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Abstract

Single nucleotide polymorphisms (SNPs) are the most common
form of genetic variation in humans. The number of SNPs identi-
fied in the human genome is growing rapidly, but attaining experi-
mental knowledge about possible disease-associated variants is a labo-
rious quest, and the main challenge is to narrow the list down to a
few candidate genes where the mutations occur. At the moment the
identification of candidate genes is quite intuitive. Current in-silico,
mathematical and statistical tools provide only a very basic, sequence-
based indication about the relevance of a mutation to a disease. There
is a lack of multifactorial tools applying statistical, mathematical and
biological knowledge to automatically estimate how interesting or rel-
evant a mutation is to a disease by scoring it in some appropriate
way: The higher the score the more likely it is that the mutation is
disease-causing.

In this paper three SCoring Methods (SCM1-SCM3) are created
for estimating the relevance of a mutation to a disease, separating
deleterious mutations from neutral ones, each based on two types of
data sets. The first one is PolyPhen-2, a web-based software tool,
estimating the probability of a possible impact of a mutation on the
protein level. The second one is the 1000 Genomes Project, an online
catalogue storing information about variations in the population (i.e.,
the allele frequency). These two factors are combined in different ways
for the investigated scores.

Either p-values were calculated, using training data and Fisher’s
exact and combined tests (SMC1), or logistic regression was used for
predicting the probability that a mutation is harmful (SMC2), or a
linear combination of the two factors was used as score (SMC3). In
order to quantify how well benign mutations are separated from harm-
ful ones, we used the area under the receiver operating characteristic
curve, AUC.
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1 Introduction

DNA sequencing methods provide us with tens of thousands of genetic vari-
ations, so called polymorphisms, per individual, and the ability to discrimi-
nate between deleterious and benign variants could significantly improve the
targeting of disease-causing mutations by filtering them into a reasonable
number of sensible candidate genes, and then identifying those variations
responsible for specific traits (phenotypes) from available data. Nonsynony-
mous single nucleotide polymorphisms (nsSNPs) is a type of SNP, believed
to have the greatest impact on protein function because they often lead to
mutation on the protein level. nsSNPs can be classified into two categories:
those that are disease-associated (causing deleterious effect on protein level)
and those that are neutral. Given the huge number of nsSNPs, a major chal-
lenge is to predict which of them are potentially disease-associated. Several
computational methods have been developed for the classification of nsS-
NPs according to their predicted phenotypic effects, and one of them is the
automatic software tool PolyPhen-2 (pph2). Also, many databases and cat-
alogues of genomics and diseases have been established to store information
about variations in the population, such as the 1000 Genomes Project (1kg) -
an online catalogue created to collect human genetic variation from different
population groups to represent the allele frequency in the population.

In this paper three SCoring Methods (SCM1-SCM3) are created based
upon two datasets; pph2 and 1kg. For each mutation a probability is ex-
tracted from pph2 and an allele frequency from 1kg. These two factors are
converted to p-values, and finally SCM1 combines them into one single p-
value using Fisher’s combined test. However, since we lack allele frequency
data for patients in 1kg, we did not use p-values based on Fisher’s combined
test but rather a simplied p-value derived only from pph2 data. In SCM2 a
logistic regression is performed using a set of training and testing data to es-
timate the cofactors and validate the model, respectively. In SCM3 we take
a linear combination of mutation specific scores from pph2 and 1kg, giving
us another measure of how deleterious the mutation is. For all three scor-
ing methods, one may evaluate the scores for benign and disease-causing
mutations with a set of training data and generate a Receiver Operating
Characteristic (ROC) curve, for which the area under the curve (AUC) be-
comes a performance measure of the method.

1.1 Objectives

As the amount of mutation data and information about the genotypes of
individuals increases, understanding the molecular level effects of variations
and clarifying their possible disease-association is an important research
challenge. The objective of this thesis is to create a statistical scoring tool
estimating a mutation as damaging or benign/neutral. It is the beginning
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structure of a multifactorial tool to assess and process already existing fac-
tors and discriminate between deleterious mutations and neutral ones. The
methodology, tools and theories that are used will be described and ex-
plained. Finally estimated values and produced figures will be presented,
discussed and assessed.

1.2 Organization of the Report

Chapter 1 gives a brief introduction to the scoring project and why new
tools are necessary. The main dogma in biology and genetics is explained
in Chapter 2. Chapter 3 presents and describes the two parameters (1kg
and pph2) used in all three scoring methods. In Chapter 4 data and tech-
nical details are brought to attention. Statistical methods and analysis is
discussed and explained in Chapter 5. The results of the scoring is given in
Chapter 6. The final Chapter 7 discusses important observations from the
results Section, together with a brief continuation of further applications of
the scoring methods.

2 Biological Background

Before we move on it can be a good idea to gain some knowledge about the
biological structure and background of the genetic material discussed in this
paper.

The DNA molecule is a double helix composed of two antiparallel chains
joined together in a ladder-like arrangement of nucleotides; A (adenine), T
(thymine), G (guanine) and C (cytosine), where A always binds to T and
G always binds to C. The sequence of nucleotides on the DNA molecule
encodes the genetic information, which is inside each cell in an organism.

A gene is a part of the DNA chain, and it is a collection of nucleotides
containing the instruction for building a particular protein or specifying a
specific trait of an organism; e.g., a gene responsible for your eye color. All
of us have two copies of DNA and thus two copies of each gene; one inherited
from the mother, and the other from the father. The specific sequences of
nucleotides in a gene are called alleles. One allele thus represents one locus
(genetic position) and consists of one nucleotide. When a gene is in an active
state in a cell we say that the gene is expressed. Gene expression occurs in
two steps. First, the transcription where DNA is used as a template for the
creation of RNA, a molecule very similar to DNA. Second, the translation,
during which the RNA strand is translated into a protein, important to
cell function. Proteins are built up by 20 different kinds of amino acids.
Each amino acid consists of one or more codons, which is a three-letter
combination of nucleotides, who frequently only differ by one nucleotide.

For example, according to Wikipedia (2012a), the codons for the amino
acid isoleucine are AUU, AUC, and AUA. A substitution changing the first
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nucleotide in one of the codons to either a U , C, or G would cause another
amino acid to be inserted instead of isoleucine. The insertion of the wrong
amino acid in a functional region of a protein may cause a disfunctional
protein, which may result in a severe disease or even causing the death of
the organism. If the substitution affects a less critical region of the protein,
there may be no change in the resulting protein at all, according to the web
page quincetree.com (2012). There can also be rare substitutions causing
the protein to function in such a way that it is giving an organism a survival
advantage.

Substitution resulting in a severe disfunctional protein is called a mu-
tation, which is a change in genetic information. Genetic information is
encoded by the order of the nucleotide bases of DNA, so a mutation repre-
sents a change in the order of those nucleotides. DNA sequencing includes
several methods and technologies that are used for determining the order
of these nucleotide bases in a molecule of DNA. Figure 1 represents two

Figure 1: DNA sequences from two different individuals, Wikipedia (2012b).

sequenced DNA fragments from different individuals. The C is substituted
for a T and we say that there are two alleles (or variants) of the nucleotide
at this position; C and T . If the pair {C,T} occurs at two homologous chro-
mosomes of the same individual (inherited from the father and mother), it is
called a genotype. If the more rare allele has a frequency of at least 1% then
the variation at this locus is considered a single nucleotide polymorphism
(SNP), which is a DNA sequence variation occuring among members of a
population at a specific nucleotide (A, T , C or G).

If we look at the sequencies in Figure 1 vertically, between individuals
(or species), we can see a SNP. SNPs can occur in protein coding regions and
in non-coding regions, but in any case they can increase the risk of getting a
certain disease. Coding SNPs can be further divided into: synonymous SNPs
- no change in the amino acid sequence of a protein, and non-synonymous
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SNPs (nsSNPs) - an amino acid substitution, that may have consequences
on the structure and/or function of the encoded protein.

SNPs do not have to be strongly associated with a certain disease, but
they can nevertheless help determining the probability that someone will
develope the disease. For example, someone who has inherited two copies of
a disease-associated allele may never develop the disease, whereas another
person with the same two alleles, i.e., the same genotype, may do so. This
is called incomplete penetrance of the disease-associated allele and it makes
genetic testing a lot more complicated.

There are different kinds of mutations. A point mutation is a mutation
that alters a single nucleotide. It includes insertions (a base is added), tran-
sitions (a base is exchanged for another base), deletions (a base is deleted)
and transversion (a base-pair is exchanged for another base-pair). Examples
of point mutations include: Missense mutations (a type of nonsynonymous
mutation), that changes a codon so that a different protein is created, and
may result in a nonfunctional protein and possibly leading to a certain dis-
ease. Nonsense mutations, which converts an amino acid codon into a stop
codon, that may lead to the protein being cut off. This can lead to a non-
functional protein depending on how much of the protein that is lost. Silent
mutations code for the same amino acid and has no effect on the functioning
of the genome. This can also be called a synonymous change, because the
old and new codon code for the same amino acid. This is possible because
64 codons specify only 20 amino acids. See Wikipedia (2012c).

A point mutation and a SNP are closely related concepts. Both are
single-nucleotide differences in a DNA sequence, but in order to be classified
as a SNP, the change must be present in at least 1% of the general popula-
tion and no known disease-causing mutations are this common. Also, most
disease-causing mutations occur within a gene’s coding regions and affect
the function of the protein encoded by the gene, but SNPs don’t necessar-
ily need to be located within genes, and they do not always affect protein
function.

The Hardy-Weinberg equilibrium (HWE) theory serves as the basic null
model for population genetics. Every individual has alleles that were passed
on from their parents. If we take all of the alleles of a group of individu-
als of the same species (that is, a population) we have what is called the
gene pool. The frequency of individuals in that population that possess a
certain allele is called the allele frequency and it is the proportion of one
allele relative to all copies of the genomic region at which the mutation has
occurred in the whole population. Since each individual has two homolo-
gous copies of this region, the allele frequency is thus the number of copies
of the allele divided by twice the population size. Populations can have al-
lele frequencies, but individuals cannot. This obviously makes populations
the best level in order to study evolution, as evolution is basically the study
of the change in allele frequencies over time. The HWE key assumptions are:
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• Random mating
• No mutations
• No migration of individuals (neither in or out)
• Infinite population size
• No selection

The simplest case is a single locus with two alleles; A and a, with respective
frequencies denoted by p and q, where p + q = 1. The Hardy-Weinberg
equilibrium holds if the genotype frequencies satisfy

freq(AA) = p2

freq(Aa) = 2pq
freq(aa) = q2

See Wikipedia (2012d).

3 Model Parameters

We have a collection of SNPs that we want to investigate using two kinds
of datasets. First, we obtain allele frequencies by means of association
analysis from a population of the 1000 Genomes Project (1kg), found at
1000genomes.org (2012). Second, we obtain variations at the protein level,
i.e, PolyPhen-2 (pph2), found at the web site genetics.bwh.harvard.edu

(2012), containing probabilities predicting whether a variation is deleterious
or benign.

3.1 The 1000 Genomes Project

The human genome consists of about 3 billion DNA base pairs and carries
approximately 20,000–25,000 protein coding genes. Recall from previous
Section that many SNPs have no effect on cell function, but others are be-
lieved to be disease-associated. Although more than 99% of human DNA
sequences are the same, variations in the DNA sequence can have a major
impact on how humans respond to disease-associated SNPs. SNPs are evo-
lutionarily stable, not changing much from generation to generation, which
makes them easier to follow in population studies. SNP maps could help
identify the multiple genes associated with complex diseases. These asso-
ciations are difficult to establish with conventional gene-searching methods
because a single altered gene may only have a small contribution to the
disease. Several research groups are working to find SNPs and ultimately
create SNP maps of the human genome. Among these are 1kg, a catalogue
of genetic variation in human populations, allowing for variation mapping
among several different ethnicities. There are two kinds of genetic variants
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related to disease; 1) Rare genetic variants that have a damaging effect
mostly on simple traits, such as monogenic diseases, 2) The genetic variants
that are more common, having a mild effect and are thought to be involved
in complex traits. 1kg tries to fill in the gaps of knowledge between these
two types of genetic variants.

The project facilitates investigating the relationship between genotype
and phenotype (observable characteristics, e.g., your eye color). According
to the web site 1000.org (2012), the project reached the first intermediate
goal 2010 by sequencing the genomes of at least one thousand anonymous
participants from a number of different ethnic groups to become a detailed
catalogue of human genetic variations. This first sample consists of 1167
individuals from 13 populations. The main goal of 1kg is to sequence about
2500 samples.

The database is a useful tool in, for example, association studies relating
variation to disease and understanding the underlying processes of mutation.
Once the disease-associated regions are identified, the next step is to find
all of the variants in those regions. 1kg provides data on almost all of the
variants with a frequency of at least 1% in the individuals studied. The
project aims to discover genetic variants that have frequencies of as low as
1% across the genomes and 0.1-0.5% in gene regions.

By using 1kg, researchers can save time and energy not having to se-
quence their own samples. The list of SNPs in the 1kg will not tell which
variants that increase the risk of a disease, but it will give you the set of
suspects, which might significantly narrow the list down. Then further ex-
perimental studies may only involve collection of phenotypes at 1kg SNPs
from the population under study, for instance disease cases and healthy
controls. Refering to the article A map of human genome variation from
population-scale sequencing, Nature (2010).

3.2 PolyPhen-2

PolyPhen-2 (Polymorphism Phenotyping version 2) is a web-based software
tool using sequence and structure-based features of the substitution site to
predict nsSNPs as damaging - possibly affecting the protein function, or
benign - nondamaging. Polyphen performs several steps and produces dif-
ferent values. We will only go into depth on how the PolyPhen-2 (pph2)
probabilities, predicting a mutation as damaging or benign, are calculated.
For more details about the pipeline and algorithm see the PolyPhen-2 web
site referred to in the references. The pph2 probabilities are Bayes posterior
probabilities produced by a Naive Bayes model that uses 11 different fea-
tures to calculate the posterior probability together with an entropy-based
disretization for discretizing the numeric feature values into nominal values.
A Naive Bayes score close to 1 indicates a damaging mutation and a score
close to 0 a benign. Sometimes zero probabilities arise and smoothing can
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Table 1: The 11 selected feature variables, see Adzhubei et al (2010), Supplemen-
tary Methods.

Feature name Definition

score1 PSIC score for the wild type allele
score delta difference of PSIC score between wild type allele and mutant allele
num observ number of residues observed at the position of the multiple alignment
delta volume change in residue side chain volume
pfam hit position of the mutation within/outsidde a protein domain as defined by Pfam
id p max congruency of the mutant allele to the multiple alignment
id q min sequence identity with the closest homologue deviating from wild type allele
cpg transition whether variant happened as transition in CpG context
acc norm normalized accessible surface area of amino acid residue
b fact crystallographic beta-factor
delta prop new change in accessible surface area propensity for buried residues

be done with Laplace estimators. Naive Bayes requires data for training and
testing, to use in 5-fold cross-validation. Two datasets are used for training
and testing; HumDiv contains 3,155 damaging mutations, together with
6,321 human nsSNPS assumed to be non-damaging; HumV ar consists of
13,032 damaging mutations and 8,946 nsSNPS treated as non-damaging.
Both datasets can be downloaded from the PolyPhen-2 web site including
the Whole human exome sequence space annotations that will be used fur-
ther down in SCM2 and SCM3 (see Chapter 5).

3.2.1 Input Data

The PolyPhen-2 input is the amino acid (aa) sequence of a protein or corre-
sponding ID, together with sequence position and two aa variants character-
izing the polymorphism. One aa variant corresponds to the aa in the refer-
ence sequence and the other corresponds to the aa resulting from the nsSNP.
The input can for example look like the following string ’chr1:1267483 G/A’ .
Where chr1 denotes the chromosome, and 1267483 the chromosomal posi-
tion, and G/A the mutation, in this case the aa reference G and the aa
variant A.

3.2.2 Features

PolyPhen-2 is classifying a mutation as damaging or benign based on a set
of 11 selected features (attributes), from a number of 32 features, through
stepwise regression. Table 1 gives a brief description of the selected features.
Stepwise regression is a technique that can be used for selecting a subset of
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features available from the data, that most contribute to predicting the
damaging effect of a mutation. Through either forward selection or back-
ward elimination, 11 features were automatically extracted in order to help
classifying a mutation. Each instance (i.e. mutation) in a dataset are char-
acterized by the values of these 11 features measuring different conditions
of the instance.

3.2.3 PSIC Score

The Naive Bayes model utilizes 11 different features to calculate the pos-
terior probability, one of these features is the PSIC (Position-Specific Inde-
pendent Counts) score. This score reflects how likely it is for a particular aa
to occupy a specific position in the protein sequence, given the pattern of
aa substitutions observed in the multiple sequence alignment, and has the
form of a likelihood ratio. It is computed using the PSIC algorithm, which
takes the relatedness of homologous sequences into account and uses prior
probabilities derived from the aa substitution matrix (BLOSUM62). The
PSIC feature contributes with about 50% of the total predictive informa-
tion content to the model, it is indeed a good proximation for predicting
damaging effect of the substitution. The remaining 10 features collectively
contribute slightly less than the PSIC score alone. For more information
about the PSIC see Sunyaev, R. et al. (1999).

3.2.4 The Naive Bayes Model

Naive Bayes (NB) is a machine learning method naively assuming that fea-
tures are independent from one another. The input to a machine learning
scheme is a set of instances (mutations) that are to be classified and the
output is the classification (damaging or benign) of the instance. In classifi-
cation learning problems, a learner attempts to construct a classifier from a
given training dataset with a set of instances with known classes. The nsS-
NPs data from PolyPhen-2 website presents two training datasets, HumDiv
and HumV ar, containing example mutations together with a decision for
each as to whether this mutation is damaging or not. The problem is to
learn how to classify new mutations. The Naive Bayes classifier works as
follows:

1. Let each mutation (nsSNP) be represented by a vector

F = (F1, ..., FM )

consisting of i = 1, . . . ,M features to base our classifiers on. Based on F ,
the objective is to assign a class,

C ∈ {C1, ..., Cm}
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consisting of j = 1, . . . ,m classes, to each mutation. For instance, the
classification problem could be binary (m = 2) with C1 = benign and C2 =
damaging.

2. Each feature is either categorical (with a fixed number of levels) or
continuous. For the most part we will assume that all features are categor-
ical. For example, if M = 3 and features 1 and 3 are binary with two levels
no and yes, and feature 2 has levels low, medium and high, the observed
feature vector could be F = (yes,medium,no).

3. For a nsSNP, Bayes produces a posterior to train the classifier. Bayes’
theorem can be expressed as,

P (Cj |F ) =
P (Cj)P (F |Cj)

P (F )
(1)

Given a specific feature vector of F , the classifier will predict that F belongs
to the class having the highest a posteriori probability, P (Cj |Fi), condi-
tioned on F . That is, the probability that the hypothesis (e.g., benign) for
the class holds given the evidence vector, F . The a priori , probability of the
hypothesis, P (Cj), is the probability that the outcome for the new instance
belongs to class Cj without knowing any of the features F . The goal is to
find the class, C, that maximizes the posterior, P (Cj |Fi). In other words,
we are looking for the probability that sample F belongs to class C, given
that we know the feature values of F .

PolyPhen-2 utilizes 11 features, F = (F1, . . . , F11), to base the classifiers
C on, and the evidence is the particular combination of feature values for the
new mutation. Suppose that m = 2 and the hypothesis is that the mutation
is damaging. Then P (damaging|F1, F2, ..., F11) is the probability that the
mutation being observed is damaging given that we know (F1, ..., F11) of that
mutation. In contrast, the a priori probability of the hypothesis, P (Cj), is
the probability of a damaging outcome without knowing F .

4. We are only interested in the numerator of (1), since the denominator
P (F ) does not dependend on the class, and hence does not affect the max-
imization of the posterior. So, only P (Cj)P (Fi|Cj) need to be maximized.
If very little prior knowledge of the class C is available, one usually assumes
an uniformative (uniform) prior

P (C1) = ... = P (Cm) = 1/m

Then, only the likelihood, P (F |Cj) needs to be maximized.
5. Given many features a simplification might be needed to make it less

computationally expensive to calculate the posterior. Therefore a Naive
Bayes assumption can be made, that the values of the attributes are condi-
tionally independent of one another given the class of the sample. Mathe-
matically, we can phrase this as:

P (Fi|Cj , {Fk; k 6= i}) = P (Fi|Cj), for all i ∈ {1, . . . ,M} and j ∈ {1, . . . ,m}
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For the likelihood this means that

P (F |Cj) =
M∏
i=1

P (Fi|Cj),

where Fi refers to the value of the ith feature for a specific mutation. The
probabilities P (F1|Cj), P (F2|Cj), ..., P (FM |Cj) can easily be estimated from
a training set, as will be further described in the next section. For numeric
attributes an entropy-based discretization (Section 3.2.6) is applied before
the calculation. See Wikipedia (2012e) and Witten et al. (2011).

3.2.5 Parameter Estimation

In order for the Naive Bayes classification to work, we must estimate the
prior probabilities P (Cj), and also the likelihoods P (Fi|Cj). This is either
done simultaneously with classification, or, if training data is available, in
a preliminary step. In the simplest case all features have already been ex-
tracted (this assumption will be relaxed in section 3.2.8) and the feature
vector F l = (F l1, . . . , F

l
M ) and the classification C l = (C l1, . . . , C

l
m) is col-

lected for a training dataset of size l = 1, . . . , n. Note, that we will use
superscript to describe the serial number of the entire feature vector in a
training dataset, to be able to seperate it from subscripts, Fi, which denotes
a component in a specific feature vector. Let ni denote the number of ob-
servations l in this training set with C l = Cj . Then the prior probabilities
can be estimated by maximum likelihood as

P̂ (Cj) =
nj
n
, j = 1, . . . ,m

So, the class a priori probabilities of each class of a hypothesis (that our
mutation is, e.g., benign) may be estimated with

prior for a given class =
number of samples in the class

total number of samples

We also need to estimate the likelihood terms P (Fi|Cj). For categorial fea-
tures Fi with a finite but large number of possible levels, training data might
be missing for some levels. Then the Laplace estimator (a Bayesian estima-
tor based on a uniform Dirichlet prior for the probabilities of the various
levels), can be used in order to guarantee that each estimated P (Fi|Cj) is
strictly between 0 and 1. Suppose for instance that the i:th feature has ai
levels and let njik denote the number of observations l in the training data
set for which C l = Cj on one hand and F li equals the k:th level on the other
hand (so that

∑ai
k=1 njik = nj). Then the Laplace estimator is defined as

P̂ (Fi = level k|Cj) =
njik + 1

nj + ai
, k = 1, . . . , ai.
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Suppose for instance that F2 is a feature with three levels (low,medium, high),
and that the training samples contains nj = 1000 observations at level Cj .
If, for example, none have F l2 = low, 350 have F l2 = medium and 650 have
F l2 = high, then, the estimated probabilities of these events, without the
Laplacian correction, are 0, 0.350, and 0.650, respectively. Using the Lapla-
cian correction, we instead obtain the following probabilities (rounded up to
three decimals): 1

1003 = 0.001 , 351
1003 = 0.350, 651

1003 = 0.649 and the problem
of a zero probability value has disappeared. See Witten, Frank, and Hall.

For continous (numeric) features, one may fit a parametric model (for
instance a Gaussian distribution) with few parameters to P (Fi|Cj). How-
ever, since the Naive Bayes is often applied to large datasets, one typically
uses a nonparametric approach by discretizing numeric feature values and
then applying the above mentioned Laplace estimator.

3.2.6 Entropy-Based Discretization

To handle continous-valued attributes one can use binning to discretize the
values into a small number of distinct ranges, while still within the range
of the variable’s values, so that they are reported on a nominal scale. Dis-
cretizing requires a set of training data and can be achieved by constructing
a tree. Each inner node corresponds to a split of some level (corresponding
to an interval) of the feature variable into two or more disjoint and smaller
subintervals. New splits are generated recursively until the leaf nodes are
reached, representing the final and finest level of discretization. If only one
cutting point is allowed for at each node, we get two subintervals and a bi-
nary tree. An unknown instance is assigned a range or level by being guided
down the tree according to the values of the attributes tested in successive
nodes, and when a leaf is reached the instance is classified according to the
class assigned to that leaf.

For a given training dataset we have two distinct problems to solve.
First, how many splits to make? Second, where to cut an interval into two
subintervals? Entropy-based discretization, by Fayyad and Irani (1993),
coupled with a minimum description length (MDL) criterion answers the
first question and entropy calculation answers the second one. This method
is called ENT-MDL.

To simplify things, let’s first introduce some useful terminology. Let S
be a dataset of n instances consisting of the list

S = {(X1, C1), . . . , (Xn, Cn)},

that is sorted in ascending order of X l, where X l represents the continuous
feature variable, and C l ∈ {C1, . . . , Cm} is the class variable for item l. Let
Sa,b be a subset list of the first elements of S, starting at the ath pair in S
and ending at the bth pair. For a binary split, let a threshold value T be
the cutpoint partitioning the dataset Sa,b into two branches (intervals) S1
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Table 2: Dataset, S, containing an attribute temperature and a decision, measured
over 14 days. See Witt et al.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Temperature 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Decision 1 0 1 1 1 0 0 1 1 1 0 1 1 0

and S2. Referring to Fayyad U. and Irani K. (1992), the entropy of Sa,b is
defined as:

Ent(Sa,b) = −
m∑
j=1

P (Cj , Sa,b) log(P (Cj , Sa,b))

When the logarithm base is 2, Ent(Sa,b) measures the amount of information
needed, in bits, to specify the classes in Sa,b. P (Cj , Sa,b) is the proportion
of examples in Sa,b assigned to a class Cj .

ENT-MDL recursively splits an interval, containing all known values of
a feature, at the point that minimizes the information class entropy of the
subintervals. A minimum description length (MDL) criterion is applied to
decide whether to actually execute a split, when to stop discretization, and
also to control the number of intervals partitioned. It is optimal to choose
the MDL of a split with minimum number of bits.

The class information entropy for S1 and S2 can be expressed as

Info(S1, S2) =
|S1|
|Sa,b|

Ent(S1) +
|S2|
|Sa,b|

Ent(S2)

where |Sa,b| refers to the number of elements of S, and similarly for |S1| and
|S2|. The entropy measures whether a new instance should be classified and
it is calculated based on the number of positive and negative classes in the
decision list.

For example, look at the dataset Sa,b described in Table 2, where each
data pair (representing a specific day) of an attribute variable X, e.g., the
temperature in Fahrenheit, taking values in the range 0 to 100, together
with a decision, say, whether we should play tennis (yes=1) or not (no=0).

For instance, we could cut the whole dataset S (so that S = Sa,b) into
two branches using a threshold T = 71.5. This gives us two intervals

high = (71.5, 100)
low = (0, 71.5)

The low interval contains four yes’s and two no’s, and the high interval con-
tains five yes’s and three no’s. The class information entropy of the subsets
is given by:

Info([4,2],[5,3])= 6
14 Info[4,2]+ 8

14 Info[5,3]=0.939 bits
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where

Info[4,2]=Ent(46 , 2
6)=-46 log(46)- 2

6 log(26)=0.918 bits

and

Info[5,3]=Ent(58 , 3
8)=-58 log(58)-38 log(38)=0.954 bits

Alternatively, suppose that in Table 2 we choose to make two splits at tem-
peratures T1 = 69.5 and T2 = 77.5 simultaneously, so that the temperature
range is divided into three subintervals

hot = (77.5, 100)
mild = (69.5, 77.5)
cool = (0, 69.5)

where hot consists of two yes’s and two no’s (i.e., [2,2]), mild of four yes’s
and two no’s (i.e., [4,2]) and cool of three yes’s and one no (i.e., [3,1]). The
entropy of temperature = hot would be

Info([2,2])=Ent(24 , 2
4)=-24 log(24)-24 log(24)=1 bits

and similarly for mild and cool. The expected information becomes

Info([2,2],[4,2],[3,1])= 4
14 ·1+ 6

14 ·0.918+ 4
14 ·0.811=0.911 bits

This represents the amount of expected information to classify a new in-
stance, given the list structure of a specific feature. The entire structure
list, i.e., all data in S, of temperature consists of nine yes’s and five no’s
corresponding to an information value of

Info([9,5])=- 9
14 log( 9

14)- 5
14 log( 5

14)=0.940 bits

One can choose to split at the point(s) where the information value is the
smallest, and this is equal to splitting where the information gain is the
largest. The information gain is defined as the difference between the in-
formation value without the split and the one with the split. So, the in-
formation gain for temperature when splitting the dataset S at two points
T1 = 69.5 and T2 = 77.5 is

gain(temperature, (69.5, 77.5), S) = Info([9, 5])− Info([2, 2], [4, 2], [3, 1])
= 0.940− 0.911
= 0.029 bits

A cut point that minimizes the information class entropy value never occurs
between two instances of the same class. So, it is not necessary to split
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an interval further in the ideal case when all training samples within this
interval contain the same class variable Cj . In other words, the information
entropy value becomes zero.

Choosing an optimal partition is a compromise between having few sub-
sets in the partition on one hand and subsets that discriminate well between
classes Cj , i.e., when the information entropy value becomes zero. In more
detail, for each leaf node of the partition tree, a decision whether a further
cut should be made or not is based on the MDL Principle. For a binary
tree, suppose that a cutting point T of a set Sa,b of values of the continuous
attribute X divides it into subsets S1 and S2. Then the cut is accepted if

gain(X,T, Sa,b) >
log2(|Sa,b|−1)
|Sa,b|

=
log2(3

ma,b−2)−ma,bEnt(Sa,b)+m1Ent(S1)+m2Ent(S2)
|Sa,b|

where ma,b, m1 and m2 is the number of the m classes Cj that occur in Sa,b,
S1 and S2, respectively.

When all feature values have been discretized, the dataset can continue
to be divided into training and testing sets. See Witt et al. (2011), for
further information about entropy discretization.

3.2.7 ROC

The receiver operator characteristic (ROC) curve for a binary classification
problem plots the true positive rate (TPR) as a function of the false posi-
tive rate (FPR). The points of the curve are obtained through the various
possible threshold values, as FPR varies between 0 and 1. ROC curves
are applied for deciding whether a mutation is benign (the null hypothesis,
C = C1) against the alternative hypothesis that it is damaging (C = C2),
based on feature vector data F .

The Sensitivity equals the TPR, i.e., the proportion of positive cases
that are well detected by the test. The mathematical definition is given by:

Sensitivity =
correctly classified positive

total positive
=

TP

TP + FN

where TP (true positive) is the number of damaging mutations classified
as damaging and FN (false negative) is the number of damaging mutations
misclassified as benign.

The Specificity equals one minus the FPR, i.e., the proportion of negative
cases not detected by the test. The mathematical definition is given by:

Specificity =
correctly classified negative

total negative
=

TN

TN + FP

where TP (true positive) is the number of benign mutations classified as be-
nign and FP (false positive) is the number of benign mutations misclassified
as damaging.
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The prediction accuracy is quantified as the area under the ROC curve
(AUC), i.e., the average sensitivity obtained when integrating over various
specificities from 0 to 1. Often one considers a value of AUC around 0.85-
0.9 or higher to be sufficient for good discrimination between the null and
alternative hypotheses, although this depends on the type of application.

3.2.8 Cross-Validation

Naive Bayes classification requiers data for training and testing. We have
already discussed how to use training data for parameter estimation in sec-
tion 3.2.5. We will now describe how to select an optimal set of features.
PolyPhen-2 uses 5-fold cross-validation to decide when to stop the feature
selection algorithm (i.e., the stepwise regression) and to evaluate the per-
formance of the selected features. To predict the performance of a classifier
on new data, we divide the data into training set and test set; one fold is
retained as the test set, and the remaining four folds are together used as
training set. 5-fold means retraining the model five times, so that each of
the five folds are used exactly once as the test set. During the test procedure
we must know the classification of all instances in the training and test data.
For further explanation see Witten et al. (2011).

For the training data S in, for example, HumDiv we have recorded a
number of feature variables for a set of n = 9476 mutations, divided into
6321 benign mutations and 3155 damaging mutations. Randomly split S
into five approximately equal partitions S1,S2,...,S5, i.e., with size n/5, and
each in turn is used for testing and the remainder for training. Then, the
predictors are learned based on the training data and the values that yield
maximum accuracy are used. This accuracy is evaluated on the test set to
give an idea of how well this model will perform on future data. At the end,
the predictive performance of a given set of feature vectors is averaged over
the 5 different test sets and quantified by means of the AUC.

The total list of features is

Fall = (F1, . . . , FN ),

and the objective is to extract the optimal set of features Fi, all of which
we assume have been discretized according to the entropy based algorithm
of Section 3.2.6. Now, do the following:

a) Choose a subset F of M ≤ N feature vectors and a test data set Sk and
estimation set S(−k) = {Sj ; j 6= k}.

b) Use Naive Bayes to calculate the posterior. First, a number of param-
eters have to be estimated from the estimation data set; the priors
P (Fi) as well as the likelihood functions P (Fi|Cj), as described in
Section 3.2.5.
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c) Set up a threshold t for P (C = damaging|F ) so that a value < t is
classified as benign and another value > t is classified as damaging.
Control, for the test dataset Sk, what proportion out of the benign
mutations that has been incorrectly classified, i.e., false positive rate
and the proportion out of the damaging mutations that has been
correctly classified, i.e., true positive rate.

d) Given t, taking the average of the five different values of false positive
rate and true positive rate received in c), a summarized false positive
rate and true positive rate is received for all five ways to choose training
and testing sets.

e) Repeat steps a-d) for different thresholds t in order to get a ROC curve
with sensitivity plotted against specificity.

f) Repeat a-e) for different subsets of features F and choose the one with
maximum AUC(F ). Two procedures was used to choose features:
forward selection includes one feature at a time (the best one that
has not yet been included), until AUC(F ) no longer increases and
backward selection starts with Fall and excludes one feature vector
at a time (the worst one of the leftovers), until AUC(F ) no longer
increases. (Both forward and backward selection gave the same 11
features).

g) For the optimal feature vector F = (F1, ..., FM ) from f), use

NB score = P (C = damaging|F )

as performance measure. Define thresholds t0 < t1 < t2 < 1, so that
a mutation is classified as benign (most likely lacking any phenotypic
effect) when the NB probabiliy score belongs to [0, t1], as possibly
damaging (i.e., it is supposed to affect protein function or structure)
when it belongs to [t1, 1], and probably damaging (i.e., it is with high
confidence supposed to affect protein function or structure) when it
belongs to [t2, 1].

In PolyPhen-2 a nsSNP is predicted as 1) probably damaging, if the
fraction of FPR is under the 10%-level (TPR is 78%) on HumDiv and under
the 19%-level (TPR is 71%) on HumVar, i.e., when the NB score exceeds
t2 = 0.85, 2) possibly damaging, if the fraction of FPR is above the 18%-
level (TPR is 89%) on HumDiv and under the 40%-level (TPR is 90%) on
HumVar, i.e., the NB score is above 0.15, 3) benign, for all the remaining
mutations, 4) unknown, if lack of data does not allow PolyPhen-2 to make
a prediction. All according to Adzhubei et al. (2010).
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3.2.9 WEKA

For each instance the 11 features are fed into a web-based machine-learning
tool called WEKA (Waikato Environment for Knowledge Analysis). WEKA
contains many different tools, for example, classification and regression. In
WEKA PolyPhen-2 uses a Naive Bayes classifier model together with su-
pervised entropy-based discretization (see sections 3.2.4-3.2.8) to train the
predictor, along with some other options. All Bayes network algorithms in
WEKA allows the user to discretize them on a nominal scale. See references
for more details about WEKA.

4 Data and Technical Details

We are going to use two factors in our scoring methods described in the next
Chapter. PolyPhen-2 displays a dataset, Whole human exome sequence
space annotations, that can be downloaded at the web site. The dataset
consists of pph2 annotations for 149,948,690 single-nucleotide nonsynony-
mous (missense) SNPs, and predictions were calculated using two datasets
HumDiv and HumVar presented in Section 3.2. The 1000 Genomes Project
contains information about the population allele frequencies, and the vari-
ants are assumed not to be disease-associated.

We are going to focus on chromosome 1 in a patient dataset consist-
ing of 4464 variations from the Mendelian susceptibility to mycobacterial
diseases (MSMD). For each such variation we extract a pph2 probability
(the NB score) from the whole genome exome dataset. PolyPhen-2 only
takes nsSNPs into consideration, while the patient dataset consists of other
protein-coding mutations and also noncoding mutations, and therefore we
only found a match of 536 observations (121 damaging and 415 nondamag-
ing mutations). Variations not matching was simply not included. We will
also use the benign mutations extracted from the pph2 HumDiv training
dataset consisting of 6608 variations. These datasets will be used in Section
5.1.

A training dataset was also created to be used in Section 5.2.1, and
for each matching mutation a probability from pph2’s whole human exome
dataset, and an allele frequency from 1kg were both extracted from chro-
mosome 1. The training dataset consists of 926 mutations.

Also, for each mutation in the patient dataset a NB score and an allele
frequency was extracted, and this dataset consisting of 174 mutations can
be used in Section 5.3.

When we are extracting the data from pph2 and 1kg, there are a number
of different scenarios that can arise. A large number of variations in our
patient dataset did not match with any entry in the 1kg database, thus
limiting the number of cases that can be analysed. If no allele frequency
can be found for a certain mutation, then, it is rare and more likely to be
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damaging. If a mutation could not be found in pph2 or if that mutation
have a probability of zero, then that variation was excluded from the model
and classified as unknown.

4.1 Software

Statistical anlysis and data was processed, assessed and evaluated with
Python and R.

5 Statistical Models and Scoring Methods

In this Chapter three scoring methods are being described. Before further
introductions we will consider some therminology that we will use.

Assume that for each mutation i we have scores Xi1, . . . , XiK , computed
from K data sets. A high value of Xij indicates that mutation i is damaging
according to data set j, whereas a low value indicates that it is benign. We
want to combine Xi1, . . . , XiK into one single number SCMi for mutation i,
using some scoring method, where a large value of SCMi corresponds to a
mutation more likely to be damaging.

In this work, we will consider K = 2 datasets, with X1 computed from
pph2 and a second score X2 computed from 1kg. We will look at three
SCoring Methods SCM1-SCM3, all of which quantify the relevance of a
mutation’s disease-association.

We would want to give more weight to 1kg, and therefore we will make a
few assumptions regarding the classification of damaging and benign varia-
tions. The ”unknown” mutations we are interested in scoring are very rare,
so if we find a frequency (high or low) in the population, that is, in 1kg, it is
assumed to be nondamaging. Note that this holds true only with the kind of
rare diseases we are studying and cannot be generalized. The reason being,
no matter how deleterious the polyphen prediction is, or how important the
gene is, or how important the disease pathway is, if the mutation is found
at a certain level in the general population it does not lead to the disease.
In our case this ”certain level” should be zero. Though, by looking at the
pph2 probability independently might give some more weight to the model
when we want to combine the ”scores”.

5.1 Scoring Method 1

For a given mutation i, this method is based on statistical hypothesis testing,

H0 : i is benign
H1 : i is damaging

In principle, one can use Fisher’s combined probability test in order to test
the null hypothesis H0, above, against the alternative hyptothesis H1. It is
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based on a test statistic

Ti = −2 ln(Xi1)− 2 ln(Xi2),

with Xi1 a p-value for mutation i computed from pph2 and Xi2 a p-value
computed from 1kg. The calculations of these p-values are further described
in Section 5.1.1 and 5.1.2, respectively.

Under the null hypothesis that the two tests are independent and the
mutation has no effect, Xi1 and Xi2 are i.i.d. (independent identically dis-
tributed) random variables with a uniform distribution on (0, 1). Then Ti
has a χ2-distribution with 4 df. Therefore we can calculate

SCM1i = − log(1−G(Ti)),

whereG is the distribution function, a χ2-distribution with 4 df and 1−G(Ti)
is the p-value associated with Fisher’s combined test.

However, the p-value Xi2 defined in Section 5.1.2 requires a data set of
cases and controls. While this is of interest in future studies, in this paper
we only have controls from the 1kg data set. We will therefore neglect Xi2

and define a simplified score

SCM1i = − log(Xi1) (2)

based only on p-values from the pph2 data set. For instance, SCM1i = 3
corresponds to a p-value of 10−3 from pph2.

5.1.1 p-Value Computed from pph2

In order to test the null hypothesis of no damaging effect of mutation i
against the alternative that i is damaging from pph2, assume that we have
a test dataset containing NB scores (see Section 3.2.8) NB1, . . . ,NBn from
n benign mutations. Then their empirical distribution function

F̂ (x) =
1

n

n∑
k=1

1{NBk≤x}

is an estimate of the population distribution F of NB-scores of non-damaging
mutations. For instance, in the Polyphen-2 HumDiv dataset, that can be
downloaded from the web site, we will only consider the neutral mutations
in order to estimate F . The empirical distribution can be visualized with
a ”stair case function”, where stairs of height 1/n are placed at the NB
scores of the training dataset. When n grows, the empirical distribution
will approximate the true distribution.

If mutation i does not belong to the training data set, we define the
Naive Bayes (NB) score for mutation i as

Xi1 = p-value of mutation i = 1− F̂ (NB score of mutation i)

is the fraction of NB scores of the training data set greater than or equal to
the NB score of mutation i.
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Table 3: 2x2 contingency table.

cases controls
damaging a b a+b

nondamaging c d c+d
a+c b+d a+b+c+d

5.1.2 p-Value Computed from 1kg

Suppose that we have mutation (benign or damaging) and phenotype (case
or control) data from n = a + b + c + d alleles for a given nsSNP. We can
organize them into a contingency table, like the one in Table 3. Fisher’s
exact test can be used for testing H0 versus H1. It is a hypothesis test
which explores the association of categorical data, and can be used when
comparing proportions. A contingency table like the one in Table 3 is then
often used. Let Y denote the number of damaging mutations among the
cases. Under the null hypothesis, the conditional distribution of Y (given
the marginal sums in Table 3) is hypergeometrical,

P (Y = a) =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!n!
.

This can be visualized as an urn problem, since it asks for the probability of
obtaining a damaging mutations from case alleles when drawing a+ b balls
(corresponding to damaging mutations) from an urn of a+c case alleles and
b+ d control alleles, i.e.

P (Y = a) =

(
a+c
a

)(
b+d
b

)(
a+b+c+d
a+b

) .
Let ai, bi, ci, di denote the entries of Table 3 for mutation or nsSNP i. Then

Xi2 = p− value of mutation i = P (Y ≥ ai),

when Y has the above mentioned hypergeometrical distribution.

5.2 Scoring Method 2

A second scoring model was created using logistic regression. It is similar
to a linear regression model but is suited to models where the dependent
variable is dichotomous, i.e., when there are only two categories that we
are trying to predict (e.g., yes or no, female or male, success or failure).
A set of training data was created containing already known deleterious
and nonharmful mutations from pph2 and 1kg. We fitted the model on the
training data by estimating the regression coefficients, then, we can use the
same dataset for validating the model.
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The goal of logistic regression is to correctly predict the category of
outcome for individual cases using the greediest model. To accomplish this
goal, a model is created that includes all predictor variables that are useful
in predicting the response variable; in this case pph2 and 1kg. A major
purpose of logistic regression is to predict group membership. Since logistic
regression calculates the probability of success over the probability of failure,
the results of the analysis can be seen in the form of an odds ratio.

A training dataset of 926 observations, containing known mutations
with pph2 probabilities and 1kg allele frequencies, was used to build the
model. When the regression coefficients has been estimated, the same train-
ing dataset was also used to determine the goodness of fit of the model and
also its ability to distinguish benign from damaging mutations by means of
the area under a ROC-curve.

5.2.1 The Logistic Regression Model

Logistic regression can be used when we have one dependent (response)
variable that is dichotomous, and one or several independent variables. The
response function has a binary outcome, coded as 0 or 1, where 1 could be
seen as a success and 0 as a failure. We want to model the probability of
success given the value of explanatory variables, π = Pr(Y = 1|X = x).
For example, consider a vector of predictor or explanatory variables X,
containing for instance risk factors that may contribute to a disease. Then,
probability of success will depend on levels of these risk factors. Further, let
Y be a binary response variable

Yi = 1 if the trait is present in observation i
Yi = 0 if the trait is not present in observation i

Suppose a training data set {(Xi, Yi); i = 1, . . . , n} of size n is available,
with a response variable. Let X = (Xi1, . . . , XiK) be a set of explanatory
variables, and let xir be the observed value of the explanatory variables for
observation i and parameter r = 1, . . . ,K.

The logistic distribution constrains the estimated probabilities to lie be-
tween 0 and 1. To keep it within this interval a sigmoid response function
called the logistic function is used, as can be seen in Figure 2, and its func-
tion can be expressed as 1

1+e−x . If we have r = 2 predictor variables and
replace x with β0 + β1Xi1 + β2Xi2 we get the logistic regression model:

P (Yi = 1|Xi) = πi =
eβ0+β1Xi1+β2Xi2

1 + eβ0+β1Xi1+β2Xi2
(3)

where β0, β1 and β2 are unknown regression parameters. If Xir increases by
one, the odds of Yi = 1 increases by a factor eβr .

If estimates β̂r of these are computed from the training data set and then
plugged into (3), we obtain estimates of the success or disease probabilities
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Figure 2: The logistic function with its characteristic S-shaped curve

of all observations, and this gives a score

SCM2i = π̂i =
eβ̂0+β̂1Xi1+β̂2Xi2

1 + eβ̂0+β̂1Xi1+β̂2Xi2

of mutation i. A logit (or logarithm of odds) transformation

π̂′i = log

(
π̂i

1− π̂i

)
= β̂0 + β̂1Xi1 + β̂2Xi2

makes them linearly dependent on the estimated regression parameters. For
generalized linear models such a transformation is referred to as a link func-
tion, since it links the mean function to a linear combination of the regression
parameters.

Assuming that {Yi} are conditionally independent given all explanatory
variables {Xi}, a likelihood function

L = L(β0, β1, β2) =

n∏
i=1

1

1 + exp(−β0 + β1Xi1 + β2Xi2)

is obtained. The maximum likelihood estimator (MLE) of (β0, β1, β2) is
found as the parameter vector that maximizes the likelihood function. The
MLE can be found numerically by applying some iterative algorithm, such
as the Newton-Raphson, to the log likelihood function l = log(L).

For r = 1, 2 we can also test the null hypothesis H0 that the explanatory
variable Xr has an affect on the dependent variable Y against the alternative
hypothesis H1 that it has not, i.e.,

H0 : βr = 0,
H1 : βr 6= 0,
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Except for very small samples, we can test H0 using a z test statistic by di-
viding the maximum likelihood estimate β̂r by its standard error. Some soft-
wares reports the square of this statistic, called the Wald statistic. Asymp-
totically for large samples it has a chi-squared distribution with 1 df.

In order to test goodness-of-fit, i.e., the validity of the logistic regression
model, we can use the Hosmer-Lemeshow (H-L) test statistic. In order to
compute it, we first partition the observations into (for instance) 10 equally
sized groups based on their percentile ranks of the fitted risk values and
then comparing the observed number Oj of cases in each group j with its
expected number Ej , as predicted by the logistic regression model. In more
detail, the H-L statistic is defined as

G2
HL =

10∑
j=1

(Oj − Ej)2

Ej(1− Ej/nj)

where nj is the number of observations in the j:th group. Under the null
hypothesis that data follow a logistic regression model, G2

HL has a χ2-
distribution with 10 − 2 = 8 degrees of freedom asymptotically for large
samples, see for instance Hosmer and Lemeshow (2000). If a p-value com-
puted from this χ2-distribution is greater than 0.05, we fail to reject the
null hypothesis that there is no difference between observed and model pre-
dicted values, implying that the model fits the data at an acceptable level.
According to Hosmer, D.W. and Lemeshow, S. (2000).

5.3 Scoring Method 3

In this third scoring method the estimated parameter values, of the logistic
regression model in previous Section, could help us classify new cases. In
this subsection, we look at a simpler class of linear combinations

SMC3i = aXi1 + bXi2,

of the NB-scoreXi1 of mutation i computed from the pph2 data set and some
other score Xi2 (we will use the frequency of the mutated allele) computed
from the 1kg data set, with a and b as weights or co-factors. Without loss
of generality we can normalize the co-factors so that a+ b = 1. Then, since
Xi1 and Xi2 are both between 0 and 1, the same is true for SCM3.

We can use training data and ROC curves (see Section 3.2.7), in order to
investigate which (a, b) that maximize AUC. Alternatively, we can use the
logistic regression model, putting a = β̂1/(β̂1 + β̂2) and b = β̂2/(β̂1 + β̂2).

6 Results

In this Chapter the results of the three scoring methods, described in the
previous Section, will be presented and assessed, respectively.
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6.1 Scoring Method 1

We will use the simplifed version (2) of SCM1, based only on pph2 data. For
each mutation in the pph2 patient dataset (which consists of both neutral
and damaging mutations) we extracted a probability (that is, a NB score).
536 observations were included in the patient dataset in the range of 0
to 1 for which we calculated the empirical p-values. Another set of test
data was used to predict the empirical distribution of F̂ . Because of the
null hypothesis that the mutation has no effect, this dataset was filtered
to only consist of 6608 neutral mutations from the HumDiv dataset. For

Figure 3: Kernel density estimate of SCM1 for a patient data set containing 121
mutations, neutral and deleterious (mean=0.9240, sd=0.1129, bandwidth=0.03).

example, 5993 observations in the test dataset of known mutations is less
than or equal to an observed value of 0.02 in the patient dataset. Thus,
F̂ (0.02) = 5993/6608 = 0.907, and the p-value becomes 1-0.9069=0.0931.
An empirical p-value < 0.05 was regarded as statistically significant. If we
take the logarithm of this p-value we get the corrected p-value, presented in
the previous Chapter, -log(p)=-log(0.093)=1.031. This was done for all of
the 536 variations.

In Figure 3 we plot the empirical p-values of the patient dataset on a
logarithmic scale.

The graph is plotted inR using Kernel estimates that produce a smoothed
estimate of the probability density function. To get the best optimal graph
with Kernel a free parameter, bandwidth, can be used. This parameter has
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a strong influence on the resulting estimate. We choose a Kernel function
k ≥ 0 satisfying

∫∞
−∞ k(x)dx = 1, concentrated around 0. Each observation

xi is then replaced by a copy of the function k shifted so that it is centred
at xi, and scaled by the bandwidth.

6.2 Scoring Method 2

In our logistic regression model with covariate variables from pph2 and 1kg
(see Section 5.2), we first estimate the regression parameters with a training
dataset, that can be seen in Table 4, consisting of 463 known mutations
extracted from pph2 and 1kg, respectively. The larger the first covariate
Xi1 (i.e. the NB score from pph2) is, the larger is the chance for the mu-
tation to be damaging. For 1kg we first take Xi2 as one minus the allele
frequency, since, with this choice of covariate, we would expect that a larger
Xi2 increases the risk of a damaging mutation. The predicted coefficients

Table 4: The first few and last few rows of pph2 probabilities and one minus the
1kg allele frequencies in the training dataset. A high pph2 probability indicates a
damaging mutation and a low probability a benign. Whereas a low allele frequency
indicates a damaging mutation and a high frequency a nondamaging. Since, 1
minus the allele frequency is reported, a higher value corresponds to a mutation
more likely to be damaging.

mutation damaging=1 nondamaging=0 NB score 1 − the allele frequency

1 0.890 0.9995
1 0.996 0.9995
1 0.966 0.9986
0 0.002 0.3292
... ... ...
1 1.000 1.000
1 1.000 1.000
1 1.000 1.000

of the logistic regression can be seen in Table 5 giving the following fitted
regression model:

SCM2i = P̂ (Yi = 1|Xi) = π̂i =
e−2.54+7.50Xi1−1.05Xi2

1 + e−2.54+7.50Xi1−1.05Xi2

Notice that β̂1 is positive, as expected. On the other hand, contrary to our
expectation β̂2 is negative, indicating that a lower frequency of the mutated
allele decreases the risk of the mutation being damaging.

A statistic for significance (Wald) was produced for each predictor. The
larger the better. Each Wald value is associated to a p-value (the lower the
better). Even if the entire model is significant, it does not mean that all
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Table 5: Fit of Logistic Regression Model for the training data, with covariates
one minus the population allele frequency for 1kg and probability of a damaging
mutation (NB score) for pph2.

β̂i S.E. Wald df p-value eβ̂i

constant -2.54 1.82 1.90 1 0.16 0.08
NB score 7.50 0.61 150.50 1 0.00 1808.04

1 − the allele frequency -1.05 1.87 0.32 1 0.57 0.35

the predictors are significant (in that case, we could drop a nonsignificant
predictor, or enter it in some modified form if justified, e.g. its square or
logarithm).

If the probability of the column ”p-value” is less than 0.05 we would reject
the hypothesis at the 5% level that the parameter is zero. For instance, since
the p-value for testing β2 = 0 is 0.57, we cannot exclude (and still believe)
that a decrease in allele frequency of the mutated variant increases the risk
that the mutation is damaging, although the effect is very small. If we had
more parameters we could try removing each of these, one at a time, to see
the effect on our correct classification rate.

A 1-unit increase of the 1kg coefficient Xi2 decreases this risk, as quanti-
fied by the estimated odds ratio e−1.05 = 0.35. The estimated odds ratio for
a 1-unit increase of the pph2 coefficient Xi1 is much higher, e7.50 = 1808.04.
These are the most extreme cases, since our logistic regression coefficients
have to be in the interval [0,1]. If we would increase pph2 with for instance
0.1 we would get a much lower odds ratio.

In order to test goodness-of-fit, we evaluated our results with the Hosmer-
Lemeshow test, that compares the predicted and observed probabilities for
each decile of probabilities under the linear model. Our Hesmer-Lemeshow
statistic has a p-value of 0.19, meaning it is not statistically significant and
we can say that our test dataset does fit the model well.

In order to quantify the ability of SCM2 to distinguish benign and dam-
aging mutations, we evaluated the receiver operating characteristic (ROC)
curve (see Section 3.2.7). The AUC under the ROC ranges from 0.5 and
1.0 with larger values indicating a better separation between benign and
damaging mutations. Figure 4 shows the output of a ROC curve based on
the predicted probabilities in the logistic regression model for the training
dataset mentioned above. The area under the curve is 0.965. The AUC is
significantly different from 0.5, with a p-value of 0.000, meaning that the
logistic regression classifies the two groups of mutations significantly better
than by chance.
We investigated a second logistic regression model by redefining Xi2 so that
it equals 1 if the allele frequency of the mutated variant is zero, and 0 if the
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Figure 4: ROC curve of the predicted probabilities in the logistic regression model
with 1kg covariate one minus the allele frequency for a data set of 463 NB scores
and allele frequencies, respectively. The red curve corresponds to the discrimination
analysis between damaging and benign mutations, and the blue line represents
”the line of no-discrimination diagonal” dividing the ROC space. Points above
the diagonal represent good discrimination (better than random), points below the
line poor discrimination (worse than random). The two groups are almost totally
separated, since the estimated AUC = 0.965 is close to 1.
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allele frequency is greater than zero. In Table 6 the predicted coefficients
can be seen, and our new logistic regression model becomes:

P̂ (Yi = 1|Xi) = π̂i =
e−3.56+7.48Xi1+0.58Xi2

1 + e−3.56+7.48Xi1+0.58Xi2

The appearance of this new model has some slight differences compared to

Table 6: Fit of Logistic Regression Model for the training data, using a categorical
covariate for 1kg and the NB score as covariate for pph2.

β̂i S.E. Wald df p-value eβ̂i

constant -3.56 0.35 101.80 1 0.000 0.03
NB score 7.48 0.61 151.60 1 0.000 1772.24

the allele frequency (categorical) 0.58 1.35 0.18 1 0.67 1.79

the first method. The NB score coefficient is still positive, but the allele
frequency is positive instead of negative. Also, the H-L test gave a p-value
of 0.002 and hence the logistic regression model is rejected.

In Figure 5, on the next page, we can see that the AUC, for this second
method, is 0.964. A value also very close to 1, meaning that the classifier
scores every positive higher than every negative. We can say that this logistic
regression model discriminates as well as the first model, meaning that SCM2
even for this choice of 1kg covariate provides an adequate discrimination
between deleterious and benign mutations in the dataset of pph2 and 1kg.

For comparison, we also performed fits of data to a logistic regression
model with only one covariate, either NB-scores (Table 7), 1-the allele fre-
quency from 1kg (Table 8), or only the categorical allele frequency from 1kg
(Table 9).

As can be seen from Table 9 below, the estimated regression coefficent of
the categorical 1kg variable is positive as before (cf. Table 6). On the other
hand, the estimated regression coefficient for the model with a 1−the allele
frequency covariate is now positive (in line with what we would expect),
whereas it was negative in Table 5, when the NB score covariate was also
present. Moreover, the AUC of the model with a single NB score covariate,
in Table 7, is similar to Figures 4 and 5, whereas the AUC of the models in
Tables 8 and 9 are much smaller, 0.515 and 0.504 respectively. This means
that the pph2 covariate predicts the mutation class much better than the
allele frequency of the 1kg data.
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Figure 5: ROC curve of the predicted probabilities in the logistic regression with
the NB score as covariate from pph2 and a categorical covariate from 1kg which is
1 if the allele frequency is 0 and 0 otherwise. The estimated AUC = 0.964.

Table 7: Fit of Logistic Regression Model for the training data, with only the
covariate NB score from pph2.

β̂i S.E. Wald df p-value eβ̂i

constant -3.55 0.35 102.3 1 0.00 0.03
NB score 7.48 0.61 151.5 1 0.00 1772.24

Table 8: Fit of Logistic Regression Model for the training data, with only the
covariate one minus the population allele frequencies from 1kg.

β̂i S.E. Wald df p-value eβ̂i

constant 0.072 0.83 0.008 1 0.93 1.075
1 − the allele frequency 0.055 0.85 0.004 1 0.95 1.057

33



Table 9: Fit of Logistic Regression Model for the training data, with only the
categorical covariate allele frequency from 1kg.

β̂i S.E. Wald df p-value eβ̂i

constant 0.12 0.09 1.5 1 0.22 1.13
the allele frequency (categorical) 0.29 0.54 0.29 1 0.59 1.34

6.3 Scoring Method 3

The third scoring method is the simplest, a linear combination of the pph2
and 1kg scores with weights a and b. We can look at the logistic regression
not only as a tool for predicting the probability that a mutation is damaging
in SCM2, but also as a method for generating good weights a and b in
SCM3 of our factors pph2 and 1kg. As mentioned in Section 5.3, we can
achieve this by choosing a and b proportional to the estimated regression
parameters β̂1 and β̂2. We can use the same training dataset from HumDiv
as for SCM2, containing damaging as well as benign mutations, in order to
calculate the ROC curve. Given that the weights are taken from the logistic
regression we get the same plot as in Figure 4 or Figure 5, depending on
which covariates we choose. SCM3i is just a monotone transformation of
SCM2i for all mutations i with this choice of weights a and b.

7 Discussion and Project Outline

The still increasing amount of genetic variation data requires computational
tools for prediction of the impact of disease-associated variants and to pos-
sibly alter the most interesting and likely pathogenic cases for experimental
analysis. The aim of this paper was to show a novel method to evaluate how
reliably the pathogenicity of missense mutants can be predicted.

To this end, we created scoring models with two factors containing data
from PolyPhen-2 (pph2) and the 1000 Genomes Project (1kg) as a first step
towards creating an in-silico multifactorial tool for estimating the relevance
of a mutation to a certain disease. The preliminary idea was to create a
basic model scoring a mutation as damaging or nondamaging, and to start
with, only taking two factors into consideration, pph2 and 1kg. We focused
on one disease, Mendelian susceptibility to mycobacterial disease (MSMD)
for one patient.

For each polymorphism found we first computed the pph2 Naive Bayes
probabilities, predicting how harmful the polymorphism is. Then, we com-
puted allele frequencies of controls in 1kg, taking into consideration if a
mutation can’t be found in 1kg then it is rare and more likely to be harmful.
If we find any frequency (high or low) in 1kg then that mutation is most
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likely nondamaging, at least for Mendelian diseases. If a mutation is not
found in pph2 then it is either not a missense mutation or if the lack of
data did not allow to make a prediction, then the status of the mutation is
unknown.

The purpose was to assign a score to each mutation by combining the
information we have on the population allele frequency of the mutation (from
1kg) together with the probability that the mutation is harmful (NB scores
from pph2). We therefore proposed various ways of putting these two pieces
together.

With SCM1 we get a prediction for each mutation in form of a p-value.
Since we lack allele frequency data for patients, we didn’t use the 1kg data
for this method but computed the simplified formula in (2) based only on
the NB scores.

In SCM2 we performed a logistic regression predicting the probability
that the mutation is damaging, with covariates from pph2 (NB score) and
1kg. We used two options for the 1kg covariate. Either a continuous covari-
ate, for which one minus the allele frequency gives a gradual indication of
the mutation’s harmfulness. Alternatively, a categorical covariate, in which
case the mere presence of the mutated variant in 1kg indicates a benign mu-
tation. In any case, it is necessary with at least one mutated variant among
some of the controls in 1kg. We also found that the logistic regression model
fitted the test data set well with the Hosmer-Lemeshow test, that compares
the predicted and observed probabilities for each decile of probabilities.

With SCM3 we used a simpler linear combination of the two scores from
pph2 and 1kg.

For all three scoring methods, the area under the ROC curve (AUC) was
used in order to quantify how well the mutation status could be predicted.
We got values of AUC very close to 1, indicating that for the test data sets we
considered, the screening measure reliably distinguishes between deleterious
and benign mutations.

As a conclusion, it is important to take the pph2 data into account, since
the variants we study are rare. Because of the rareness conventional associa-
tion studies are then much less powerful, since a huge number of individuals
are needed to estimate allele frequencies. When comparing the exome data
with the reference (”healthy”) genome we identify for each patient many
thousands of genetic variations, and the main challenge is to narrow down
the list to a few candidate genes where these mutations occur that would
be further investigated in the laboratory, in order to validate at least one of
them as disease-causing.

The next step would be to put the project on a larger scale and generalize
it to a more complicated statistical model that includes more types of data
and biological knowledge, in order to estimate how likely it is that the muta-
tion is disease-causing. We have only considered one type of DNA-evolution,
nucleotide substitution, but the evolutionary process involves several other
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factors.
For example, other important factors to take into consideration, for scor-

ing on the single individual level, could be selection value (higher score
for highly conserved), mutation type (for example in the following order
missense, nonsynonymous, synonymous), mutation location (coding, non-
coding). In a broader perspective we could observe the copy number vari-
ation (CNV) checking if the polymorphism in question has more or less
copies for patients compared to healthy individuals, take a systems biology
approach and check whether the mutated gene belongs to some pathway of
the disease, integrating the scoring with other data. For example, if we have
a mutated gene and we in microarray also confirm that it has a significantly
lower expression for patients compared to controls, then it is much more
likely to be disease-causing. We could also check if the gene in question is
close to any gene known to be in a disease pathway, for example by using
Connectome.

We could also extend the scoring method by adding more features of the
mutation. For instance, if we had an index of the severity of the harmful
effects of each mutation, we may compute a score combining not only the
relative frequency of the mutation and the probability of it being harmful,
but also the severity of the expected harm. This would be an enrichment
of our score, for which severity is not included. For instance, two mutations
may have the same frequency and the same probability of being harmful, but
the harm is lethal in one case and only aesthetic in the other, for instance
it may cause some extra skin blotches. Though, any combination of several
features into one single score or index would imply a loss of information.

Also, we would want to give more weight to 1kg than pph2. This is
because sometimes a mutation is misclassified in pph2 as deleterious when
it is in fact was neutral (or the opposite), but if a variation is found in 1kg,
no matter how high or low the frequency is, it exists in the population and
is therefore most likely nondamaging.

The scores we have considered refer to the mutations and their conse-
quences, and not to the causal factors determining them to appear. For
instance, a particular mutation can either be caused by exposure to sunlight
or to some chemical in food or water. The degree of exposure to a causal
factor is something conceptually different from the nature of the mutation
and its consequences, and these aspects could also be taken into account in
a statistical analysis.

We simply want to add as much information as possible to end up with
a scheme where name of gene, biological background of that gene (e.g., is it
known in any disease pathway(s)?) and other valuable available information
is taken into consideration. Then of course we could extend the model statis-
tically in order to incorporate biological background information and handle
more types of data, and computationally, for instance more extensive sim-
ulations based on empirical data. By looking at the statistical significance
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we want to be able to draw conclusions about the biological significance.
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