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Abstract

Every year about 55,000 people are diagnosed with cancer and
about 20,000 people die from the disease in Sweden. Statistically,
one of three Swedes will suffer from cancer at some time in their life.
The significance of reducing cancer mortality can hardly be overstated.
Most patients can be cured by cancer surgery and radiation of the pri-
mary tumor if no metastasis have occurred. It is therefore very im-
portant to reduce the tumor spreading at an early stage. To reduce
the tumor spreading, chemotherapy is normally used to inhibit the
production of new cancer cells.

During the last decade it has been realized that cancer is a hetero-
geneous disease. This suggests that we need better methods to match
molecular tumor characteristics with an optimal drug combination for
each patient. To study the potential of developing such methods, data
from cancer cell lines was used to test two cases: Case 1) To optimize
the treatment based on the patient’s molecular tumor profile. Case 2)
To develop accurate prediction models for drug screening to help make
cancer drug discovery more efficient.

By using different techniques within the field of chemometrics (the
intersection of chemistry and statistics) it was possible to integrate
gene expression data (describing the characteristics of a cancer tumor)
and chemical data (describing the properties of a chemical compound)
to predict the concentration level needed for a chemical compound to
inhibit the cell line growth with 50%. Such a prediction model is of
direct use in Case 1 and Case 2, where it can be used for predicting the
optimal drug treatment based on the patient’s molecular tumor profile
and for predicting the effect of a new drug candidate, respectively.

In both cases, the best model for predicting the concentration level
needed for a chemical compound to inhibit the cell line growth with
50% was achieved with random forest. The variables describing the
chemical compounds were of high importance when predictions were
made. Most importantly, it was also found that the gene expression
data, describing the cancer cell line, adds significant information, in-
dicating that cancer treatment should be personalized.
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1 Introduction

1.1 Background

Every year about 55,000 people are diagnosed with cancer and about 20,000
people die from the disease in Sweden alone. Statistically one of three Swedes
will suffer from cancer at some time. There are around 200 different clas-
sified types of cancer. For men the most common cancer type is prostate
cancer with 10,000 diagnoses per year in Sweden. For women the most com-
mon cancer type is breast cancer with 7000 diagnoses per year in Sweden
(Cancerfonden, 2012).

Depending on which organ/organs the cancer developed, how far the
cancer has spread and age and health of the patient the treatment options
are surgery, radiotherapy, hormone treatment, and chemotherapy.

The cause of cancer is divided into two groups, environmental cause,
which is estimated to cause 90-95% of the cases and those with a heredi-
tary genetic cause which is estimated to cause 5-10% of the cases. Common
environmental factors that causes cancer are poor diet (30-35%), smoking
(25-30%), infection (15-20%) and radiation and stress, etc. (remaining per-
centage) (Anand et al., 2008).

Regardless the cause of cancer, all types of cancer appears by genetic
changes in the DNA. Many of the changed genes are involved with the
reparation of the DNA. During cell division the DNA is replicated in the
cell and when something goes wrong repairing factors (proteins) correct
the error. When a repairing gene stops working the cell can undergo un-
controlled growth and division, which may destroy the surrounding tissue.
After multiple divisions the cancer cells turn into a small lump called a tu-
mor. Mutations lead to tumor growth and eventually the tumor will break
through the basal membrane (a sheet of thin tissue that forms the border
with the underlying connective tissue). Some cancer cells take the oppor-
tunity to circulate through the bloodstream and spread to other organs in
the body, called metastasis. Metastasis are in fact the reason to almost 90%
of cancer-related deaths (Hejmadi, 2010). Most patients can be cured by
cancer surgery and radiation of the primary tumor if no metastasis occur.
It is therefore very important to reduce the tumor spreading at an early
stage, which is done with chemotherapy. Chemotherapy is a drug therapy
that is used to inhibit the production of the cancer cells by killing the cells
that divide rapidly. Unfortunately chemotherapy may also harm the healthy
cells that divide rapidly which can lead to side effects like decreased produc-
tion of blood cells, hair loss etc. Therefore the level of concentration that
is given to a patient have to be restricted, since at some concentration level
everything will eventually die.

Under the last two decades the revolution of genomics has lead to an
enormous accumulation of biological data from gene sequencing and other
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techniques. We can generate thousands, sometimes millions of measure-
ments on a single individual.

Although there are about 200 different classified cancer types it has under
the last decade been realized that most cancer are heterogeneous diseases.
This indicates that we need to abandoning the traditional way of classifying
cancer tumors into discrete subtypes. In order to achieve the best results for
a patient we need to provide personalized treatments that are tailored to an
individual patient, based on his or her particular molecular tumor profile.

1.2 Long term aims

The long term aim for researchers at the department of Medical Epidemiol-
ogy and Biostatistics (MEB) at Karolinska Institutet is to reduce the mor-
tality of cancer. As a step to reduce the mortality of cancer we focus on two
cases:

Case 1) Personalized treatment optimization. To reduce the mortality of
cancer by personalizing the treatments. Based on the patient’s molec-
ular tumor profile the hope is to optimize the treatment of cancer.

Case 2) Drug screening. To make cancer therapy drug discovery faster and
cheaper by developing accurate prediction models for drug candidates.

1.3 Aims for this project

This project will take an important step to fulfill these long term aims. To
simulate these two cases, data from 60 human tumor cell lines, called NCI-60,
is used. The data contains information about gene expressions, describing
the characteristics of the cell lines. The concentration level needed to inhibit
the tumor growth with 50% for 110 different chemical compounds has been
measured by the US National Cancer Institute and is used as response data.
To describe the chemical structure of a compound a vector with 14 variables
is constructed.

The specific aims for this project are:

• to connect and integrate gene expression data, describing the charac-
teristics of a cell line, and chemical data, describing the structure of a
chemical compound.

• for the personalized treatment case and the drug screening case, re-
spectively, construct statistical models for predicting the concentration
level needed for a chemical compound to inhibit the cell line growth
with 50%.

• to investigate if gene expression data and chemical data, respectively,
are important for the prediction of the growth inhibition of cancer
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cells. This gives an indication of the possibility to match molecular
tumor characteristics to the optimal drug combination and predict
how a promising drug candidate should perform by using a chemical
description of the compound.

1.4 Main results

By using different techniques within the field of chemistry where multivariate
mathematical methods are used to extract chemically relevant information,
it was possible to connect and integrate the gene expression data (describ-
ing the characteristics of a cell line) and the chemical data (describing the
properties of a chemical compound).

This report shows that the variables describing the chemical compounds,
such as number of bonds and molecular weight etc., were of high impor-
tance when the concentration level needed for 50% growth inhibition was
predicted. It was also found that the gene expression variables provide
significant information for the prediction, indicating that cancer treatment
should be personalized.

Methods as multiple linear regression, Section 3.3.3, lasso, Section 3.3.5.1,
and random forest, Section 3.3.7, were used to construct models for predict-
ing the concentration level needed for a chemical compound to inhibit the
cell line growth with 50%. To minimize the prediction error of such a model
variable selection methods as lasso and NetPath, Section 3.3.5.2, were used.

In both the personalized treatment case and the drug screening case, the
random forest method generated the best prediction among the methods
used. Also, by preselecting variables the computation time was significantly
reduced.

1.5 Report structure

In order to simplify for the reader and to gain insight into basic molecular bi-
ology, the freestanding Section 6.1 in the Appendix provide an introduction
to this field. In Section 2, the two cases, Case 1: Personalized treatment op-
timization and Case 2: Drug screening, are explained. In Section 3, the data
is introduced together with statistical methods and software used. How the
description of a disease state is connected and integrated with a description
of a compound is also presented in this section. The results are represented
in Section 4 followed by a discussion section, Section 5.
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2 The two cases: Personalized treatment optimiza-
tion and Drug screening

The long term aim is to reduce the mortality of cancer. As a step to reduce
the mortality of cancer we focus on two cases:

Case 1) Personalized treatment optimization. To reduce the mortality of
cancer by personalizing the treatments. Based on the patient’s molec-
ular tumor profile the hope is to optimize the treatment of cancer.

Case 2) Drug screening. To make cancer therapy drug discovery faster and
cheaper by developing accurate prediction models for drug candidates.

The two cases can of course also relate to each other. For example, to
optimize the personal treatment we may have to identify a new drug.

To simulate these two cases and construct prediction models, data from
60 human tumor cell lines, called NCI-60, is used. The data contain in-
formation about gene expressions, describing the characteristics of the cell
lines. The concentration needed for 110 different chemical compounds to
inhibit the tumor growth with 50% have been measured by the US National
Cancer Institute and is used as response data. The data is further explained
in Section 3.1.

2.1 Case 1: Personalized treatment optimization

In the personalized treatment case, the aim is to optimize the cancer drug
treatment, based on the patient’s tumor profile. The optimal drug treatment
may be thought of as the concentration level of a chemical compound that
inhibit the tumor growth the most. However, at some high concentration
level everything will eventually die and a low concentration level is prefer-
able. Therefore, the optimal compound is interpreted as the compound that
needs the lowest concentration level to inhibit the cell line growth with 50%.

In a real situation, in order to select the optimal drug treatment for a
patient’s cancer tumor we have no information about the effect for any drugs
tested on the patient’s particular tumor. For this reason, data is not used
from the cell line we want to predict the growth inhibition for. Thus, before
a model is constructed, the data is divided by cell lines.

2.2 Case 2: Drug screening

In the drug screening case, the aim is to predict the effect of a promising drug
candidate. How a drug affects a tumor is simulated with the 110 chemical
compounds, by predicting the concentration level needed for a chemical
compound to inhibit the cell line growth with 50%. A low concentration
value needed for 50% growth inhibition indicate a promising drug candidate.
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In a real situation, we have no information about the effect of a new drug.
For this reason, data is not used from the chemical compound we want to
predict the concentration level needed for 50% growth inhibition. Thus,
before a model is constructed, the data is divided by chemical compounds.
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3 Materials and methods

3.1 Data

In this project data from 60 human tumor cell lines is used, called the NCI-
60 panel, each containing information about gene expression and growth
inhibition of 110 different chemical compounds used. The NCI-60 panel
contain the most extensively characterized human cell lines in broad lab-
oratory use and have been used by the US National Cancer Institute to
screen over 100000 compounds to receive information about their effect on
the respective cell lines.

The cell lines were obtained from cancer tissue and are grown in plastic
bottles or plastic cups containing culture medium mimicking a ”normal”
environment of the organism. The NCI-60 cell lines are used in this project
because they have the advantage of having abundant publicly available data.
Another advantage is the possibility of rapid testing new chemical com-
pounds at a relatively low cost without ethical problems. The specific data
of the NCI-60 panel and the drug screening is explained in detail below.

3.1.1 NCI-60

Between 1985-1990, the US National Cancer Institute (NCI) developed an
in vitro (Latin: within glass) primary screen based on a panel of 60 human
tumor cell lines, representing cells from:

• Leukemia (blod) (6)

• Lung (9)

• Colon (bowel) (7)

• CNS (central nervous system) (6)

• Melanoma (skin) (10)

• Ovarian (7)

• Renal (kidney) (8)

• Prostate (2)

• Breast (5)

In parentheses is the number of cell lines for each cancer subtype. As bi-
ological properties of the cell lines the mRNA expression data from the
Affymetrix Human Gene U133A chip is used. Affymetrix Human Gene
U133A chip is a microarray that was used by NCI to measure the pro-
duction of mRNA of thousands of genes simultaneously during a specific
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condition. Microarrays are further explained in Section 6.1. For each cell
line we have the mRNA value of 22283 probes (fragment of a gene), rep-
resenting 13032 unique genes (Shankavaram et al., 2007). A higher mRNA
level indicates a more active gene, which in a disease state might indicate
that the gene could serve as a drug target. The NCI-60 data are publicly
available at http://dtp.cancer.gov/mtargets/mt_index.html

3.1.2 Chemical compound data

More than 100000 chemical compounds have been tested against the 60 cell
lines with a defined range of concentrations to determine the growth in-
hibition. In this analysis a panel of 110 molecules are used, called A118.
The A118 are used because they have known mechanism of action and
have been experimentally tested at least 4 times on the NCI-60 cell lines
(Bussey et al., 2006). To be able to use mathematical methods the chem-
ical compounds has to be described numerically. How this was done is
explained in Section 3.2.1. The A118 data set was downloaded from http:

//discover.nci.nih.gov/cellminer/.

3.1.3 GI50

After 48 hours of drug treatment the growth inhibition for each compound
tested on each cell line has been determined by the US National Cancer
Institute (Boyd and Paull, 1995). For each chemical compound the concen-
tration that caused 50% growth inhibition (GI50) in the unit M (mol/l) was
determined for each cell line. GI50 values was obtained between 10−11 to 1
M, where a low concentration value is preferable and indicates higher efficacy
of the chemical compound. Chemotherapy will also harm the healthy cells
that divide rapidly. Therefore the level of concentration that are given to a
patient have to be restricted, since at some concentration level everything
will eventually die.

The response variable, y = −log10(GI50) is chosen by NCI. Since

GI50 = 10−y ⇔ −log10(GI50) = y, (1)

y obtain values from 0 to 11. As mentioned, a low concentration value to
inhibit the growth with 50% is preferable, which results in a high value on
the response variable y.

3.1.4 Missing or incomplete data

In statistical modeling and inference a common problem is how to handle
missing data. By using probability models, one approach, called imputing,
is to fill in the missing data. A problem with this imputation is that the
missing values will be treated as they were known. Another approach is to
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simply discard the observations that are incomplete, this however can lead
to reduced power and selection bias.

In our data we have some mRNA values missing for one lung cancer
cell line (LC.NCI H23) and we have missing values for some properties for
one of the 110 chemical compounds (609395). In this case we discarded the
cell line and the chemical compound with the missing values. This can be
considered as we only had 59 cell lines and 109 chemical compounds from
the beginning. Thus, the outcome of this is that we now have 109 chemical
compounds that have been tested on 59 cancer cell lines, which gives us 6431
observations in total.

In the gene expression data we are missing the IDs (names) of 1214
genes, which we have been named NA (Not Available) and the number of
its position within the data set (ex: NA22238, for a missing gene ID on the
gene positioned at 22238 in the data).

3.2 Chemometrics - chemistry meets statistics

To improve the understanding of chemical information, mathematical, sta-
tistical, graphical or symbolic methods are used. This area is called chemo-
metrics. One of the founders, Svante Wold explains chemometrics as:

”How to get chemically relevant information out of measured chemical
data, how to represent and display this information, and how to get such
information into data” (Wikberg et al., 2010).

A major issue within this field is how to connect and integrate a biological
and chemical description of a disease state with the chemical description
of a compound.In this project, one aim was to describe the 109 chemical
compounds and the 59 cell lines numerically. How to solve these issues are
explained below.

3.2.1 Descriptors

As the name indicates, descriptors describe a molecule’s structure. By study-
ing the chemical structures the expected properties can be described. De-
scriptors vary in complexity and dimensionality. Bioclipse is a free and open
source workbench, an integration platform for chemo- and bioinformatics
(Spjuth et al., 2009; bioclipse.net, 2007). We constructed our descriptors
in Bioclipse with the Chemistry Development Kit (CDK), which is an open
source Java based library for structural chemo- and bioinformatics (Stein-
beck et al., 2006; cdk.sf.net, 2003). We selected a 2D description of the
chemical structure, which can be explained as what we can write on a piece
of paper. We obtained a descriptor vector with 14 variables for each chem-
ical compound, e.g. number of carbons (nC), molecular weight (MW) and
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number of bonds (nB). These descriptors describe the molecules structure
in a numerical representation of the 109 chemical compounds.

3.2.2 Quantitative structure-activity relationship (QSAR)

By using the chemical descriptors that describe a compound we would like
to predict its effect on a cell line. Quantitative structure-activity relation-
ship (QSAR) is a method that use numerical properties of a compound
(descriptors) to form a mathematical relationship with a biological activity
(Wikberg et al., 2010). One of the first historical QSAR application was to
predict boiling points. In our case the biological activity is −log10 of the
concentration of a substance required to give a 50% growth inhibition. We
can express the QSAR model as a regression model:

yi = f(dC,i), i = 1, ..., 109 (2)

where f is an unknown function and dC,i is a vector with chemical de-
scriptions for compound i. The aim is to find an empirical equation that
can predict the biological activity for other chemical compounds. However,
since we also have biological properties about the tumor cell lines and QSAR
models only deals with the chemical space, we wanted to use a technology
that also can merge tumor biology with chemistry.

3.2.3 Proteochemometrics (PCM)

As the development within genomics (the study of the genome) ”exploded”,
a technology called proteochemometrics (PCM) was born. Proteochemo-
metrics connects and integrates biological and chemical data to construct
mathematical models for prediction of properties of chemical compounds.
Proteochemometrics is a generalization of QSAR that includes multiple pro-
tein targets and was developed by Wikberg et al. in 2001 (Wikberg et al.,
2001).

In the same way as we describe a compound using chemical descriptors
we need to express the properties of a cancer tumor. To get a numerical
representation capturing the biological properties of the cancer cell lines the
gene expression data (mRNA levels) was used. mRNA is explained in the
introduction to molecular biology section, Section 6.1, and can be interpreted
as the activity of a gene.

The numerical quantifications permits mathematical treatment, thereby
merging tumor biology with the chemistry to predict treatment efficacy.
Given data from the tumor biological space and data from the therapy chem-
ical space, we can expand equation (2) with proteochemometrics:

yi,j = f(dC,i, dT,j) i = 1, ..., 109, j = 1, ..., 59. (3)
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In our case yi,j = −log10(GI50i,j) is the treatment efficacy of chemical com-
pound i and tumor cell line j, dC,i is a chemical description (a vector with
14 variables) of compound i and dT,j is a biological description (a vector
with 22283 variables) of tumor cell line j. f is an unknown function that we
want to estimate by using the observed growth inhibition for each compound
tested on each cell line.

3.2.4 Merged data

Our aim is to predict the concentration level needed of a chemical com-
pound to inhibit the growth with 50%, given a molecular profile of a cell
line and a numerical description of a chemical compound. By using pro-
teochemometrics that merge tumor biology with chemistry we can predict
the −log10(GI50) for each chemical compound tested on each cell line. The
data was merged as in (4) and the aim is now to deduce a function, f , in
equation (3) from the n× (p+ 1) data matrix:

(X,y) =


x11 x12 . . . x1p y1
x21 x22 . . . x2p y2

...
...

. . .
...

...
xn1 xn2 . . . xnp yn

 =

=



geneexpressions︷ ︸︸ ︷
x1,1 x1,2 . . . x1,22283

descriptors︷ ︸︸ ︷
x1,22284 . . . x1,22297

response︷︸︸︷
y1

...
...

. . .
...

...
. . .

...
...

x59,1 x59,2 . . . x59,22283 x59,22284 . . . x59,22297 y59
x60,1 x60,2 . . . x60,22283 x60,22284 . . . x60,22297 y60

...
...

. . .
...

...
. . .

...
...

x6431,1 x6431,2 . . . x6431,22283 x6431,22284 . . . x6431,22297 y6431


=

=



geneexpressions︷ ︸︸ ︷
9.52 7.67 . . . 3.67

descriptors︷ ︸︸ ︷
160 . . . 55.98

response︷︸︸︷
7.35

...
...

. . .
...

...
. . .

...
...

6.98 7.65 . . . 2.97 160 . . . 55.98 4.67
9.52 7.67 . . . 3.67 196 . . . 126.48 6.82

...
...

. . .
...

...
. . .

...
...

6.98 7.65 . . . 2.97 228 . . . 107.53 4.34


, (4)

where n is the number of observations and p is the number of independent
variables. The data was ordered so that each row in (4) represents one
observation. For each observation, the first 22283 columns are gene expres-
sion data (mRNA values) for the specific cancer cell line. The following 14
columns (22284 to 22297) are a description of the chemical compound that
has been tested on the cell line. The last column is the response, −log10
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of the concentration level needed for the chemical compound to inhibit the
growth of the cancer cell spread with 50%.

The data have been merged in such a way that the first 59 rows are the
observations from the first chemical compound tested on the 59 cell lines.
The next 59 rows (60 to 118) are the observations from the second chemical
compound tested on the 59 cell lines, and so on.

3.3 Statistical methods

To fit a function, f , a standard procedure is to fit a linear regression model
to the data (Section 3.3.3). In real life however, effects are often not linear.
Working with genetic data and chemical data, we often have a large number
of independent variables, which are often very strongly correlated. When
we have a much larger number of independent variables p than number of
observations N , as in this case p = 22297 and N = 6431, a problem is often
high variance and overfitting (Section 3.3.2). To reduce the number of inde-
pendent variables methods as Lasso and NetPath (Section 3.3.5) were used.
With strongly correlated independent variables it is difficult to attribute
changes in the dependent variable to one of the independent variables rather
than another. When independent variables are strongly correlated, linear
regression can perform poorly because of high variance.

An algorithm which tends to work better than linear methods in these
situations are Regression Trees (Section 3.3.6.1). The main idea behind re-
gression trees is to use data to recursively partition the sample space into
smaller and smaller regions. To construct a statistical model, besides using
linear regression methods, a method called random forest was used. The
Random Forest method (Section 3.3.7) uses unpruned trees with a random-
ized selection of independent variables at each split to reduce the correlation
between trees, which in turn reduce the variance when trees are correlated
(Section 3.3.6.3). Before the random forest method is introduced, the meth-
ods used in the random forest need to be introduced (Section 3.3.6).

3.3.1 Loss function

To determine and compare how well the predicted function f̂(X) fits the
available data a ”loss function” L(Y, f̂(X)) is introduced. The most conve-
nient and commonly used loss function measures the squared error between
Y and the predicted function f̂(X),

L(Y, f̂(X)) = (Y − f̂(X))2. (5)

3.3.2 Model complexity bias-variance tradeoff

Before we compare and select our models there are some issues that we
need to consider. Assume that we observe our data matrix (X,y) from a

15



statistical model:
Y = f(X) + ε, (6)

where E[ε] = 0 and V ar(ε) = σ2ε . With the input vector X we want to
develop a function f̂(X) which we can use for future predictions of Y .

One natural way to estimate the prediction error is the average loss over
the data sample used to construct the model, called the training error (Rt),

Rt =
1

N

N∑
i=1

L(yi, f̂(xi)) =
1

N

N∑
i=1

(yi − ŷi)2, (7)

when the loss function is the squared error and xi = (xi,1, ..., xi,p)
T . Unfor-

tunately the training error (7) is not a good estimate because we can always
make the training error arbitrarily small by selecting our model f̂(X) com-
plex enough (Figure 1). If we select a very complex model, the model fitted
to the data has adapted to the random noise in the data and will predict
very poorly to new observations.

The expected prediction error, also called test or generalization error
(Rg), at X = x where x is the observed vector, can under squared error loss
be expressed as

Rg(x) = E[(Y − f̂(x))2 | X = x]

= E[(f̂(x)− E[f̂(x)] + E[f̂(x)]− Y )2 | X = x]

= σ2ε + E[(f̂(x)− E[f̂(x)])2 + 2(f̂(x)− E[f̂(x)])(E[f̂(x)]− f(x))

+ (E[f̂(x)]− f(x))2]

= σ2ε + E[f̂(x)− E[f̂(x)]]2 + (E[f̂(x)]− f(x))2

= σ2ε + V ar(f̂(x)) + bias2(f̂(x)). (8)

The first term σ2ε is the irreducible error, the variance of the error term ε,
and can not be avoided no matter how well we estimate f(x). The second
term is the variance, the expected squared deviation of f̂(x) around its
mean. The last term is the squared bias, the amount by which the average
of our estimate differs from the true mean (Hastie et al., 2009).

Generally, the more complex we select the model f̂(X), the more able
it is to adapt to a complex relationship between X and Y , and the lower
the bias but the higher the variance. Since, too much fitting will adapt the
model to closely to the data used to fit the model and will not generalize
well, i.e. have large test error. If the model is not complex enough, it
will underfit and may have large bias. Thus, in between there is an optimal
model f̂(x) that best balances the bias and the variance and gives a minimal
test error (Hastie et al., 2009). This is the model we want to select for future
prediction. The bias-variance tradeoff is described graphically in Figure 1.
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Figure 1: The bias-variance tradeoff. Test error and training error as a func-
tion of model complexity. The training error is decreasing when the model
complexity is increasing, whereas the test error has a minimum because
of the bias-variance tradeoff (figure adapted from Elements of Statistical
Learnings, p.38 (Hastie et al., 2009)).

3.3.3 Linear regression models

To find a function f(X) a standard procedure is to fit a linear regression
model of the form

f(X) = β0 +

p∑
j=1

Xjβj . (9)

This model assumes that the regression function E(Y | X) is linear or can
be approximated by a linear function.

To estimate the beta parameters the most common method is least
squares, where the coefficients β = (β0, β1, ..., βp)

T are chosen to minimize
the residual sum of squares (RSS):

RSS(β) =
N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2. (10)

The β estimates can be written as

β̂ = (XTX)−1XTy (11)
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and are called ordinary least squares. However, the parameter vector β can
be difficult to compute if p > N , since the ordinary least squares solution
(11) requires that the inverse of XTX exist, i.e. that rank(XTX) < p. This
can be done using pseudo-inverses but that is not addressed in this report.

3.3.4 High-dimensional problems, p >> N

During the last two decades the revolution of genomics has lead to an enor-
mous accumulation of biological data from gene sequencing and other tech-
niques. However, a large amount of data is not the same as a large amount
of concrete information. With gene data the case is often that we have a
much larger number of independent variables p than number of observations
N , p >> N . This is also the situation in our case, p = 22297 and N = 6431,
which complicates the calculations. When we have a p >> N situation, sig-
nals can drown in noise and spurious correlations can occur. We also have
a computational challenge with big matrices. In a linear regression model
there are p parameters but the X-matrix only has rank N , as mentioned we
are not able to estimate all parameters when we use the least square method
(11).

3.3.5 Variable selection and shrinkage methods

To control the model complexity, traditional methods as forward- and back-
ward stepwise selection could not be used. Backward selection can only be
used when N > p while forward selection was computationally not possible
because the large amount of data. Instead the shrinkage method, Lasso
(Section 3.3.5.1), was used.

Generally, challenges with variable selection in life science applications
is often that: we have more parameters than observations, a nonlinear rela-
tionship between input and output, errors in variables, outliers and clusters
in the data. With variable selection the variables are either included or
excluded in the model and this could generate high variance. Shrinkage
methods are smoother and will reduce the variance by penalizing the size of
the regression coefficients, which is further described below.

To select variables, prior knowledge as the NetPath genes was also used
(Section 3.3.5.2).

3.3.5.1 Lasso
Lasso stands for Least Absolute Shrinkage and Selection Operator and is a
shrinkage method that also can be used for variable selection. The linear
regression model have to pay some cost, λ, for including a non-zero param-
eter in the model. The lasso solution is the coefficients that are obtained by
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minimization of (12).

β̂lasso = argminβ{
1

2

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |}. (12)

A constraint
∑p

j=1 |βj | ≤ t is thus used. When t is large, the constraint
has no effect and the solution is the multiple linear least squares regression.
However, making t sufficiently small will cause some of the coefficients to be
exactly zero.

Coefficient paths are fitted by optimizing each parameter separately,
holding the others fixed, as λ varies (Figure in Section 4.4.1).

In this project, lasso was used both as a prediction method and for
variable selection. The glmnet package in R was used to represent the lasso
method (Friedman et al., 2010).

3.3.5.2 NetPath
Another way to reduce dimensionality is to use prior knowledge about the
gene expression variables. Netpath is a database that includes 10 cancer sig-
naling pathways that provides a list of the genes that are up- or down- reg-
ulated at the level of mRNA expression in a cancer condition (netpath.org,
2005). The reactions in NetPath are compiled from experimental evidence
by PhD level scientists (Kandasamy et al., 2010). The 708 listed NetPath
cancer genes were used to select the same genes in our dataset.

3.3.6 Methods used in Random Forest

As mentioned, a linear regression model may not be the best model to predict
y, the concentration needed for a chemical compound to inhibit the cell line
growth with 50%.

Generally, when choosing and applying a method there are also other
factors than dimensional problems to consider:

- many algorithms requires that the independent variables are numerical
and scaled to similar ranges.

- when the independent variables are highly correlated, linear regression
can perform poorly because of high variance.

- if there are complex interactions among the dependent variables this
must be specified manually in linear methods.

In real life, effects are often not linear. In genetic data we often have a large
number of independent variables, which are often very strongly correlated.
It is also common that molecular descriptors are strongly correlated, because
they are different reflections of the same underlying molecular property.
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All these factors suggest that traditionally used multiple linear regres-
sion, which requires exact data and few non-correlated independent variables
will perform badly for modeling y.

To construct a statistical model beside using multiple linear regression, a
method called random forest was used. The Random Forest method (Section
3.3.7) uses unpruned regression trees (Section 3.3.6.1) with a randomized
selection of independent variables at each split to reduce the correlation
between trees. By reducing the correlation between the trees the variance is
reduced (Section 3.3.6.3). Before the random forest method is introduced, an
introduction to regression trees (Section 3.3.6.1), bootstrapping and bagging
(Section 3.3.6.2) is needed, because these methods are used in the random
forest method.

3.3.6.1 Regression trees
An algorithm such as trees tend to work better than linear methods if there
are complex interactions among variables. The main idea behind tree-based
methods is to use the data to recursively partition the sample space into
smaller and smaller regions. By splitting the space into two regions by an
optimal split s that is found over all independent variables p. Where the
optimal split is the split that reduce the residual sum of squares, RSS =∑N

i=1(yi − ŷi)2, the most. This is repeated in a recursive form to build a
regression tree until some stopping rule is applied. Figure 2 illustrates an
example of a regression tree. The recursively partitions results in a model
of the form

f(x) =

M∑
m=1

cmI(x ∈ Rm), (13)

where cm is the constant term for the m-th region which is estimated as the
mean of yi for the observations in the region Rm.

Growing a tree gives a bias-variance tradeoff situation (Section 3.3.2). A
larger tree will have smaller regions and result in overfitting. A small tree
might not capture important relationships among the variables. How large
a tree was grown is discussed in the random forest section, Section 3.3.7.

A problem with trees is that they have high variance. Small differences
in the data can result in a totally different tree, since a different split at the
top of the tree will affect the splits below it and therefore also the whole tree.
The idea of bagging, which is introduced in the next section, is to average
many noisy but approximately unbiased trees to reduce the variance.

3.3.6.2 Bootstrapping and Bagging
Bootstrapping is a technique where resampling is used to obtain estimates of
summary statistics. The idea is to randomly draw datasets Z∗1,Z∗2, ...,Z∗B

of size N with replacement from the training set Z = (z1, z2, ..., zn) where
zi = (xi, yi) is the i-th observation. Each bootstrap sample leaves out
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Figure 2: An example of a regression tree. In the first split, variable X10 and
the best split point s1 are used to split the observations into two regions. The
observations with a X10 value lower than s1 are divided into two regions by
variable X3 and split point s2. This process is repeated until some stopping
rule is applied.

roughly 37% of the observations in the training set Z. Since, the proba-
bility that the i-th observation zi is drawn among N observations is 1

N and
consequently the probability that it will not be drawn is 1 − 1

N . If we ran-
domly draw N observations, the probability that zi not will be drawn is

lim
N→∞

(1− 1

N
)N = e−1 ≈ 0.37 when N is large. The observations that are

left out, called out-of-bag (OOB), can be used to form estimates of the
prediction error. More about this in the random forest section, Section
3.3.7. In bootstrapping the model is fitted for each bootstrap sample Z∗b,
b = 1, 2, ..., B, which gives the prediction f̂∗b(x).

Bagging (Breiman, 1996), also called Bootstrap aggregating, averages
the prediction of the bootstrap samples to reduce the variance of an esti-
mated prediction function and is defined by

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x). (14)

Since the idea in bagging is to average many noisy but unbiased models,
trees are ideal candidates. As discussed earlier, trees can capture complex
interaction structures in the data, which can result in high variance but low
bias if the trees are grown sufficiently deep.

21



3.3.6.3 The variance of the average when variables are correlated

Generally, an average of n independent and identical distributed random
variables X1, ..., Xn each with V ar(X) = σ2 has the variance

V ar(X̄) = V ar(
1

n

n∑
i=1

Xi) =
1

n2

n∑
i=1

V ar(Xi) =
σ2

n
. (15)

Bagging generates identically distributed trees, but not necessarily indepen-
dent. The variance of the average when we have correlated variables is then

V ar(X̄) = V ar(
1

n

n∑
i=1

Xi) =
1

n2

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

=
1

n2

n∑
i=1

n∑
j=1


σ2 ρσ2 . . . ρσ2

ρσ2 σ2 . . . ρσ2

...
...

. . .
...

ρσ2 ρσ2 . . . σ2

 =
1

n2
(
n
(
σ2 + (n− 1)ρσ2

))

=
σ2

n
(1 + nρ− ρ) = ρσ2 +

1− ρ
n

σ2, (16)

where ρ is the pairwise correlation.
The second term in equation (16), 1−ρ

n σ2, disappears when n increases,
but the first term ρσ2 remains. Thus, to reduce the variance we need to
reduce the correlation. The idea in random forest is to improve the variance
reduction of bagging by reducing the correlation, ρ, between the trees.

3.3.7 Random Forest

As an alternative method to linear methods, regression trees were intro-
duced. However, a problem with trees is that they have high variance. To
reduce the variance of an estimated prediction function f̂ , bootstrapping and
bagging can be used. By reducing the correlation between trees to further
improve the variance reduction, random forest was used.

Random forest is a modification of bagging, that uses unpruned regres-
sion trees with a randomized selection of independent variables at each split
(Breiman, 2001, 2002). In standard trees, each node is split using the best
split among all independent variables. In a random forest, each node is split
using the best split, the split that reduce the residual sum of squares the
most, among a subset of independent variables m randomly selected at that
node. Intuitively, reducing m will reduce the correlation between trees and
therefore reduce the variance of the average in (16).

The random forests algorithm for regression:
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1) Draw n bootstrap samples (Z∗1,Z∗2, ...,Z∗n) of size N from the train-
ing data.

2) For each of the bootstrap samples, grow an unpruned regression tree
Tb, by recursively repeating the following steps until the minimum
node size nmin is reached:

(a) At each node, rather than selecting the best split among all inde-
pendent variables (as in bagging), randomly select mtry variables
of the p independent variables.

(b) Among the mtry variables, select the best variable/split-point.

(c) Split the node into two daughter nodes.

3) After n trees, the random forest predictor

f̂nrf (x) =
1

n

n∑
b=1

T (x; Θb) (17)

is an average used to make a prediction for a new observation x. Θb

characterizes the b-th random forest tree in terms of split variables,
cutpoints at each node and terminal-node values.

The randomForest package in R (Breiman, 2001, 2002) was used to
generate a random forest. The default value for mtry is p/3, which
also was used in this report. The default node size, nmin, is 5 in the
randomForest package and is also used in this report. Thus, in the
tree algorithm nodes with fewer observations than 5 were not splitted.

The number of trees necessary for good performance grows with the number
of independent variables. The default value in the randomForest package in
R is ntrees = 500, which proved to be sufficient even for me.

In the random forest, an estimate of the error rate is obtained by using
the out-of-bag data. Out-of-bag was introduced in the previous Section
3.3.6.2 as the observations that are left out in a bootstrap sample. By using
the tree grown with the bootstrap sample the observations not included
(out-of-bag) in the bootstrap sample is predicted. As explained earlier, when
using bootstrapping, each observation will be out-of-bag around 37% of the
times. Random forest average the OOB predictions for the i-th observation
and calls it ŷOOBi . The ”mean of squared residuals” is calculated in the
randomForest package in R as

MSEOOB =
1

n

n∑
i=1

(yi − ŷOOBi )2. (18)

The randomForest package also produces two measurements of impor-
tance for the independent variables:
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• %IncMSE: The average increase in squared out-of-bag residuals when
the variable is permuted. For each tree, the mean squared error is
recorded on the out-of-bag data and then the same is done after per-
muting each independent variable, MSEpermutedOOB . The difference be-

tween MSEOOB and MSEpermutedOOB is then averaged over all trees and
normalized by the standard deviation of the difference. The higher
%IncMSE value the higher variable importance.

• IncNodePurity: The total decrease in node impurity (residual sum
of squares) from splitting on the variable, averaged over all trees.
Higher IncNodePurity value represents a higher variable importance,
i.e. nodes are much ’purer’.

Both measurements were used to determine the importance for the indepen-
dent variables.

3.3.8 Cross-validation

As the statistical methods used in the report have been introduced, the
next step is to introduce the validation method used to validate the models.
In this section, cross-validation is first introduced in a general way and
then further described for the two cases, Case 1: Personalized treatment
optimization and Case 2: Drug screening.

In an ideal world we have a data rich situation and we randomly divide
the dataset, before doing anything else, into three subsets (Figure 3). A

Figure 3: The data set divided into three parts: a training set, a validation
set, and a test set.

training set to fit models, a validation set used to estimate prediction error
for model selection and a test set used for assessment of the test error,
equation (8), of the final model.

In a situation where data is scarce, which almost always is the situation,
the cross-validation method can be used to circumvent the problem of scarce
data. For K-fold cross-validation the N observations in the data set are
randomly allocate to K roughly equal-sized subsets. For the k-th subset
(the validation set) the K-1 other subsets (the training sets) are used to fit
a model. The model fitted by the training data is then used for predicting
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Figure 4: 5-fold cross-validation. The N observations are randomly divided
into five subsets. To fit a model for the validation subset the four training
subsets are used. This is done for all five subsets.

the k-th subset of the data. This is done for every subset. Figure 4 shows
when K = 5, where the second subset is the validation set and the other
four subsets are used as training data. The cross-validation estimate of the
prediction error is

CV (f̂(x)) =
1

N

N∑
i=1

L(yi, f̂
−k(xTi )) =

1

N

N∑
i=1

(yi − f̂−k(xTi ))2, (19)

where f̂−k(x) is the fitted function, computed with the k-th part of the data
removed.

The optimal choice of K is complex (Breiman and Spector, 1992), since
we have a bias-variance tradeoff situation (Section 3.3.2). K = N is called
leave-one-out and the prediction error has a low bias but could have a high
variance and are computational difficult. Other common choices are K =
5 (5-fold) and K = 10 (10-fold), where instead bias could be a problem
but the variance is low. I have used 5-fold and 10-fold cross-validation
as recommended in Breiman and Spector in 1992 (Breiman and Spector,
1992), and because cross-validation with leave-one-out was computational
impossible due to the large amount of data.

3.3.8.1 Cross-validation for Case 1: Personalized treatment op-
timization
In order to select the optimal drug treatment for a patient’s cancer tumor
we have no information about the effect for any drugs tested on the pa-
tient’s particular tumor. For this reason, data was not used from the cell
line I wanted to predict the concentration level needed to inhibit the cell
line growth with 50%. Thus, before a model was constructed, the data was
divided by cell lines.

Before anything else, the 59 cell lines were randomly divided into 5 (or
10) roughly equal-sized subsets. This is illustrated with an example (Figure
4):

The 59 cell lines are randomly divided into 5 roughly equal-sized sub-
sets. The data from the first cell line are divided into the third subset,
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i.e. the 109 observations obtained when the 109 chemical compounds
were tested on the first cell line. The data from the second cell line
are divided into the second subset, i.e. the 109 observations obtained
when the 109 chemical compounds were tested on the second cell line.
This is done for all the 59 cell lines. To fit a model for the 109 obser-
vations from the first cell line the four other subsets are used, i.e. the
third subset is not used to construct a model. The model is then used
to predict yi for the observations in the third subset. To fit a model for
the 109 observations from the second cell line the four other subsets
are used, i.e. the second subset is not used to construct a model. The
model is then used to predict yi for the observations in the second
subset. This is done for each of the 5 subsets.

Figure 5: An example for the personalized treatment case, when 5-fold cross-
validation is used. The 59 cell lines are randomly divided into 5 roughly
equal-sized subsets. In this example the 109 observations from the first cell
line are divided into the third subset, the 109 observations from the second
cell line are divided into the second subset and so on. To fit a model for
the 109 observations from the first cell line the four other subsets are used,
i.e. the third subset is not used to construct a model. This model is used
to predict y for the observations in the third subset.

3.3.8.2 Cross-validation for Case 2: Drug screening
In order to predict the effect of a promising drug we may not have any
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information about the effect of the drug on other tumors. For this reason,
data was not used from the chemical compound I wanted to predict y for.
Thus, before a model was constructed, the data was divided by chemical
compounds.

Before anything else, the 109 chemical compounds were randomly di-
vided into 5 (or 10) roughly equal-sized subsets and the construction of
models and validation of the models were done in the same way as in Case
1.

3.3.9 Construction of models and prediction of yi in Case 1: Per-
sonalized treatment optimization

The predictions of yi in the personalized treatment case were made as follow:

1) The 59 cell lines were randomly divided into K (5 or 10) roughly
equal-sized subsets (folds), see Figure 5.

2) Variable selection method was chosen to reduce the number of inde-
pendent variables. One of the three methods random forest, lasso or
linear regression was chosen to construct a model for prediction of yi.

For each of the K subset samples:

a) When variable selection was used: the K-1 other subsets were
used to preselect independent variables that were used by the
method to fit a model.

b) The K-1 other subsets were used to fit a model with the chosen
method.

c) The model was then used to predict yi for the K-th subset.

This procedure was made for each of the K subsets.

3) As predictions of yi were made for every subset, i.e. all 6431 observa-
tions, the prediction error was calculated as

MSE =
1

6431

6431∑
i=1

(yi − ŷi)2, (20)

where yi is the observed response value for the i-th observation and ŷi
is the predicted response value for the i-th observation.

As cross-validation is used, a model is constructed for each subset. There-
fore, the prediction error represent the MSE when a specific method is
used.
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3.3.10 Construction of models and prediction of yi in Case 2:
Drug screening

The predictions of yi in the drug screening case were made in the same way
as in the personalized treatment case (Section 3.3.9), except for the first
step. The 109 chemical compounds were randomly divided into K (5 or 10)
roughly equal-sized subsets (folds). The predictions were then calculated in
the same way as in 2) and 3) in the personalized treatment case.

3.3.11 Permutation test

One of the aims within the project was to do initial research that could give
an indication to answer the question: Should we personalize the treatment
for a cancer patient or should we give the same treatment to all patients?

To answer the question, the data represented the gene expression variables
was randomly shuffled before the following algorithm was used:

1) Between each observation the gene expression values were randomly
shuffled and the descriptors were kept fixed.

An example of how a dataset could look like when gene expression
data are permuted:



geneexpressions︷ ︸︸ ︷
x5,1 x5,2 . . . x5,22283

descriptors︷ ︸︸ ︷
x1,22284 . . . x1,22297

response︷︸︸︷
y1

...
...

. . .
...

...
. . .

...
...

x1201,1 x1201,2 . . . x1201,22283 x59,22284 . . . x59,22297 y59
x436,1 x436,2 . . . x436,22283 x60,22284 . . . x60,22297 y60

...
...

. . .
...

...
. . .

...
...

x3,1 x3,2 . . . x3,22283 x6431,22284 . . . x6431,22297 y6431


The descriptors and the response values are kept fixed as the gene
expressions are shuffled between the observations. For example, the
gene expressions from the fifth observation now represent the first
observation.

2) For computational reasons 5-fold cross-validation was used.

3) For each of the 5 subset samples:

(a) Lasso used the 4 training subsets to select which independent
variables that were used in the random forest method.

(b) The 4 training subsets was used to fit a model with random forest.

(c) The model constructed in (b) was used to predict the observations
in the validation subset.
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4) As the predictions yi were calculated for every subset, i.e. all 6431
observations, the prediction error was calculated as

RSSpermuted =

6431∑
i=1

(yi − ŷpermutedi )2, (21)

where yi is the observed response value for the i-th observation and
ŷpermutedi is the predicted response value for the i-th observation in the
permuted dataset.

By randomly shuffling the data it was possible to generate as many permuted
data sets as liked. To estimate the sampling distribution of RSSpremuted
the algorithm was repeated 100 times, when the gene expression data was
permuted. In order to test if the gene expression variables adds important
information the residual sum of squares obtained by using the original data
set, RSSorg, was ranked among the 100 residual sum of squares from the
permuted data, RSSpermuted.

The test was done analogue for the descriptors to test if the they signif-
icantly improved the prediction models.

3.4 Software

To construct the descriptors Bioclipse (Spjuth et al., 2009; bioclipse.net,
2007) was used with the Chemistry Development Kit (CDK). CDK which is
an open source Java based library for structural chemo- and bioinformatics
(Steinbeck et al., 2006; cdk.sf.net, 2003). R version 2.12.2 and version 2.14.1
were used for statistical analysis. Packages used in R were glmnet (Friedman
et al., 2010) and randomForest (Breiman, 2001, 2002). To be able to handle
the large dataset, Kalkyl, a high performance computer cluster at UPPMAX
(UPPMAX, 2003), was used.

29



4 Results

4.1 The effect of a chemical compound is similar regardless
of cell line

In Section 3.1.3 the GI50 was defined as the concentration level of a chemical
compound that causes 50% growth inhibition. The response variable, y, is
−log10 of the GI50 and obtained values between 0 and 11. Since a low
concentration value is preferable and indicates high efficacy of the drug, a
high value on the response y is preferable.

Figure 6: The response values, grouped by the 59 cell lines, and plotted as
boxplots.

Among the 6431 response values, 109 chemical compounds tested on 59
cell lines, 106 response values (less than 2%) are equal to 0. The rest of the
6325 response values (more than 98%) are values between 2 and 11. The
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interpretation of these y = 0 values were that concentration values tested
on the cell line up to the max dose, 0.01 Molar (y = 2), could not cause
an growth inhibition of at least 50% and were therefore y = 0. 27 cell
lines contains at least one response value equal to 0. These values were not
treated as missing values and were included in the calculations.

In Figure 6 the response values are grouped by cell lines and illustrated
as boxplots, one boxplot for each cell line. The response values are spread
out similarly for each cell line, according to median and quartiles.

Figure 7: The response values, grouped by the 109 chemical compounds,
and plotted as boxplots.

In Figure 7 we can observe that the response value range grouped by
chemical compounds are much smaller compared to the response value range
grouped by cell lines (Figure 6). Thus, among each chemical compound the
concentration level that was needed to inhibit the growth with 50% was
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similar regardless of which of the 59 cell lines the compound was tested on.

4.2 Correlations between response variables and cancer types

Although it has been shown that cancer are heterogeneous diseases, it seems
reasonable that two cancer tumors classified as the same cancer type are
more similar to each other than two tumors classified as two different cancer
types. If this is the case, a chemical compound should effect cancer tumors
classified as the same cancer type similarly. The question then is if we only
should use the cancer cell lines from the same cancer type when predicting
the response value y, or is it justified to also include cell lines from other
types of cancer?

Figure 8: The response values, yi, for the breast cancer cell line BR.MCF7
plotted against the response values for four different cancer cell lines. The
four other cell lines are categorized as breast cancer, lung cancer, ovarian
cancer and prostate cancer.

In Figure 7 we could observe that a chemical compound gives similar
response values regardless of which cell line the compound is tested on. To
investigate the correlation between the cell lines, the correlation between
yi from the cell lines of the same type were compared with the correlation
between yi from the cell lines of different cancer types. It turned out that a
stronger correlation between cell lines from the same cancer type was not the
case for this data. As an example, Figure 8 illustrates the correlation for the
response values between a cell line categorized as breast cancer (BR.MCF7)
and four other cell lines categorized as breast cancer (BR.MDA MB 231),
lung cancer (LC.HOP 92), ovarian cancer (OV.IGROV1) and prostate can-
cer (PR.DU 145). We can observe that the response values are approxi-
mately equally correlated. In fact the correlation is slightly stronger between
the breast cancer cell line and the three cell lines not categorized as breast
cancer than the correlation between the two cell lines categorized as breast
cancer. Therefore, data was not divided by cancer type when predictions of
yi were made.
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4.3 Correlation between the descriptors

Figure 9: Scatterplot matrix of the response and the descriptors, where the
first row shows the response against each of the descriptors.

Figure 9 is a scatterplot matrix of the response variable, yi, and the
descriptors. It is difficult to see any clear correlation between the yi’s and
the descriptors. However, in a few cases the correlation between different
descriptors was very clear. For example, the Zagreb index (X.Zagreb, which
is the sum of the squared atom degrees of all heavy atoms) does strongly
correlate with the number of bonds (X.nB), the number of carbons (X.nC)
and the molecular weight (X.MW). Trying to draw conclusions about the
variables’ effects when they are highly correlated is difficult. When two
or more independent variables in a multiple regression model are strongly
correlated, difficulties arise. Even if the matrix XTX is invertible, an ap-
proximate inverse may be numerically inaccurate. However, random forest
handles correlated variables well (Breiman, 2001). Therefore, the correlated
variables were not removed manually.
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4.4 The importance of the independent variables

To determine which variables that are of highest importance three methods
was used: the variables selected by lasso, the variable importance measures
in the random forest and the selection of genes present in the NetPath
database.

4.4.1 Lasso selected the 14 descriptor variables together with 70
gene expression variables

Figure 10: (Left): The lasso coefficients as log(λ) is varied. At the top of
the plot the number of coefficients that differs from 0 is presented as log(λ)
is varied. When λ goes towards 0, i.e. when log(λ) → −∞, the number
of coefficients that differs from 0 will be larger. (Right): By 10-fold cross-
validation the mean squared error is calculated for a sequence of λ values,
where the λ that minimize the mean squared error was selected, the left
vertical dashed line.

The left plot in Figure 10 illustrates the lasso coefficients as log(λ) is
varied. The number of coefficients that differs from 0 will be larger as λ
goes towards 0, i.e. when log(λ) → −∞. For example, the green line at
the top is the coefficient for the descriptor nAromBond, the pink line at the
bottom is the coefficient for the gene named 22897 and the orange line at
the bottom is the coefficient for the descriptor naAromAtom.

The mean squared error was calculated for a sequence of λ values by
using the glmnet package in R, that used 10-fold cross-validation to select
λ. The λ that minimize the mean squared error (Figure 10 right plot) was
selected. In this case the model with the lowest mean squared error uses 84
nonzero variable coefficients and an intercept, when λ is equal to 2.68 ·10−5.
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Among the 84 variables that were selected by lasso, the 14 descriptors were
included together with 70 gene expression variables.

4.4.2 The descriptors are most important in the random forest
method

The variable importance measurements in random forest described in Sec-
tion 3.3.7, %IncMSE and IncNodePurity, were used to determine which
variables that are most important in the random forest method. We can
observe in Figure 11 that in the two importance measures, both measures
rank the 14 descriptor variables (the variables with letters after X.) as the
most important when the random forest was used. Among the descriptors
the importance of the variable varies a lot between the two measures, mak-
ing it difficult to draw any conclusion about the most important descriptor.
The same goes for the gene expression variables.

Figure 11: %IncMSE: The average increase in squared out-of-bag resid-
uals when the variable is permuted. A higher %IncMSE value indicates a
higher importance. IncNodePurity: The total decrease in node impurity
(residual sum of squares) from splitting on the variable, averaged over all
trees. Higher IncNodePurity value represents a higher variable importance.
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Table 1: A summary of the predicted results when data was cross-validated
for cell lines. The method, variable selection and k-fold cross-validation
used, computation time and mean squared error are represented below.

method variable selection k-fold CV time (h) MSE

Random forest - 5 60.7 1.118
Random forest - 10 148.9 1.092

Lasso - 5 0.4 2.218
Lasso - 10 0.9 2.202

Random forest Lasso 5 0.7 1.113
Random forest Lasso 10 1.7 1.096
Random forest NetPath+Descriptors 10 6.8 1.062
Random forest Descriptors 10 0.1 1.174
Random forest NetPath 10 6.3 3.361

Linear regression Lasso 10 1.2 2.999
Linear regression NetPath+Descriptors 10 3.1 60.475
Linear regression Descriptors 10 0.1 2.050

4.4.3 1391 gene expression variables were selected with NetPath

By using the 708 NetPath genes, 1391 different probes were obtained. Why
the number of variables that were selected is larger than the variables listed
is because some of the probes are a fragment of the same gene. Thus,
when the NetPath genes were used to select variables the number of gene
expression variables were 1391.

4.5 The random forest method is superior to lasso and mul-
tiple linear regression in Case 1: Personalized treatment
optimization

In Table 1 we have summarized the predicted results. The first column
shows the method (lasso, random forest or multiple linear regression) used
to construct prediction models that was used to predict the response variable
yi.

If variable selection (lasso, NetPath or/and the descriptors) was used to
reduce the number of independent variables before the method was used, this
is represented in the second column. For example, if the descriptors are rep-
resented in the column, the method could only use the descriptor variables
to construct models. If no variable selection was used this is represented by
”-”.

The third column presents the number of subsets (folds) the data was
divided in. The data was divided in 5 or 10 subsets, which means that ap-
proximately 80% of the data was used in 5-fold cross-validation to preselect
variables and construct a prediction model, for the remaining 20% of the
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data. If 10-fold cross-validation was used, approximately 90% of the data
was used to preselect variables and construct a model.

The computation time was measured in hours and is presented in the
fourth column. The reason why the computation time is interesting is be-
cause some calculations took a very long time. Also, to gain access to Kalkyl
you may need to queue before your script is calculated. The longer time the
calculations take the longer is the queuing time. The time in queue was
often longer than the computation time. The time in the fourth column is
only the time it took to calculate the script.

Since cross-validation was used, a model was constructed for each of the
K (5 or 10) subsets. Therefore, the prediction error, MSE (20), represents
the mean squared error for a specific method.

We can observe that the random forest method outperforms both lasso
and linear regression in terms of smallest prediction error, MSE. The pre-
diction errors are approximately the same when the random forest method
was used with or without lasso as variable selection. However, the total time
of calculations was greatly reduced for the random forest method if variable
selection was used.

Since the prediction errors are approximately the same for the random
forest methods, it was interesting to investigate the variation within the
method, before drawing any big conclusions about the optimal variable se-
lection and the optimal cross-validation. Since this was very time consuming
the same calculations were performed 9 times more for the random forest
method with lasso as variable selection and 5-fold cross-validation. Calcula-
tions generated a range of the 10 prediction errors with MSE = 1.098 as the
smallest value and MSE = 1.121 as the highest value. The variation within
the method was caused by differently divided data and that different vari-
ables could be selected, resulting in a different forest of trees. To investigate
only the variation within random forest, the same cross-validation was used
for calculating 5 prediction errors. Calculations generated a range of the
5 prediction errors with MSE = 1.111 as the smallest and MSE = 1.114
as the highest value. This is an indication of that the variation within the
random forest method is negligible, and the low variation depends on the
cross-validation and variable selection.

The smallest prediction error, MSE = 1.062, was obtained when the
NetPath genes and the descriptors were used as variables and the random
forest method was used. In the left plot in Figure 12, observed response
values, yi, are plotted against predicted response values, ŷi, for the method
with the smallest prediction error. 69% of the variation in yi can be ex-
plained by the variation in ŷi, R

2 = 0.69. If the zero-values are removed
the R2 = 0.81. Except for the zero-values the method seems to predict
well. However, the cluster of observations in the upper right corner stand
out since the method did not predict any response values between 9.5 and
10. The cluster of observations in the upper right corner are predictions for
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the same chemical compound, 357704. In the right plot in Figure 12, the
residuals, ei = yi − ŷi, are plotted against ŷi. Except for the zero-values we
can see a random pattern indicating that a linear model provides a decent
fit between y and ŷ.

Figure 12: (Left): The best method in Case 1. Observed response values, yi,
plotted against predicted response values, ŷi, when 10-fold cross-validation,
variables selected by NetPath and the descriptors and random forest was
used. (Right): The residuals, ei = yi− ŷi, plotted against predicted response
values, ŷi.

We can also observe in Table 1 that a random forest method that only
used the descriptors gave a much lower prediction error, MSE = 1.174, than
a random forest method that only used the NetPath genes, MSE = 3.361.

In multiple linear regression the prediction from a rank-deficient fit may
be misleading and therefore variable selection had to be used to get relevant
predictions. We can see that generally, the linear regression method per-
formed badly. The worst scenario was with the NetPath and the descriptor
variables, MSE = 60.457.

5- and 10-fold cross-validation were compared by using three different
methods. By using 10-fold cross-validation the prediction error was slightly
reduced compared to 5-fold cross-validation. However, it took twice as long
time to perform the calculations with 10-fold cross-validation.

4.6 The random forest method generates the smallest pre-
diction error in Case 2: Drug screening

In Table 2 the predicted results are summarized data is cross-validated for
chemical compounds. The random forest method was not as superior in
this case as in the personalized treatment case. When the NetPath and
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Table 2: A summary of the predicted results when we cross-validate for
chemical compounds. The method, variable selection and k-fold cross-
validation used, computation time and mean squared error are represented
below.

method variable selection k-fold CV time (h) MSE

Random forest - 5 61.2 2.193
Random forest - 10 149.2 2.131

Lasso - 5 0.4 2.249
Lasso - 10 0.9 2.257

Random forest Lasso 5 0.8 2.196
Random forest Lasso 10 1.8 1.976
Random forest NetPath+Descriptors 10 7.1 2.313
Random forest Descriptors 10 0.1 2.316
Random forest NetPath 10 6.5 3.258

Linear regression Lasso 10 0.9 2.262
Linear regression NetPath+Descriptors 10 2.9 2.278
Linear regression Descriptors 10 0.1 2.397

the descriptors variables were used, the prediction error in fact got smaller
with linear regression (MSE = 2.278) than with the random forest method
(MSE = 2.397). However, the smallest prediction error, MSE = 1.976,
was generated by using lasso to preselect variables and the random forest
method for prediction. In the left plot in Figure 13, observed response val-
ues, yi, are plotted against predicted response values, ŷi, for the method
with the smallest prediction error. 41% of the variation in yi can be ex-
plained by the variation in ŷi, R

2 = 0.41. We can see that the predictions
generally are worse for higher observed values on y. Most of the observations
around y = 10 are observations from chemical compound 357704 and were
predicted to low. The observations to the right that are predicted around
ŷ = 9 are predicted to high and are all observations from chemical com-
pound 740. In the right plot in Figure 13, the residuals are plotted against
ŷi. Except for the zero-values, the observations in the upper left corner
(chemical compound 357704) and the observations in the lower right corner
(chemical compound 740) the residuals are spread out.

That the prediction error was higher when data was cross-validated for
chemical compounds was expected, since the descriptors had higher impor-
tance and therefore higher impact on the predictions. However, it was some-
what surprising that lasso and linear regression with preselected variables
generated almost as good predictions as the random forest method.

When only the NetPath genes was used in the method the prediction
error was MSE = 3.258, which also here confirms that the descriptors was
important when predictions were made. The computation time was also
in the drug screening case hugely reduced when lasso was used. Generally,
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Figure 13: (Left): The best method in Case 2. Observed response values, yi,
plotted against predicted response values, ŷi, when 10-fold cross-validation,
lasso and random forest was used. (Right): The residuals, ei = yi − ŷi,
plotted against predicted response values, ŷi.

the prediction error was reduced using 10-fold cross-validation compared to
5-fold cross-validation. However, also in this case it took twice as long time
to perform the calculations for 10-fold cross-validation.

4.7 Does the genetic data add any significant information?
Should we personalize the treatment for a cancer patient
by using characteristics of the cancer tumor?

As said, the most important variables for prediction were the variables that
describes the chemical compounds, the descriptors. In both Table 1 and
Table 2 we could see that a method without the descriptors produced a very
high prediction error. But, how about the gene expression variables? In Case
1, the prediction error was reduced from MSE = 1.174 to MSE = 1.062
when the NetPath genes were added in the random forest method. In Case 2,
the prediction error was only reduced from MSE = 2.316 to MSE = 2.313
when the NetPath genes were added in the random forest method. A rele-
vant question is therefore if the genetic data adds any significant informa-
tion? Should we personalize the treatment for a cancer patient or should
we give the same treatment to all patients? To test if the gene expression
variables adds any significant information, the permutation test introduced
in Section 3.3.11 was used.
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Figure 14: (Left): A sampling distribution of the residual sum of squares
when the descriptors were permuted and cross-validated over cell lines. The
green vertical line is the residual sum of squares when the original data was
used, RSSorg = 7160. (Right): A sampling distribution of the residual sum
of squares when the gene expression data was permuted and cross-validated
over cell lines. The vertical line is RSSorg = 7160.

4.7.1 The gene expression data adds significant information, in-
dicating that cancer treatment should be personalized

In Figure 14, data was cross-validated over cell lines i.e. Case 1. The left
plot in Figure 14 demonstrates a sampling distribution of 100 residual sums
of squares when the descriptors were permuted and 5-fold cross-validation,
lasso as variable selection and the random forest method were used for pre-
diction. The residual sum of squares obtained when the same methods were
used with the ”original” (not shuffled) data was RSSorg = 7160. By rank-
ing the RSSorg = 7160 value among the 100 RSSpermuted values, where the
minimum value is RSSpermuted = 21853, a p − value = 1/101 < 0.01 was
obtained. This means that the probability of obtaining a RSSpermuted value,
at least as low as RSSorg = 7160, is smaller than 1%.

The right plot in Figure 14 demonstrates a sampling distribution of 100
residual sums of squares when the gene expression data was permuted. By
ranking the RSSorg = 7160 value among the 100 RSSpermuted values, where
the minimum value is RSSpermuted = 8588, a p− value = 1/101 < 0.01 was
obtained.

In Figure 15, data was cross-validated over chemical compounds i.e. Case
2. The left plot in Figure 15 demonstrates a sampling distribution of 100
residual sums of squares when the descriptors were permuted. By ranking
the RSSorg = 14121 value (red vertical line) among the 100 RSSpermuted
values with a minimum value of RSSpermuted = 20937, a p−value = 1/101 <
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Figure 15: (Left): A sampling distribution of the residual sum of squares
when the descriptors were permuted and cross-validated over chemical com-
pounds. The red vertical line is the residual sum of squares when the orig-
inal data is used, RSSorg = 14121. (Right): A sampling distribution of
the residual sum of squares when the gene expression data was permuted
and cross-validated over chemical compounds. The red vertical line is the
RSSorg = 14121.

0.01 was obtained.
The right plot in Figure 15 demonstrates a sampling distribution of

100 residual sums of squares when the gene expression data was permuted.
By ranking the RSSorg = 14121 value (red vertical line) among the 100
RSSpermuted values with a minimum value of RSSpermuted = 14495, a p −
value = 1/101 < 0.01 was obtained.

In the both cases the gene expression data adds substantial information.
Since the gene expression data represents a description of the cell line, this
indicates that cancer treatment should be personalized.

4.8 Prior knowledge vs ”blind” variable selection

By using prior knowledge, in this case the NetPath genes that are up- or
down-regulated, a question of interest is if we get a better prediction when
we use these variables than the variables selected by variable selection?

When random forest was used in Case 1 (Table 1), the prediction error
was smaller when the NetPath genes and the descriptors were used (MSE =
1.062) compared to when the variables were selected by lasso (MSE =
1.096).

When random forest was used in Case 2 (Table 2), the prediction error
was considerably smaller when lasso was used (MSE = 1.976) compared to
when the variables were selected by the NetPath genes and the descriptors
(MSE = 2.313). Therefore, it is difficult to determine whether the variables
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from prior knowledge or the variables selected by lasso should be used to
reduce the number of variables. However, the reduction of variables was
much greater with lasso, 84 variables compared to 1391 gene expression
variables plus 14 descriptors. In a time perspective, the calculations with the
lasso variables were four times as fast as the calculations with the NetPath
genes and the descriptors.
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5 Discussion

Important progress has been made in detection and treatment of cancer over
the past twenty years. For instance, it has been realized that cancer diseases
are heterogeneous diseases. To achieve the best results for a cancer patient
we need the ability to provide personalized treatments based on the patients
molecular tumor profile. To be able to develop more personalized treatments
we need to develop better methods for drug selection in an optimal way and
for this we need efficient approaches to screen for and evaluate promising
candidate drugs.

To simulate this, data from 60 human tumor cell lines, called NCI-60,
was used. The optimal treatment can be interpreted as the compound that
needs the lowest concentration level to inhibit the cell line growth with 50%.
However, the aim fo this project was not to select the chemical compound
with lowest concentration level, but to use methods to construct models
that can be used to predict how a chemical compound affects a particular
cancer cell line. In this project the specific aims were: 1) to connect and
integrate gene expression data and chemical data, 2) for both cases construct
statistical models for predicting the concentration level needed for a chemical
compound to inhibit the cancer cell growth with 50%, 3) to investigate if
the gene expression data and the chemical data, respectively, are important
for the prediction.

By using different techniques within the field of chemometrics it was
possible to connect and integrate gene expression data, describing the char-
acteristics of a cancer tumor, and chemical data, describing the properties
of a chemical compound. From the analysis we could at an early stage see
that the descriptors were more important than the gene expression variables
when the predictions were made. Despite this, we demonstrated in Section
4.7.1 that the gene expression variables added significant information for the
prediction. These results are very interesting and indicate that we should
personalize the chemotherapy for a cancer patient.

In both the personalized treatment optimization case and the drug screen-
ing case the random forest method generated the best predictions. The pre-
diction errors with the random forest methods were relatively small, with
MSE = 1.062 as the smallest prediction error for Case 1. The choice of pre-
diction error measure, MSE, can be discussed. As a result of squaring the
difference between yi and ŷi, MSE places more weight on large errors than
on small errors. Thereby, more focus on outliers in the data. The 106 zero-
values are very influential on the MSE, when the zero-values were removed
the MSE was reduced from 1.062 to 0.576. Many zero-values can generate
a model that predicts low predictions overall to reduce the prediction errors
for the zero-values. However, since the zero-values are few (<2% of the re-
sponse values) their impact on the models are small. If the zero-values were
removed before the calculations, the prediction error (MSE = 0.568) was
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almost the same as if they were removed afterwords (MSE = 0.576).
In the drug screening case the lowest prediction error was MSE = 1.976.

Their were especially two chemical compounds that were predicted badly,
357704 (to low) and 740 (to high). In Figure 13 we could see that the
predictions generally were worse for higher observed values on y, which
unfortunately are the values of highest importance since a high value on y
i.e. a low concentration value is favorably. Generally, the prediction error
was higher in Case 2, were chemical compounds were cross-validated. This
was expected since the descriptors have higher impact on the predictions.
However, it was somewhat surprising that the predictions using preselected
variables and linear regression was almost as good as the prediction with
the random forest method in the drug screening case.

It is important to consider that y = −log10(GI50), which means that
if we for example predict an observed value, y = 3, as ŷ = 5 this gives a
predicted value for GI50 = 10−3 = 0.001 as GI50 = 10−5 = 0.00001.

The computation time was significantly reduced by preselection of vari-
ables and further reduced by using 5-fold cross-validation instead of 10-fold
cross-validation, without increasing the prediction error markedly. However,
as there was a small variation when the data was cross-validated, variables
were selected and the trees were grown, it can be risky to draw any radi-
cal conclusions about the optimal variable selection and optimal numbers of
folds. The best method for future predictions would of course be the method
that generates the lowest prediction error for the personalized treatment case
and the drug screening case, respectively.

Working with a large dataset can cause many problems, especially if
more variables than observations are used. With a large dataset as in this
case, it was not possible to perform the calculations on my own computer.
To perform the calculations I used Kalkyl, a high performance computer
cluster at UPPMAX. The computation time is interesting because, to gain
access to Kalkyl we may need to queue before the script is calculated. The
longer time the script is assigned, the longer the queuing time. The time
in queue is often longer than the computation time and for some scripts it
took weeks.

Is it relevant for example to use data from prostate cancer to predict the
growth inhibition for a breast cancer tumor? Even though we don’t cluster
the observations by cancer type in this case, generally, it feels more relevant
to use observations from the same cancer type that we want to predict an
outcome for. Therefore, I have started working with a dataset containing
only breast cancer cell lines.

For future directions a logical next step is to integrate single nucleotide
polymorphism (SNP) data, which can help to locate specific genes that are
associated with the disease and can work as targets. Similarly, it would be
interesting to further investigate which molecular properties that are impor-
tant and what values on these that are optimal for a chemical compound to
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reduce the tumor growth.
In this project we used cell lines because it has the advantages in this

case of having abundant publicly available data and the possibility to test
new chemical compounds fast and at a low cost without ethical problems.
However, an isolated tumor cell line may react differently than it would in its
biological context. Eventually, the idea is to take an approach from working
on general cell lines to work on specific patients tumor cell lines.
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6 Appendix

6.1 An introduction to molecular biology

There exist two main types of cells: prokaryotic cells like e.g. bacteria and
eukaryotic cells, where the latter ones are forming multi-cellular organisms
like humans. Within each eukaryotic cell there is a nucleus in which the
chromosomes are localized. In all human cells, except the germ cells, there
are 46 chromosomes in total, where each chromosome is part of a chromo-
some pair, one from the mother and one from the father, and therefore the
46 chromosomes make up 23 chromosome pairs.

A chromosome consists of a long double-helix DNA (DeoxyriboNucleic
Acid) string, which contains a large number of genes that carry the genetic
information. The complete DNA sequence with genetic information is also
known as the genome, which contains the genetic instructions needed to
construct the proteins in the cell. The DNA molecule is buildup by a chain
of nucleotides (Figure 16), each harboring a specific nitrogen base, which is
a sugar molecule with one or more phosphates. In DNA there are four types

Figure 16: A chain of nucleotides build the DNA molecule. Each nucleotide
is composed with a nitrogenous base, a sugar molecule and one or more
phosphates. There are four types of nitrogenous bases in DNA, A connects
to T and G connects to C in order to form the double helix string. In DNA
replication the DNA molecule is cleaved between the two bases, making two
new strings (figure from sv.wikipedia.org).

of bases: cytosine (C), guanine (G), adenine (A) and thymine (T) where
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A connects to T and G connects to C in order to form the double helix
string. The sequence of nitrogenous bases in the DNA molecule determines
the structure of all proteins in the human body.

In contrast to DNA, RNA (RiboNucleic Acid) is a single-stranded molecu-
le and instead of the nucleic base thymine (T), RNA use Uracil (U). While
the more stable DNA molecule is localized in the nucleus of the cell, the
unstable RNA molecule is mainly found outside the nucleus. Different types
of RNA molecules perform many vital tasks in cells. Three of these tasks
are: 1) mRNA (messenger RNA), which transfer information from the DNA
in the cell nucleus to the ribosomes which are a protein-RNA machinery
where proteins are produced, 2) tRNA (transfer RNA), which deliver amino
acids to the ribosomes and 3) rRNA (ribosomal RNA), which is the major
component of the ribosome, links the amino acids together to form proteins.

The central dogma of molecular biology (Figure 17) describes the in-
formation flow from DNA to protein in biological systems. In most cells,
three general steps of transfer the genetic code exist: DNA→ DNA (DNA
replication), DNA→ RNA (transcription) and RNA→ protein (translation).

Figure 17: The central dogma of molecular biology. The general
steps of transfering the genetic code to construct proteins (figure from
en.wikipedia.org).

During cell division all DNA is copied in the chromosomes by replication.
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The DNA replication process starts with a double-stranded DNA molecule
which is cleaved by enzymes by breaking the bonds between the two chains
nitrogenous bases. For each chain a complementary chain is produced with
the nitrogenous bases as a template. In this way a DNA molecule raises two
new, identical DNA molecules (Figure 16).

When a protein is made, an mRNA molecule is first built from the DNA
as a template. More specifically, part of the genetic information in the DNA,
i.e. a ”gene” is copied into an RNA molecule through a mechanism, called
transcription (or RNA synthesis). The RNA sequence will be a mirror image
of the gene in the DNA-molecule except that thymine (T) has been replaced
by uracil (U). The newly synthesized RNA-string (pre-mRNA) has to be
transformed into a shorter, mature mRNA molecule before it leaves the
nucleus and enters the cytoplasm. There are sections of nitrogenous base
pairs that are unnecessary for the protein synthesis, called introns, which
are removed by specific enzymes through a process called splicing (Figure
18). The sections that are left of the RNA-string are called exons and
binds together into a mature mRNA molecule. Since exons can be spliced
together differently, various mRNAs could be obtained from the same gene
and consequently lead to determine different proteins.

Figure 18: Splicing. Introns are removed from the pre-mRNA by specific
enzymes and the exons are bind together to a mature mRNA molecule (figure
from molecularstation.com).

Mature mRNA is transported from the cell nucleus to the ribosomes,
where mRNA is translated to a sequence of amino acids. This is called
translation (or protein synthesis). Three nitrogenous bases, called a codon,
encodes an amino acid and a sequence of amino acids produce a protein.
Proteins have many different tasks in the cell like the transport of substance
in to and out from the cell. Special types of proteins, called enzymes, also
control chemical reactions in the cell.

To develop new drugs and to adapt the most appropriate drug on a
specific patient, we need information about how the genetics regulate the
function of the body. With modern biological methods genetic information
can be obtained on different ”levels” such as DNA, mRNA, proteins and
molecules.

Various ”omics” technologies are being used to gain information on the
genome and it’s function. Omics refer to something that is studied in it’s
entirety. For example genomics is used to refer to the field of study of the
genome.
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A starting point for finding a target for drug discovery is to sequence the
genome containing all the 23,000 genes coding for proteins. This was made
for the first time in the Human Genome Project that began in 1990 and
was completed in 2006. Although the gene sequences varies among humans.
Variation in the DNA sequences can affect how humans develop diseases and
respond to drugs. One type of variation, called Single Nucleotide Polymor-
phism (SNP), is when a single base pair (nucleotide) in the genome varies
within a population (Figure 19). By identifying specific genes that are as-
sociated with a disease, SNPs are believed to be an important part towards
personalized treatment and medicine.

Figure 19: Single Nucleotide Polymorphism. A single base pair differs be-
tween DNA molecule 1 and DNA molecule 2 (figure from en.wikipedia.org).

Thus, by transcription and translation of DNA into a protein the ex-
pression of the genes are transferred to the cell’s structure and functions.
Even if all cells in the body have the same genome, containing the same
DNA sequence, they could produce different proteins. The reason for this is
that only some of the genes in a given cell are expressed at a given time. So
by enabling (a gene that produce mRNA) and disabling (a gene that don’t
produce mRNA) genes to be transcribed, different proteins are produced in
different cell types.
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To profile the gene expression, in other words measure the gene activity
(production of mRNA) of thousands of genes simultaneously, a gene chip
called microarray is being used. This field is also called transcriptomics
and refers to the study of the entire set of all mRNA molecules. A DNA
array is a solid surface consisting of thousands of microscopic spots of DNA
sequences, each sequence corresponds to a short sequence of a gene called a
probe. Higher spot signal indicates higher mRNA level and a more active
gene, which in a disease state might be an indication that the gene could
serve as a new drug target.

Knowing the mRNA level from each gene provides a global picture of
the gene expression but there is no strict correlation between the levels of
mRNA and the amount of proteins in a cell, since mRNA is not always
translated into protein. It can be more relevant to study the entire set
of proteins, called proteomics. Because the proteome differs between cells
and from time to time the task is more complicated than in genomics and
transcriptomics.

Genomics, transcriptomics and proteomics can be completed with meta-
bolomics that is the study of chemical processes involving small molecule
metabolites. Metabolites are the result of metabolism which are the pro-
cesses that enables the cells to grow and reproduce.
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