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Abstract

With the knowledge of the inclusion probabilities of the elements
of a population, with a spe-cific design, we can estimate different pa-
rameters of interest. If we know the exact inclusion probabilities, the
estimators will be unbiased. In some designs we do not know the
inclusion probabilities but we can, with repeated sampling, estimate
the inclusion probabilities. In this essay we will do a large simulation
study where we investigate the performance of estimators based on
estimated inclusion probabilities. We will focus on the point estima-
tor of the total and the estimated variance of the point estimator of
the total. The procedure is to first simulate simple random sampling,
where all the inclusion probabilities are known, and then to simulate
Pareto πps, where we only have an approximate expression for the
first order inclusion proba-bilities and do not know the second order
inclusion probabilities.
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1 Introduction 
 
In this essay we will investigate the performance of different estimators based on estimated 

inclusion probabilities. Inclusion probabilities are essential in the concept of probability sam-

pling. In this concept we have a finite population that we want to provide information about. 

We have a sampling procedure, including a random mechanism, which gives us a set of possi-

ble samples that can be drawn from the population. The sampling procedure also gives each 

possible sample the probability to be selected. We call the distribution of these probabilities 

the sampling design or just design. 

 

Given the sampling design, we define the probabilities for each element in the finite popula-

tion to be included in a sample, as the first order inclusion probabilities, and we define the 

probabilities for each combination of two elements to be included in the same sample, as the 

second order inclusion probabilities. 

 

If we know the inclusion probabilities for the elements in the population, we can estimate dif-

ferent parameters of interest. In this essay we will focus on the point estimator of the total and 

the estimated variance of the point estimator of the total, but we will also include the variance 

of the point estimator of the total. For the point estimator of the total we only need the first 

order inclusion probabilities, but for the variances we also need the second order inclusion 

probabilities. In many designs we know the inclusion probabilities. One of the simplest exam-

ples is simple random sampling without replacement (SI), where the sampling is performed by 

randomly choosing one element at a time until the sample contains the number of elements 

specified by the sample size. But there are also more complicated designs where we do not 

know the inclusion probabilities. One such example is Pareto     Sampling (PPS), where we 

do not have an exact expression for the inclusion probabilities. 

 

A sampling frame is a material containing information about the elements in the population, in 

such a way that sampling is possible. The frame can also include auxiliary information needed 

for stratification and probability proportional-to-size sampling etc. If we have a frame listing 

every element in the population, we can with a specific design, estimate the inclusion proba-

bilities by repeated sampling. 

 

The procedure of estimating the inclusion probabilities is to draw a sample with the specific 

design, register the elements in the sample and then repeat the procedure many times. The 

precision of the estimated inclusion probabilities will increase with the number of repetitions. 

Some research has been done in this field and in this essay we will do a large simulation study 

where we investigate the performance of the estimator of the total, the variance of the estimat-

ed total and the estimated variance of the estimated total, all applied with estimated inclusion 

probabilities. 

 

We will simulate SI, where all the inclusion probabilities are known, and PPS, where we only 

have an approximate expression for the first order inclusion probabilities and do not know the 

second order (there are however numeric methods to compute the inclusion probabilities in 

PPS). We have chosen PPS because it is of special interest, for further studies, to investigate 

the situation where we know the first but not the second order inclusion probabilities.  

 

The results of our simulations show that we can get very precise results when applying the 

estimated inclusion probabilities in the estimators. We show that some of our measures are 
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inversely proportional to the square root of the number of repetitions we do when estimating 

the inclusion probabilities. 

 

Section 2 of the essay includes basic theory and formulas. In section 3 we present Fattorini´s 

research, the definitions of our measures and the implementation of the simulations, and in the 

end of the section we present a summary of all the simulated designs. Conclusions are dis-

cussed in section 4 and in the appendix, section 6, we present a summary of the formulas, the 

figures and tables referred to in the text, and give information about the simulated designs that 

were not presented in detail in section 3. 
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2 Theory 
 

2.1 Inclusion probabilities 

 
In probability sampling we sample with a random mechanism from a finite population 

  {         }, where   is the size of the population. We define   to be the set of all 

possible samples that can be selected from  . That means   is the set of     subsets from  , if 

we include the empty set, as well as   itself. With a specific sampling procedure, let      be 

the probability for each possible sample   to be drawn. We then define the distribution of all 

those probabilities  as the sampling design,     . For a given sampling design     , we can 

regard each possible sample   as the outcome of a random variable  , such that for any     

 

            
 

Depending on the design, the   elements in the finite population can have different probabili-

ties of inclusion in a sample. We define the probability that element   will be in a sample as 

 

          ∑    

   

 

 

We call    the first order inclusion probability. In the same way the second order inclusion 

probability, the probability that both   and   will be in the same sample, is given by 

 

 

             ∑     

     

 

 

 

 

 

2.2 Estimators 

 
The inclusion probabilities are essential when we want to estimate different parameters of the 

unknown variable of interest,                 . We define the population total as 

  ∑    , and in this essay we will only work with the estimator of the population total, the 

variance of the estimated total and the estimated variance of the estimated total. 

 

When all the first order inclusion probabilities are known, the Horvitz-Thompson estimator 

(Horvitz and Thompson 1952) of the population total, with a specific sample  , is defined as 

 

 

  ̂  ∑
  

  
   

 

 

(2.1) 

 

The estimator is unbiased if       for all    . 
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The variance of  ̂ is computed for the whole population  , and an estimator of the variance is 

computed for a specific sample  . For sampling with fixed sample size and if both all the first 

and all the second order inclusion probabilities are known, the variance of  ̂ for the whole 

population is given by (Yates and Grundy 1953; Sen 1953) 

 

 

 
 ( ̂)   

 

 
∑ ∑(
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 (2.2) 

 

 

If       for all      , an unbiased estimator of the variance of  ̂, with a specific sample 

 , is 

 

 

 
 ̂( ̂)   
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)
           

   
      

 

 

(2.3) 

 

 

 

2.3 Simple random sampling without replacement (SI) 

 
In simple random sampling without replacement (SI), both the first and second order inclusion 

probabilities are known. The first order inclusion probabilities can be computed by     

 
 and 

the second order inclusion probabilities can be computed by     
      

      
. This gives us an 

exact expression for the variance of  ̂ for the whole population 

 

 
 ( ̂)    

   

 
   
  

 

(2.4) 

 

where     
   

     
∑      ̅     and   

 

 
. 

 

 

and an unbiased estimator of the variance of  ̂, with a specific sample   

 

 

 
 ̂( ̂)    

   

 
   
    

 

(2.5) 

 

where     
   

     
∑      ̅  

 
 . 
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2.4 Pareto     sampling (PPS) 
 

When working with sampling with unequal inclusion probabilities, we have an auxiliary vari-

able                  which is known. The auxiliary variable is related to y and will be 

used to increase the efficiency of our estimator. The target inclusion probabilities are then 

given by 

 

   
   

∑      
   

 

where   is the sample size. We will only work with sample sizes where all     . 

 

Order sampling is a sampling procedure where every unit in the population is assigned a rank-

ing variable   . The sample then consists of the   units with the smallest ranking variables. 

Ohlsson (1990, 1995) introduced order sampling with uniform ordering distributions , called 

Sequential Poisson Sampling. Pareto     sampling (PPS) is an order sampling scheme that 

was introduced independently by Saavedra (1995) and Rosén (1997b). The PPS scheme is as 

follows: 

 

1. With the use of an auxiliary variable, compute    for every element in the population. 

 

2. Compute each ranking variable 

 

   
        

        
   

 

where    is a standard uniform random number,        . 
 

3. Select the   smallest units as the sample.  

 

 

In PPS we do not have an exact expression for the inclusion probabilities. There are however 

numeric methods to compute    and    , see Aires (1999), Matei and Tillé (2007) and Ng and 

Donadio (2006). Rosén (2000) proved, with a prescribed sample size     and with all   : 

      , that       ⁄  as    . Rosén and Aires (2005) showed with a simulation 

study that    converge quite rapidly to    with increasing population size  , and if the popu-

lation is large enough we can use    as an approximation of   . 

 

An approximate expression of the Horvitz-Thompson estimator of the total is then defined 

with the target inclusion probabilities   , as 

 

  ̂  ∑
  

  
   

 (2.6) 
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Rosén (1997b) defined an approximate variance of  ̂  for the whole population 

 

 

 
  ( ̂ )  

 

   
{∑

  
 

     
       

[∑            ] 

  ∑   
 

   

} (2.7) 

and an approximate estimator of the variance of  ̂ , with a specific sample   

 

 

 
 ̂ ( ̂ )  

 

   
∑ (

  

  
 

∑           ⁄   

∑        
)

 

      
   

 (2.8) 

 

 

 

 

 

2.5 Bootstrap from a finite population 
 

When we sample without replacement from a finite population, we cannot use the classical 

bootstrap method, which is based on an identical and independent distribution. Different 

methods have been proposed that compensate for this. Some methods include rescaling or 

weighting of the sample, others reconstruct artificial populations from the sample. 

 

Antal and Tillé (2011) have recently proposed a new method that can be applied to sampling 

designs both with and without replacement. They propose a resampling design that mixes sev-

eral designs and produces a bootstrap variance that is equal to the estimator of the variance. 

One part of the resampling design is the one-one resampling design, which produces a sample, 

or a part of a sample, where the number of times every unit is selected has expectation one and 

variance one. The one-one resampling design is a mixture of simple random sampling with 

replacement and simple random sampling with overreplacement. Simple random sampling 

with replacement can be viewed as a distribution of independent Poisson variables conditioned 

on their sum. If we instead use a sequence of geometric variables conditioned on their size, we 

get a sampling design with replacement and with fixed sample size. Antal and Tillé call this 

design simple random sampling with overreplacement because the repetition of units are more 

frequent than in simple random sampling with replacement. Simple random sampling with 

overreplacement also gives a much larger variance then simple random sampling with re-

placement, a fact that they use in the one-one resampling design. 

 

When resampling from a sample selected with unequal probabilities without replacement, the 

bootstrap algorithm consists of a mixture of the original design and the one-one design. 

 

We will use this method in PPS to estimate the variance of  ̂  (2.6), and we will denote this 

estimator  ̂  
 ( ̂ ). In this essay the symbol “*” will be used with estimators involving some 

kind of simulation process. 
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3 Implementation 

 

3.1 Illustrations 

 
A sampling frame is a material containing information about the elements in the population, in 

such a way that sampling is possible. The frame can also include auxiliary information needed 

for stratification and probability proportional-to-size sampling etc. If we have a frame listing 

all elements in the population, we can estimate the inclusion probabilities. 

                                                                                          

To estimate the inclusion probabilities of a specific sam-

pling design, we simulate a sample    with that design 

from the population  . We register the objects in the 

sample and then repeat the procedure many times. The 

estimated inclusion probabilities are stored in a matrix 

and the precision of the estimated inclusion probabilities 

will increase with the number of repetitions,  . We show 

the procedure with a simple example. 

 

 

Say we have a population of 5 people. The sampling design is to draw two persons of five 

with SI. In the first sample person one and four are drawn and the matrix looks like this 

 

The diagonal contains the estimated first order inclusion probabilities and 

the rest of the matrix contains the estimated second order inclusion probabil-

ities, the probabilities that the person represented by the row and the person 

represented by the column will be drawn in the same sample. In the second 

sample person two and four are drawn and then the matrix looks like this  

 

 

 

At this stage the matrix includes the information that the estimated in-

clusion probability for person four, is one with this sampling design. For 

person three and five, the estimated probability of being drawn is zero 

and for person one and two, the estimated probability of being drawn is 

½. And then we have all the estimated second order inclusion probabili-

ties, the probabilities that both the persons, represented by the row and 

the column, will be drawn in the same sample. 

 

If we repeat this procedure many times all the estimated first order inclusion probabilities, the 

diagonal, will converge to their true value: 
 

 
 

 

 
     and all the estimated second order 

inclusion probabilities will converge to: 
      

      
 

   

   
    . The question is how many repeti-

tions we need and if we can get estimated inclusion probabilities that are precise enough. 

 

 

 

 

 

 

1     

0 0    

0 0 0   

1 0 0 1  

0 0 0 0 0 

1/2     

0 1/2    

0 0 0   

1/2 1/2 0 1  

0 0 0 0 0 

  

U 

         



12 

 

3.2 Fattorini´s research 
 

Fattorini (2006) has done some research on the subject of estimating inclusion probabilities. 

To guarantee a positive estimator of    in alignment with Fattorini, we define the estimated 

first order inclusion probabilities  ̃  as 

 

 ̃  
    

   
 

 

where    is the number of times unit   has been drawn and   is the number of repetitions. 

The estimated second order inclusion probabilities are defined as 

 

 ̃   
     

   
 

 

where     is the number of timed unit   and   have been drawn together. We can think of it as 

if we start with a inclusion matrix of ones. This means that we are able to compute the vari-

ance even if all combination of units have not yet occurred. 

 

The Horvitz-Thompson estimator of the total with the estimated inclusion probabilities is then 

 

  ̂  ∑
  

 ̃ 
   

 

 

(3.1) 

 

 

Fattorini showed that 

| ( ̂ )   |  
 

       
 

 

where    is the    with the lowest value, and 

 

|   ( ̂ )   ( ̂)|  
  ( ̂ )

       
 

 

 

 

We denote the variance for the whole population with  ̃  and  ̃   as 

 

 
  ( ̂ )   

 

 
∑ ∑(

  

 ̃ 
 

  

 ̃ 
)
 

  ̃    ̃  ̃  

      

 

 

(3.2) 

 

 

and its estimator for a specific sample   

 

 

 
 ̂ ( ̂ )   

 

 
∑∑(

  

 ̃ 
 

  

 ̃ 
)
  ̃    ̃  ̃ 

 ̃  
      

 (3.3) 
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Fattorini showed that 

| ( ̂ ( ̂ ))   ( ̂ )|  
  

        
 

 

where  ( ̂ ) is the variance of  ̂  with the expected estimated inclusion probabilities, and     

is the     with the lowest value. Fattorini points out that the bounding expressions indicate 

that a large number of repetitions, some billion, is needed if we want to guarantee a good pre-

cision for   ̂  and  ̂ ( ̂ ). But he then shows with some familiar designs that, in practice,  it is 

enough with one million repetitions to get an acceptable precision. 

 

In an article (2009) Fattorini gives an algorithm to be used when estimating inclusion proba-

bilities, that ensures stability for both  ̂  and  ̂ ( ̂ ) and a required level of accuracy for  ̂ . 

The algorithm is based on the Bennet (1962) inequality and the only thing needed  is a sample 

from the current design. You are also able to choose between two different variance estimators 

and two different precision criteria. With the milder precision criteria and conditioned on the 

sample  , the algorithm bounds the probability that the absolute relative difference between  ̂  

(3.1) and  ̂ (2.1), is greater than a desired precision    , as 

 

  {|
 ̂    ̂ 

 ̂ 
|   }    

 

Define      (
 

    
  )   (

 

    
  )  

 

    
. The value of   is then computed as   

 ∑         ̃ 
   . Denote the smallest estimated first order inclusion probability of the sample 

as  ̃ . The minimum of repetitions needed, to ensure the accuracy of  , is then defined as 

           ⁄  ̃  . If we choose the harder precision criteria, see Fattorini´s article, more 

repetitions are needed to bound the probability. 

 

A step consists of   repetitions in the process of estimating the inclusion probabilities. After 

each step  , the estimated total  ̂ 
  and the estimated variance  ̂ 

 ( ̂ ), both based on the esti-

mated inclusion probabilities, are computed. To guarantee stability of the estimators, the algo-

rithm computes the absolute relative difference between the estimates in consecutive steps. 

With the precision level    ,       is defined as 

 

        {  ⋂ (|
 ̂ 

    ̂   
 

 ̂   
  

|    |
 ̂ 

 ( ̂ )    ̂   
 ( ̂ )

 ̂   
 ( ̂ )

|   )

 

     

} 

  

The notation in the formula with “ ” is copied from Fattorini´s article. In words,      is the 

maximum value of  , where every estimate from   steps back up to this step  , has an absolute 

relative difference with the estimate   steps back, that is less than  . Let    be the value of   

after step   and define   as the maximum acceptable value for   and   as the minimum ac-

ceptable value for     . Then each stage is completed when      ,        and     
    . After each stage is completed, new decreased values for   and/or   are entered man-

ually. 

 

We will do this algorithm with the first three designs in our work and we will use the Sen-

Yates-Grundy variance estimator with the estimated inclusion probabilities (3.3). 
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3.3 Definitions 

 
 

We will do a large simulation study where we investigate the performance of   ( ̂ )  ̂ ( ̂ ) 

and  ̂ . In the study we will simulate both SI and PPS. We have chosen PPS because it is of 

special interest, for further studies, to investigate the situation where we know the first but not 

the second order inclusion probabilities. 

 

The precision of  the estimated inclusion probabilities will increase with the number of repeti-

tions. A measure of precision of the estimated first order inclusion probabilities is 

 

 

                        
 

 
∑ |

 ̃    

  
|       in SI 

        

                
 

 
∑ |

 ̃    

  
|     in PPS 

 

 

In SI it is the mean of the absolute relative differences between the estimated and the exact 

first order inclusion probabilities, and in PPS we use the target inclusion probabilities    as a 

reference for the estimated inclusion probabilities. We will use    as a general measure of the 

precision of the estimated inclusion probabilities and      as the limit of the precision. The 

question is what value for   we should use. 

 

We also compute the maximum absolute relative difference for the first order inclusion proba-

bilities 

 

    

      |
 ̃    

  
|  in SI 

              

                    |
 ̃    

  
|  in PPS 

 

 

 

With SI we can also compute the measures of precision for the second order inclusion proba-

bilities 

 

   
 

    
∑∑|

 ̃      

   
|

    

 

     

where #    is the number of    , and 

      |
 ̃      

   
| 
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As we have said, the variance of the estimated total is computed for 

the whole population,  . In SI we have an exact expression for that 

variance (2.4), which can be used as a reference for the variance 

with the estimated inclusion probabilities   ( ̂ ) computed from 

(3.2). A measure of the precision of    ( ̂ ) is then the Relative 

Bias 1 

 

                    

                       
  ( ̂ )  ( ̂)

 ( ̂)
      in SI  

                  = 

                        
  ( ̂ )     

 ( ̂ ) 

    
 ( ̂ ) 

 in PPS 

 

In the PPS case we do not have an exact expression for  ( ̂) and here we will use a Monte 

Carlo simulated variance     
 ( ̂ )  

 

          
∑ ( ̂      ̅̂ )

 
           
   , as a reference for 

  ( ̂ ). The Monte Carlo simulation is done in advance, separately from the simulation of the 

inclusion probabilities, with 100 million repetitions. Here RB.1 is not an exact measure but 

will give us an idea of the performance of    ( ̂ ). 

 

 

Next step is to study the empirical performance  

of the variance estimator with the estimated in-

clusion probabilities  ̂ ( ̂ ) computed from 

(3.3). For that sake we do a Monte Carlo simula-

tion study with   samples from which we can 

compute the variance estimators. 

 

In SI we compare the empirical distribution of 

 ̂ ( ̂ ) with the unbiased variance estimator 

 ̂( ̂) computed from (2.5). 

 

In PPS we compare  ̂ ( ̂ ) with two other vari-

ance estimators. One is Rosén´s approximate var-

iance estimator  ̂ ( ̂ ) computed from (2.8), and 

the other is Antal´s  and Tillé´s bootstrap variance estimator  ̂  
 ( ̂ ) described in 2.5. With 

Antal´s and Tillé´s bootstrap method we do 1000 bootstrap replications for every sample. 

 

Five measures are used to compare the empirical distributions: 

 

 

- Lower error rate 

 

  
 

 
∑  [ ̂       √ ̂   ]

 

   
 

 

U 

   
 

      ̂               ̂                    ̂   

  

U 
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where   ∑       and  [ ] =1 if a is true. In SI every  ̂  is computed with the exact inclu-

sion probabilities (2.1) and in PPS  ̂  is  ̂     computed from (2.6). 

 

- Upper error rate 

  
 

 
∑  [ ̂       √ ̂   ]

 

   
 

 

- Total error rate 

 

       
 

  

 

 

 

 

- Relative Bias 2 

 

     
 ̅̂    

 
  

 

 
 

 

where  ̅̂ is the mean of the variance estimates for the   samples compared to the real variance  

 . In SI we compute   from (2.4) and in PPS we use the variance of the   samples as  , 

    ̂ 

  
 

   
∑ ( ̂      ̅̂ )

 
 
    

 

- Relative Root Mean Squared Error 

 

      

√     ̂
 

 
 

 

here   ̂
  is the variance of the variance estimators for the samples,   ̂

  
 

   
∑ ( ̂   ̅̂)

 
 
     

 

The three measures,     and   , will show us at which degree each of the   variance estima-

tors combined with the estimated total for that sample, covers the true value of the total as a 

95% CI. We will use the same estimated total with all variance estimators, in SI the estimated 

total with the exact inclusion probabilities (2.1) and in PPS the estimated total with the target 

inclusion probabilities (2.6). The Relative Bias 2 will show us if the estimator has a tendency 

to over- or underestimate the variance. In the Relative Root Mean Squared Error we get a 

combination of the bias and the variance of the variance estimator and the optimal is of course 

to have a small RRMSE. 

 

RB.1 is a measure of precision of the variance with the estimated inclusion probabilities, com-

puted for the whole population and RB.2 for  ̂ ( ̂ ) is a measure of precision of the mean of 

the variance estimators with the estimated inclusion probabilities, computed from the   sam-

ples. In SI we can also compute RB.2 for  ̂( ̂) computed from (2.5), and this is the value that 
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RB.2 for  ̂ ( ̂ ) will converge to. For both SI and PPS, RB.1 and RB.2 show how many repe-

titions we need to get a stable variance and a stable mean of the variance estimators. 

 

We will also compare how well  ̂ ( ̂ ) perform when looking at every single one of the   

variance estimators. In SI every  ̂ 
 ( ̂ ) is compared with the corresponding  ̂ ( ̂). In PPS we 

use Rosén´s approximate variance estimator  ̂    ( ̂ ) as a reference for  ̂ 
 ( ̂ ). This is not an 

exact measure but will give us an idea about the development of the precision of  ̂ ( ̂ ). At 

least it should work well with large populations. The new measure is the mean of the absolute 

relative differences 

 

   
 

 
∑ |

 ̂ 
 ( ̂ )   ̂ ( ̂)

  ̂ ( ̂)
| 

          

                                                       

                   
 

 
∑ |

 ̂ 
 ( ̂ )   ̂    ( ̂ )

  ̂    ( ̂ )
| 

    in PPS 

 

 

We will also look at the performance of the estimated total with the estimated inclusion prob-

abilities  ̂  computed from (3.1). Fattorini showed (2006) with simulations that the absolute 

relative bias for  ̂  is negligible already at one million repetitions. We will however investi-

gate how every  ̂ 
  performs in the   samples, compared to the   estimated totals  ̂ , as  

 

 

 

   
 

 
∑ |

 ̂ 
   ̂ 

   ̂ 
| 

           

                                                         

                   
 

 
∑ |

 ̂ 
   ̂    

  ̂    
| 

    in PPS 

 

 

In SI we compute every  ̂  from (2.1) and in PPS we compute  ̂     from (2.6). 

 

Storing every single relative difference in   and  , without absolute value, will allow us to see 

the empirical distribution of the   relative differences with minimum, mean, maximum and 

empirical percentiles. The fact that we take the relative differences without the absolute value 

will allow us to see if the distribution stabilizes around zero. This will be useful specially in 

PPS. 

 

In the simulation process the computer first generates and stores   samples. After a new initi-

ating of the random number generator, the computer starts simulating the inclusion probabili-

ties. The computer stops regularly and the measures of precision of both    ( ̂ )  ̂ ( ̂ ) and 

 ̂  are computed and stored. We can thus see the development of the measures. To get a good 

precision when comparing the variance estimators, we will use a sample size of  =100,000. 
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3.4  Simulations 

 

3.4.1 Presentation 
 

We will analyze two populations from an administrative register of Swedish business enter-

prises. The first population, population A, is from the branch ’Manufacturers of optical in-

struments’ with population size  =323.  The second population, population B, is from the 

branch ‘Manufacturers of metal goods’ with  =2292. In both populations we use the number 

of last year´s employees as the auxiliary variables   and the number of current year´s employ-

ees as the variables of interest  . 

 

Population A has no outliers and a very good correlation 0.97 between the two variables, with 

most of the observation values under 50, see Figure 1 below. The total of the population, 

  ∑      , is 9079 and the maximum sample size with PPS, with all     , is 38. 

 

 
Figure 1: Population A. 

 

 

Population B has a good correlation between the two variables, 0.75. As we can see in the 

Figure 2 there is an outlier in the population. The other data from this observation show the 

same behaviour and there has probably been some kind of restructuring during the year. The 

correlation without the outlier is 0.96. Here most of the observation values are under 100. The 

total of the population is 51115 and the maximum sample size with PPS, with all     , is 

174. 
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Figure 2: Population B. 

 
Figure 3:   , SI simulation with population A, n=38. 

 

The question is what value for  , the precision of the estimated first order inclusion probabili-

ties  ̃ , we should use. Figure 3 shows    in a SI simulation with population A,  =38. We see 

a very smooth and regular curve and this curve we also see with all the other designs, both in 

SI and PPS, when we plot   . This is the same curve that we see in a plot with 
 

√ 
 , where   

is the number of repetitions. If we put different plots of    on top of each other, we see that 

they have the same shape. Figure 4 shows    from seven simulations with seven different de-

signs, both SI and PPS, and 
 

√ 
 , plotted together.  The different    have been rescaled to fit 

together. In the rescaling process we plotted one of the    and then we took each of the other 

  , one at a time, and tested different values of a constant multiplied to the   , until the 

curves coincided. 
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Figure 4:    for seven different designs and 
 

√ 
  . 

 

 

This means that if we want to reduce    to half of its value (at some stage), we have to in-

crease the number of repetitions four times and if we want to reduce    to a third, we have to 

increase the number of repetitions nine times. 

 

We will see later that the relationship is the same between the number of repetitions and  

           and  , for   however only with SI. The empirical minimum, maximum and per-

centiles associated with   and  , also have the same relationship to the number of repetitions, 

for   only with SI. The precision of all these measures increases with the same rate and this 

means that their values will have the same proportion to each other during the whole simula-

tion, with some random variation.  

 

Different designs give different distributions of the estimated inclusion probabilities. The 

measure   will however give a basic idea of the precision of the estimated inclusion proba-

bilities and as limit for   we will use  =0.05%. We will simulate until the limit is reached but 

the maximum of repetitions will be 320 million. This means for example that we will do about 

50 million repetitions when simulating PPS, population A,  =38. How many repetitions we 

need to get estimated inclusion probabilities that are precise enough, is of course always up to 

the user. 

 

While simulating the inclusion probabilities, the computer stops at 125,000, 250,000 and 

500,000 repetitions and computes the measures of precision. Then it stops at every million and 

from 5 million it stops at every fifth million repetition. From 20 million it stops at every tenth 

million, from 80 million it stops at every twentieth million and from 160 million it stops at 

every fortieth million repetition. 

 

To get a fast simulation process, the coding is done in C++ and some parts of the code are also 

done in parallel programming. We have used the “Mersenne Twister”, mt19937,  as the pseu-

dorandom number generator in our simulations. This is a fast generator that is suitable for 

large simulations. 
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3.4.2 SI simulation with population A,   =38 

 
We start with simulating SI. Here all inclusion probabilities are known and we can get a pre-

cise validation of the estimated inclusion probabilities. 

  

At first we analyze the results from sampling with sample size 38, the maximum sample size 

for PPS with all     . Here the first order inclusion probabilities are 0.118 and the second 

order are 0.0135. The Tables and Figures below show the results from the simulation. 

 
Figure 5: RB.1 for   ( ̂ ). 

 

Table A1 in the appendix shows the development of             and RB.1 for this design. 

We can see that all measures, except RB.1, have the same relationship to the number of repeti-

tions, described on the previous page, the maximum measures   and    however with little 

more random variation. In Figure 5 we see that RB.1 stabilizes at about 3-4 million repeti-

tions, in this simulation. 

 
Figure 6: RB.2 for  ̂ ( ̂ ). 
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Figure 6 shows RB.2 for  ̂ ( ̂ ). Here in SI this measure will converge to RB.2 for  ̂( ̂) 

marked in Figure 6, where  ̂( ̂) is computed from (2.5). We will get different RB.2 for  ̂( ̂) 

in every simulation, depending on the   simulated samples. In this simulation RB.2 for  ̂( ̂) 

is -0.295 and this is the value that RB.2 for  ̂ ( ̂ ) will converge to. At 20 million repetitions  

RB.2 for  ̂ ( ̂ ) is a bit under -0.295 but if we had continued the simulation we would have 

seen a stabilization of RB.2 around this value. 

 

 

Table 1: Empirical distribution measures. 

Estimator L % U % ER % RB.2 % RRMSE % 

 ̂ ( ̂ ) 9.7 0.58 10.3 -0.314 48.9 

 ̂( ̂) 9.7 0.58 10.3 -0.295 48.9 

 

 

 

 
Figure 7: The empirical  distributions of   ̂ ( ̂ ) and   ̂( ̂). 

 

 

 



23 

 

The scatter plots in Figure 7 show the first 1000 values of the estimators. In the figure we also 

have the 95% confidence interval, which means that the dots inside the lying U-shape are the 

combination of the estimated total and the estimated variance, whose 95% CI includes the real 

value of the total.  

 

As we can see in Table 1 and Figure 7, the two variance estimators behave very much the 

same. The only thing that differs between the two is that  ̂( ̂) has a little better RB.2. 

 

In Table A2  in the appendix we see that the values of the measures L, U and ER are essential-

ly the same in the beginning of the simulation as in the end. With this design these measures 

do not say so much about the precision of  ̂ ( ̂ ), the values do not change with increasing 

number of repetitions. We see however that the RRMSE improves with increasing number of 

repetitions. 

 

Next we will look at how every single one of the   variance estimators with the estimated 

inclusion probabilities behaves. As we said, we can take every single relative difference in  , 

without absolute value, and get an empirical distribution of these differences. We choose to 

present the minimum, the 0.5% percentile, the mean, the 99.5% percentile and the maximum. 

Table 2 shows how   and the empirical distribution develop with increasing number of repeti-

tions. 

 

Table 2: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -38 -21.2 0.668 6.55 23.4 49.8 

250,000 -28.8 -15.3 0.26 4.61 16.2 33 

500,000 -20.8 -11.1 -0.0226 3.29 11.3 22.9 

1,000,000 -13.6 -7.62 0.0913 2.32 8.25 14.1 

2,000,000 -11 -5.25 0.191 1.63 5.87 10.5 

3,000,000 -8.18 -4.42 0.0714 1.33 4.69 9.31 

4,000,000 -8.3 -3.76 0.0762 1.15 3.99 7.46 

5,000,000 -6.18 -3.44 0.044 1.02 3.51 6.52 

10,000,000 -4.25 -2.46 0.0159 0.726 2.48 4.99 

15,000,000 -3.81 -2.02 -0.00451 0.592 1.99 3.72 

20,000,000 -3.43 -1.77 -0.0127 0.515 1.74 3.19 

 

 

In Table 2 we can see that the mean rather quickly stabilizes around zero and that   decreases 

to half of its value if we increase the repetitions four times. Also the distribution measures 

follow this pattern, with some random variation. We see for example that the percentiles at 15 

million repetitions are  2%.  If we then want 99% of the relative differences to be between 

 1%, we have to increase the number of repetitions to about 60 million. Figure A1 and A2 in 

the appendix are graphical presentations of Table 2. 

 

In Figure A3 in the appendix we can see that the empirical distribution of the relative differ-

ences is stable already at 125,000 repetitions. The shape of the density curves does not change 

so much with increasing number of repetitions. 

 

Table 3 shows the development of   with empirical distribution of the relative differences in 

the same manner as with  . We can see that the measures in this table behave in the same way 
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as in Table 2, concerning their relationship to the number of repetitions. Figure A4  in the ap-

pendix shows this relationship. The pattern in Figure A5 in the appendix is the same as in Fig-

ure A3 with little change with increasing number of repetitions. 

 

Table 3: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -0.682 -0.426 0.033 0.15 0.483 0.716 

250,000 -0.45 -0.291 -0.0252 0.0882 0.251 0.418 

500,000 -0.329 -0.232 -0.0291 0.0681 0.172 0.286 

1,000,000 -0.283 -0.181 -0.0131 0.056 0.163 0.247 

2,000,000 -0.22 -0.136 -0.0134 0.0374 0.0929 0.156 

3,000,000 -0.164 -0.108 -0.00813 0.0328 0.0935 0.149 

4,000,000 -0.145 -0.0912 -0.00246 0.027 0.0793 0.128 

5,000,000 -0.122 -0.0831 -0.00497 0.0246 0.0692 0.107 

10,000,000 -0.0748 -0.049 -0.00603 0.0143 0.0362 0.058 

15,000,000 -0.0587 -0.041 -0.00247 0.0132 0.041 0.0652 

20,000,000 -0.057 -0.0347 -0.0033 0.0112 0.0313 0.0493 

 

 

Finally we apply Fattorini´s algorithm, described on page 13, to this design. We use  =1,000, 

 =0.1% and  =100, the values Fattorini used in his article. The maximum of steps is 100,000 

(100 million repetitions). At each stage, Table 4 first shows how many steps that was needed 

until       and         , noted Pr. steps. Then it shows how many steps that was 

needed until also       . Then we have the values of   and   at that stage, and        ̂ 
  and 

 ̂ 
 ( ̂ ) at the end of that stage. 

 

We can see from Table 4 that the values of   and   are very conservative. In Table 4 we see 

that in stage 2, after 6,210 steps (6,210,000 repetitions), the measure Pr.steps shows that the 

probability that the absolute relative difference is larger than 1% ( ), is less or equal to 1% 

( ). Table 3 shows that the maximum and minimum are not absolute higher than 1% (compare 

with  ) already at 125,000 repetitions, and in fact the absolute relative difference is, already 

here, larger than 0.5% (compare with  ) with probability less than 1% (compare with  ), the 

result that Table 4 shows after 24,570 steps. At stage 4 we entered  =0.1% and  =1%, and 

with those values it was not enough with 100,000 steps (100 million repetitions) to reach the 

limit values. In Table 3 we see that already at 4 million repetitions (4,000 steps), the probabil-

ity that the absolute relative difference is larger than 0.1% (compare with  ), is less than 1% 

(compare with  ). The values of Pr. steps do not change more than    in other simulations 

with this design. If we would have used the harder precision criteria, even more repetitions 

would have been needed to reach the limit values, and the results would have been even more 

misleading. The empirical distribution in Table 3 is based on 100,000 samples. If we increase 

the number of samples to 1 million, we still get that at 125,000 repetitions, the maximum ab-

solute relative difference is below 1%. Here, at 125,000 repetitions, the probability that the 

absolute relative difference is larger than 0.5, is just above 1%, but as before, at 4 million 

repetitions, the probability that the absolute relative difference is larger than 0.1% , is less than 

1%. 

 

We can state that Fattorini´s algorithm ensures stability for  ̂  and  ̂ ( ̂ ), but that the values 

of   and   are very conservative.  
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Table 4: Fattorini´s algorithm. 

Stage Pr. steps Steps               ̂ 
   ̂ 

 ( ̂ ) 

1 56 3,505 10 10 100 10,617 5,177,081 

2 6,210 6,238 1 1 100 10,620 5,215,153 

3 24,570 24,570 0.5 1 940 10,617 5,155,123 

 

 

With a Intel Core i3-350M 2.27 GHz processor, it takes 7 minutes and 5 seconds to produce a 

matrix with the inclusion probabilities, based on 20 million repetitions, for this design. 

 

To summarize this design, we can say that we are able to simulate precise estimated inclusion 

probabilities, within a short period of time. 20 million repetitions only take about 7 minutes 

and if we multiply the number of repetitions with 16, to 320 million repetitions, we would get 

very precise values of   and  , about 0.13% and 0.0028%, with 99% CI about   0.44% and 

 0.008% for the empirical distributions. 

 

The Relative Biases show that we need at least 3-4 million repetitions to stabilize   ( ̂ ) and 

 ̅̂ ( ̂ ). If we use Fattorini´s algorithm to just measure the stability of  ̂  and  ̂ ( ̂ ), the  

number of steps until       , with  =0.1%, varies between about 3,000 to 5,000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 PPS simulation with population A,  =38 
 

 

Next we simulate PPS with the same sample size  =38. We see in Figure 8 that   with the 

target inclusion probabilities, can be used as a precision measure for the estimated first order 

inclusion probabilities with this sampling design. The size of the population  =323 and the 

sample size  =38, are both big enough for that purpose. We see that the relationship between 

the number of repetitions and   , follow the expected pattern. This can also be seen in Table 

A3 in the appendix.  

 

Rosén´s approximate variance for the whole population   ( ̂ ) computed from (2.7), is here 

89,170, which is below     
 ( ̂ )=89,250. The relative difference is -0.09%. 
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Figure 8:    and 
 

√ 
 

 
Figure 9: RB.1, 1-50 million repetitions. 

 

With PPS we need more repetitions to get the required precision of   , compared to SI. The 

observations with the smallest   values have target inclusion probabilities    that are only 

about 0.02. As we can see in Figure 9, RB.1 stabilizes at about 15 million repetitions with this 

design. In this simulation RB.1 is a bit above zero at 50 million repetitions, but as we know, in 

PPS we use a simulated variance as reference for the variance with the estimated inclusion 

probabilities. Figure 9 shows the values of RB.1 from one million repetitions, which gives a 

more precise presentation of the development of the measure in the end of the simulation. 

 

In Figure 10 we see that RB.2 stabilizes at about 15 million repetitions. We also see that,  in 

this simulation, RB.2 converges to a value above zero.   
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Figure 10: RB.2 for  ̂ ( ̂ ). 

 

Table 5: Empirical distribution measures. 

Estimator L % U % ER % RB.2 % RRMSE % 

 ̂ ( ̂ ) 4.7 1.6 6.2 0.22 64.1 

 ̂ ( ̂ ) 4.9 1.7 6.6 -0.50 60.8 

 ̂  
 ( ̂ ) 4.7 1.5 6.2 1.24 66.8 

 

 

As we saw in the simulation with SI,  ̂ ( ̂ ) had almost converged to  ̂( ̂) at the end of the 

simulations and, as seen in Table 5, here we can state that Rosén´s variance estimator has a 

negative Relative Bias and that Antal´s and Tillé´s variance estimator has a positive Relative 

Bias. This is a tendency we also see with other simulations with the same design. A clear pat-

tern is also that  ̂ ( ̂ ) has the lowest RRMSE and that  ̂  
 ( ̂ ) has the highest. On the other 

hand,  ̂ ( ̂ ) has the highest ER, also a tendency we see in other simulations with the same 

design. An explanation for the high ER is that  ̂ ( ̂ ) underestimates the variance and as we 

can see in the scatter plots in the Figure on the next side, this means that the chance to miss the 

95% CI increases. 

 

Table A4 in the appendix shows the development of the measures L, U, ER and RRMSE. We 

see that L, U and ER change a little in the beginning of the simulation but that they stabilize 

rather quickly at about 2 million repetitions. We also see that RRMSE varies a little before it 

stabilizes in the middle of the simulation. 

 

Figure 11 shows the empirical distribution of the three variance estimators. In the Figure we 

see a clear group of observations to the right of the main group. This can also be seen with 

other PPS designs. Figure A6 in the appendix shows only the distribution of  ̂ ( ̂ ),with the 

first 10,000 observations. Here we can see the extra group more clearly and we also see that 

there are observations overlapping the two groups. 
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Figure 11: The first 1000 of the variance estimators with 95% CI. 

 

 

As we can see in Table 6, the mean stabilizes at just above 3%. But the precision of   does not 

increase with the number of repetitions in the end of the simulation, after 10 million repeti-

tions nothing much really happens with all the measures. We can see in Table A7 in the ap-

pendix (page 61), that   works much better with sample size  =20. Aires and Rosén (2005) 

showed that the approximation of    with   , can be more precise with a smaller sample size 

and that could be a reason why Rosén´s variance estimator (2.8), which is defined with   , 

performs better as a reference for  ̂ ( ̂ ) with sample size  =20. In SI every value in Table 2 

(page 23) converges to zero. With PPS we will see that the mean stabilizes at above zero with 

every design we simulate, and this means that Rosén´s variance estimator more or less has a 

negative bias with every design. If every one of Rosén´s   variance estimators, in each simu-

lation, would have the same bias, every measure in the “  tables” would converge to that val-

ue. This is not the case, at least not with this design. We will subtract the values of   and the 

percentiles in the end of each simulation, with the value of the mean, to get an approximate 

value of   and the percentiles. At the end of this simulation   is then 1.07% and we get a 99% 

CI (-10.02, 10.9) for the empirical distribution. We can state that this values are not the values 

we would have got if we had compared  ̂ ( ̂ ) with an unbiased variance estimator. When we 

look at each of   variance estimators, Rosén´s variance estimator has a negative bias at about 
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3% and it is also not precise enough to be used as a reference for  ̂ ( ̂ ), with this sample 

size. If we look at the relative difference between the means of   variance estimators, the rela-

tive difference is 0.7%. 

 

 

Table 6: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -91.7 -30.9 3.04 9.07 40.5 95.8 

250,000 -67.6 -22.3 2.66 6.84 29.2 79.4 

500,000 -42.5 -15.6 2.66 5.58 22.5 61.5 

1,000,000 -29 -11 3 4.95 19.8 43.3 

2,000,000 -25.6 -8.98 3.01 4.55 17.2 45.9 

3,000,000 -21.2 -8.33 2.97 4.36 16.1 34.8 

4,000,000 -18 -7.95 2.98 4.3 15.7 29.9 

5,000,000 -15.4 -7.7 3.02 4.27 15.3 29.8 

10,000,000 -13.9 -7.37 2.95 4.13 14.6 26.3 

15,000,000 -13.5 -7.17 3.04 4.15 14.6 24.5 

20,000,000 -13.2 -7.09 3.06 4.15 14.5 23.6 

25,000,000 -13.1 -7.04 3.05 4.13 14.4 23.2 

30,000,000 -13.1 -6.98 3.06 4.13 14.4 22.8 

35,000,000 -13.1 -7.02 3.02 4.11 14.3 22.8 

40,000,000 -13.1 -7 3.03 4.11 14.3 22.6 

50,000,000 -13 -6.98 3.04 4.11 14.3 22.7 

 

 

The empirical densities in Figure A7 in the appendix do not behave as in SI, where the shape 

of the empirical densities were the same during the whole simulation. Here the shape stabilizes 

in the third graph at 10 million repetitions. Other simulations show that the empirical density 

at 50 million repetitions and the measures in the end of Table 6, remain almost the same all the 

way up to 320 million repetitions. 

 

We can see in Table 7 and in Figure A8 in the appendix, that   behave as expected. The esti-

mated total with the target inclusion probabilities work well as a reference for the estimated 

total with the estimated inclusion probabilities. 

 

 

Table 7: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -0.578 -0.334 0.0068 0.102 0.341 0.663 

250,000 -0.462 -0.265 -0.00326 0.0725 0.239 0.404 

500,000 -0.337 -0.187 -0.00402 0.0516 0.162 0.286 

1,000,000 -0.202 -0.124 0.00163 0.0377 0.122 0.206 

2,000,000 -0.15 -0.0809 0.00299 0.0255 0.0843 0.14 

3,000,000 -0.119 -0.0628 0.00131 0.0198 0.0693 0.129 

4,000,000 -0.101 -0.0585 0.00107 0.0181 0.0622 0.106 

5,000,000 -0.0977 -0.0505 0.00239 0.016 0.0552 0.0886 

10,000,000 -0.0695 -0.0398 0.000142 0.0116 0.0373 0.0652 

15,000,000 -0.0559 -0.0308 0.000548 0.00963 0.0325 0.0571 

20,000,000 -0.0445 -0.026 0.000696 0.00833 0.0294 0.0503 
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25,000,000 -0.0439 -0.0239 0.000489 0.00775 0.0284 0.048 

30,000,000 -0.0357 -0.0212 0.000556 0.00693 0.0261 0.0454 

35,000,000 -0.0374 -0.0204 5.53e-005 0.00632 0.0237 0.0401 

40,000,000 -0.0324 -0.0194 0.000171 0.00619 0.0235 0.0391 

50,000,000 -0.0272 -0.0166 0.000508 0.00559 0.0245 0.0419 

 

 

Table 8: Fattorini´s algorithm. 

Stage Pr. steps Steps               ̂ 
   ̂ 

 ( ̂ ) 

1 108 4,767 10 10 100 8,677 60,998 

2 13,740 13,740 1 1 128 8,678 61,247 

3 54,407 54,407 0.5 1 1,069 8,679 61,706 

 

If we compare Table 8 with Table 7, we see the same thing as with the last design, the values 

of   and   are very conservative. At stage 4 we entered  =0.1% and  =1%, and with those 

values it was not enough with 100,000 steps (100 million repetitions) to reach the limit values. 

 

It takes 48 minutes and 10 seconds to produce a matrix with the inclusion probabilities, based 

on 50 million repetitions, for this design. 

 

It is more time consuming to simulate PPS than to simulate SI. We also need more repetitions 

to get the required precision of   . But if we compare Table 7 with Table 3, page 24, we see 

that   has lower values in Table 7, at the same number of repetitions, compared to Table 3. 

This also applies to the measures of the empirical distribution, where the precision of the 

measures is higher in Table 7 compared to Table 3, at the same number of repetitions. The 

reason is that, in PPS, the observations with large    has a high probability to the be drawn 

and the precision of their estimated first order inclusion probabilities quickly reach a high pre-

cision. When we compute the estimated totals, the observations with large    and  ̃  values 

have larger contribution to sum, than those observations with small    and  ̃  values. This 

means that we get estimated totals with estimated inclusion probabilities that are more precise 

in PPS than in OSU, with the same sample size and same number of repetitions. 

 

At the end of this simulation we have a very precise value of  , 0.0056% and a 99% CI (-

0.017%, 0.024%) for the empirical distribution. The value of  , after subtraction, is 1.07% and 

a 99% CI for the empirical distribution is (-10.02%, 10.9%). To quadruple the number of repe-

titions to 200 million, would take less than 4 hours and we would then double the precision of 

  and  . 

 

Rosén´s variance   ( ̂ ) has a negative relative bias, -0.09%, compared to     
 ( ̂). We could 

see that  ̂ ( ̂ ) has a negative RB.2, 0.72% below RB.2 for  ̂ ( ̂ ) and that Antal´s and Til-

lé’s variance estimator  ̂  
 ( ̂ ) has a positive RB.2, 1.02% above RB.2 for  ̂ ( ̂ ). We could 

also see that  ̂ ( ̂ ) has the lowest RRMSE and that  ̂  
 ( ̂ ) has the highest RRMSE. 

 

The Relative Biases show that we need at least about 15 million repetitions to stabilize   ( ̂ ) 

and  ̅̂ ( ̂ ). If we use Fattorini´s algorithm to just measure the stability of  ̂  and  ̂ ( ̂ ), the 

number of steps, with  =0.1%, varies between about 3,000 and 6,000. 
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3.4.4 PPS simulation with population B,  =174 
 

Now we turn to population B and simulate PPS with the maximal sample size with all     . 

It took 60 million repetitions until we reached the precision measure for the estimated first 

order inclusion probabilities. 

 

Rosén´s variance for the whole population has a negative relative bias compared to     
 ( ̂ ),       

-0.07%. 

 
Figure 12: RB.1, 1-60 million repetitions. 

 

Figure 12 shows that RB.1 gets closer to the simulated variance with increasing number of 

repetitions and maybe we could say that RB.1 stabilizes at about 30 million repetitions. Figure 

12 shows the values of RB.1 from one million repetitions, which gives a more precise presen-

tation of the development of the measure in the end of the simulation. Table A5 in the appen-

dix shows the development of       and RB.1 for this design. 

 

In Figure 13 we see the same tendency as in with RB.1, RB.2 increases in the end of the simu-

lation. Also here we could say that RB.2 stabilizes at about 30 million repetitions. 
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Figure 13: RB.2 for  ̂ ( ̂ ). 

 

Table 9: Empirical distribution measures. 

Estimator L % U % ER % RB.2 % RRMSE % 

 ̂ ( ̂ ) 25.4 0.02 25.4 -0.37 177 

 ̂ ( ̂ ) 25.5 0.02 25.5 -0.42 176 

 ̂  
 ( ̂ ) 25.5 0.02 25.5 -0.78 177 

 

 

We see in Table 9 that Antal´s and Tillé´s variance estimator  ̂  
 ( ̂ ) has a little negative Rel-

ative Bias compared to the other two. In simulations without the outlier the Relative Bias is 

even more negative, about -1% compared to the others. With all the other PPS designs with 

population B,  ̂  
 ( ̂ ) has a positive Relative Bias which disappears in some of the designs if 

we simulate without the outlier. Without the outlier, the ER for the variance estimators is just 

above 6% and the RRMSE is about 47%. 

 

Table A6  in the appendix shows that all the measures L, U, ER and RRMSE stabilize already 

at 500,000 repetitions in this simulation. 
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Figure 14: The first 1000 of the variance estimators with 95% CI. 

 

 

In Figure 14 we can clearly see the group of samples with the outlier. We see that  ̂  
 ( ̂ ) is 

most spread and that  ̂ ( ̂ ) is least spread in the outlier group. Figure A9 in the appendix 

shows the first thousand observations of   ̂ ( ̂ ) in the group without the outlier. Here we see 

the same thing as we could see in PPS with population A, there is a group of observations to 

the right of the main group.  

 

 
Table 10: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -199 -77.4 0.564 17.7 84.7 251 

250,000 -136 -55.5 0.246 12.5 58.7 137 

500,000 -96.5 -38.5 0.815 8.93 42.7 103 

1,000,000 -67.9 -27.7 0.571 6.3 29.7 71.3 

2,000,000 -49 -19.7 0.463 4.51 20.4 54.1 

3,000,000 -37.7 -16.1 0.452 3.74 16.6 42.5 

4,000,000 -35.8 -13.8 0.488 3.3 14.7 39.6 
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5,000,000 -30.9 -12.6 0.48 3.01 13.3 36.6 

10,000,000 -22.9 -8.66 0.587 2.31 10.2 26.8 

15,000,000 -19.3 -7.28 0.572 2.02 8.54 20.4 

20,000,000 -17.7 -6.42 0.55 1.84 7.65 18.4 

25,000,000 -14.1 -5.87 0.562 1.73 7.11 16.1 

30,000,000 -13.7 -5.37 0.563 1.65 6.59 14 

35,000,000 -12.8 -4.92 0.569 1.59 6.35 13 

40,000,000 -13.7 -4.66 0.571 1.54 6.1 11.9 

50,000,000 -13.5 -4.29 0.588 1.48 5.7 12.2 

60,000,000 -11.1 -3.99 0.601 1.44 5.49 10 

 

 
Table 10 shows that   works better as a measure of precision than with the last design with 

population A. The mean stabilizes at about 0.6 and if we subtract every value with 0.6,   is 

0.84% at the end of the simulation with a 99% CI (-4.59%, 4.89%) for the empirical distribu-

tion. When we look at each of   variance estimators, Rosén´s variance estimator has a nega-

tive bias at about 0.6%. If we look at the relative difference between the means of   variance 

estimators, the relative difference is 0.04%. When we compare Table 10 with Table A8 in the 

appendix (page 64), we can see that   has almost the same values in the beginning of both the 

tables, at the same number of repetition. But here we can see that the precision of the measures 

of the empirical distribution is less in Table 10 compared to Table A8. Computation of the 

estimated variances includes the second order inclusion probabilities, and it looks like we get 

more extreme values of the estimated variances with the estimated inclusion probabilities in 

PPS compared to SI, at the same number of repetitions. This is also the case if we compare 

PPS with SI in other simulations with the same sample size with population B. 

 
We see from Figure A10 in the appendix that the shape of the empirical distribution of the 

relative differences change with increasing number of repetitions. In the beginning the distri-

bution includes more extreme values and then, with increasing number of repetitions, the dis-

tribution gets more centered around its mean. 

 

We see from Table 11 and from Figure A11 in the appendix, that   and the relative differences 

behave as expected. If we compare Table 11 with Table A9 in the appendix (page 64), we can 

see the same thing as with the last design,   has lower values in Table 11, at the same number 

of repetitions, compared to Table A9, and that this also applies to the measures of the empiri-

cal distribution, where the precision of the measures is higher in Table 11 compared to Table 

A9, at the same number of repetitions. 

 

Table 11: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -0.357 -0.197 -0.00283 0.0601 0.192 0.302 

250,000 -0.236 -0.142 -0.00413 0.0429 0.137 0.227 

500,000 -0.169 -0.0961 0.00324 0.0307 0.103 0.169 

1,000,000 -0.109 -0.07 -0.000461 0.0217 0.0711 0.13 

2,000,000 -0.0871 -0.0538 -0.00234 0.0161 0.0493 0.0889 

3,000,000 -0.0759 -0.0466 -0.00334 0.0136 0.0389 0.0724 

4,000,000 -0.0698 -0.0375 -0.00214 0.0113 0.0334 0.0586 

5,000,000 -0.0593 -0.0342 -0.00202 0.0102 0.0301 0.0563 

10,000,000 -0.0357 -0.0212 0.000333 0.00666 0.0218 0.0339 
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15,000,000 -0.03 -0.019 -0.000539 0.0058 0.018 0.0314 

20,000,000 -0.0271 -0.0172 -0.000865 0.00518 0.0154 0.0263 

25,000,000 -0.0245 -0.0142 -0.000422 0.00436 0.0136 0.0221 

30,000,000 -0.0226 -0.0134 -0.000459 0.00406 0.0126 0.0237 

35,000,000 -0.0223 -0.0123 -0.00042 0.00371 0.0115 0.0199 

40,000,000 -0.0225 -0.0117 -0.000179 0.00346 0.0109 0.0199 

50,000,000 -0.0171 -0.01 0.000159 0.00305 0.0098 0.0177 

60,000,000 -0.0159 -0.00893 0.000534 0.0029 0.00955 0.0151 

 

 

 
Table12: Fattorini´s algorithm. 

Stage Pr. steps Steps               ̂ 
   ̂ 

 ( ̂ ) 

1 269 12,019 10 10 100 56,618 26,262,811 

2 32,090 32,116 1 1 100 56,617 27,256,991 

 
Table 12 shows Fattorini´s algorithm for this design. At stage 3 we entered  =0.5% and 

 =1%, and we did not reach the limit values within 100,000 steps (100 million repetitions). As 

before, we can state that the values of   and   are very conservative.  
 
It takes 15 hours, 31 minutes and 32 seconds to produce a matrix with the inclusion probabili-

ties, based on 60 million repetitions, for this design. 

 

At the end of this simulation we have a very precise value of  , 0.0029% and a 99% CI (-

0.009%, 0.010%) for the empirical distribution. After the subtraction   is 0.84% at the end of 

the simulation and a 99% CI for the distribution, is (-4,59, 4.89). Population B is about seven 

times bigger than population A and the process of estimating the inclusion probabilities is of 

course much more time consuming. To quadruple the number of repetitions in the end of the 

simulation with this design, would take about two and a half days. 

 

With this design, Rosén´s approximate variance   ( ̂ ) has a negative relative bias, -0.07%, 

compared to     
 ( ̂), but  ̂ ( ̂ ) has the same RB.2 as  ̂ ( ̂ ). Here Antal´s and Tillé’s vari-

ance estimator  ̂  
 ( ̂ ) has a negative RB.2, 0.41% below RB.2 for  ̂ ( ̂ ). In simulations 

without the outlier, RB.2 for  ̂  
 ( ̂ ) is even more negative, about -1% compared to the oth-

ers. With this design all three variance estimators have the same RRMSE. 

 

The Relative Biases show that we need about 30 million repetitions to stabilize   ( ̂ ) and 

 ̅̂ ( ̂ ). If we use Fattorini´s algorithm to just measure the stability of  ̂  and  ̂ ( ̂ ), the 

number of steps, with  =0.1%, varies between about 5,000 to 10,000. 
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3.5 Summary of all the simulations. 

 

All the measures are in percent. 

 

 

 

Population A 

 

SI 
 

Population A, SI, n=38, 20 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 9.7 0.58 10.3 -0.31 48.9 -1.77 0.51 1.74 -0.035 0.011 0.031 

 ̂( ̂) 9.7 0.58 10.3 -0.29 48.9       

 

 

Population A, SI, n=100,10 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 5.6 0.94 6.6 0.20 26.6 -0.80 0.25 0.85 -0.014 0.0052 0.017 

 ̂( ̂) 5.6 0.94 6.6 0.16 26.5       

 

 

 

 

 

PPS 
 

Population A, PPS, n=38, 50 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 4.7 1.6 6.2 0.22 64.1 -10.0* 1.07* 10.9* -0.017 0.0056 0.0245 

 ̂ ( ̂ ) 4.9 1.7 6.6 -0.50 60.8       

 ̂  
 ( ̂ ) 4.7 1.5 6.2 1.24 66.8       

 

 

Population A, PPS, n=20, 100 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 5.05 1.7 6.8 -0.13 79.7 -8.8* 0.19* 9.1* -0.025 0.0074 0.026 

 ̂ ( ̂ ) 5.54 1.9 7.5 -0.52 74.9       

 ̂  
 ( ̂ ) 5.04 1.7 6.7 1.56 86.9       

 

* value has been subtracted with the mean. 
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Population B 
 

SI 
 

 

Population B, SI, n=174, 35 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 8.9 0.39 9.3 -1.02 141 -3.97 0.95 4.08 -0.024 0.0070 0.020 

 ̂( ̂) 8.9 0.39 9.3 -1.02 141       

 

 

 

PPS 
 

 

Population B, PPS, n=174, 60 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 25.4 0.02 25.4 -0.37 177 -4.59* 0.84* 4.89* -0.009 0.0029 0.010 

 ̂ ( ̂ ) 25.5 0.02 25.5 -0.42 176       

 ̂  
 ( ̂ ) 25.5 0.02 25.5 -0.78 177       

 

 

 

Population B, PPS, n=90, 120 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 19.8 0.05 19.9 -0.25 261 -4.48* 0.45* 4.77* -0.013 0.0039 0.013 

 ̂ ( ̂ ) 20.0 0.06 20.0 -0.25 258       

 ̂  
 ( ̂ ) 19.9 0.05 19.9 0.90 265       

 

 

 

Population B, PPS, n=45, 240 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 16.7 0.10 16.8 0.25 377 -4.57* 0.11* 5.01* -0.020 0.0062 0.020 

 ̂ ( ̂ ) 17.1 0.11 17.2 0.30 368       

 ̂  
 ( ̂ ) 16.7 0.10 16.8 1.54 383       

 

 

 

Population B, PPS, n=20, 320 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 15.6 0.21 15.9 0.10 571 -6.96* 0.05* 7.45* -0.042 0.012 0.037 

 ̂ ( ̂ ) 16.4 0.25 16.7 0.22 543       

 ̂  
 ( ̂ ) 15.6 0.21 15.8 0.77 575       

 

 

* value has been subtracted with the mean. 



38 

 

Figure 15 shows the Relative Biases 2 in percentage for the three variance estimators in PPS, 

population A. The two designs are:  =38 and  =20. As we saw in the simulations with SI, the 

variance estimator with the estimated inclusion probabilities, is almost unbiased at the end of 

the simulations and we can state that, with these designs, Antal´s and Tillé´s variance estima-

tor  ̂  
 ( ̂ ) has a positive bias and Rosén´s variance estimator   ( ̂ ) has a negative bias. The 

bias of   ( ̂ ) was even larger when we looked at the performance of each of the   variance 

estimators, about -3% with  =38 and about -5% with  =20. Other simulations show the same 

pattern concerning the different biases.  

 
Figure 15: RB.2, population A ,n=38 and n=20. 

 

 

 

 

 

Figure 16 and 17 show the Relative Biases, RB.2 in percentage, for the three variance estima-

tors in PPS, population B. Figure 16 shows the Relative Biases with the outlier and Figure 17 

shows the Relative Biases without the outlier. The four designs are:  =174,  =90,  =45 and 

 =20. We can see that   ( ̂ ) is unbiased with these designs, both with and without the outli-

er, but the performance of each of the   variance estimators showed that   ( ̂ ) has a nega-

tive bias, about -0.6% with  =174, about -1% with  =90, about -2% with  =45 and about -5% 

with  =20. In Figure 16 we see that  ̂  
 ( ̂ ) has a positive bias with three designs of four, but 

in Figure 17 we see that, without the outlier, it is unbiased with two designs of four. Also here, 

other simulations show the same pattern concerning the different biases. 
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Figure 16: RB.2, pop. B,  =174,  =90,  =45 and  =20. 

 

 
Figure 17: RB.2, population B, without the outlier. 
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4 Conclusions 
 

The simulations in this essay show that we can get estimators based on estimated inclusion 

probabilities, that are very precise compared to the unbiased estimators. We also show that 

some of our measures are inversely proportional to the square root of the number of repeti-

tions. This means that if we want to double the precision of the measures, we have to quadru-

ple the number of repetitions etc. Then the precision is just a matter of time, the time it takes 

to simulate the inclusion probabilities with required precision. 

 

The simulations with SI show that the estimator of the variance based on estimated inclusion 

probabilities, has the same performance as the unbiased estimator of the variance. Both the 

estimators have the same values in our measures L, U, ER and RRMSE, and their values in 

RB.2  are almost the same at the end of every simulation. If we look at the performance of 

every single one of the   variance estimators with estimated inclusion probabilities, we can 

conclude that the values of   is very precise at the end of the simulations. The performance of 

every single one of the   estimators of the total with estimated inclusion probabilities, is even 

better, the values of   at the end of the simulations are all less than 0.02%. 

 

In PPS we get better precision of   and the measures of the empirical distribution, compared to 

SI with the same sample size and same number of repetitions. The measure   is not an exact 

measure in PPS, but it looks like   behaves almost the same as in SI, at least in the beginning 

of the simulations. But the precision of the measures of the empirical distribution is less com-

pared to SI with the same sample size and the same number of repetitions. 

 

We can use the stabilization of  the measures RB.1 and RB.2, to see how the variance and the 

estimated variance, with the estimated inclusion probabilities perform. The development of the 

measures L, U, ER and RRMSE, with increasing number of repetitions, do not say so much 

about the precision of the estimated variance with the estimated inclusion probabilities. The 

measures stabilize rather quickly and then remain the same during the simulations. 

 

When comparing the three variance estimators in PPS, we can conclude that Rosén´s variance 

estimator has a negative bias with population A (see page 38), a bias that we can see even 

clearer with the empirical distributions of the relative differences in  . We can also conclude 

that Antal´s and Tillé´s bootstrap variance estimator has a positive bias with population A. 

Population B has an outlier and here the results vary for Antal´s and Tillé´s bootstrap variance 

estimator, if we include the outlier or not (see page 39). The variance estimator has a positive 

bias with three designs of four, with the outlier, and is unbiased with two designs of four, 

without the outlier. Rosén´s variance estimator is unbiased, but has a negative bias if we look 

at the empirical distributions of the relative differences in  . Rosén´s variance for the whole 

population also has a negative bias in every design we have simulated, if we compare with 

    
 ( ̂ ). 

 

An interesting fact is that some of our measures are inversely proportional to the square root of 

the number of repetitions. We have not shown this relationship mathematically and this could 

be a task for future work. 

 

In this essay we have shown the development of different measures based on the fact that we 

know the variable of interest,  , for the whole population. In reality we only have one sample 

with the variable of interest known only for the elements in that sample. Fattorini´s algorithm 

can be used to guarantee stability for the estimators and some more research could be done 
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with a modification of the algorithm where we vary the values of   and  , and only look at the 

stability of the estimators. 

 

If we are in a situation where we know the first order inclusion probabilities, we can use our 

measure    as a measure of precision. Then it would be a good idea to insert the known first 

order inclusion probabilities in our formulas and only use the estimated second order inclusion 

probabilities. It would also be interesting to do a simulation study where we compare the esti-

mators based on estimated inclusion probabilities with the estimators based on the known first 

order inclusion probabilities and the estimated second order inclusion probabilities. 

 

In SI it should also be possible to compute how many repetitions we need so that the probabil-

ity that the estimated inclusion probabilities differs from the exact ones, is smaller than a spec-

ified value. 

 

We have used relatively small populations in our study and we have showed that we can get 

very precise estimated inclusion probabilities within a relatively short time period. In the time 

of writing, we are examining how long it will take to simulate with much larger populations. 

We have access to a server and we are simulating with population sizes up to one hundred 

thousand. 
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6 Appendix 

 
6.1 Summary of the formulas 
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where  ̅̂ is the mean of the variance estimates for the   samples compared to the real variance  

 . In SI we compute   from (4) and in PPS we use the variance of the   samples as  , 
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6.2 Figures and Tables referred to in the text 

 

 

6.2.1 SI simulation with population A,  =38 

 
Table A1: SI simulation from population A, n=38. 

Repetitions                 RB.1 % 

125,000 0.63 2.6 1.93 11.6 -1.23 

250,000 0.416 1.66 1.35 7.47 -0.654 

500,000 0.294 0.987 0.953 5.18 -0.434 

1,000,000 0.223 0.945 0.687 3.66 -0.0942 

2,000,000 0.157 0.614 0.484 2.71 0.109 

3,000,000 0.129 0.538 0.397 2.05 0.0172 

4,000,000 0.11 0.477 0.345 1.84 0.0366 

5,000,000 0.0993 0.416 0.308 1.67 0.0171 

10,000,000 0.0654 0.248 0.214 1.11 0.00735 

15,000,000 0.0553 0.231 0.176 1.01 -0.019 

20,000,000 0.0468 0.203 0.151 0.882 -0.0201 

 

 
 

 

Table A2:Development of the empirical distribution measures for  ̂ ( ̂ )  

Repetitions L % U % ER % RB.2 % RRMSE % 

125,000 9.77 0.589 10.4 0.554 50.5 

250,000 9.76 0.584 10.3 0.0212 49.6 

500,000 9.76 0.585 10.3 -0.274 49.2 

1,000,000 9.75 0.581 10.3 -0.121 49.3 

2,000,000 9.74 0.581 10.3 -0.04 49.2 

3,000,000 9.76 0.586 10.3 -0.182 49.1 

4,000,000 9.76 0.579 10.3 -0.171 49.1 

5,000,000 9.75 0.582 10.3 -0.223 49 

10,000,000 9.74 0.58 10.3 -0.277 48.9 

15,000,000 9.74 0.578 10.3 -0.307 48.9 

20,000,000 9.73 0.579 10.3 -0.314 48.9 
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Figure A1:   

 

 

 
Figure A2:  , 5-20 million repetitions. 
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Figure A3: Development of the empirical distribution of the relative differences    . 

 

 

Figure A4:  ,   and 
 

√ 
 . 
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Figure A5: Development of the empirical distribution of the relative differences    . 

 

 

 

 

 

6.2.2 PPS simulation with population A,  =38 

 

 

Table A3: PPS  simulation with population A, n=38. 

Repetitions         RB.1 % 

125,000 0.937 5.53 -4.02 

250,000 0.657 3.96 -2.47 

500,000 0.459 2.76 -1.47 

1,000,000 0.352 1.77 -0.508 

2,000,000 0.24 1.11 -0.256 

3,000,000 0.185 1.11 -0.21 
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4,000,000 0.16 0.911 -0.167 

5,000,000 0.144 0.862 -0.0823 

10,000,000 0.105 0.639 -0.0999 

15,000,000 0.0862 0.492 0.00833 

20,000,000 0.0747 0.428 0.0408 

25,000,000 0.0696 0.365 0.0252 

30,000,000 0.0605 0.291 0.0418 

35,000,000 0.0548 0.316 0.0201 

40,000,000 0.0529 0.29 0.0273 

50,000,000 0.0471 0.269 0.0381 

 

 

Table A4: Development of the empirical distribution measures for  ̂ ( ̂ ). 

Repetitions L % U % ER % RB.2 % RRMSE % 

125,000 4.75 1.65 6.4 -0.0341 66.5 

250,000 4.74 1.62 6.36 -0.676 62.7 

500,000 4.69 1.6 6.29 -0.577 62.7 

1,000,000 4.69 1.58 6.26 0.0904 64.2 

2,000,000 4.68 1.57 6.25 0.137 64 

3,000,000 4.69 1.57 6.26 0.0945 63.8 

4,000,000 4.68 1.57 6.25 0.0714 63.5 

5,000,000 4.68 1.57 6.24 0.148 63.7 

10,000,000 4.68 1.57 6.26 0.0901 63.8 

15,000,000 4.67 1.57 6.24 0.194 63.9 

20,000,000 4.67 1.57 6.25 0.232 64 

25,000,000 4.67 1.58 6.24 0.209 64 

30,000,000 4.66 1.57 6.23 0.23 64 

35,000,000 4.67 1.58 6.24 0.201 64 

40,000,000 4.67 1.57 6.24 0.209 64.1 

50,000,000 4.67 1.57 6.24 0.217 64.1 

 

 
Figure A6: The first 10,000 of   ̂ ( ̂ ). 
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Figure A7: Development of the empirical distribution of the relative differences    . 
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Figure A8: Development of the empirical distribution of the relative differences    . 

 

 

 

 

 

 

6.2.3 PPS simulation with population B,  =174 

 

 
Table A5: PPS  simulation with population B, n=174. 

Repetitions         RB.1 % 

125,000 1.04 6.45 -12.4 

250,000 0.733 4.13 -6.36 

500,000 0.522 3.41 -2.94 

1,000,000 0.375 2.09 -1.72 

2,000,000 0.265 1.46 -0.954 

3,000,000 0.209 1.21 -0.76 

4,000,000 0.18 0.986 -0.565 
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5,000,000 0.162 0.863 -0.495 

10,000,000 0.117 0.625 -0.234 

15,000,000 0.0957 0.541 -0.227 

20,000,000 0.0828 0.459 -0.217 

25,000,000 0.0738 0.439 -0.157 

30,000,000 0.0681 0.418 -0.133 

35,000,000 0.0633 0.35 -0.0975 

40,000,000 0.0594 0.351 -0.078 

50,000,000 0.0528 0.314 -0.0608 

60,000,000 0.0481 0.237 -0.0296 

 

 

 

 

Table A6: Development of the empirical distribution measures for  ̂ ( ̂ ). 

Repetitions L % U % ER % RB.2 % RRMSE % 

125,000 25.9 0.179 26.1 0.202 190 

250,000 25.6 0.048 25.7 -0.323 183 

500,000 25.4 0.019 25.4 -0.00037 181 

1,000,000 25.4 0.021 25.4 -0.524 178 

2,000,000 25.4 0.02 25.4 -0.672 177 

3,000,000 25.3 0.02 25.4 -0.756 177 

4,000,000 25.4 0.019 25.4 -0.65 177 

5,000,000 25.4 0.021 25.4 -0.651 177 

10,000,000 25.4 0.02 25.4 -0.478 177 

15,000,000 25.4 0.019 25.4 -0.564 177 

20,000,000 25.4 0.02 25.4 -0.58 177 

25,000,000 25.4 0.02 25.4 -0.506 177 

30,000,000 25.4 0.02 25.4 -0.492 177 

35,000,000 25.4 0.02 25.4 -0.454 177 

40,000,000 25.4 0.02 25.4 -0.432 177 

50,000,000 25.4 0.02 25.4 -0.41 177 

60,000,000 25.4 0.02 25.4 -0.373 177 
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Figure A9: First 1000 observations, “main” group. 

 

 
Figure A10: Development of the empirical distribution of the relative differences    . 
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Figure A11: Development of the empirical distribution of the relative differences    . 

 

 

 

 
 

6.3 SI simulation with population A,  =100 
 

 

Table: SI simulation from population A, n=100. 

Repetitions                 RB.1 % 

125,000 0.34 1.24 0.697 3.63 -0.808 

250,000 0.237 0.85 0.488 2.53 -0.419 

500,000 0.166 0.634 0.348 1.78 -0.314 

1,000,000 0.118 0.491 0.244 1.36 0.0777 

2,000,000 0.079 0.332 0.17 0.867 0.149 

3,000,000 0.0689 0.264 0.141 0.796 0.0779 

4,000,000 0.0596 0.242 0.123 0.654 0.0609 

5,000,000 0.0523 0.189 0.109 0.553 0.0183 

10,000,000 0.0355 0.11 0.0754 0.419 0.0274 
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Figure: RB.1 

 

Table: Development of the empirical distribution measures for  ̂ ( ̂ ). 

Repetitions L % U % ER % RB.2 % RRMSE % 

125,000 5.63 0.951 6.58 -0.0864 26.5 

250,000 5.62 0.952 6.57 0.00526 26.5 

500,000 5.63 0.945 6.57 0.00787 26.5 

1,000,000 5.61 0.93 6.54 0.341 26.6 

2,000,000 5.61 0.935 6.54 0.372 26.6 

3,000,000 5.61 0.939 6.55 0.276 26.6 

4,000,000 5.61 0.936 6.55 0.248 26.6 

5,000,000 5.62 0.936 6.55 0.203 26.6 

10,000,000 5.61 0.937 6.55 0.199 26.5 

 

 

 
Figure: RB.2 for  ̂ ( ̂ ). 



58 

 

Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -16.1 -8.02 -0.211 2.32 7.35 12 

250,000 -10.9 -5.69 -0.123 1.65 5.23 8.92 

500,000 -6.98 -3.96 -0.148 1.15 3.62 6.42 

1,000,000 -5.09 -2.61 0.184 0.84 2.85 5.17 

2,000,000 -3.34 -1.74 0.2 0.602 2.11 3.42 

3,000,000 -2.57 -1.48 0.11 0.48 1.61 2.59 

4,000,000 -2.29 -1.24 0.0803 0.4 1.36 2.19 

5,000,000 -2.07 -1.15 0.0357 0.358 1.2 2.1 

10,000,000 -1.42 -0.797 0.0351 0.251 0.852 1.53 

 

 

Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -0.209 -0.134 -0.0115 0.0399 0.112 0.189 

250,000 -0.148 -0.0895 -0.000349 0.0285 0.0905 0.138 

500,000 -0.0988 -0.0544 0.00597 0.0194 0.0667 0.103 

1,000,000 -0.0585 -0.0318 0.012 0.0168 0.0544 0.0865 

2,000,000 -0.0433 -0.027 0.00688 0.012 0.0406 0.0616 

3,000,000 -0.0369 -0.0212 0.00493 0.00903 0.0305 0.0495 

4,000,000 -0.0414 -0.0201 0.0043 0.00849 0.0291 0.0445 

5,000,000 -0.0298 -0.0165 0.00563 0.00839 0.0274 0.0378 

10,000,000 -0.0228 -0.0138 0.00206 0.00521 0.017 0.0258 

 

 

Population A, SI, n=100,10 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 5.6 0.94 6.6 0.20 26.6 -0.80 0.25 0.85 -0.014 0.0052 0.017 

 ̂( ̂) 5.6 0.94 6.6 0.16 26.5       

 

It takes 1 hour, 36 minutes and 52 seconds to produce a matrix with the inclusion probabili-

ties, based on 10 million repetitions, for this design. 

 

 
 

 

 

6.4 PPS simulation with population A,  =20 
 

Rosén´s variance for the whole population has a negative Relative Bias compared to     
 ( ̂ ), 

-0.2%. 

 

Table: PPS  simulation with population A, n=20. 

Repetitions         RB.1 % 

125,000 1.31 8.82 -6.79 

250,000 0.924 5.73 -4.09 

500,000 0.674 4.8 -2.43 
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1,000,000 0.462 2.71 -1.11 

2,000,000 0.326 1.7 -0.561 

3,000,000 0.253 1.46 -0.318 

4,000,000 0.226 1.22 -0.146 

5,000,000 0.203 1.16 -0.114 

10,000,000 0.141 0.716 0.0359 

15,000,000 0.115 0.641 0.0132 

20,000,000 0.103 0.462 0.0123 

25,000,000 0.0926 0.441 -0.0035 

30,000,000 0.0829 0.36 -0.00765 

35,000,000 0.076 0.271 -0.00885 

40,000,000 0.0707 0.261 -0.0242 

50,000,000 0.065 0.285 -0.0244 

60,000,000 0.0611 0.269 -0.0106 

70,000,000 0.0564 0.291 -0.0393 

80,000,000 0.0549 0.256 -0.0463 

100,000,000 0.0479 0.232 -0.0479 

 

 

 

 
Figure: RB.1, 5-100 million repetitions. 

 

The Figures above show RB.1 from five million repetitions, which gives a more precise 

presentation of the development of the measure in the end of the simulation. 
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Figure: RB.2 for  ̂ ( ̂ ). 

 

 

Table: Development of the empirical distribution measures for  ̂ ( ̂ ). 

Repetitions L % U % ER % RB.2 % RRMSE % 

125,000 5.19 1.95 7.14 0.242 87.9 

250,000 5.19 1.84 7.03 -0.895 80.8 

500,000 5.18 1.77 6.95 -0.803 80.5 

1,000,000 5.11 1.74 6.85 -0.339 79.1 

2,000,000 5.09 1.73 6.82 -0.226 79.5 

3,000,000 5.06 1.73 6.79 -0.12 79.7 

4,000,000 5.06 1.73 6.79 -0.00453 79.9 

5,000,000 5.06 1.74 6.8 -0.0307 79.6 

10,000,000 5.05 1.71 6.77 0.0336 79.6 

15,000,000 5.05 1.72 6.77 -0.0119 79.8 

20,000,000 5.05 1.72 6.77 -0.0189 79.7 

25,000,000 5.06 1.71 6.77 -0.0498 79.7 

30,000,000 5.06 1.71 6.77 -0.0563 79.7 

35,000,000 5.06 1.71 6.77 -0.064 79.7 

40,000,000 5.06 1.71 6.78 -0.0822 79.8 

50,000,000 5.05 1.72 6.77 -0.0886 79.8 

60,000,000 5.06 1.72 6.78 -0.0733 79.9 

70,000,000 5.06 1.72 6.78 -0.109 79.8 

80,000,000 5.05 1.72 6.77 -0.118 79.8 

100,000,000 5.05 1.72 6.77 -0.129 79.7 
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Table A7: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -119 -47.3 5.84 13.6 68.5 164 

250,000 -108 -32.8 4.85 9.92 49 122 

500,000 -61.6 -22.1 4.69 7.72 36.5 94.4 

1,000,000 -46.5 -14 5.18 6.72 28 65.6 

2,000,000 -30.3 -9.26 5.29 6.1 22.6 48.9 

3,000,000 -24.2 -7.15 5.34 5.92 20.7 41.7 

4,000,000 -21.1 -6.01 5.44 5.89 19.4 37.9 

5,000,000 -19.7 -5.44 5.43 5.82 18.7 33.8 

10,000,000 -12.6 -4.24 5.5 5.76 16.7 25.3 

15,000,000 -9.72 -3.92 5.43 5.67 16 29.1 

20,000,000 -8.86 -3.79 5.43 5.65 15.6 21.8 

25,000,000 -8.4 -3.72 5.4 5.61 15.3 21.7 

30,000,000 -8.58 -3.71 5.39 5.59 15.2 21 

35,000,000 -8.82 -3.67 5.39 5.59 15 21.5 

40,000,000 -8.52 -3.62 5.37 5.57 14.9 21.4 

50,000,000 -8.66 -3.6 5.36 5.55 14.7 20.1 

60,000,000 -8.33 -3.57 5.37 5.56 14.6 20.4 

70,000,000 -8.35 -3.56 5.34 5.53 14.6 20.1 

80,000,000 -8.24 -3.54 5.34 5.53 14.5 19.6 

100,000,000 -8.33 -3.5 5.34 5.53 14.4 19.6 

 

 

Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -1.25 -0.706 -0.012 0.199 0.667 1.29 

250,000 -1.24 -0.599 -0.0253 0.15 0.472 0.835 

500,000 -0.788 -0.408 -0.0166 0.104 0.314 0.65 

1,000,000 -0.528 -0.328 -0.00669 0.0723 0.234 0.415 

2,000,000 -0.309 -0.178 -0.00264 0.0488 0.164 0.303 

3,000,000 -0.268 -0.139 -0.00107 0.0388 0.135 0.244 

4,000,000 -0.214 -0.113 0.00143 0.0342 0.119 0.24 

5,000,000 -0.241 -0.115 0.00113 0.0316 0.112 0.214 

10,000,000 -0.159 -0.0788 0.00182 0.0228 0.0786 0.139 

15,000,000 -0.102 -0.0589 0.000438 0.0181 0.0723 0.127 

20,000,000 -0.0956 -0.0572 0.000208 0.0164 0.0606 0.104 

25,000,000 -0.0901 -0.0498 -0.000409 0.0148 0.0552 0.0959 

30,000,000 -0.0885 -0.0462 -0.00046 0.0133 0.0467 0.0852 

35,000,000 -0.0819 -0.0443 -0.000699 0.0121 0.0413 0.0784 

40,000,000 -0.0581 -0.0363 -0.000918 0.011 0.0384 0.0659 

50,000,000 -0.0527 -0.0319 -0.000741 0.00977 0.0344 0.0613 

60,000,000 -0.0467 -0.0295 -0.000376 0.00907 0.0319 0.0578 

70,000,000 -0.0475 -0.0287 -0.000823 0.00866 0.0294 0.0564 

80,000,000 -0.0442 -0.0274 -0.000734 0.00833 0.0287 0.0535 

100,000,000 -0.0403 -0.0245 -0.000684 0.00741 0.0256 0.0516 
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Population A, PPS, n=20, 100 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 5.05 1.7 6.8 -0.13 79.7 -8.8* 0.19* 9.1* -0.025 0.0074 0.026 

 ̂ ( ̂ ) 5.54 1.9 7.5 -0.52 74.9       

 ̂  
 ( ̂ ) 5.04 1.7 6.7 1.56 86.9       

 

* value has been subtracted with the mean. 

 

It takes 1 hour, 11 minutes and 30 seconds to produce a matrix with the inclusion probabili-

ties, based on 100 million repetitions, for this design. 

 

 

 

 

6.5 SI simulation with population B,  =174 
 

Table: SI simulation from population B, n=174. 

Repetitions                 RB.1 % 

125,000 0.774 3.08 2.97 19.3 -21.5 

250,000 0.556 2.59 2.1 13.9 -10.6 

500,000 0.389 1.78 1.48 9.71 -5.18 

1,000,000 0.276 1.29 1.05 6.55 -2.75 

2,000,000 0.196 0.992 0.743 4.83 -1.47 

3,000,000 0.158 0.763 0.606 3.79 -0.962 

4,000,000 0.136 0.701 0.524 3.37 -0.694 

5,000,000 0.123 0.583 0.47 2.91 -0.492 

10,000,000 0.0872 0.374 0.332 2.09 -0.297 

15,000,000 0.0732 0.323 0.272 1.85 -0.162 

20,000,000 0.0628 0.256 0.235 1.49 -0.15 

25,000,000 0.0559 0.236 0.21 1.36 -0.133 

30,000,000 0.0511 0.224 0.192 1.17 -0.0872 

35,000,000 0.0475 0.206 0.178 1.17 -0.0759 
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Figure: RB.1, 1-35 million repetitions. 

 

The Figures above show RB.1 from one million repetitions, which gives a more precise 

presentation of the development of the measure in the end of the simulation. 

 
Figure: RB.2 for  ̂ ( ̂ ). 

 

 

Table: Development of the empirical distribution measures for  ̂ ( ̂ ). 

Repetitions L % U % ER % RB.2 % RRMSE % 

125,000 9.15 0.751 9.9 0.14 160 

250,000 8.98 0.506 9.49 -0.183 151 

500,000 8.95 0.435 9.38 -0.447 147 

1,000,000 8.93 0.408 9.34 -0.892 144 

2,000,000 8.91 0.39 9.29 -1.1 142 

3,000,000 8.9 0.386 9.28 -1.04 142 

4,000,000 8.92 0.39 9.31 -1.03 141 

5,000,000 8.92 0.39 9.31 -0.913 142 
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10,000,000 8.9 0.388 9.29 -1.08 141 

15,000,000 8.9 0.39 9.29 -0.998 141 

20,000,000 8.91 0.39 9.29 -1.06 141 

25,000,000 8.91 0.389 9.3 -1.06 141 

30,000,000 8.91 0.389 9.3 -1.02 141 

35,000,000 8.9 0.388 9.29 -1.02 141 

 

 

Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -150 -67.1 0.671 15.9 69.3 152 

250,000 -125 -46 0.484 11.2 48.4 121 

500,000 -78.3 -31.6 0.0577 7.86 34.3 81 

1,000,000 -55.1 -23.1 -0.127 5.56 23.9 58.2 

2,000,000 -37.1 -16.7 -0.077 3.95 16.4 46.8 

3,000,000 -30.4 -13.5 -0.0423 3.21 13.6 32.3 

4,000,000 -32.4 -11.8 -0.0389 2.78 11.9 26.7 

5,000,000 -29.8 -10.4 0.0167 2.5 10.6 26.2 

10,000,000 -20.5 -7.41 -0.047 1.77 7.39 17.6 

15,000,000 -13 -5.92 -0.0256 1.44 6.2 15.4 

20,000,000 -14.9 -5.37 -0.0458 1.25 5.26 11.6 

25,000,000 -11.6 -4.7 -0.0596 1.12 4.73 11.6 

30,000,000 -9.94 -4.33 -0.042 1.02 4.4 10.9 

35,000,000 -9.55 -3.97 -0.0429 0.945 4.08 11.3 

 

 

Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -0.494 -0.322 0.0015 0.114 0.453 0.647 

250,000 -0.339 -0.224 -0.00506 0.077 0.275 0.42 

500,000 -0.295 -0.182 -0.0106 0.0614 0.249 0.343 

1,000,000 -0.187 -0.11 -0.00869 0.0367 0.129 0.184 

2,000,000 -0.134 -0.0877 -0.00256 0.0268 0.0818 0.139 

3,000,000 -0.0997 -0.0648 -0.00325 0.0206 0.0657 0.109 

4,000,000 -0.0815 -0.0538 -0.00246 0.0167 0.054 0.0879 

5,000,000 -0.0738 -0.0469 0.00202 0.0166 0.0691 0.101 

10,000,000 -0.0621 -0.0392 -0.0035 0.0112 0.0307 0.0579 

15,000,000 -0.0496 -0.0316 -0.00188 0.0103 0.0358 0.0513 

20,000,000 -0.0468 -0.0292 -0.00428 0.00842 0.0196 0.0406 

25,000,000 -0.0407 -0.0277 -0.00395 0.00774 0.0182 0.0348 

30,000,000 -0.0371 -0.0254 -0.00188 0.0072 0.0199 0.0328 

35,000,000 -0.0361 -0.0236 -0.00227 0.007 0.0196 0.0306 

 

Population B, SI, n=174, 35 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 8.9 0.39 9.3 -1.02 141 -3.97 0.95 4.08 -0.024 0.0070 0.020 

 ̂( ̂) 8.9 0.39 9.3 -1.02 141       
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It takes 5 hour, 24 minutes and 35 seconds to produce a matrix with the inclusion probabili-

ties, based on 35 million repetitions, for this design. 

 

 

 

 

 

 

6.6 PPS simulation with population B,  =90 

 

Rosén´s variance for the whole population has a negative Relative Bias compared to     
 ( ̂ ),       

-0.06%. 

 

Table: PPS  simulation with population B, n=90. 

Repetitions         RB.1 % 

125,000 1.5 8.56 -24.4 

250,000 1.07 6.42 -12.1 

500,000 0.77 4.78 -6.42 

1,000,000 0.527 2.82 -3.26 

2,000,000 0.37 2.13 -1.47 

3,000,000 0.295 1.78 -1.19 

4,000,000 0.264 1.39 -0.969 

5,000,000 0.237 1.37 -0.796 

10,000,000 0.166 0.911 -0.254 

15,000,000 0.136 0.777 -0.166 

20,000,000 0.119 0.617 -0.0617 

25,000,000 0.106 0.653 -0.0394 

30,000,000 0.0965 0.533 -0.044 

35,000,000 0.0897 0.531 -0.0562 

40,000,000 0.0843 0.522 -0.0476 

50,000,000 0.0748 0.416 -0.0384 

60,000,000 0.0697 0.352 -0.0413 

70,000,000 0.0644 0.353 -0.0526 

80,000,000 0.06 0.303 -0.0305 

100,000,000 0.0532 0.282 -0.00515 

120,000,000 0.0484 0.266 -0.0231 
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Figure: RB.1, 2-120 million repetitions. 

 
The Figures above show RB.1 from two million repetitions, which gives a more precise 

presentation of the development of the measure in the end of the simulation. 

 
Figure: RB.2 for  ̂ ( ̂ ). 

 

 
Table: Development of the empirical distribution measures for  ̂ ( ̂ ). 

Repetitions L % U % ER % RB.2 % RRMSE % 

125,000 20.8 0.545 21.3 -0.579 286 

250,000 20.3 0.252 20.5 -0.196 275 

500,000 20.1 0.112 20.2 -0.907 266 

1,000,000 19.9 0.07 20 -0.444 264 

2,000,000 19.8 0.057 19.9 -0.197 262 

3,000,000 19.8 0.053 19.9 -0.615 261 

4,000,000 19.8 0.05 19.9 -0.644 260 
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5,000,000 19.8 0.052 19.9 -0.542 260 

10,000,000 19.8 0.052 19.9 -0.125 261 

15,000,000 19.8 0.052 19.9 -0.157 261 

20,000,000 19.8 0.053 19.9 -0.0494 261 

25,000,000 19.8 0.053 19.9 -0.0642 261 

30,000,000 19.8 0.053 19.9 -0.126 261 

35,000,000 19.8 0.052 19.9 -0.176 261 

40,000,000 19.8 0.053 19.9 -0.17 261 

50,000,000 19.8 0.052 19.9 -0.189 261 

60,000,000 19.8 0.051 19.9 -0.225 261 

70,000,000 19.8 0.052 19.9 -0.269 261 

80,000,000 19.8 0.051 19.9 -0.249 261 

100,000,000 19.8 0.051 19.9 -0.217 261 

120,000,000 19.8 0.051 19.9 -0.255 261 

 

 

 

Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -370 -118 1.44 26 131 395 

250,000 -258 -82.8 1.36 18.3 89.3 295 

500,000 -150 -58.8 1.02 12.8 61.3 179 

1,000,000 -106 -40.7 1.14 9.11 44 150 

2,000,000 -93.4 -28.4 1.21 6.52 32.1 81.9 

3,000,000 -61.8 -23 1.16 5.34 25.5 64.5 

4,000,000 -60.3 -19.5 1.17 4.67 22.6 58.9 

5,000,000 -47 -17.4 1.2 4.24 20.7 52.4 

10,000,000 -36.8 -12 1.11 3.13 14.9 38.1 

15,000,000 -30.4 -9.74 1.14 2.68 12.4 35.6 

20,000,000 -26.9 -8.41 1.14 2.43 11 33.4 

25,000,000 -26.9 -7.51 1.14 2.25 9.98 27.7 

30,000,000 -21.6 -6.78 1.11 2.11 9.35 23.4 

35,000,000 -21 -6.15 1.1 2.02 8.85 20 

40,000,000 -18.6 -5.7 1.11 1.95 8.41 21.2 

50,000,000 -19.8 -5.23 1.11 1.85 7.83 18.9 

60,000,000 -17.6 -4.8 1.09 1.77 7.25 15.9 

70,000,000 -14.7 -4.38 1.1 1.71 6.95 15.9 

80,000,000 -12.8 -4.07 1.1 1.67 6.65 17.9 

100,000,000 -10.5 -3.59 1.11 1.61 6.21 13.2 

120,000,000 -9.92 -3.37 1.11 1.56 5.88 13.7 

 

 

Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -0.685 -0.42 -0.00505 0.128 0.411 0.672 

250,000 -0.466 -0.276 0.00294 0.0865 0.288 0.494 

500,000 -0.324 -0.206 -0.00503 0.0635 0.201 0.326 

1,000,000 -0.248 -0.138 -0.00018 0.0433 0.143 0.266 

2,000,000 -0.174 -0.0975 0.00222 0.0305 0.103 0.171 
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3,000,000 -0.138 -0.084 -0.00245 0.0259 0.082 0.142 

4,000,000 -0.124 -0.0763 -0.00177 0.0234 0.0765 0.174 

5,000,000 -0.104 -0.0675 -0.00126 0.0208 0.0682 0.12 

10,000,000 -0.0752 -0.044 0.000291 0.0136 0.0444 0.0691 

15,000,000 -0.0607 -0.0362 0.00029 0.0111 0.0361 0.061 

20,000,000 -0.0528 -0.0317 0.00113 0.0103 0.0339 0.0518 

25,000,000 -0.0449 -0.0287 0.000885 0.00924 0.0304 0.0533 

30,000,000 -0.0439 -0.0267 0.000428 0.00827 0.0268 0.0448 

35,000,000 -0.045 -0.0246 0.000115 0.0075 0.024 0.0399 

40,000,000 -0.0392 -0.0226 0.000383 0.00711 0.0233 0.0413 

50,000,000 -0.033 -0.0206 0.000222 0.00637 0.021 0.0376 

60,000,000 -0.0306 -0.0189 -0.000116 0.00576 0.0188 0.0346 

70,000,000 -0.0277 -0.0172 -0.000411 0.00528 0.0173 0.0325 

80,000,000 -0.0254 -0.0161 -0.000108 0.00493 0.0163 0.0287 

100,000,000 -0.0241 -0.0143 0.000376 0.0045 0.0149 0.0233 

120,000,000 -0.0228 -0.0132 -6.49e-005 0.00395 0.0128 0.0221 

 

 

Population B, PPS, n=90, 120 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 19.8 0.05 19.9 -0.25 261 -4.48* 0.45* 4.77* -0.013 0.0039 0.013 

 ̂ ( ̂ ) 20.0 0.06 20.0 -0.25 258       

 ̂  
 ( ̂ ) 19.9 0.05 19.9 0.90 265       

 

* value has been subtracted with the mean. 

 

It takes 15 hours, 20 minutes and 37 seconds to produce a matrix with the inclusion probabili-

ties, based on 120 million repetitions, for this design. 

 

 

 

 

6.7 PPS simulation with population B,  =45 
 

Rosén´s variance for the whole population has a negative Relative Bias compared to     
 ( ̂ ), 

-0.04%. 

 

Table: PPS  simulation with population B, n=45. 

Repetitions         RB.1 % 

125,000 2.11 12.3 -48.4 

250,000 1.5 8.86 -23.5 

500,000 1.06 6.48 -11.8 

1,000,000 0.756 4.18 -6.13 

2,000,000 0.529 3.16 -3.04 

3,000,000 0.439 2.24 -1.89 

4,000,000 0.368 2.54 -1.29 

5,000,000 0.333 2.31 -1.08 

10,000,000 0.233 1.49 -0.526 

15,000,000 0.191 1.27 -0.467 
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20,000,000 0.163 1.02 -0.35 

25,000,000 0.146 0.922 -0.29 

30,000,000 0.136 0.817 -0.262 

35,000,000 0.125 0.67 -0.24 

40,000,000 0.118 0.65 -0.213 

50,000,000 0.104 0.569 -0.106 

60,000,000 0.0958 0.515 -0.125 

70,000,000 0.0889 0.449 -0.0954 

80,000,000 0.0823 0.443 -0.0766 

100,000,000 0.075 0.455 -0.0813 

120,000,000 0.0696 0.38 -0.0773 

140,000,000 0.0633 0.391 -0.0687 

160,000,000 0.0591 0.347 -0.0621 

200,000,000 0.0535 0.287 -0.0451 

240,000,000 0.0489 0.274 -0.0339 

 

 
Figure: RB.1, 5-240 million repetitions. 

 

The Figures above show RB.1 from five million repetitions, which gives a more precise 

presentation of the development of the measure in the end of the simulation. 
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Figure: RB.2 for  ̂ ( ̂ ). 

 

 

Table: Development of the empirical distribution measures for  ̂ ( ̂ ). 

Repetitions L % U % ER % RB.2 % RRMSE % 

125,000 18.6 1.02 19.6 -2.59 435 

250,000 18 0.705 18.7 0.365 414 

500,000 17.4 0.401 17.8 0.094 394 

1,000,000 17 0.235 17.3 -0.529 382 

2,000,000 16.9 0.156 17 -0.12 380 

3,000,000 16.8 0.135 17 0.181 380 

4,000,000 16.8 0.116 16.9 0.344 380 

5,000,000 16.8 0.119 16.9 0.235 379 

10,000,000 16.7 0.11 16.8 0.282 378 

15,000,000 16.7 0.105 16.8 0.0771 376 

20,000,000 16.7 0.106 16.8 0.135 377 

25,000,000 16.7 0.104 16.8 0.14 376 

30,000,000 16.7 0.099 16.8 0.166 377 

35,000,000 16.7 0.102 16.8 0.149 376 

40,000,000 16.7 0.102 16.8 0.149 376 

50,000,000 16.7 0.104 16.8 0.289 377 

60,000,000 16.7 0.1 16.8 0.211 377 

70,000,000 16.7 0.101 16.8 0.238 377 

80,000,000 16.7 0.102 16.8 0.245 377 

100,000,000 16.7 0.1 16.8 0.228 377 

120,000,000 16.7 0.1 16.8 0.219 377 

140,000,000 16.7 0.101 16.8 0.215 377 

160,000,000 16.7 0.101 16.8 0.213 377 

200,000,000 16.7 0.099 16.8 0.244 377 

240,000,000 16.7 0.099 16.8 0.246 377 
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Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -564 -202 1 45.2 245 1100 

250,000 -350 -134 2.17 30.8 158 761 

500,000 -286 -92.6 2.24 21.3 105 351 

1,000,000 -179 -65 2.33 15 71.7 217 

2,000,000 -115 -45.2 2.21 10.6 50.7 175 

3,000,000 -99.5 -36.6 2.22 8.75 41.9 125 

4,000,000 -74.6 -30.9 2.27 7.63 36.2 102 

5,000,000 -70.6 -27.8 2.2 6.87 32.4 85.3 

10,000,000 -50.1 -19.1 2.28 5.08 23.6 61.5 

15,000,000 -45 -15.2 2.32 4.33 19.9 47.4 

20,000,000 -38 -12.9 2.3 3.89 17.7 44.4 

25,000,000 -34 -11.4 2.31 3.61 16.4 46.7 

30,000,000 -34.7 -10.2 2.3 3.41 15 41.2 

35,000,000 -26.9 -9.19 2.28 3.25 14 32.9 

40,000,000 -26.2 -8.49 2.27 3.12 13.3 29 

50,000,000 -20.6 -7.22 2.29 2.96 12.2 27.3 

60,000,000 -18.8 -6.39 2.28 2.84 11.2 27.4 

70,000,000 -16.9 -5.83 2.29 2.76 10.8 24.2 

80,000,000 -16.1 -5.23 2.3 2.7 10.2 23.7 

100,000,000 -13.3 -4.56 2.3 2.61 9.55 22.1 

120,000,000 -12.7 -3.94 2.3 2.55 8.98 21.3 

140,000,000 -13.3 -3.57 2.29 2.5 8.4 20 

160,000,000 -12 -3.21 2.29 2.47 8.11 16.8 

200,000,000 -9.14 -2.65 2.3 2.43 7.62 18.9 

240,000,000 -8.44 -2.29 2.28 2.39 7.29 17.7 

 

 

 

Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -1.41 -0.806 0.0006 0.245 0.824 1.81 

250,000 -1.06 -0.574 0.0142 0.181 0.587 1.19 

500,000 -0.736 -0.402 0.00867 0.125 0.42 0.74 

1,000,000 -0.574 -0.3 0.00172 0.0908 0.304 0.556 

2,000,000 -0.401 -0.212 -0.00474 0.0621 0.199 0.342 

3,000,000 -0.292 -0.17 -0.000668 0.05 0.161 0.266 

4,000,000 -0.256 -0.149 0.000785 0.0436 0.138 0.235 

5,000,000 -0.222 -0.134 -0.000479 0.039 0.124 0.21 

10,000,000 -0.15 -0.0902 0.00104 0.0274 0.0881 0.164 

15,000,000 -0.14 -0.0748 -0.00104 0.0231 0.0735 0.119 

20,000,000 -0.114 -0.0641 -0.00137 0.0197 0.0626 0.103 

25,000,000 -0.0993 -0.0585 -0.00149 0.0178 0.0563 0.0913 

30,000,000 -0.0942 -0.0552 -0.00149 0.0166 0.0525 0.0937 

35,000,000 -0.0874 -0.0536 -0.00184 0.0156 0.0482 0.0921 

40,000,000 -0.0773 -0.0524 -0.00186 0.015 0.0452 0.0803 

50,000,000 -0.0773 -0.0432 -0.000157 0.0126 0.0417 0.0761 

60,000,000 -0.0764 -0.0389 -0.000851 0.0118 0.0379 0.0641 

70,000,000 -0.0678 -0.0359 -0.000312 0.011 0.036 0.0654 
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80,000,000 -0.0634 -0.0333 4.8e-005 0.0102 0.0338 0.0624 

100,000,000 -0.0552 -0.0304 -0.000126 0.00933 0.0306 0.0581 

120,000,000 -0.0462 -0.0301 -0.000545 0.00885 0.0278 0.0522 

140,000,000 -0.042 -0.0272 -0.000561 0.00804 0.0254 0.0465 

160,000,000 -0.0475 -0.027 -0.000531 0.00763 0.0237 0.0419 

200,000,000 -0.0377 -0.0226 -0.000302 0.00674 0.0209 0.0339 

240,000,000 -0.0336 -0.0205 -0.000279 0.00617 0.0196 0.0318 

 

 

Population B, PPS, n=45, 240 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 16.7 0.10 16.8 0.25 377 -4.57* 0.11* 5.01* -0.020 0.0062 0.020 

 ̂ ( ̂ ) 17.1 0.11 17.2 0.30 368       

 ̂  
 ( ̂ ) 16.7 0.10 16.8 1.54 383       

 
* value has been subtracted with the mean. 

 

It takes 21 hour, 6 minutes and 8 seconds to produce a matrix with the inclusion probabilities, 

based on 240 million repetitions, for this design. 

 

 

6.8 PPS simulation with population B,  =20 
 

With this design   did not reach the limit  =0.05%. At 320 million repetitions we had 

  =0.063. We can see from the table below that it takes about 560 million repetitions if we 

want    to be less than 0.05%. 

 

Rosén´s variance for the whole population has a negative Relative Bias compared to     
 ( ̂ ), 

-0.1%. 

Table: PPS  simulation with population B, n=20. 

Repetitions         RB.1 % 

125,000 3.19 17.9 -109 

250,000 2.26 14.4 -53.9 

500,000 1.61 10.1 -26.4 

1,000,000 1.09 6.09 -13.4 

2,000,000 0.782 4.74 -7.08 

3,000,000 0.649 5.29 -4.4 

4,000,000 0.558 3.92 -3.39 

5,000,000 0.502 2.81 -2.8 

10,000,000 0.363 2.03 -1.5 

15,000,000 0.296 1.97 -1.05 

20,000,000 0.251 1.4 -0.798 

25,000,000 0.224 1.17 -0.703 

30,000,000 0.206 1.12 -0.648 

35,000,000 0.191 0.978 -0.499 

40,000,000 0.177 1.02 -0.445 

50,000,000 0.158 0.801 -0.374 

60,000,000 0.146 0.811 -0.35 
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70,000,000 0.134 0.696 -0.26 

80,000,000 0.125 0.633 -0.231 

100,000,000 0.114 0.569 -0.2 

120,000,000 0.104 0.595 -0.163 

140,000,000 0.098 0.51 -0.166 

160,000,000 0.0912 0.469 -0.161 

200,000,000 0.0805 0.429 -0.171 

240,000,000 0.0728 0.395 -0.179 

280,000,000 0.0668 0.405 -0.164 

320,000,000 0.0627 0.409 -0.169 

 

 
Figure: RB.1, 10-320 million repetitions. 

 
The Figures above show RB.1 from ten million repetitions, which gives a more precise presen-

tation of the development of the measure in the end of the simulation. 

 

 
Figure: RB.2 for  ̂ ( ̂ ). 
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Table: Development of the empirical distribution measures for  ̂ ( ̂ ). 

Repetitions L % U % ER % RB.2 % RRMSE % 

125,000 16.1 1.71 17.8 -3.53 912 

250,000 17.6 1.53 19.2 -1.19 715 

500,000 17.5 1.11 18.6 1.67 652 

1,000,000 16.8 0.741 17.5 0.238 605 

2,000,000 16.2 0.453 16.6 -0.543 582 

3,000,000 16.1 0.348 16.4 0.768 586 

4,000,000 16 0.313 16.3 0.612 582 

5,000,000 15.9 0.274 16.1 0.431 580 

10,000,000 15.7 0.243 16 0.0763 574 

15,000,000 15.7 0.231 15.9 0.258 574 

20,000,000 15.7 0.222 15.9 0.248 573 

25,000,000 15.7 0.218 15.9 0.181 573 

30,000,000 15.7 0.209 15.9 0.119 572 

35,000,000 15.7 0.209 15.9 0.275 573 

40,000,000 15.7 0.213 15.9 0.255 572 

50,000,000 15.7 0.212 15.9 0.182 572 

60,000,000 15.6 0.219 15.9 0.102 571 

70,000,000 15.6 0.212 15.8 0.203 572 

80,000,000 15.6 0.216 15.9 0.235 572 

100,000,000 15.6 0.22 15.9 0.186 571 

120,000,000 15.6 0.216 15.9 0.251 572 

140,000,000 15.6 0.211 15.9 0.222 571 

160,000,000 15.6 0.212 15.9 0.202 571 

200,000,000 15.6 0.212 15.8 0.178 571 

240,000,000 15.6 0.213 15.8 0.112 571 

280,000,000 15.6 0.215 15.8 0.127 571 

320,000,000 15.6 0.215 15.9 0.099 571 

 

 
Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -822 -402 -40.2 90 325 1320 

250,000 -538 -244 -5.54 59.6 295 892 

500,000 -390 -164 4.12 42.5 240 1030 

1,000,000 -291 -113 5.32 29.4 157 670 

2,000,000 -224 -79.3 5.36 20.7 106 401 

3,000,000 -179 -65.3 5.36 17 85.2 212 

4,000,000 -152 -55.3 5.35 14.9 73.2 206 

5,000,000 -140 -48.6 5.35 13.5 65.8 162 

10,000,000 -106 -33.3 5.25 10 46.8 112 

15,000,000 -77.6 -27.1 5.24 8.59 38.4 88 

20,000,000 -72.9 -22.3 5.27 7.8 33.8 79.5 

25,000,000 -59.4 -19.6 5.21 7.26 31 64.8 

30,000,000 -45.4 -17.4 5.27 6.94 29.1 61.7 

35,000,000 -47.9 -15.1 5.27 6.67 27.3 54.2 

40,000,000 -52 -14.1 5.27 6.47 25.6 55.7 

50,000,000 -38.6 -12.3 5.22 6.16 23.4 55.7 
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60,000,000 -33.2 -10.8 5.22 5.98 21.8 55.8 

70,000,000 -36.6 -9.56 5.21 5.83 20.7 45.5 

80,000,000 -38.9 -8.62 5.22 5.72 19.6 42.9 

100,000,000 -26.6 -7.01 5.23 5.59 18.1 37.9 

120,000,000 -22.2 -5.82 5.24 5.51 17.1 35.9 

140,000,000 -22.4 -5.04 5.26 5.47 16.3 33.2 

160,000,000 -22.5 -4.53 5.27 5.43 15.5 30.6 

200,000,000 -20.1 -3.43 5.27 5.38 14.5 30.6 

240,000,000 -17.6 -2.63 5.27 5.34 13.6 28.7 

280,000,000 -16.5 -2.08 5.27 5.32 13.1 26 

320,000,000 -14.5 -1.71 5.25 5.3 12.7 25.4 

 

 

 
Table: Development of  . 

Repetitions Min %  P 0.5 %  Mean %     P 99.5 %  Max % 

125,000 -4.12 -2.03 0.0251 0.581 1.93 3.37 

250,000 -3.09 -1.41 0.00825 0.404 1.31 2.21 

500,000 -1.96 -0.969 0.0149 0.293 1.02 1.83 

1,000,000 -1.05 -0.661 0.00503 0.197 0.643 1.1 

2,000,000 -0.879 -0.462 0.00162 0.137 0.467 0.827 

3,000,000 -0.779 -0.388 0.00737 0.113 0.377 0.692 

4,000,000 -0.601 -0.334 0.0044 0.0969 0.327 0.619 

5,000,000 -0.487 -0.294 0.00228 0.0867 0.294 0.531 

10,000,000 -0.388 -0.211 0.000402 0.0635 0.214 0.434 

15,000,000 -0.356 -0.178 -0.000571 0.0519 0.174 0.315 

20,000,000 -0.253 -0.147 0.000136 0.0439 0.147 0.271 

25,000,000 -0.203 -0.131 -0.00139 0.0395 0.13 0.244 

30,000,000 -0.214 -0.121 -0.00133 0.0368 0.123 0.228 

35,000,000 -0.195 -0.111 -0.000478 0.0332 0.113 0.215 

40,000,000 -0.177 -0.103 -0.00016 0.0308 0.105 0.18 

50,000,000 -0.181 -0.0997 -0.000954 0.0278 0.0925 0.173 

60,000,000 -0.182 -0.092 -0.00122 0.0258 0.0846 0.142 

70,000,000 -0.147 -0.0822 -0.000726 0.0234 0.0772 0.12 

80,000,000 -0.142 -0.0791 -0.000521 0.0221 0.072 0.117 

100,000,000 -0.129 -0.0694 -0.000522 0.0199 0.0668 0.11 

120,000,000 -0.131 -0.0622 -0.000351 0.0182 0.0605 0.111 

140,000,000 -0.126 -0.06 -0.000215 0.0172 0.058 0.105 

160,000,000 -0.108 -0.0539 -0.000256 0.0159 0.0534 0.0887 

200,000,000 -0.0899 -0.049 -0.000264 0.0143 0.0477 0.0874 

240,000,000 -0.0844 -0.0449 -0.000619 0.0133 0.0429 0.0737 

280,000,000 -0.0798 -0.0425 -0.000569 0.0123 0.0397 0.069 

320,000,000 -0.0714 -0.0417 -0.000936 0.0117 0.0371 0.0623 
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Population B, PPS, n=20, 320 million repetitions. 
Estimator L U ER RB.2 RRMSE 0.05%   99.5% 0.05%   99.5% 

 ̂ ( ̂ ) 15.6 0.21 15.9 0.10 571 -6.96* 0.05* 7.45* -0.042 0.012 0.037 

 ̂ ( ̂ ) 16.4 0.25 16.7 0.22 543       

 ̂  
 ( ̂ ) 15.6 0.21 15.8 0.77 575       

 

* value has been subtracted with the mean. 

 

It takes 23 hour, 39 minutes and 40 seconds to produce a matrix with the inclusion probabili-

ties, based on 320 million repetitions, for this design. 

 




