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Abstract

Acute myocardial infarction (AMI) is the most common cause of death
in Sweden. The aim of this study was to assess the heritability of survival
time after acute myocardial infarction in full siblings. The study was based
on reported incidents of Acute Myocardial Infarction in Sweden between
1987 and 2006 to either the National Patient Register or the Cause of Death
register. We used the Multigenerational register to identify full sibling pairs
where both had suffered from AMI. In this study we are focusing on the
nonimmediate deaths (i.e. patients surviving the first day after AMI). Three
different outcomes were studied: overall mortality, cause-specific death and
repeated AMI. For each different outcome a Cox proportional hazards model
was fit to the whole population (second sibling in each sib-pair to suffer
from AMI excluded), taken into account possible confounders i.e. age, sex,
calendar year and county. These models served as adjusted baseline for
average survival after an AMI event, from which we computed residuals for
all the members of sib pairs that we were interested in. These residuals
served as a quantitative, adjusted measure of prognosis, i.e. better or worse
than expected for the given combination of age, sex etc. We then fitted a
Cox proportional hazards model based on the second sibling in each sib-pair
to suffer from AMI, using the first sibling’s prognosis as exposure. For the
outcome overall mortality the results indicate that there is an association
between full siblings survival time but for the other two outcomes there is
no evidence of association between full siblings survival times. This result
indicates that the co-morbidity that we see for the outcome overall mortality
can be due to shared frailties rather than a direct consequence of the AMI
event.
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1 Introduction

Myocardial infarction is the most common cause of death, and one of the
most common causes of invalidity in Sweden[11]. The aim of this project is
to assess the heritability of survival time after acute myocardial infarction.
Addressing this question requires very large clinical material with informa-
tion about siblings or parent-child relationships. In this project data from
the National Patient register, the Cause of Death register and the Multigen-
erational register have been linked together. We identify full sib-pairs from
the multi-generation registry where both individuals have suffered an acute
myocardial infarction.

1.1 Acute myocardial infarction

Acute myocardial infarction or heart attack is a heart condition where blood
cannot reach parts of the heart and the heart muscle becomes damaged.

Myocardial infarction is often a result of atherosclerosis, when plaque is
buildup over time on the inside of the walls of the coronary arterys. Rap-
ture of an atherosclerotic plaque in the wall of the artery can cause a blood
clot to block the coronary artery for oxygen-rich blood. The restriction
of blood supply (ischemia) damages the heart muscle. If the ischemia has
lasted too long the muscle will not recover|8]

In 2006 more than 36 000 individuals suffered from an acute myocardial
infarction in Sweden[11]. The most important risk factors are smoking, high
levels of lipoproteins, psychosocial factors, central obesity, high blood pres-
sure and adult onset diabetes[12]. Almost one third of the persons diagnosed
with myocardial infarction die within 28 days[12].
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Figure 1: Illustration of Acute Myocardial Infarction (taken from U.S. De-
partment of Health & Human Services, www.nhibi.se)



1.2 Background to this study

Studies show that differences in mortality with respect to gender vary with
age. Younger women have worse prognosis than men|[7][6]. Men are more
likely to die before hospitalization [7][6]. During 1987 to 2006 the 28-day
case fatality was reduced by almost two thirds in patients younger than 75
years old [1] This can be explained by an improved care program that for
example involves faster surgical interventions and also by the introduction
of new treatments such as intravenous beta-blockers, nitroglycerin infusion,
aspirin and thrombolytics.

Several different factors have been suggested to influence the long-term prog-
nosis after myocardial infarction in an adverse manner. For patients that
survive at least 28 days, one of the most important predictor of recurrent
myocardial infarction has been shown to be diabetes in both sexes. Other
primary risk factors are job strain, central obesity in men, low level of Al
apolipoprotein and high-density lipoprotein cholesterol in women [4].

It is currently unknown if survival time/prognosis after acute myocardial
infarction has a genetic component (i.e. is inherited). A positive family his-
tory of coronary heart disease is considered an independent risk factor for
developing coronary heart disease. Patients with positive family history of
coronary heart disease develop their first acute myocardial infarction earlier
in comparison to patients without such history and have a better prognosis
which is mostly explained by their lower age [2].

1.3 Report structure

In the present study we link together data from the National Patient Reg-
ister, the Cause of Death Register and the Multigenerational register. The
linkage of data sources are presented in section 2 and the resulting cohort
characteristics are shown in Table 1 and 2. Section 3 begins with a short
theoretical introduction to the Cox proportional hazards model and the as-
sumption of proportional hazards. The section is closed by a scheme of how
we use this model to address the question of heritable prognosis. In Sec-
tion 4 we present the results of the analysis outlined in Section 3 for three
different outcomes: overall mortality, cause-specific death and repeated in-
farction. Interpretations of the results are discussed in Section 5. We also
discuss potential problems with the model used and possible future research
as a continuation to this study.



2 Linkage of data sources

Included in the study cohort are persons with acute myocardial infarction
reported either to the National Patient Register or the Cause of Death Reg-
ister.

The National Patient Register contains information about all persons ad-
mitted to any public hospital in Sweden. The registration is nationwide
since 1987 but the register has been in existence since 1964[14]. The Cause
of Death Register contains information about all persons with residence in
Sweden at the time of their death since 1961 and is updated anually [14].
Persons with their first reported acute myocardial infarction before the year
of 1987 were excluded from the study because of the incompleteness of the
National Patient Register.

To identify the persons with acute myocardial infarction we used the ICD-
codes (International statistical Classification of Diseases and related health
problems) which are handed out by WHO and are the international stan-
dard for classifying diseases. The ICD-codes have been updated several
times, ICD-8 was used during the time period 1969-1986, ICD-9 during the
period 1987-1996 and ICD-10 from 1997 is still used. We used ICD-8 and
ICD-9 codes 410 and 411 and ICD-10 code 121 to identify persons with acute
myocardial infarction from the National Patient register and the Cause of
Death register. Each person enters the study on the date of their first my-
ocardial infarction event and leaves the study at death, end of study or
emigration. If a person has repeated events within the first 28 days from
the first event this count as the same event. The first repeated event after
a time period of 28 days is recorded as the second event. Persons with the
first reported acute myocardial infarction before the age of 40 were excluded
from the study.

The information about death date and cause of death are recorded from
the Cause of Death register. The three different outcome that we will look
at are overall mortality, cause-specific death and repeated infarction. We
define the three different outcomes as:

e Overall mortality

The ith individual is uncensored if reported dead to the Cause of
Death register during the time of the study and censored otherwise.

e Cause-specific death

The ith individual is uncensored if reported dead to the Cause of
Death register with acute myocardial infarction as underlying cause of



death (ICD-9: 410,411, ICD-10: 121) and is censored otherwise.

e Repeated infarction

The ¢th individual is uncensored if he or she has a reported second
myocardial infarction reported to either the National Patient register
or the Cause of death register and is censored otherwise.

To identify the siblings we used the Multigenerational Register. The multi-
generational register contains information about all persons with residence
in Sweden since 1961 which are born 1932 or later. These persons are called
index persons. The register contains information about connections between
the index persons and their biological parents. The first version of the reg-
ister was created in the year 2000. The register is updated anually. If more
than two siblings in the same family have reported acute myocardial infarc-
tion either to the National Patient Register or the Cause of Death register
we use the two oldest for consistency.

National Patient
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Not
corrected
dates

N=6611

Incorrect
dates
N=22 229

Correct dates +
Corrected dates
N=49 874158
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|
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Drop
observations
after 31/12
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Ml-patients
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Figure 2: Flowchart describing the data linkage

2.1 Missing or incomplete data

The National Patient Register contains over 49 million observations and con-
tains information about both admission and discharge date. For consistency
we use the admission date as the time of event. Less than 0.05 per mille



of the observations (22 229) have missing values in either admission- or dis-
charges dates. When admission date is incomplete but we have a complete
discharge date we use the discharge date as the time of event. If month is
missing from the admission date but we have it in the discharge date then
we use the month from the discharge date. If the day is missing we use 15
as a proxy for the true date. After this operations there still remains 6611
observations with missing dates. We assume that these values are Missing
Completely at Random (MCAR, see Little and Rubin,2002) [5], that is, if a
value is missing or not is assumed to be independent of what we are studying
and excluding the observations does not influence the results.

In the Cause of Death Register about 0.8 % has incomplete or missing date
of death. If only the day was missing we used 15 as proxy for the true date.
We identified the persons in the Cause of Death Register who died from a
myocardial infarction and linked the two registers together. Since the same
person can have several events we identify the first event for each person
and consider this event as the entry date for that person.

2.2  Quality

The Swedish National Board of Health and Welfare (Socialstyrelsen) has
presented a validation of the diagnosis codes in the National Patient Regis-
ter for the years 1987 and 1995 with the purpose to detect possible bias in
the reported myocardial infarction diagnosis due to differences in sex, age
and geographic areas, hospitals and between specialized intensive care units
and ordinary care units. According to the study the diagnosis for acute
myocardial infarction is independent of age and sex, but there were some
differences in the conformably of the definitions of the diagnosis codes and
the clinical diagnosis in different counties and between specialized and non-
specialized care units [13].

In the year 2001 the diagnosis acute myocardial infarction got a wider defi-
nition and as a consequence the number of reported acute myocardial infarc-
tions increased [13]. Another source of error could be that the proportion
of dissection of elderly non hospitalized individuals is low and the determi-
nation of the cause of death can therefore be inaccurate[11].

The Multigenerational Register has complete coverage since 1968 and good
but yet not complete coverage since 1961.
2.3 Explanatory Variables

Information about age, sex, year and county is recorded at the entry day.
Sweden is divided into 24 different counties and 290 municipalities. We use



SCB’s (Statistics Sweden) classification of the municipalities into six differ-
ent homogenous regions (H-regions). The regions are homogenous according
to the catchment area. The scale ranges from H1 (big city) to H6 (sparsely
populated area)[10]. The caracteristics of the full cohort is presented in
Table 1 and the caracteristics of the sibling cohort is presented in Table 2.

Second
siblings
N=4325

Multigenerational
register

™~

Siblings with AMI
N=8650
(Table 2)

Study Cohort

N=535 224
(Table 1)

First siblings
N=4325

IS

Baseline
model Cohort
N=530 899

Figure 3: Flowchart describing the data linkage, continuation from Figure 1



Variable | Total | Crude death (%) | Cause-spec death(%) | Repeated infarction(%)
Age
40-44 | 6558 1676 (25.6) 1120 (17.1) 1353 (20.6)
145-49 | 13787 3684 (26.7) 2451 (17.8) 2892 (21.0)
50-54 | 23085 6841 (29.6) 4440 (19.2) 4521 (19.6)
55-59 | 33216 12102 (36.4) 7625 (23.0) 6702 (20.2)
60-64 | 44997 21262 (47.2) 13096 (29.1) 9995 (22.2)
65-60 | 61256 36672 (59.9) 22006 (35.9) 14475 (23.6)
70-74 | 79493 56099 (70.6) 33992 (42.8) 18738 (23.6)
75-79 | 93241 74034 (79.4) 46039 (49.4) 20675 (22.1)
80-84 | 89267 76264 (85.4) 49199 (55.11) 17432 (19.5)
85-89 | 60701 54581 (89.9) 36872 (60.7) 9480 (15.6)
90- | 30623 28445 (92.9) 20768 (67.8) 3300 (10.8)
Year
87-91 | 148590 128636 (86.6) 80815 (54.4) 43090 (29.0)
92-96 | 146240 109761 (75.0) 68019 (46.5) 34732 (23.8)
97-01 | 121433 78541 (64.7) 50462 (41.6) 19914 (16.4)
02-06 | 119961 54722(45.6) 38312 (31.9) 11827 (9.9)
Sex
male | 318603 | 210919 (66.2) 135301 (42.5) 67555 (21.2)
female | 217621 160741(73.9) 102307 (47.0) 42008 (19.3)
Region
H1 | 76347 51945 (68.0) 33672 (44.1) 14571 (19.1)
H2 | 68651 46657(68.0) 28622 (41.7) 13913 (20.3)
H3 | 193600 132631 (68.5) 83937 (43.4) 40499 (20.9)
H4 | 113415 80518 (71.0) 52051 (45.9) 23510 (20.7)
H5 | 35853 24948 (69.6) 16176 (45.1) 7228 (20.2)
H6 | 48358 34961 (72.3) 23150 (47.9) 9842 (20.4)
Total | 536224 371660 (69.3) 237608 (44.3) 109563 (20.4)

Table 1: Full cohort caracteristics. The number in parentesis refers to the
percentage of uncensored observations in each group.




Variable | Total | Crude death (%) | Cause-spec death(%) | Repeated infarction(%)
Age
40-44 | 349 86 (24.6) 48 (13.8) 112 (32.1)
4549 | 971 292 (22.9) 121 (12.5) 280 (28.8)
50-54 | 1845 507 (27.5) 304 (16.5) 458 (24.8)
55-59 | 2204 637 (28.9) 308 (18.1) 489 (22.2)
60-64 | 1832 552 (30.1) 369 (20.1) 243 (13.3)
65-69 | 1136 372 (32.8) 278 (24.5) 121 (10.7)
70-74 | 313 74 (23.6) 59 (18.9) 36 (11.5)
Year
87-91 | 1003 353 (32.3) 155 (14.2) 475 (43.5)
92-96 | 2176 736 (25.2) 436 (20.0) 633 (29.1)
97-01 | 2399 698 (29.1) 482 (20.1) 382 (15.9)
02-06 | 2982 663 (22.2) 504 (16.9) 249 (8.35)
Sex
male | 6448 1862 (28.9) 1211 (18.8) 1366 (21.2)
female | 2202 588 (26.7) 366 (16.6) 373 (16.9)
Region
H1 | 904 276 (30.5) 198 (21.9) 166 (18.3)
H2 | 1000 272 (27.2) 161 (16.1) 206 (20.6)
H3 | 3310 930 (28.1) 584 (17.6) 675 (20.4)
H4 | 1770 477 (27.0) 324 (18.3) 350 (19.8)
H5 | 939 281 (29.4) 124 (17.1) 148 (20.4)
H6 | 939 281 (29.9) 186 (19.8) 194 (20.7)
Total | 8650 2450 (28.3) 1577 (18.2) 1739 (20.1)

Table 2: Sibling cohort caracteristics. The number in parentesis refers to
the percentage of uncensored observations in each group.
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3 Method

To adress the question of heritable prognosis, we consider three events after
myocardial infarction: overall mortality, cause specific death and repeated
infarction defined in the previous section. To model the time to event we are
using the Cox proportional hazards model, which we present in this section,
together with the variable selection procedure that we use to fit our models.

3.1 Cox proportional hazards model

Assume we have n independent observations of time, each observation is
either censored or noncensored. An observation is uncensored if the event
of interest occurs during the time of the study and censored otherwise.

The Cox proportional hazards model is defined as:

hi(t,z, ) = Xo(t) exp{B1zi1 + Powio + ... + Brxir}

where h;(t,z, 3) is the hazard function for individual i = 1,...,n as a func-
tion of survival time and subject covariates [3].

The baseline hazard function Ag(t) describes how the hazard changes as
a function of survival time and is left unspecified in the Cox model. The
baseline hazard function can take any form, except that it cannot be neg-
ative. The other expression exp{fix;1 + ... + Bxx;} describes how the
hazard changes as a function of the subject covariates. This model was
first proposed by Cox in 1972 and is often reffered to as the Cox model [3].
The ratio of the hazard functions for two subjects with covariate vectors

o — (.7301, ey l‘ok) and Tl = (:1,‘11, e ,xlk) is
Ao (t)eflﬁ (r1—70)B
HR(t,z1,20) = RO A (1)
where 3 = (B1,...,0:)" is the column vector of regression coefficients. Sup-

pose covariate number k represents a non-reference cell of a categorical vari-
able and that z( and z1 are identical except for this component, with zgx = 0
(variable has not have this cell value) and z1; = 1 (variable has this cell
value). Then the hazard ratio becomes:

HR(t, 21, z0) = el@i—z0)B — (1-0)Bk — B (2)
and we can construct a 95% confidence interval for §; by:

explfy, £ 1.96se(5y)] (3)

The hazard ratio plays the same role in interpreting and explaining the re-
sults of a survival analysis as the odds ratio for the logistic regression model.
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Since the baseline hazard function A\(t) is not specified in the Cox model
it is not possible to maximize the log-likelihood function with respect to
/3 to obtain the maximum likelihood estimator 3. Instead we are using the
”partial likelihood function” that depends only on the parameter of interest.
In absence of censoring, partial likelihood for the multivariate model is

n

Ly(B) = <~  z.8
' 7,1;[1 ZJ'GR(ti) ei”

etif

where x; and ¢; is the vector of covariates and time of death for individual 4
and R(t;) the set of individuals at risk at time ¢;. The log partial likelihood
function is:

n

p(B) =logLy(B) =Y S aiB—log | > e’

i=1 JER(t:)

There are p equations, one for each covariate. To yield the maximum partial
likelihood estimators, we set the p equations equal to zero and solve. The
equation for the kth covariate is

olp(B) _ zn: e > jenq,) Tire™’
B H Xjeri €’

The estimator of the covariance matrix of the maximum partial likelihood
estimator is the inverse of the observed information matrix evaluated at the
maximum partial likelihood estimator,

Var(f) = 1(8) ™

where

o (B)
10)=-=2

is the observed Fisher information matrix ([3]).

3.2 The proportional hazards assumption

One important property of the Cox model is that the ratio of the hazards
is constant over time. Taking the ratio of the hazards for two individuals i
and j in equation (1) we see that A\g(¢) cancels out.

Assume that we have p covariates and that the n independent observa-

tions of time, covariates and censoring indicator are denoted by the triplet
(tiyxiyci), i = 1,2,...,n where ¢; = 1 for uncensored observations and zero

12



otherwise. The Schoenfeld residuals are defined for each covariate but only
at uncensored survival times (for censored observations they are set as miss-
ing) and are based on the first derivative of the log-likelihood function. The
estimator of the Schoenfeld residual for the ith subject on the kth covariate
is:

Fi = Ci(Tik — Tuyk)
where

Tl
A EjER(ti):UJke !

Lok = ~
€T
2 jeR(t) € 3P

and B is the maximum partial likelihood estimator of 5. The summation
is over all subjects at risk at time t; denoted R(t;). The scaled Schoenfeld
residuals have better diagnostic power and are therefore used more often in
assessing the proportional hazards assumption. The vector of scaled Schoen-
feld residuals is the product of the inverse of the covariance matrix times
the vector of residuals:

N X7 /A —1 A
Pij = [Var(Pig)]| " rij = rin, o i

The violation of the proportional hazards assumptions is equivalent to inter-
actions between one or more covariates and time. We consider an alternative
to the Cox model that has the following specific form of time-varying regres-

sion coefficient:
B;(t) = Bj + v;log(t) (4)

Under this model, the scaled Schoenfeld residuals have, for the jth covariate,
a mean at time ¢ of approximately

E[r;] ~ v log(t)

see [3] for details. To assess the proportional hazards assumption we plot the
scaled and smoothed Schoenfeld residuals obtained from the model. If the
proportional hazards assumption is fullfilled the average size of the Schoen-
feld residuals is independent of time. A smoothed plot of the magnitude of
the residual components that shows a relationship with time is therefore an
indication of that this assumption is violated.

3.3 Variable selection procedure

For the variable selection procedure we use the ”purposeful selection of
covariates”-strategy suggested by Hosmer and Lemeshow (1999) [3]. The
variable selection procedure begins with a univariate analysis of the associ-
ation between survival time and all variables that we are considering for the
model. To get an overview of how different variables effect the survival time,
we start by looking at the Kaplan-Meier estimates of the survival function
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stratifying on each variable. We plot the Kaplan-Meier curves and use the
log rank statistic to test the null hypothesis that there is no difference be-
tween survival groups.

We then fit a multivariate model with the variables that are significant at
20-25% level in the univariate analysis. We use the p-values from the Wald
test of the individual coefficients to identify variables that could be omitted
from the model. We omit the non significant variables one at the time and
look at the p-value of the partial likelihood ratio test to confirm that the
variable is not significant. Fitting the reduced model it is also important
to check if the estimated coefficients change dramatically. This procedure
continues until we cannot omit any more variables.

The nex step is to determine if interaction terms are needed in the model.
We will confine ourselves to studying the interaction between age and sex,
which is interesting from an epidemiological point of view.

3.4 Adressing the question of heritable prognosis

As mentioned above we are mainly interested in assessing the heritability of
survival time after acute myocardial infarction. To address this question we
identify pairs of siblings where both have suffered from an acute myocardial
infarction. We will refer to the siblings in each pair as “first sibling” or “sec-
ond sibling” depending on if the sibling is first or second (in that pair and in
calendar time) to suffer an acute myocardial infarction. We will denote the
first sibling in a pair s;; and the second sibling in the same pair s;o. Where
1 is the siblings pair number, i = 1,..., ng.

Three different outcomes are considered: overall mortality, cause-specific
death or repeated infarction. In the first step of the analysis a Cox propor-
tional hazards model is fitted to the whole cohort after excluding the “second
siblings” s;2, @ = 1,...,n,. We will denote this baseline model my; for the
jth outcome, where j = 1,2,3 are the three outcomes defined in section 2
(1= overall mortality, 2= cause-specific death and 3=repeated infarction).

We follow the variable selection procedure described in the previous sec-
tion. We want to capture as much variation in the data as possible that can
be explained with the variables that we can adjust for. Therefore we are
not very strict about the interpretability of the models m1; and we will also
allow for more generous significance levels in the variable selection process
if necessary.

From model my; we calculate the deviance residuals for s;;, ¢ = 1...,n,
and create a new variable called ’sib prognosis’. The deviance residuals for

14



the ith individual is

d; = sign(M;) = \/2[_Mi — cilog(c; — M;)]
where M; is the martingale residual for the ith individual
M; =c¢; — H(ti, x;, B)

and ¢; = 1 if the observed survival time ¢; is uncensored and zero other-
wise and H (t;, z;, ) is the cumulative hazard at time t; [9]. The deviance
residuals are symmetrically distributed around zero when the fitted model
is adequate.

Deviance residuals are positive for individuals who survive for a shorter
period than expected and negative for those who survive for a longer time.

We use the deviance residuals quartiles to categorize the siblings into three
groups based on their relative survival: “better”, “worse” or “expected”. A
sibling pertains to the category “better” if its residual value falls beneath
the lowest quartile limit and pertains to the category “worse” if its residual
value falls beyond the highest quartile limit. If the residual value falls be-
tween these two limits, the sibling pertains to the category “expected”.

To assess the association between the siblings’ survival times (within pairs),
i.e. a measure of the heritability we fit a Cox proportional hazards model for
Si2, © = 1,...,ng, adjusting for necessary variables and with the residuals
(categorized) from s;1, i = 1,...,n, as exposure. This model is denoted
mo; for the jth outcome, j = 1,2,3. Model mo; is developed independently
of model my;, i.e. we will follow the variable selection procedure without
regard taken to which variables are included in mq;, with the only differ-
ence that we are particularly interested in the association between the ’sib
prognosis’ and survival time.

3.5 Software

Statistical analysis was performed with the SAS 9.2 software. The procedure
phreg is used to fit the Cox proportional hazards models. This procedure
uses the partial likelihood method to estimate the parameters. The scaled
and smoothed Schoenfeld residuals plots are created in R using coz.zph in
the survival package.
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4 Models and Results

4.1 Results from the assessment of the proportional hazards
assumption

The scaled and smoothed Schoenfeld residuals are plotted for each variable
that we are considering in the model. The plots gives an estimate of the
time-dependent coefficient 3;(t) defined in (4) (dotted blue line). The pro-
portional hazard assumption is true if f§;(¢) is a horizontal line. For the
outcome overall mortality and cause-specific death the Schoenfeld residuals
plots show that the proportional hazards assumption is obviously violated,
see Figure 4 and 6 in appendix. For the outcome repeated infarction the
assumption about proportional hazards is approximately fulfilled for all vari-
ables except for the variable year, see Figure 8 in appendix.

There are different approaches for handling non-proportional hazards. Ac-
cording to our data, over 26% of the individuals that suffer from acute
myocardial infarction die the same day. Therefor we partition the time axis
into t = 0 and t > 0 for the outcomes overall mortality and cause specific
death i.e. into immediate deaths and non-immediate deaths.

This approach requires that we analyze the outcomes immediate death and
non-immediate death separately. In this report we are focusing on the anal-
ysis for the non-immediate death. Plotting the Schoenfeld residuals for ¢t > 0
(non-immediate death), we can conclude that the previously noticed non-
proportionality is not that severe anymore, except for the variable year, see
Figures 5 and 7 in appendix.

One way to handle the problem with non-proportional effects is to use a
model where we stratify on the non-proportional covariates. We fit separate
models for each level of the variable year, using the levels ”87-91”, 792-96”,
797-01” and ”02-06”, under the constraint that the coefficients are equal
but the baseline hazard functions Ay are not equal between the levels. Plot-
ting the scaled and smoothed Schoenfeld residuals for the siblings’ cohorts
we conclude that the proportional hazards assumption is fulfilled for the
siblings, see Figures 9, 10 and 11.

4.2 Overall mortality

The full cohort contains 390 754 individuals after the exclusion of the im-
mediate deaths. An individual is censored if alive at the end of the study
or if emigrated. In total 41.36% of the individuals are censored and 58.64%
are reported as dead during the time of the study.

We chose the model mi; based on the variable selection procedure and
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Schoenfeld residuals plots. The resulting model contains the three main ef-
fects age, region and sex, and also the interaction effect age*sex. Because of
violation of the proportional hazards assumption in variable year, we use the
stratified model for this variable, as described above. The estimates of the
regression coefficients for this model and their p-values are shown in Table 7.

The next step is to fit the model mo; for the second siblings with the resid-
uals from the first sibling as exposure. The quartiles are shown in Table 3.
The sibling cohort contains 3342 individuals and 86.3% are censored.

Outcome | Lower Quartile | Median | Upper Quartile

Overall mortality -0.798 | -0.622 -0.357
Cause-specific death -0.492 | -0.402 -0.317
Repeated infarction -0.824 -0.594 0.850

Table 3: Quartiles based on siblings deviance from baseline model

We begin the analysis by considering the univariate analysis of the asso-
ciation between sibprognosis and survival time. In this model sibprognosis
worse is highly significant and sibprognosis better is on the borderline of
the significance level 5%, as shown in Table 4. Both levels have a survival
disadvantages compared to sibprognosis expected.

The adjusted model presented in Table 4 is chosen after following the vari-
able selection procedure presented in section 3.3. After adjusting for age,
sibprognosis better is no longer significant at the 5% significance level. The
group of siblings with a relatively shorter survival time based on his/hers
combination of covariates has a survival disadvantage compared to those
with a full sibling with an expected survival time. Age has the strongest
effect on the survival time.

4.3 Cause-specific death

The full cohort contains 390 754 observations after exclusion of the imme-
diate death and 75.3 % are censored i.e. alive, dead from other causes than
myocardial infarction, alive at the end of the study or emigrated during
the time of the study. The estimates of the regression coefficients and their
p-values for model mio are showed in Table 8. The sibling cohort contains
3342 observations and 94.4% are censored. The quartiles that we use for
categorizing the deviance residuals for the variable sibprognosis are shown
in Table 3.

We begin the analysis by considering the univariate analysis of the asso-
ciation between sibprognosis and survival time. The results are presented
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Variable Level | HR 95% CI | p-value
Unadjusted model
sib prognosis worse | 1.47 | (1.17,1.85) 0.0009
better | 1.25 | (1.00,1.56) 0.0502
expected 1

Adjusted model
sib prognosis worse | 1.47 | (1.17,1.84) 0.0010
better | 1.24 | (0.99,1.54) 0.0626

expected 1 . .

age 40-49 | 0.29 | (0.19,0.45) | < 0.0001

50-59 | 0.59 | (0.48,0.72) | < 0.0001
60- 1

Table 4: Outcome overall mortality: Estimated HR calculated from (2) and
95% confidence interval calculated from (3) for the unadjusted and adjusted
model mo;

in Table 5. There is no evidence of association between the sibling’s relative
survival and the survival time of the second sibling. The adjusted model
presented in Table 5 is chosen after following the variable selection proce-
dure presented in section 3.3. Age has the strongest effect on survival time.

Variable Level | HR 95% CI | p-value
Unadjusted model
sib prognosis worse | 0.99 | (0.52,1.17) | 0.2268
better | 1.00 | (0.72,1.39) | 0.9911
expected 1

Adjusted model
sib prognosis worse | 0.83 | (0.55,1.24) | 0.3639
better | 1.01 | (0.73,1.40) | 0.9428

expected 1 . .

age 40-49 | 0.12 | (0.04,0.39) | 0.0004

50-59 | 0.70 | (0.52,0.95) | 0.0214
60- 1 .

Table 5: Outcome cause-specific death: Estimated HR calculated from (2)
and 95% confidence interval calculated from (3) for the unadjusted and
adjusted model maoo
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4.4 Repeated infarction

For the outcome repeated infarction the cohort contains 330 612 individuals
and 67% of those are censored. To be included in this cohort the individual
needs to be at risk for a second myocardial infarction i.e. the individual
must be alive 28 days after the index event. The estimates of the regression
coefficients for the model mi3 and their p-values are shown in Table 9.

The sibling cohort contains 3037 individuals and 85% of those were cen-
sored. The quartiles that we use for categorizing the deviance residuals for
the variable sibprognosis are shown in Table 3. We begin the analysis by
considering the univariate analysis of the association between sibprognosis
and survival time. The results are presented in Table 6. There is no evi-
dence of association between the siblings relative survival (time to repeated
infarction) and the survival time for the second sibling.

The adjusted model presented in Table 6 is chosen after following the vari-
able selection procedure presented in section 3.3. Note that proportional
hazards assumption is fullfilled for the variable year in the model based on
832, © = 1,...,3037 and there is no need for stratifying on this variable here.
Adjusting for age and year there is still no evidence of association between
the siblings relative survival (time to repeated infarction) and the survival
time for the second sibling.

Variable Level | HR 95% CI | p-value
Unadjusted mode 1
sib prognosis worse | 1.11 | (0.89,1.39) 0.3677
better | 0.98 | (0.78,1.23) 0.8615
expected 1

Adjusted model
sib prognosis worse | 1.03 | (0.82,1.30) 0.7965
better | 0.86 | (0.68,1.09) 0.2157

expected 1 . )

age 40-49 | 0.61 | (0.43,0.88) 0.0072

50-59 | 0.81 | (0.65,1.00) 0.0460
60- 1 . .

year | 87-91 | 1.92 | (1.23,3.00) |  0.0040

92-96 | 1.65 | (1.29,2.13) | < 0.0001

02-06 | 0.91 | (0.71,1.17) 0.4711

97-01 1

Table 6: Outcome repeated infarction: Estimated HR calculated from (2)
and 95% confidence interval calculated from (3) for the unadjusted and
adjusted model ma3
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5 Discussion

The aim of this study was to assess the heritability of survival time after
acute myocardial infarction. We have studied three different outcomes of
myocardial infarction, overall mortality, cause-specific death and repeated
infarction. For the outcome overall mortality the results from our analysis
indicates that their is an association between full siblings survival time after
adjusting for age, sex, year and county. For the outcome cause specific death
and repeated infarction we cannot see any evidence for association between
full siblings survival experience.

When a death is reported to the Cause of death register there can be as
many as 20 different causes reported as contributing to the death in excess
of the underlying cause of death. We might loose some important informa-
tion about the cause of death since we only have considered the underlying
cause of death to identify the cause-specific deaths. Because of the design of
the analysis, the model is sensitive to this kind of measurement errors. The
misclassification that might occur afflicts both the exposure (the outcome
for s;1) and the outcome (the outcome for s;2).

We see an association between full sibling survival for the outcome over-
all mortality but not for the outcome cause-specific death. This indicates
that there might be another explanation to the co-morbidity between full
siblings that is not due to the myocardial infarction incidence. The full sib-
lings might have shared frailties i.e. diseases etc. that confound our results.
As a continuation to this study it would be interesting to add information
about various factors that may influence health and subsequent risk of death
such as factors related to lifestyle (e.g. smoking, diet, lack of exercise) and
co-morbidities (e.g. diabetes, hypertension, hypercholesterolemia). If we
had seen significant heritability the next step would be to study the corre-
sponding results using half siblings, to determine if what we see is a genetic
effect or is a consequence of the childhood environment.

Looking at the deviance residuals for the first siblings s;1, i = 1, ..., ng to suf-
fer from an acute myocardial infarction we see that these are strongly skewed
towards negative values for both outcome overall mortality and death caused
by myocardial infarction. The siblings are doing better as a group compared
to the whole cohort. Possible explanations to this phenomenon can be that
the siblings are more likely to have a family history of myocardial infarction,
which can result in closer medical supervision, preventive health care and
awareness of the disease. We also know that the siblings’ cohort is younger
than the full cohort. This might be an explanation if the baseline model is
not flexible enough to capture the variation due to age.
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We have chosen to treat the outcome immediate death and non-immediate
deaths as two different outcomes. Medically this makes sense since we know
that the first hours after an acute myocardial infarction are critical and that
factors such as how fast you get under medical care is crucial for the sur-
vival. Statistically, treating immediate death and non-immediate death in
the same model has the consequence that a large proportion of the observa-
tions are concentrated in the same point ¢t = 0. Separating the two outcomes
leads to a much more transparent statistical model. The proportional haz-
ards assumption holds approximately after removing the immediate deaths
except for the variable year. It is not obvious how to categorize a con-
tinuous variable for the stratification purpose, which might lead to bias in
the estimated regression coefficients as well as in the residual distribution.
Another approach could be model year by means of a smooth spline function.

The focus in this report has been on the Cox proportional hazards model
for the first day survivors. However, we have also done some preliminary
analysis for the immediate death in a similar manner. We used a logistic
regression model with the first sibling outcome as exposure. Preliminary
results from this analysis indicates that there is a significant siblings effect,
but the model needs further development and examination before one can
draw any definite conclusions. This will be subject to future research.
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A Tables and Figures

Parameter Level | Estimate | Standard Error p-value
Sex male 0.118 0.018 | < 0.0001
Age 40-44 -3.256 0.074 | < 0.0001

45-49 -3.246 0.051 | < 0.0001

50-54 -3.130 0.039 | < 0.0001

55-59 -2.778 0.028 | < 0.0001

60-64 -2.396 0.020 | < 0.0001

65-69 -1.983 0.016 | < 0.0001

70-74 -1.577 0.014 | < 0.0001

75-79 -1.104 0.013 | < 0.0001

80-84 -0.670 0.012 | < 0.0001

85-89 -0.303 0.013 | < 0.0001
Region H1 -0.090 0.009 | < 0.0001
H2 -0.111 0.009 | < 0.0001

H3 -0.090 0.008 | < 0.0001

H4 -0.066 0.008 | < 0.0001

H5 -0.031 0.011 0.0036

Age*Sex | (40-44)*male 0.316 0.084 0.0002
(45-49)*male -0.224 0.058 0.0001
(50-54)*male -0.058 0.045 0.1974
(55-59)*male -0.081 0.034 0.0166
(60-64)*male -0.070 0.027 0.0087
(65-69)*male -0.046 0.023 0.0447
(70-74)*male -0.007 0.021 0.7398
(75-79)*male -0.004 0.020 0.8566
(80-84)*male -0.014 0.020 0.4951
(85-89)*male 0.0002 0.0212 0.9925

Table 7: Overall mortality: Estimates for the baseline model m1;
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Parameter Level | Estimate | Standard Error p-value
Sex male 0.154 0.026 | < 0.0001
Age 40-44 -3.186 0.140 | < 0.0001

45-49 -2.869 0.082 | < 0.0001

50-54 -2.947 0.068 | < 0.0001

55-59 -2.486 0.045 | < 0.0001

60-64 -2.091 0.032 | < 0.0001

65-69 -1.702 0.025 | < 0.0001

70-74 -1.309 0.021 | < 0.0001

75-79 -0.877 0.019 | < 0.0001

80-84 -0.538 0.018 | < 0.0001

85-89 -0.246 0.019 | < 0.0001
Region H1 -0.144 0.014 | < 0.0001
H2 -0.196 0.014 | < 0.0001

H3 -0.129 0.012 | < 0.0001

H4 -0.086 0.012 | < 0.0001

H5 -0.060 0.016 0.0002

Age *Sex | (40-44)*male 0.074 0.152 0.6246
(45-49)*male -0.206 0.093 0.027
(50-54)*male 0.139 0.076 0.0684
(55-59)*male -0.061 0.054 0.2587
(60-64)*male -0.085 0.042 0.0408
(65-69)*male -0.074 0.034 0.0306
(70-74)*male -0.061 0.031 0.0479
(75-79)*male -0.085 0.029 0.0041
(80-84)*male -0.048 0.029 0.1009
(85-89)*male -0.032 0.031 0.3053

Table 8: Cause-specific death: Estimates for the baseline model mqo
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Parameter Level | Estimate | Standard Error p-value
Sex male 0.154 0.037 | < 0.0001
Age 40-44 -1.639 0.074 | < 0.0001

45-49 -1.558 0.052 | < 0.0001

50-54 -1.585 0.043 | < 0.0001

55-59 -1.334 0.035 | < 0.0001

60-64 -1.162 0.030 | < 0.0001

65-69 -0.933 0.026 | < 0.0001

70-74 -0.735 0.025 | < 0.0001

75-79 -0.471 0.024 | < 0.0001

80-84 -0.255 0.024 | < 0.0001

85-89 -0.086 0.025 0.0007
Region H1 -0.046 0.013 0.0004
H2 -0.095 0.013 | < 0.0001

H3 -0.026 0.011 0.0202

H4 -0.015 0.012 0.2168

H5 -0.020 0.016 0.2072

Age*Sex | (40-44)*male 0.121 0.086 0.1561
(45-49)*male 0.092 0.063 0.1454
(50-54)*male 0.145 0.055 0.0084
(55-59)*male -0.021 0.045 0.6553
(60-64)*male -0.018 0.044 0.6877
(65-69)*male -0.070 0.041 0.0905
(70-74)*male -0.030 0.040 0.4475
(75-79)*male -0.066 0.040 0.0964
(80-84)*male -0.032 0.040 0.4199
(85-89)*male -0.016 0.042 0.7079

Table 9: Repeated infarction: Estimates for the baseline model m3
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Figure 4: Overall mortality: scaled and smoothed Schoenfeld residuals
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Figure 5: Overall mortality: scaled and smoothed Schoenfeld residuals for

t>0
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Betal(t) for regreftH1
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Figure 6: Cause-specific death: scaled and smoothed Schoenfeld residuals
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Figure 8: Repeated infarction: scaled and smoothed Schoenfeld residuals
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Figure 11: Repeated infarction: smoothed Schoenfeld residuals for the sib-
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