triangular shape. The result is a number above 1 since the calving front is longer with its cape 

and bay-like structure.   

4.2 Wiggliness 

 

Computing the wiggliness for the triangular and the rectangular shape of the ice shelves gives 

the following histograms and QQplots in figures 4.2 – 4.5. 

 

 
Figure 4.2.  Figure 4.3. 

 

Figure 4.4.  Figure 4.5. 

Histogram of Wr

Wr

F
re

q
u

e
n

c
y

1.5 2.0 2.5

0
1

2
3

4
5

-2 -1 0 1 2

1
.5

2
.0

2
.5

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Histogram of Wt

Wt

F
re

q
u

e
n

c
y

1.5 2.0 2.5

0
1

2
3

4

-2 -1 0 1 2

1
.5

2
.0

2
.5

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s



15 
 

The histograms show that the wiggliness is not very different from the normal distribution 

and hence the wiggliness is assumed to be approximately normally distributed. Wr is the 

wiggliness for the rectangular shape and Wt are the wiggliness for the triangular shape.  

4.3 Method Setup 

 
 

 
 

Figure 4.6. The picture is from the Antarctic and comes from http://nsidc.org/. 

 

To get an idea of how the ice shelves are situated and the values of the different 

parameters, some equations are being used. The length of the calving front in the Antarctic 

has been computed. The calving front length L can be seen as 

L=L1+Lc, 

where Lc is the cordal length and hence L1≥0. When approximating the true calving length the 

smooth calving length S is being computed, which can be seen as  

S=S1+Lc, 

http://nsidc.org/
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and hence S1≥0.  

To find reasonable values the wiggliness must be taken into account. The wiggliness is 

computed from  

W=L/S, 

and hence W≥1.  

Together these equations give that 

L1=W*S-Lc=W*(S1+Lc) - Lc, 

and 

S1=L/W – Lc. 

The wiggliness can hence be written as 

W = 
     

     
, 

and this makes Lc 

Lc = 
       

   
. 

 

Different models have been compared to one another to find a good model that shows the 

relationship between the different parameters and the calving length, L, and the smooth 

calving length, S, respectively. Log(S1) and Log(L1) are being used to make sure that the 

results are being realistic with L≥Lc and S≥Lc. Standardising Pj around its mean for j=1,…,5 

for the parameters, reduces the dependence between Bi0, Bi1, … Bi5, for i=1 or 2, where 1 

stands for the regression with the calving length L and 2 stands for the smooth calving length, 

S. This makes prior independence of the different B values more plausible (Spiegelhalter 

[1996, p. 27]). The estimate of Bi0 is more simple and well known when using P minus the 

arithmetic mean of the values of P, instead of P alone. This makes Bi0 independent of Bi1,…, 

Bi5. The Bi1,…,Bi5 are still the same (Blom et al. [1998, p. 151-152, 227, 246]). 

 The following model was the best, since it had lowest DIC value and realistic solutions: 

 

   (  )         (       (  ))     (       (  ))     (       (  ))

    (       (  ))     (       (  )) 

 

and 

   (  )         (       (  ))     (       (  ))     (       (  ))
    (       (  ))     (       (  ))  

 

where Log is the natural logarithm. P1-P5 are measured values for the Antarctic.  
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Log(L1) is assumed to be 

   (  )  (    (   (  ))      ), 

where Mean(Log(L1)) is computed in OpenBUGS using the equations above and 0.653 is the 

computed precision, which is 1/Var(L1).  

Similarly Log(Sr1) for the rectangular model is assumed to be 

   (   )   (Mean(Log(   )), 0.123), 

and Log(St1)  for the triangular model is accordingly assumed to be 

   (   )   (Mean(Log(   )), 0.156). 

 

4.4 The Antarctic Results 

Two sequences with Antarctic data are being performed in order to estimate how long the 

burn-in period should be. The initial values for the two sequences are chosen to be a bit higher 

and a bit lower than what could be expected values from doing a test simulation. 

  

4.4.1 Rectangular Ice Shelf Shapes in the Antarctic 

Two sequences have been simulated with 100 000 burn-in and a total number of 200 000 

for each sequence. To decrease the dependence between nearby values in the simulation the 

results are based on every 10
th

 value. Different models have been compared using the DIC 

value. The best model among those tested was with the following values of Bij. The prior have 

the distribution 

Bij~N(A,Tau), 

and   

A~N (0, 1), 

and  

Tau~Ga(0.01,0.01). 

Bi0 have the distribution 

Bi0~N(Ai0,Tau), 

where A10 is the mean value of Log(L1) and A20 is the mean value of Log(S1) for the 

rectangular shape. 
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OpenBUGS simulated the following values with the priors above 

 

 B10 B11 B12 B13 B14 B15 

Mean 5.401 0.0001789 0.03042 0.1604 -1.524 -1.013 

Sd 0.2217 0.0002669 0.3941 0.1561 0.7438 1.152 

Table 4.1. 

 

 B20 B21 B22 B23 B24 B25 

Mean 2.378 0.00009641 0.1514 0.1377 -2.576 -1.797 

Sd 0.428 0.0006124 0.7763 0.3454 1.827 2.534 

Table 4.2.  

 

 Those simulations yield the following DIC value: 

 

 Dbar Dhat DIC 

LogL1 46.26 41.27 51.26 

Table 4.3. 

 

The evaluated parameters Bij from the rectangular shape of the Antarctic ice shelves are then 

being used to find approximated calving lengths in the Arctic, which could have prevailed in 

MIS 6. 

 

4.4.2 Triangular Ice Shelf Shapes in the Antarctic 

 

A similar simulation as in 4.4.1 has been performed with the triangular ice shelf shape. 

Different models have been compared using the DIC value. The best model among those 

tested was with Bij having the same prior distribution as the model for rectangular ice shelf 

shape. 

OpenBUGS simulated the following values with the priors above. The values of B10 – B15 

were the same as for the rectangular variant. The values of B20-B25 can be seen in table 4.4 

 

 B20 B21 B22 B23 B24 B25 

Mean 1.817 0.0002108 0.4522 0.02747 -2.636 -1.934 

Sd 0.3878 0.0005542 0.7174 0.3129 1.657 2.404 

Table 4.4. 

 

Those simulations yield the following DIC value: 

 

 Dbar Dhat DIC 

LogL1 46.26 41.27 51.26 

Table 4.5. 
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Using different initial values gives the same results. The evaluated parameters Bi0, Bi1, … 

Bi5 from the triangular shape of the Antarctic ice shelves are then being used to find 

approximated calving lengths in the Arctic, which could have prevailed in MIS 6. 

 

5 The Arctic 

5.1 Ice Shelves in the Arctic in MIS 6 

The values of P1, P3 and P4 are known if there actually was an ice shelf there. The values 

of P2 are not known and in the computations it is assumed that P2 is normally distributed with 

the same mean and precision as was found in the Antarctic data. The values of P5, the water 

temperature close to the calving front, are not known. The water temperature close to the ice 

is not necessarily close to its freezing-point. The freezing-point depends on the content of salt 

in the water. It could have been different 140 000 years ago. Since there is no information 

available about those water temperatures, it is assumed that P5 are normally distributed and 

have the same mean and precision as was found in the Antarctic data. The tested values are 

given in the appendix. The Bij are assumed to be normally distributed with mean and 

precision similar to the values from the Antarctic computations. 

The approximated ice shelves are seen in table 5.1 where the segments starts and ends in 

points A-E which can be seen in figure 3.4. 

Approximated ice shelves are numbered 1-7 Segment 

 (A-B) 

1 B-C 

2 C-D 

3 D-E 

4 A-C 

5 A-E-embayed 

6 A-E-open 

7 B-E 

Table 5.1. 
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5.1.1 Rectangular Ice Shelf Shapes in the Arctic in MIS 6 

 

With the approximate regression from the Antarctic computations the same model is being 

used in the Arctic MIS 6 computations. Now is L and S unknown variables and the Bij is 

approximated from the Antarctic data.  

Two sequences of simulations have been performed with 100000 burn-in and a total 

number of 200000 for each sequence. To decrease the dependence between nearby values in 

the sequences the results are based on every 10
th

 value. The values of L1 and Sr1 are computed 

and then added to the cordal length to get the values of L and Sr. This is done for the mean 

and for the 75
th

, 90
th

 and 95
th

 percentile to get an idea of how it might have been.  

 

Segment Mean L (km) L-75% L-90% L-95% 

1 1225,1 1448,1 1820,8 2144,6 

2 823,1 1087,7 1450,9 1742,2 

3 1000,2 1346,2 1766,7 2126,6 

4 1210,3 1509,8 1921,4 2230,4 

5 3600,0 4472,5 5228,0 5802,3 

6 3914,3 4863,8 5823,6 6564,6 

7 2428,6 3119,3 3794,1 4318,7 

Table 5.2. 

 

Segment Mean Sr (km) 
Sr-

75% 
Sr-90% Sr-95% 

1 1148,5 1151,4 1165,8 1190,4 

2 704,6 720,7 781,5 861,3 

3 854,2 873,9 941,1 1030,2 

4 1061,7 1065,7 1083,5 1112,7 

5 2262,7 2275,6 2342,2 2452,3 

6 2267,9 2343,5 2628,8 3037,0 

7 1529,3 1567,5 1703,3 1890,0 

Table 5.3. 
 

Comparing the computed values of L and Sr, for the rectangular shape in table 5.2 and 5.3 

with the cordal lengths in table 7.8, show that the computed means are not much higher than 

the cordal lengths. The values of L are higher than Sr, which is a sign of the cape- and bay-

like structure of the calving length L. This means that the model suggests that the Arctic ice 

shelves in MIS 6 on average are like Filchner, Ronne, Ross and Dotson ice shelves in the 

Antarctic. 
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5.1.2 Triangular Ice Shelf Shapes in the Arctic in MIS 6 

 

A similar simulation as in 5.1.1 has been performed with the triangular ice shelf shape. 

The results can be seen in table 5.4 and 5.5. 

 

Segment Mean L L-75% L-90% L-95% 

1 1225,1 1452,6 1848,2 2162,6 

2 826,2 1102,2 1494,8 1800,9 

3 1002,3 1356,7 1818,3 2154,9 

4 1214,4 1531,0 1963,6 2303,9 

5 3737,8 4666,2 5487,9 6055,2 

6 4100,9 5080,5 6135,7 7021,9 

7 2522,5 3257,2 3978,1 4512,2 

Table 5.4. 

 

 

Segment 
Mean 

St 
St-75% St-90% St-95% 

1 1148,5 1150,6 1161,4 1180,5 

2 704,6 719,0 772,2 845,2 

3 853,8 868,2 922,5 995,2 

4 1061,6 1064,4 1078,0 1098,1 

5 2262,8 2273,6 2328,9 2427,9 

6 2269,4 2343,9 2625,1 3059,0 

7 1530,8 1573,8 1708,2 1908,3 

 

Table 5.5. 
 

Comparing the mean values of L and St in table 5.4 and 5.5 with the cordal lengths in 

table 7.8 show that the values from the triangular computations lead to similar results as the 

rectangular computations. 

 

 

5.1.3 Ice Shelf Distance Outside the Cordal Length 

 

For the rectangular shape of the ice shelves the longest orthogonal distance from cordal 

length to calving front is the same along the ice shelf. It can be computed from 

 

                 
     

 
. 
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The longest orthogonal distance can be seen for different sizes of the ice shelves in table 

5.6.  

 

Segment 
Rectangular – Mean 

Distance (km) 
Sr-75% Sr-90% Sr-95% 

1 0,117 1,56 8,75 21,0 

2 0,697 8,73 39,1 79,0 

3 0,828 10,7 44,3 88,8 

4 0,188 2,18 11,1 25,7 

5 0,407 6,87 40,2 95,2 

6 3,00 40,8 183,4 387,6 

7 2,02 21,1 89,0 182,3 

Table 5.6. 

 

For the triangular shape of the ice shelves the longest orthogonal distance outside the 

cordal length is the length between the point E and the cordal length in figure 4.1. This can be 

computed from the Pythagorean theorem with the following equation 

                 √(
  

 
)  (

  

 
) . 

 

The longest orthogonal distance can be seen for different sizes of the ice shelves in table 

5.7.  

Segment 
Mean distance E-

Lc (km) 
75% 90% 95% 

1 11,1 36,7 86,9 136,9 

2 22,2 75,1 159,5 234,5 

3 23,7 82,2 176,3 256,8 

4 13,2 40,7 94,4 141,0 

5 31,9 115,3 277,3 441,2 

6 92,4 307,3 666,2 1029,7 

7 64,9 193,9 384,5 573,4 

 

Table 5.7. 
 
 

5.2 Plowmarks From Ice Shelves? 

 

The plowmarks found on the seafloor in the Arctic, which can be seen in figure 3.4 C, 

might have come from ice shelves about 140 000 years ago. The main part of those 
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plowmarks lies between point N at 85°19N and 15°30W and the point W at 85°17N and 

15°00W. 

  

Distance between the points (km) N W 

A 2166 2172 

B 2476 2481 

C 1544 1549 

D 870 876 

E 179 180 

Table 5.8. 

 

The plowmarks in figure 3.4 C are closest to point E in table 5.8 and if the ice shelf 

reaches those plowmarks it must reach more than 180 km outside the cordal length from point 

E, in the right direction. Comparing the distances in table 5.8 with the ice shelves highest 

orthogonal distances outside the cordal lengths in table 5.6 and 5.7 show that on average the 

ice shelves do not reach the plowmarks. The segments 1-4 does not reach E and does not 

reach the plowmarks within the 95
th

 percentile for both shapes of the ice shelves.  

For the rectangular shape it needs to be outside the 90
th

 percentile to reach over 180 km 

from the cordal length. The triangular shape of the ice shelves reach further from the cordal 

length but that is in the middle of the cordal length, in this model. In reality the highest 

orthogonal distance need not be in the middle. For the triangular shape it needs to be outside 

the 75
th

 percentile to reach over 180 km from the cordal length. 

6 Conclusion 

    

6.1 The Model 

 

Using 17 ice shelves from the Antarctic are not an ideal base for the simulations of the 

Arctic in MIS 6, but can still give some conclusions about possible ice shelves. Ideally there 

would have been more ice shelves today to investigate. It is also possible that the model could 

have been more realistic with more variables, but since the MIS 6 data are approximations 

this would also include more uncertainty. The model would also have been more realistic if 

the Antarctic and possible Arctic MIS 6 ice shelves had been very similar in size and other 
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characteristics. There are some crucial differences though, which can be seen in table 7.9 and 

7.10. For instance are P1, the grounding line length, much longer in the Arctic data. 

If more knowledge about the Arctic during MIS 6 is available in the future a model like 

this one could make better approximations. It is still valuable to make a statistical analysis to 

get information about the relationships between the parameters. 

 

6.2 The Arctic in MIS 6 

 

Those evaluations suggest that if those plowmarks came from an ice shelf like one of 

the suggested segment 1 – 7, it must have been an extreme event. This conclusion is in 

accordance with Kirchner et al. [2012]. The computations here, still suggest that there were 

ice shelves in the Arctic in MIS 6. This supports the ideas in Kirchner et al. [2011], [2012] 

and Jakobsson et al. [2008]. 

Many things might have been different 140000 years ago and we will never know for 

certain what it was like then. It is still very important to try to understand it better, since the 

global warming is changing the basis for the ice shelves in the world.  
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7 Appendix 

7.1 Tables 

 

Below is the parameter data for the different ice shelves in Antarctic. 
 

  

Calving length 

of front (km) R1 Area with ice  

len.grounding 

P1 max.thick P2 

nr.rises 

P3 class P4 temp P5 

  

 

rises(km^2)    (m)       

abbot  1032 47265 901 1500 7 0 -1,3588 

amery  473 62984 2404 3000 5 1 -1,7184 

brunt  664 30759 471 1800 0 0 -1,7458 

dotson  61 4675 501 2200 0 1 -1,6276 

drygalski  359 2503 158 4500 0 0 -1,83 

ekstrom  282 7116 480 1500 1 1 -1,8604 

filchner  287 109271 2190 2800 3 1 -2,0137 

fimbul  1075 44273 893 1700 6 0 -1,7723 

getz  1191 46499 1154 1500 8 0 -1,4943 

mertz  383 5976 336 2500 0 0 -1,5779 

ninnis  123 1130 146 2300 0 1 -1,7699 

pine.island 54 3903 357 3200 0 1 -1,0441 

riiser.larsen  656 48795 1256 1700 4 0 -1,6137 

ronne  784 333352 4796 3300 5 1 -1,8836 

ross  1398 488018 7011 3000 6 1 -1,7308 

shackleton  946 35831 960 3300 6 0 -1,2901 

west  784 17194 618 3000 2 0 -1,6274 

Table 7.1. Antarctic data. 
 

The coordinate of the first and last point of cordal lengts for each shelf ice in the Antarctic 
Ice Shelf Longitude Latitude Longitude Latitude 

Abbot_Middle -95.598240 -72.071003 -91.707152 -72.619902 

Abbot_North -90.748507 -72.742104 -89.436204 -72.637927 

Abbot_South -102.82001 -72.709191 -102.276320 -72.142008 

Amery 70.195033 -68.495706 73.837546 -69.748496 

Brunt -26.64608 -76.09656 -21.97376 -74.11787 

Dotson -113.4089 -74.16670 -111.9007 -74.22683 

Drygalski 162.2183 -75.39061 162.5725 -75.23853 

Ekstrom -9.984030 -70.91713 -6.445185 -70.43917 

Filchner -44.03762 -78.17137 -36.04372 -78.24080 

Fimbul -2.803716 -70.30025 7.413689 -70.20688 

Getz_Middle -124.0231 -73.85505 -123.3510 -73.83482 

Getz_North -120.3609 -73.81301 -115.1308 -74.09055 

Getz_South -134.7494 -74.60528 -127.2728 -73.72063 

Mertz 144.6262 -67.18135 145.2665 -67.51422 

Ninnis 147.0648 -68.03875 147.7238 -68.33795 

Pine_Island -101.7739 -75.08188 -101.2547 -74.72380 

Riiser_Larsen -20.62983 -73.58754 -12.02715 -71.66927 

Ronne -61.35003 -74.54698 -47.67821 -77.80562 

Ross 164.4248 -78.08109 -158.6348 -77.87123 

Shackleton 94.92873 -66.46938 102.53313 -65.88458 

West 81.35531 -67.79402 88.74336 -66.77740 

Table 7.2. Coordinates for the ice shelves in the Antarctic. 
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Ice shelf Cordal length in km 

Abbot Middle 145.3 

Abbot North 45.1 

Abbot South 65.9 

Amery 201.3 

Brunt 258.2 

Dotson 46.4 

Drygalski 19.7 

Ekstrom 141.2 

Filchner 182.5 

Fimbul 385.1 

Getz_Middle 21.0 

Getz_North 164.3 

Getz_South 248.1 

Mertz 46.2 

Ninnis 43.1 

Pine_Island 42.7 

Riiser_Larsen 357.3 

Ronne 512.8 

Ross 845.5 

Shackleton 348.8 

West 337.8 

Table 7.3. Cordal length for the ice shelves in Antarctic. 

 

 

 

 

In table 7.4 is a table of the Wiggliness for the ice shelves in Antarctic. 

 
Ice shelf Wiggliness triangle Wiggliness rectangle 

Abbot 2.3138 2.1804 

Amery 1.9878 1.9618 

Brunt 2.2275 2.0333 

Dotson 1.3198 1.3199 

Drygalski 2.0408 1.9962 

Ekstrom 1.9686 1.8434 

Filchner 1.5595 1.5403 

Fimbul 2.7604 2.7207 

Getz 1.9582 1.9034 

Mertz 2.0869 2.0654 

Ninnis 2.5195 2.1497 

Pine Island 1.2683 1.2685 

Riiser Larsen 1.8264 1.7854 

Ronne 1.5333 1.5345 

Ross 1.6013 1.5043 

Shackleton 2.4744 1.9382 

West 2.1167 2.0532 

Table 7.4. Wiggliness (calving length divided by smooth calving line) for the ice shelves 

in Antarctic. 
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 Wiggliness triangle Wiggliness rectangle 

Mean 1.974306 1.870506 
Variance 0.1773043 0.1773043 

Table 7.5. The mean and variance of the wiggliness factor in Antarctic. 

Figures for the Arctic 

Segment Length of 

grounding 

line P1 in 

km 

Max. thick P2 

Approximate 

figures in m 

Number of 

ice rises P3 

Ice shelf 

geometry P4 

Water temperature  

Approximated 

value °C P5 

 

A-B 1764 1000-4500 2 --- -1.0 - -2.5(3.0) 

B-C=1 5310 1000-4500 0 Embayed=1 -1.0 - -2.5(3.0) 

C-D=2 3606 1000-4500 0 open=0 -1.0 - -2.5(3.0) 

D-E=3 2862 1000-4500 2 open=0 -1.0 - -2.5(3.0) 

A-C=4 7056 1000-4500 2 embayed=1 -1.0 - -2.5(3.0) 

A-E-e=5 13524 1000-4500 4 embayed=1 -1.0 - -2.5(3.0) 

A-E-o=6 13524 1000-4500 4 open=0 -1.0 - -2.5(3.0) 

B-E=7 11778 1000-4500 2 Open=0 -1.0 - -2.5(3.0) 

Table 7.6 Arctic data and approximate figures. 

 

The coordinates for the points in Antarctic are being seen in table 7.7. 

 

Point Longitude Latitude 

A -159:05 74:29 

B -151:48 71:21 

C -121:59 78:11 

D -93:48 82:42 

E -26:04 84:02 

Table 7.7 Coordinates of the node points where possible ice shelves has been situated. 

 

Segment Distance (cordal length) 

(A-B) (424,7) 

B-C 1148,3 

C-D 703,2 

D-E 852,5 

A-C 1061,3 

A-E 2261,9 

A-E 2261,9 

B-E 1525,3 

Table 7.8.The data is given for Cordal lengths for different possible ice shelf segments in 

the Arctic. Segment A-B is not a probable ice shelf but is part of other segments.  
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Antarctic Mean Lowest value Highest value 

L 620.7059 54 1398 

Ice shelf area 75855.53 1130 488018 

P1 1448.941 146 7011 

P2 (km) 2.517647 1.500 4.500 

P3 3.117647 0 8 

P4 0.4705882 0 1 

P5 -1.644635 -2.0137 -1.0441 

Table 7.9. The table shows the highest, lowest and mean values of different parameters in 

the Antarctic. 

 

 

 

 

Arktis Mean Lowest value Highest value 

P1 8237.143 2862 13524 

P3 2 0 4 

P4 0.4285714 0 1 

Table 7.10. The table shows the highest, lowest and mean value of different parameters in 

the Arctic. 
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7.2 Computer code 

7.2.1 The Antarctic 

 

The following computer code is the structure that has been used when computing the S1 

and L1 for the Antarctic data. Here is the triangular variant. 

model 

{ 

for (i in 1:N){ 

LogL1[i]~dnorm(MuLogL1[i], 0.6526984) 

MuLogL1[i]<-B10 + B11*(P1[i]-MeanP1) + B12*(P2[i]-MeanP2) + B13*(P3[i]-

3.117647)+ B14*(P4[i]-0.4705882)+B15*(P5[i]- -1.644635) 

LogSt1[i]~dnorm(MuLogSt1[i], 0.1564177) 

MuLogSt1[i]<-B20 + B21*(P1[i]-MeanP1) + B22*(P2[i]-MeanP2) + B23*(P3[i]-

3.117647)+ B24*(P4[i]-0.4705882)+B25*(P5[i]- -1.644635) 

Lc2[i]~dnorm(MuLc2[i],0.00001903929) 

MuLc2[i]<-(Wt*exp(LogSt1[i])-exp(LogL1[i]))/(1-Wt)} 

 

B10~dnorm(5.39801,Tau100) 

B11~dnorm(A110,Tau110) 

B12~dnorm(A120,Tau120) 

B13~dnorm(A130,Tau130) 

B14~dnorm(A140,Tau140) 

B15~dnorm(A150,Tau150) 

Wt~dnorm(1.974306,5.6400211) 

A110~dnorm(0,1); 

A120~dnorm(0,1); 

A130~dnorm(0,1); 

A140~dnorm(0,1); 

A150~dnorm(0,1); 

Tau100~dgamma(0.01,0.01); 

Tau110~dgamma(0.01,0.01); 

Tau120~dgamma(0.01,0.01); 

Tau130~dgamma(0.01,0.01); 

Tau140~dgamma(0.01,0.01); 

Tau150~dgamma(0.01,0.01); 

 

B20~dnorm(1.818989,Tau200) 

B21~dnorm(A210,Tau210) 

B22~dnorm(A220,Tau220) 

B23~dnorm(A230,Tau230) 

B24~dnorm(A240,Tau240) 

B25~dnorm(A250,Tau250) 

A210~dnorm(0,1); 

A220~dnorm(0,1); 

A230~dnorm(0,1); 

A240~dnorm(0,1); 

A250~dnorm(0,1); 

Tau200~dgamma(0.01,0.01); 
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Tau210~dgamma(0.01,0.01); 

Tau220~dgamma(0.01,0.01); 

Tau230~dgamma(0.01,0.01); 

Tau240~dgamma(0.01,0.01); 

Tau250~dgamma(0.01,0.01);} 

 

#Data: 

list( 

N=17, 

P1=c(901, 2404, 471, 501, 158, 480, 2190, 893, 1154, 336, 146, 357, 1256, 4796, 7011, 

960, 618), 

MeanP1=1449, 

P2=c(1.500, 3.000, 1.800, 2.200, 4.500, 1.500, 2.800, 1.700, 1.500, 2.500, 2.300, 3.200, 

1.700, 3.300, 3.000, 3.300, 3.000), 

MeanP2=2.517, 

P3=c(7, 5, 0, 0, 0, 1, 3, 6, 8, 0, 0, 0, 4, 5, 6, 6, 2), 

P4=c(0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0), 

P5=c(-1.3588, -1.7184, -1.7458, -1.6276, -1.83, -1.8604, -2.0137, -1.7723, -1.4943, -

1.5779, -1.7699, -1.0441, -1.6137, -1.8836, -1.7308, -1.2901, -1.6274), 

LogL1=c(6.378901, 5.604699, 6.005860, 2.681022, 5.826885, 4.947340, 4.649187, 

6.536547, 

6.400888, 5.819489, 4.380776, 2.424803, 5.699440, 5.602857, 6.314453, 6.392252, 

6.100767), 

LogSt1=c(1.1939225, 3.5929191, 3.7108855, -2.7806209, 5.0515917, 0.9707789, 

0.8458683, 1.7715568, 2.9750192, 4.9233693, 1.7625023, -4.1997051, 1.1724821, -

0.5798185, 3.4384932, 3.5516269, 3.5219390), 

Lc2=c(442.72, 

201.61,257.21,46.156,19.639,140.61,181.71,383.55,588.62,46.065,42.992,42.563,355.94,

510.76, 841.87,347.45,336.53)) 
 

7.2.2 The Arctic 

The following computer code is the structure that has been used when computing the S1 

and L1 for the Arctic data for the triangular shape. 

model 

{ 

for (i in 1:N){ 

LogL1[i]~dnorm(MuLogL1[i], 0.6526984)  

MuLogL1[i]<-B10 + B11*(P1[i]- 8237.143) + B12*(P2- 2.517647) + B13*(P3[i]-2)+ 

B14*(P4[i]- 0.4285714)+B15*(P5- -1.644635) 

LogSt1[i]~dnorm(MuLogSt1[i],0.1564177) 

MuLogSt1[i]<-B20 + B21*(P1[i]- 8237.143) + B22*(P2- 2.517647) + B23*(P3[i]-2)+ 

B24*(P4[i]- 0.4285714)+B25*(P5- -1.644635) 

Lc[i]~dnorm(MuLc[i],0.000002434303) 

MuLc[i]<-(Wt*exp(LogSt1[i])-exp(LogL1[i]))/(1-Wt)} 

 

B10~dnorm(5.401,20.34551) 

B11~dnorm(0.0001789,14037920) 

B12~dnorm(0.03042,6.438536) 
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B13~dnorm(0.1604,41.03876) 

B14~dnorm(-1.524,1.807539) 

B15~dnorm(-1.013,0.7535204) 

Wt~dnorm(1.974306,5.6400211) 

P2~dnorm(2.517647, 1.390735) 

P5~dnorm(-1.644635,2.0784299) 

 

B20~dnorm(1.817, 6.649430) 

B21~dnorm(0.0002108, 3255869) 

B22~dnorm(0.4522, 1.943020)  

B23~dnorm(0.02747,10.21384) 

B24~dnorm(-2.636,0.3642126) 

B25~dnorm(-1.934,0.1730339)} 

 

list( 

N=7, 

#kända variabler 

P1=c(5310, 3606, 2862, 7056, 13524, 13524, 11778), 

P3=c(0, 0, 2, 2, 4, 4, 2), 

P4=c(1, 0, 0, 1, 1, 0, 0), 

Lc=c(1148.3,703.2,852.5,1061.3,2261.9,2261.9,1525.3)) 

 

  



32 
 

8 References 

 Blom, G. & Holmquist, B.(1998) Statistikteori med tillämpningar. Studentlitteratur, 

Lund 

 Bohlander, J. and T. Scambos (2007), Antarctic coastlines and grounding line derived 

from MODIS Mosaic of Antarctica (MOA), Boulder, Colorado USA: National Snow 

and Ice Data Center. Digital media. 

 DiMarzio, J., A. Brenner, R. Schutz, C. A. Shuman, and H. J. Zwally (2007), 

GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica. Boulder, 

Colorado USA: National Snow and Ice Data Center. Digital media. 

 Fyke, J.G., A.J. Weaver, D. Pollard, M. Eby, L.Carter, and A. Mackintosh (2011), A 

new coupled ice sheet/climate model: description and sensitivity to model physics 

under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions. 

Geosci. Model Dev., 4, 117-136. 

 Gelman, A. Carlin, J.B. Stern, H.S. & Rubin D.B. (2004) Bayesian Data Analysis, 

Chapman & Hall, United States of America, Florida 

 Jakobsson, M., Polyak, L., Edwards, M., Kleman, J. and Coakley, B. (2008), Glacial 

geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the 

Lomonosov Ridge. Earth Surface Processes and Landforms, (33), 526-545. 

 Jakobsson, M., J. Nilsson, M. O’Regan, J. Backman, L. Löwemark, J.A. Dowdeswell, 

L. Mayer, L. Polyak, F. Colleoni, L.G. Anderson, G. Björk, D. Darby, B. Eriksson, D. 

Hanslik, B. Hell, C. Marcussen, E. Sellén, and Å. Wallin (2010), An Arctic Ocean ice 

shelf during MIS 6 constrained by new geophysical and geological data. Quat. Sci. 

Rev., 29, 3505-3517. 

 Kirchner, N., R. Furrer, M. Jakobsson, H. J. Zwally, and J. W. Robbins (2012). 

Statistical modeling of a former Arctic Ocean ice shelf complex using Antarctic 

analogies. Submitted to Journal of Geophysical Research, DOI:10.1029 

 Kirchner, N., K. Hutter, M. Jakobsson, and R. Gyllencreutz (2011). Capabilities and 

limitations of numerical ice sheet models: a discussion for Earth scientists and 

modelers. Quat. Sci. Rev., 30, 3691-3704. 

 Orsi, A. H., and T. Whitworth III (2004), Hydrographic Atlas of the World Ocean 

Circulation Experiment (WOCE), in Volume 1: Southern Ocean International WOCE 

Project Office, edited by M. Sparrow, P. Chapman and J. Gould, Southampton, U.K., 

ISBN 0-904175-49-9, http://wocesoatlas.tamu.edu/  



33 
 

 Ross, S.M.(2000) Introduction to Probability Model. Academic Press, San Diego  

 Spiegelhalter, D. J. Best, N. G. Gilks, W. R. & Inskip, H. (1996) “Hepatitis B: a case 

study in MCMC methods”, in Gilks, W.R. Richardson, S. & Spiegelhalter, D.J.(ed.) 

Markov Chain Monte Carlo In Practice. Chapman & Hall, Great Britain 

 Zwally, H. J., M. B. Giovinetto, J. Li, H. G. Cornejo, M. A. Beckley, A. C. Brenner, J. 

L. Saba, and D. Yi (2005), Mass changes of the Greenland and Antarctic ice sheets 

and shelves and contributions to sea-level rise: 1992-2002, J Glaciology, 51(175), 

500-527. 

 


