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Abstract

Cell migration is a central process in normal human cellular de-
velopment as well as in numerous disease states. Metastatic spread
of cancer tumors occurs as a direct result of changes in cell migra-
tion, and further insight into the mechanisms behind cell migration
is of great importance in cancer research. CMACs (cell-matrix adhe-
sion complexes) are at the heart of the migratory system of the cell;
elucidation of CMAC behaviour is essential in understanding cell mi-
gration. In this thesis, results from analysis of quantitative live cell
microscopy data are used together with modern biological theory to
develop a stochastic model describing the behaviour of the CMAC
population of the wild-type cell with respect to CMAC areas and the
number of CMACs. Analytical results are derived and simulations are
performed to validate model performance. It is shown that the model
is able to mimic CMAC behaviour with respect to most aspects of the
properties described above, and also can predict the behaviour of new
perturbed experimental conditions.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: jensm@math.su.se. Supervisor: Olivia Eriksson, Joanna Tyrcha.



Acknowledgements

I would like to thank my supervisors, Dr. Olivia Eriksson, who has sup-
ported my work with great enthusiasm and many hours of rewarding dis-
cussion, and Professor Joanna Tyrcha, whose help and feedback has been of
much assistance.
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1 Introduction

Cell migration is the process of cellular motion in multicellular organisms.
It is vital to normal human cellular development; furthermore, deregulated
cell migration plays an important role in many disease conditions. In cancer,
changes in cell migration causes metastatic dissemination [7]; thus, elucida-
tion of the mechanisms behind cell migration is highly desirable.
CMACs (cell-matrix adhesion complexes) are central in cell migration. CMA-
Cs connect the cell to its surroundings and control several intracellular pro-
cesses vital to cell migration [7]. Therefore, further insight into cell migration
is dependent on the study of CMAC behaviour.

Recent developments in experimental methodology has substantially ad-
vanced the study of cell migration. At Staffan Strömblad’s laboratory at
Karolinska Institutet (KI), Huddinge, advanced methodology utilizing flu-
orescence microscopy and quantitative image analysis has been developed,
providing large amounts of multivariate cell migration (CMAC) data on
multiple resolution levels. Analysis of these data requires advanced statis-
tical methods and substantial work on this has been done within the cell
stochastics group of Stockholm University.

In this thesis, we will attempt to construct a stochastic model describing
CMAC behaviour in the unperturbed cell. Setting out from a top-down
perspective, we will build our model from biological theory, results from
exploratory data analysis and assumptions about population mechanics. As
we aim for model simplicity, we will select key variables with high descriptive
qualities, i.e. CMAC area, CMAC life time and the number of CMACs
in the cell. We propose a model in discrete time, where an independent
multiplicative development is suggested for individual CMAC area, and the
number of CMACs will be regulated by a kind of birth and death process,
also generating CMAC life times.

We will use analytical results to compare model output with corresponding
results from exploratory data analysis. Where no analytical results have
been obtained, simulation studies will be performed to validate the model.
Simulations are also used to study the capability of the model in an expanded
setting.

We conclude that the model is able to mimic CMAC behaviour with respect
to most aspects of the properties described above, and also that it is able to
resemble the behaviour of a perturbed population.
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2 Background

Cell migration is central in the development and maintenance of multicellu-
lar organisms. In humans, it is vital to such varying situations as renewal
of skin, embryonic development and immune surveillance among others [15].
Cell migration also plays a role in many disease conditions, e.g. cancer,
where deregulated cell migration is a key component in metastatic dissemi-
nation, the primary cause for mortality in most cancer types [7]. To under-
stand these pathologies, elucidation of the mechanisms behind cell migration
is of great importance.

In multicellular organisms cells reside and migrate in a connective tissue
called the extracellular matrix (ECM), see Figure 1. The ECM supports
and anchors the cells and also influences cellular life in e.g. intercellular
communication [1]. The points of contact between cell and ECM are thus
very important in cell migration.

Figure 1: A cell migrating in the ECM. The cell adheres to the ECM through
CMACs, which are connected by the microfilament system.

Another vital factor in cell migration is the microfilament (F-actin) system
residing within the cell. The microfilament system is a part of the cytoskele-
ton, a kind of scaffolding, which maintains cell shape, protects the cell and
also enables cellular motion.
Located in the cellular membrane, influencing both the ECM and the micro-
filament system, cell-matrix adhesion complexes (CMACs) are at the heart
of the cell migration machinery, see Figure 1; throughout this and the next
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paragraph we will use [7] to explain CMAC functionality. CMACs are com-
posed primarily of a type of receptor proteins called integrins and are formed
by integrin binding to the ECM and subsequent integrin clustering. Aside
from their central role in cell migration, CMACs regulate several vital cell
life processes such as cell adhesion, spreading and survival. By physically
attaching the cell to the ECM and being linked to the microfilament sys-
tem in the cell, CMACs simultaneously affect and bind together these key
components of cell migration; this gives CMACs a great influence over the
migratory process.

Physical and internal properties like size, shape, location and componentry
vary significantly between different CMACs. Although CMACs are continu-
ous in their characteristics they can be divided into categories with different
properties. For example, small, newly formed CMACs residing in the cellular
periphery are called nascent adhesions and these can mature into larger ad-
hesions with properties disparate from those of the nascent adhesions. The
various categories of adhesions also link to different parts of the microfila-
ment system, thus providing diverse functionality. Altering the biochemical
content and physical appearance of CMACs through environmental cues
may enforce selective adaptation, modifying CMAC properties such as size,
shape, intensity and composition. Thus, it is possible to create CMAC pop-
ulations where the proportions of different categories of CMACs may vary,
facilitating a systematic approach to elucidating CMAC functionality.

Being a highly complex process in both space and time, cell migration has
previously suffered from a lack of thorough investigation due to limitations
in experimental methodology. However, recent developments in quantitative
live cell microscopy provide the tools needed for a comprehensive analysis
of cell migration and of CMAC behaviour. Quantitative live cell microscopy
enables the systematic study of cellular and intracellular properties on a
large scale, using fluorescence microscopy together with sophisticated imag-
ing software to obtain characteristics of cells and subcellular components.
At the host laboratory of Staffan Strömblad at Karolinska Institutet, Hud-
dinge, quantitative live cell microscopy methodology facilitating ongoing
research aiming to elucidate the role of integrins in cellular behaviour, and
especially their function in cancer progression, has been developed. From
fluorescence microscopy images, unique software extracts quantitative data
for 135 key variables incorporating spatiotemporal information from the
molecular (CMAC) to the cellular level. This generates huge amounts of
data at multiple resolution levels requiring advanced multivariate statistical
methods for analysis, which has led to the establishment of a cooperation be-
tween Staffan Strömblad’s research group and the Division of mathematical
statistics, Department of Mathematics at Stockholm University, in 2009. At
Stockholm University, the Cell stochastics research group has been formed,
including both senior researchers as well as graduate students.
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Activity in the Cell stochastics group has mostly been concentrated on ex-
ploratory data analysis, characterization of distributions and data mining
activities. In this thesis, cell migration is instead approached from a mecha-
nistic point of view, with the aim to provide a stochastic model that attempts
to explain CMAC growth in the cell.
Given that our data contain information about the distributions of sub-
cellular properties, stochastic modelling is preferred, since we, as opposed
from in deterministic modelling, are able to describe the distributions of the
variables of interest. A stochastic model may facilitate the understanding
of a cellular system and result in a simple description of it, as it is able to
provide the necessary abstraction needed to identify key features influencing
the system [10]. Stochastic modelling facilitates the integration of theoreti-
cal and experimental results and the reduction of a biological system to its
most important parts, and, in the ideal case, gives model predictions that
can be used as guidance for setting up new experimental situations [10].
As this is the first try at modelling CMAC behaviour in this way, our am-
bitions are very moderate, but it is certainly our wish that this thesis will
be a starting point for the development of cell migration theory through
stochastic modelling.

3 Description of the cell migration data

3.1 Experimental methodology

In the host laboratory, data are recorded through quantitative live cell mi-
croscopy. This incorporates automated fluorescence microscopy and quan-
titative image analysis.
Fluorescence microscopy in biology utilizes fluorophores, molecular compo-
nents that omit light when absorbing radiation of a different wavelength,
to study primarily subcellular processes [5]. The fluorophore is attached to
the molecule of interest, often a protein or an enzyme, and the specimen
is illuminated with light of a wavelength specific to the fluorophore, which
then emits fluorescent light detectable by the microscope [5].
Fluorescent substances are present in nature, but it was the discovery of
green fluorescent protein, GFP, in 1962, and subsequent development, to-
gether rewarded with the Nobel Prize in Chemistry 2008, that ultimately
initiated a whole new era in cell biology. Previously, microscopy was mostly
performed on thinned, dead tissue, but, using fluorescence microscopy, re-
searchers are able to investigate cellular processes in living cells, and today,
fluorescence microscopy has become an indispensable tool in biological re-
search [19].
Quantitative image analysis is the companion of modern microscopy, using
computational techniques enabling automatic identification of the molecular
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objects of interest, facilitating effective analysis of vast amounts of digital
pictures. The most obvious benefit of quantitative image analysis is the
speed compared to human evaluation; another advantage is the ability to
generate quantitative measurements, enabling detection of subtle differences
between specimens, differences that might be invisible to the human eye [6].
Furthermore, measurements from quantitative image analysis are not biased
by human intervention. Quantitative image analysis thus facilitates biolog-
ical experiments on a much larger scale than before and provides a solid
platform for statistical analysis [6].
Together, fluorescence microscopy and quantitative image analysis are the
cornerstones of the methodology that enables the production of cell migra-
tion data in Staffan Strömblad’s laboratory. The quantitative image analysis
is focused on CMAC properties and an automated software (Patch Mor-
phology Dynamic (PAD) [4]; patch stands for CMAC) recognizes individual
CMACs and tracks them over time while measuring CMAC properties as
well as whole-cell properties, see Figure 2. Thus, the progression of individ-
ual CMACs can be followed, and by combining individual CMAC properties
the population characteristics may be established.

Figure 2: Quantitative image analysis in Staffan Strömblad’s laboratory,
using pictures from fluorescence microscopy. CMACs are identified by au-
tomated software and their characteristics recorded.

The research group at KI uses live human cancer cells in their studies of
cellular behaviour. Cancer cells represent the majority of human cell cul-
tures grown in laboratories and cancer progression in humans is the focus
of Staffan Strömblad’s research group.
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Cells in an experimental environment reside in a substance mimicking the
physiological extracellular matrix. This substance can have varying rigidity
and is known as the cell substrate. In order to investigate the cell migratory
system, the cells can be perturbed in different ways, including environmen-
tal changes, such as changing substrate density, protein overexpression and
the use of siRNA (small interfering RNA) [18]. In this study we mainly
focus on the unperturbed system, the wild-type cell, and we will also look
at two perturbed conditions, overexpression of the proteins Rac and Rho
respectively.
Data come from two different experimental methodologies. The process of
creating suitable fluorophores for proteins in live cells is often difficult, with
tedious and time-consuming experiments having to be performed for every
new type of protein to be investigated. Therefore, alternative techniques
using fixed (dead) cells are also used. This means that data produced in
the experiments can be either from a time-lapse experiment, with subse-
quent measurements of live cells, or from a fixed experiment, generating
only one group of measurements. The variables recorded in the data can be
divided into two categories, static and dynamic, where static variables cor-
respond to instantaneous measurements and dynamic variables are derived
from two subsequent instantaneous observations of static variables. For ex-
ample CMAC area, intensity and distance to border are static variables,
whereas CMAC velocity and area growth are dynamic variables. Thus, data
from a time-lapse experiment will contain several groups of observations of
both static and dynamic variables and data from a fixed experiment will
contain one group of observations of static variables. For simplicity we call
data originating from time-lapse experiments dynamic and data from fixed
experiments static.

3.2 Exploratory data analysis

We will use data from two time-lapse experiments, represented by two dy-
namic datasets, and from one fixed experiment, represented by one static
dataset. The dynamic datasets are produced 090618 and 090527, and the
static dataset 090316. The datasets are named e.g. 090618 U2OS stables
20hrs deep red PM combined refch2 vinc, representing the date and the du-
ration of the experiment, and the fluorophores used.
The dynamic datasets contain observations on unperturbed cancer cells,
which are the cells that we are attempting to model, and therefore, our
analysis will focus on these datasets. The static dataset contains observa-
tions on cells in different perturbation states and is one of the first produced
in the laboratory. Therefore, it is subject to more variation due to exper-
imental circumstances which since then have been further developed and
standardized, but as we will use this dataset for rough comparison with the
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dynamic data this is not critical; it is not itself subject to an analysis. It
will also be used for comparison with simulations in Section 5.

The dynamic data are produced in a time interval of, in our case, 20 hours
for 090618 and 24 hours for 090527, in which observations are made in blocks
with some duration between them, resulting in 120 and 96 indexed times
of observation respectively. During one time index, the microscope takes
subsequent pictures as it moves around the plate on which the cells reside.
Each time index will thus contain observations from one sequence of images
recorded as the microscope passes over all the cells and will in fact be a time
interval, which has a mean length of 116 and 82 seconds respectively in our
dynamic datasets. An excerpt of the 090527 data can be seen in Table 1.
Every row in the dynamic data is one observation of one CMAC at one
time index, and includes 194 variables. CMACs are given unique ID:s and
thus, it is possible to follow changes in properties of individual CMACs
over time, since CMACs are always observed in at least two subsequent
time indexes. Aside from static and dynamic variables, the observations
also contain aggregated variables, derived from the instantaneous variables.
The variables have, by the experimentalists, been divided into the following
categories:

• Instantaneous static CMAC properties
Static CMAC variables observed in every time point.

• Instantaneous dynamic CMAC properties
Dynamic CMAC variables derived from static variables observed in
two subsequent time points.

• Aggregated properties derived over the whole life time of a
CMAC

• Instantaneous static cell properties
Static cell variables observed in every time point.

• Aggregated CMAC population and cell properties

As our modeling will be concerned with only a few selected instantaneous
static properties, CMAC area, life time and population size, we will only
study a small number of the available variables in the data analysis. In
future model development, one might wish to include more variables and
ongoing work in the cell stochastics group might be helpful when selecting
these variables; this will be further developed in the discussion.

The dynamic datasets contain 91548 (090618) and 20045 (090527) observa-
tions, representing a total of 13224 and 3506 unique CMACs (with unique
trace ID:s) in 18 and 10 cells respectively. Added during the whole exper-
iment, the cells in the 090618 data contain between 276 and 1393 unique
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Idx Time ID Label Row Col Cell no Area Maj axis
...

...
...

...
...

...
...

...
...

34 3e7 63 1 131.80 273.38 1 0.83 0.72 · · ·
34 3e7 20 2 143.04 253.66 1 0.80 1.04 · · ·
34 3e7 72 4 147.93 297.54 1 0.55 0.65 · · ·
34 3e7 46 5 149.82 287.21 1 0.99 0.68 · · ·
34 3e7 102 6 159.38 234.72 1 1.63 1.18 · · ·
...

...
...

...
...

...
...

...
...

Table 1: The first 9 variables in a few observations from time index 34 in the
090527 data. The time passed (ms) is in column 2 (3e7=3 · 107) and CMAC
trace ID is in column 3. Label is another, for us unimportant, identification
of CMACs. Row and Col are the coordinates of the CMAC in the grid
system set up within the image analysis. Cell no represents the number of
the cell observed within the present position of the microscope. Individual
CMAC properties, here represented by area and Maj axis, the length of the
major axis of the observed CMAC, start in column 8 and are followed by
other properties as described above. Values have been truncated and times
in column 2 rounded.

CMACs each, with a mean of 735 CMACs, and the cells in the 090527 data
contain between 259 and 507 CMACs each, with a mean of 351 CMACs.
Unfortunately, we are unable to use all observations, due to experimental
and physiological issues, such as cell division, which changes the behaviour of
CMACs. In plots showing development over time, cell division can often be
seen either in the absence of observations for the time indexes concerned or
in that CMAC behaviour becomes very unstable compared to non-dividing
cells. Plots of variables representing aggregated data will come from undis-
turbed time indexes only unless otherwise mentioned. All plots can be found
in Appendix C.

3.2.1 CMAC population properties

We will start by looking at some aggregated properties describing the num-
ber of CMACs in the cells and their area, namely the total CMAC area, the
number of CMACs, the average CMAC area multiplied by 10 and the max-
imum CMAC area multiplied by 10; the multiplication is done to achieve a
more readable scale in the plots. In Figure C.1, the development over time
for these variables in the 090527 data is shown; note that some of the cells
(in the plot denoted by their field names) undergo cell division, additionally,
all data after time index 85 should not be taken into account since they are
corrupt due to experimental circumstances. Here, and later on, the figures
referred to should be thought of as examples showing behaviour that can be
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seen throughout data.
Aside from the behaviour of the CMAC population around those time in-
dexes where cell division occurs, we see in most of the plots that the total
CMAC area and the number of CMACs remain fairly stable over time with
respect to different cells, meaning that they show modest variation around
their average values, which are roughly constant over time. This is most
evident in fields 3, 16, 17 and 23, the fields corresponding to cells which do
not undergo cell division. In all fields, we see that the average CMAC area
seems to be constant over time with respect to different cells (remember
that in the plots, the value of average CMAC area is multiplied by 10); this
means that the total area depends more on the number of CMACs than on
the areas of individual CMACs. There is more variation in the maximum
size of CMACs over time (also multiplied by 10), both in stable and dividing
cells, but this is not surprising since this property is derived from a single
extreme value in each time index.
The distribution of the number of CMACs in the cells over time is seen to be
fairly normal in our data. Figure C.2 shows normal quantile-quantile plots
of observations of the number of CMACs from each time index in fields 3,
16, 17 and 23 in the 090527 data.

When attempting to characterize the development of the CMAC population
in one cell over time without considering any individual CMAC properties,
it is, in addition to looking at the number of CMACs in the cells, also of
interest to study formation and assembly of CMACs.
In Figure C.3, the number of formations (births) and disassemblies (deaths)
of CMACs over time (defined as the number of CMAC ID:s that appear
and disappear between time indexes) in 8 fields from the 090618 data is
plotted together with simple moving averages with a windows size of 16
(the mean of the previous 15 time indexes’ values and the present value)
for both births and deaths. We see in most of the cells that the number of
births and the number of deaths are of almost the same magnitude over time
and that they vary around roughly the same average in every time index,
since the moving averages of births and deaths tend to follow each other.
Aside from a few time indexes in some fields, e.g. the behaviour in field 8
after time index 100 and in field 25, the change in average value is small
over time for both births and deaths. Combined with the behaviours seen in
the number of CMACs, and with some simple autocorrelation studies on the
number of births and deaths in different cells indicating that autocorrelation
is present between these, this suggests that the number of CMACs in one
cell roughly fluctuates around an average, being regulated by subsequent
CMAC formation and disassembly.
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3.2.2 CMAC area and life time

Besides the development of the number of CMACs, we would also like to
study individual CMAC characteristics in our model, and for reasons further
explained in Subsection 4.1, we will focus on the areas of CMACs in the cell.
We will also study CMAC life times.
First, we will look at the distribution of CMAC area in the cells over time,
since the composition of CMAC area changes in every time index, both
from births and deaths in the population, and from individual stochastic
variation. To study the change of CMAC area, we will plot its empirical
distribution in subsequent equidistant time indexes 0, 10, 20, ..., looking at
fields 5 and 29 from the 090618 data, see Figures C.4 and C.5. Due to
limitations in experimental technique, the lowest value of CMAC area that
can be read by the microscope is 0.16 µm2, meaning that we are unable
to capture CMAC area development when CMACs are very small. We will
also have quite a few values of 0.16 µm2, since the sampling process actually
is discrete, meaning that many small but still measurable values will be
rounded down to the lowest value. As our analysis will focus on giving a
few general characteristics of CMAC area, this is not critical for us.
In field 5, we have a rather large number of CMACs in all time indexes and
it is clear from the plots that the empirical distributions are severely skewed
to the right, with much weight being put on the smallest area values. In field
29, there are fewer CMACs, and the skewness is not as prominent, although
it is clearly present in those time indexes where there are relatively many
CMACs. Although not shown here, strong right-skewness is also present in
the empirical distributions of CMAC area in the static unperturbed 090316
data. We can also see in the plots that, while the empirical distributions are
right-skewed, there are also, at least in some time indexes, some relatively
high CMAC area values present in the empirical distributions, pointing to
a heavy-tail character of the empirical distributions.
These characteristics of the empirical distributions will be a starting point
when trying to find the mechanisms and distributions that can describe our
population. Some common distributions having a right-skewed, heavy-tailed
appearance are the power-law and lognormal distributions, which both are
used to describe many processes in biological systems [9], and we will look
further into this in Subsection 4.1.

The life time of a CMAC is defined as the number of times a CMAC survives
from one time index to another. We see in Figure C.6 that the empirical
distributions for CMAC life time from 8 fields in the 090618 data are right-
skewed, with emphasis on the shortest life times. As it is of interest in
our modelling, we have also plotted the estimated geometric distribution for
each field in the corresponding histogram, and we see that the geometric dis-
tributions does not fully capture the skewness of the empirical distributions,
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although it is a fairly good approximation at least to the middle part of the
distributions. It is possible that a more heavy-tailed distribution, such as
the Pareto, would provide a better fit to CMAC life time, but this will not
be covered in this thesis.
As CMACs are measured in at least two subsequent time indexes, data con-
tain no measurements of CMACs younger than 15 minutes. Thus, we can
not capture the behaviour of very young CMACs. This is not crucial, since
our aim is to make a broad study of population characteristics.

To further study the development of CMAC area, we will look at individ-
ual CMAC area progression for some CMACs and the correlation between
CMAC life time and average area in some cells. In Figure C.7, CMAC areas
over time from field 16 in the 090527 data are shown for CMACs with an
average area larger than 1 and a life time longer than 4; aside from reducing
the number of CMACs that are considered, these limits are set because we
are interested in long-lived CMACs and how they behave when becoming
large. It can be seen that the progress of CMAC area tend to form con-
cave trajectories, as CMAC areas often initially increase and then decrease
towards the end of the life time of the CMAC in question. There are few
CMAC areas becoming significantly larger than 2 for any longer period of
time, and many CMACs seem to have an area development that peak around
2, suggesting some kind of threshold for CMAC area.
In Figure C.8, plots of CMAC life time versus average area with linear cor-
relation coefficients are shown for 8 fields from the 090618 data. All the
correlation coefficients are significant on the 5% level, but as the data are
heteroscedastic this is not so interesting. We see in the plots that short-lived
CMACs can have a large average area, and that long-lived CMACs can not
have a too small average area; there is an almost linear relationship between
the life time of a CMAC and the lower limit of its average area.

3.3 Difficulties with data

There are difficulties with data, both due to experimental limitations and
characteristics of the biological system that we work in. We have already
touched on some challenges; the multivariate hierarchical structure of data;
the large amounts of observations with many variables in every observation;
the experimental differences between static and dynamic data, making com-
parison difficult. Another aggravating circumstance is that we are working
in very complex biological systems, the variation of which might be hard to
explain or unexpected; this is also important to remember in modelling. In
biological systems like these, it is almost impossible to get a full overview
of the workings of the system, and one must often be satisfied with only
looking at parts of it under certain conditions and then limit conclusions to
those conditions.
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Considering the experimental limitations in data, the biggest drawback is
the time resolution. In e.g. the 090527 data, the time between measure-
ments is around 15 minutes, which allows plenty of things to happen in the
cell. A higher resolution would facilitate greater accuracy in our analysis,
we would e.g. get a more accurate notion of individual CMAC area varia-
tion over time, and CMAC life times could be divided into smaller parts,
enabling more detailed study of especially short life times.

4 A model for the CMAC population

4.1 Model background

Starting from a top-down perspective, our intention is to build a simple
model that attempts to explain the behaviour of the CMAC population in
one wild-type cell. This means that we will set out from a whole-cell context,
trying to formulate our model from assumptions about population mechan-
ics rather than from theories concerning basic biological processes in the cell.
Thus, we will avoid the increased model complexity often seen when using
a low-level mechanistic approach, resulting in a large number of parameters
[17].
To further facilitate model simplicity we will prefer basic, well-known com-
ponents in our modelling and keep the number of variables small. This will
give us a solid starting point for future development and model analysis,
and also facilitate low model complexity.

Since we initially want to keep the number of variables in the model to a
minimum, it is especially important that we select key population variables
with high descriptive qualities. A few variables have been put forward by
biologists as especially important CMAC characteristics. Among these are
area, mean intensity and velocity for individual CMACs and the number
of CMACs in the cell. We will choose CMAC area as the main response
variable in our model as it has good descriptive qualities, varying between
CMACs in different maturation states and different parts of the cell thus fa-
cilitating characterization of the underlying population. We have also seen
earlier that the empirical distribution of CMAC area has interesting prop-
erties, such as right skewness, see Subsection 3.2.2.
As the number of CMACs in the cell is constantly fluctuating due to for-
mation and disassembly of CMACs, affecting the distribution of individual
CMAC characteristics such as CMAC area, it is vital to also include the
number of CMACs and the lifespans of individual CMACs when attempting
to describe the population in one cell.

Multiplicative processes are well-known mechanisms for describing the de-
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velopment of organism size in biological systems [3], [9], a few examples in
microbiology being protein sequence length and telomere length [13], [12].
By a multiplicative process we mean that if the size of an organism at a dis-
crete timepoint k is Xk, the size at k +1 will be Xk+1 = Xk ·Yk+1, for some
random multiplicative factor Yk+1. Thus, an organism whose size evolves
according to a multiplicative process has, in every time step, a random mul-
tiplicative change in size which is dependent of its current size.
A multiplicative process results in a lognormal or power law distribution
for the quantity whose behaviour is governed by the process. Consider the
logarithm of the organism size process described above; the logarithm of size
at time k is given by

log Xk = log X0 +
k∑

j=1

log Yj ,

for an organism starting with size X0 at time 0. Now, if X0 and the Yj :s are
independent and lognormally distributed, Xk is also lognormally distributed
by the definition of the lognormal distribution, see Appendix A.1. By virtue
of the central limit theorem, this result also holds for independent and iden-
tically distributed random variables Yj with finite mean and variance. If a
lower limit for size had been set, we would instead have had a power law
distribution for size, showing how closely related the lognormal and power
law distributions are [9].
CMACs are composed of integrins binding to other integrins, giving CMACs
with a large area more possibilities to bind to new components and grow even
larger. This, and the lognormal/power law behaviour seen in CMAC area
data, suggests a multiplicative process as a first choice for modelling CMAC
area development. Also, being an ubiquitous phenomenon in e.g. biology,
the multiplicative process is a well-known stochastic process, following our
intentions for model simplicity. Thus, we suggest a multiplicative process to
describe the development of individual CMAC areas over time.

In order for the cell to survive, CMACs must be prevented from growing too
large, suggesting a mechanism inducing CMAC area saturation. We have
not found experimental evidence for such an area saturation mechanism in
the literature, but it has been theoretically predicted [11] that CMAC area
should be proportional to the rigidity of the cell substrate. Therefore, it is
of interest to include the effect of substrate rigidity in the model and we
thus propose an upper threshold for CMAC area in the model over which
the areas of CMACs will have zero or negative expected growth.
The introduction of this threshold is also supported by our studies of CMAC
area development in data, see Subsection 3.2.2, where we have seen that the
majority of the areas of large and long-lived CMACs in a cell seem not to
exceed a certain value.
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As it is our wish to combine the multiplicative development of individual
CMAC areas with the ever-changing number of CMACs in the population
due to formation and disassembly, we will introduce a form of birth and
death process [16] in the model. The birth and death process is a straight-
forward approach to modelling CMAC lifespans through the appearing and
disappearing of CMACs in the cell, following our intentions for model sim-
plicity.
As we will see later by simulation in Section 5, the introduction of this birth
and death process preserves the appearance of the distribution of CMAC
area well enough for our purposes.

4.2 Model description

Our aim is to model the behaviour in time of the CMAC population in one
wild-type cell, as defined in Subsection 3.1, with respect to the areas of in-
dividual CMACs, their lifespans within the cell, and the number of CMACs
in the population.
Following the reasoning in Subsection 4.1, we will let CMAC area evolve
according to a multiplicative process in time. We assume that the area of
a single CMAC existing in the population at any given timepoint will de-
velop following its own multiplicative process, independent of the areas of
the other CMACs in the population and of the number of CMACs in the
cell at that time.
The growth of the areas of CMACs residing in the cell are restricted by a sat-
uration mechanism that is proportional to the rigidity of the cell substrate.
As proposed in Subsection 4.1, this will be illustrated by a threshold, which
we from now on will refer to as the substrate threshold, for CMAC area size.
When the area of a CMAC grows larger than the substrate threshold, the
multiplicative process for the area of this CMAC will have zero or negative
expected growth.

CMAC formation and disassembly in the cell will be described by a birth
and death process, as suggested in Subsection 4.1. We assume that new
CMACs are born into the population independently of the CMACs alive at
that time and that the existing CMACs in the population die independently
of other CMACs and of their own area.

Thus, we propose a model in discrete time as follows. Let the number of
CMACs in the cell at time k, k = 1, 2, ..., be N(k), and let the number of
CMACs at time 0, N(0), be fixed. Let the N(0) CMACs alive at time 0
be J(0) = {1, ..., N(0)}, and let the areas of the CMACs alive at time 0
be represented by {Xj(0); j ∈ J(0)}, i.e. {X1(0), .., XN(0)(0)}, which are
sampled from logN(µ0, σ

2
0). Let the CMACs alive at subsequent timepoints

be J(1), J(2), ..., with |J(k)| = N(k), as further described below.
In every time step k the following happens:

17



• A new CMAC is born into the population with probability pb.
Its area at birth will be Xjb

(k), where the index jb = max(J(k−1))+1
is the number of CMACs that has been born into the model so far
including the newly born CMAC. For instance, the first CMAC born
after time 0 will be indexed N(0) + 1. The value of Xjb

(k) is sampled
from logN(µb, σ

2
b ). Thus, every CMAC that is born into the population

is given a random area and a unique index (the area progression of
CMAC jb is Xjb

(k), Xjb
(k +1), Xjb

(k +2), . . . for all time points t ≥ k
when jb is still alive, i.e. jb ∈ J(t)).

• Every CMAC that is alive dies with probability p. These events
are independent of the other CMACS alive and of the corresponding
CMAC area. From this we have that CMAC life times will be Ge(p)-
distributed, counting the number of times that a CMAC survives from
one time index to another. Thus, if the CMACs that were killed are
given by D(k), we have that J(k) = (J(k − 1) ∪ B(k)) \D(k), where
B(k) = jb, where jb is as above, if a birth did occur, or B(k) = ∅ if no
birth occurred. This and the above paragraphs constitute our birth
and death process for the number of CMACs in the cell.

• The area of a CMAC that was alive at time k−1, and which is
not killed in k, will be multiplied by a random factor. This ran-
dom factor will be unique for every CMAC and independent of other
CMACs and their multiplicative factors, so that, following the descrip-
tion in Subsection 4.1, the random factor multiplied with Xj(k − 1),
j ∈ {J(k− 1)∩ J(k)}, the area of CMAC number j at time k− 1, will
be called Yj(k). The distribution of Yj(k) will depend on the area of
the CMAC,

Yj(k) ∼

{
logN(µ, σ2) if Xj(k − 1) ≤ s,

logN(ν, σ2) if Xj(k − 1) > s,

where ν ≤ 0 and s is the substrate threshold. Thus we have that

Xj(k) = Xj(k − 1) · Yj(k), j ∈ {J(k − 1) ∩ J(k)}.

For future purposes we will let the time CMAC j has lived so far at time
step k be called Lj(k), j ∈ J(k). A schematic overview of the model can be
seen in Figure 3.

Our model combines the number of CMACs in the population with individ-
ual multiplicative processes for CMAC areas and individual births and life
times. The number of CMACs in the model is independent of CMAC areas,
since CMACs die independently of their area and new CMACs are born into
the population with the same probability at every time step.
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The model has parameters pb, p, µb, σ
2
b , µ, σ2, ν and s. The parameters pb

and p determines the pace of change of our birth and death process, the
turnover of the model system. The parameter µ gives the growth of CMAC
areas in every time step while ν and s regulates the behaviour at the upper
threshold for CMAC area size.
The parameters µ0 and σ2

0 of the lognormal distribution from which the
areas of CMACs initially are sampled are not further considered, since we
are primarily interested in the behaviour of the population at stationarity.
That is, all N(0) CMACs alive at time 0 will eventually die out as time
tends to infinity.

Since the model is in discrete time, the appearance of the model changes
with the scaling of time. Thus, the effects of changes in the turnover or the
growth of CMAC areas may be hard to interpret as the time scale is changed,
and it might be hard to find a customary way of relating model results to
data. As it is not eligible that the time scale should affect the model in this
way, a future undertaking will be to take the model into continuous time,
which also might reduce the number of parameters in the model. We will
present a few results facilitating this in Subsection 4.4.

From the description of the model, we see that it not fully captures the
characteristics of some of the CMAC properties that we intend to describe.
CMAC lifetimes will, as seen in Subsection 3.2.2, not be entirely comprised
by the geometric distribution, and model CMAC area trajectories will not
resemble the concave character of real CMAC area trajectories, seen in Fig-
ure C.7, to its full extent. Instead, CMAC area development in the model
will typically be given by an initial growth, followed by a stage of zero
growth, and an instant death; this can be seen in simulations in Section 5.
These discrepancies between model and data are obvious disadvantages, but
they are also consequences of our intentions to build a simple model. A more
complicated model, which may or may not correct for these discrepancies,
will be time-consuming to construct. We believe that it is better to keep
these drawbacks in mind and focus on analysis of this model, providing a
solid ground for future model development. It is also important to remem-
ber that there are many possible extensions and advancements of the model;
to build a complex model at this stage might not be fruitful.

4.3 Analytical results

The number of CMACs in our model cell population is independent of the
areas of CMACs. This allows us to analyze the birth and death process rep-
resenting the number of CMACs and the multiplicative processes describing
individual CMAC area development separately. We will start by giving
some results for the number of CMACs in the model and then continue with
results for individual CMAC area.
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Figure 3: Schematic overview of the model. The circles represent births
and the lines the multiplicative processes of CMACs. The arrows represent
deaths. The vertical alignment is for aesthetical reasons only.

4.3.1 Number of CMACs in the population

The number of CMACs in the population, {N(k), k ≥ 0}, is a time homo-
geneous Markov chain. This follows since new CMACs are born into the
population with the same probability in every time step and the distribu-
tion of the number of dead CMACs in every time step only depends on the
current number of CMACs alive. This Markov chain has an infinite state
space 0, 1, 2, ... and the transition probabilities

Pmn = P (Xj(k + 1) = n|Xj(k) = m)

are given by

Pmn = 0 , n ≥ m + 2

Pm,m+1 = P (N(k) = m + 1|N(k − 1) = m) = (1− p)mpb

Pmn = P (N(k) = n|N(k − 1) = m)

=
(
m
n

)
pm−n(1− p)n−1

(
1− p + pb

(
m+1

m+1−np− 1
))

, n ≤ m,
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see Appendix A.2. The transition matrix P is thus a form of triangular
matrix and given by

P =



P00 P01 0 . . . . . . . . . . . . . . . . . .
P10 P11 P12 0 . . . . . . . . . . . . . . .
P20 P21 P22 P23 0 . . . . . . . . . . . .
...

...
...

...
. . . . . . . . . . . . . . .

Pk0 Pk1 Pk2 Pk3 . . . Pk,k+1 0 . . . . . .
...

...
...

...
...

...
. . . . . . . . .


.

When the Markov chain is in state 0, there are no CMACs in the cell,
which in reality is not likely to happen as the cell is unable to exist without
CMACs. Therefore, it might seem unreasonable to allow transitions from
this state, but it is also in the model unlikely to reach state 0 when the
expected value of N(k) is reasonably large (> 10), as can be seen in model
simulations, although not performed in this thesis.

There is an apparent asymmetry in the development of N(k), since Pm,n = 0
if n ≥ m + 2, and Pm,n > 0 otherwise, so that, if N(k) = m, m ≥ 1, N(k)
may always decrease to states m − 1, ..., 0, but never increase further than
m + 1. This obviously simplifies the model, and keeping in mind that time
steps in the model are thought to be very small, with negligible probability
for two births or two deaths, it is unproblematic. Another way to consider
this is that all CMACs have individual births and deaths. Then we may
think of CMAC lifespans as individual, and refrain from considering the
whole population.

The expected value of N(k) satisfies

E(N(k)) → pb

p
as k →∞.

If, in addition, E(N(0)) = pb/p, it follows that E(N(k)) = pb/p holds
exactly for all k. See Appendix A.3 for details.
This means that the expected number of CMACs in the model is constant
over time, which corresponds to results from data seen in Subsection 3.2.1.

4.3.2 CMAC area development

We will start by considering the multiplicative CMAC area development
when s = ∞, i.e. when there is no upper threshold for CMAC area size.
Then, following the description in Subsection 4.2, the logarithm of the area
of CMAC j at time k, given j ∈ J(k) and Lj(k) ≥ 1, can be expressed as

log Xj(k) = log Xj(k − Lj(k)) +
k∑

i=k−Lj(k)+1

log Yj(i)
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and has a normal distribution with expected value µb +Lj(k)µ and variance
σ2

b + Lj(k)σ2 (the distribution at birth is N(µb, σ
2
b )).

We are interested in the distribution of the area of a randomly chosen CMAC
when stationarity has been reached. A randomly chosen CMAC at time
k, where k is large, will have lived for a geometrically distributed time
until k, see Appendix A.4. Now, let Fi = L(log Xj(k)), Lj(k) = i, j ∈
{J(k−i)∩J(k)}, be the distribution of the logarithm of the area of a CMAC
that has lived for i time steps. Since Lj(k) has a geometric distribution, we
have for the distribution F of the logarithm of the area of a CMAC that is
alive at k that

F =
∞∑
i=0

(1− p)ipFi.

When s = ∞ we have Fi ∼ N(µb + iµ, σ2
b + iσ2), so that F is a geometrically

weighted sum of normal distributions. F will, since the number of CMACs in
the population is independent of CMAC areas, represent the distribution of
the logarithm of the area in the whole population when stationarity has been
reached. Figure 4 shows a histogram of simulated values from F transformed
back to the original scale. Since F is affected by the lack of a threshold for
CMAC area size and also depends on the choice of model parameters, further
characterized in Section 5, we show it for comparison only and refrain from
further analysis of its properties.

If we let Q(y;x) = P (log Xj(k) ≤ x| log Xj(k − 1) = y), for j ∈ {J(k −
1) ∩ J(k)}, then Q(y;x), viewed as a function of y, will be the distribution
function of a normally distributed random variable Z with V ar(Z) = σ2

and, when s = ∞, E(Z) = y + µ, which depends only on y = log Xj(k − 1).
Therefore, {Xj(l); j ∈ J(l)} is a Markov chain with continuous state space
having transition densities as described by Q(y;x), see [8] for more infor-
mation on these types of Markov chains. Now, the Chapman-Kolmogorov
equations can be used to calculate Fi recursively as

Fi(x) =
∫

Q(y;x)dFi−1(y),

for i ≥ 1, with starting distribution F0 ∼ N(µb, σ
2
b ). These calculations

can be carried out numerically by discretizing the system, i.e. limiting and
dividing the state space into (small) parts, and calculating the transition
probabilities in the discretized state space by numerical integration; this will
not be considered in this thesis, instead we will look at the corresponding
distribution for CMAC area (when s < ∞) by means of simulations.

The expected value of log Xj(k) given log Xj(k − 1) = y, j ∈ {J(k − 1) ∩
J(k)}, is

µ(y) =
∫ ∞

−∞
xdQ(y;x),
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which for s = ∞ will be a linear function µ(y) = y + µ. When s < ∞, we
have that

µ(y) =
{

y + µ, y ≤ log(s)
y + ν, y > log(s)

,

as shown in Figure 5 for ν = 0.

If s < ∞, Q(y;x) will be the distribution function of a N(µ(y), σ2)-distributed
random variable and we will have to use the Chapman-Kolmogorov equa-
tions to calculate Fi.

Under certain conditions (s < ∞, ν < 0), the Markov chain with transition
kernel Q has an asymptotic distribution, corresponding to the logarithm
of the area of a randomly picked CMAC that has lived for a very long
time. However, due to the geometric life length of CMACs, this asymptotic
distribution is not too important for us.

4.4 Future model development

There are several ways to expand and develop the model, motivated by
biological as well as statistical considerations, which we will elaborate further
in the discussion. It is, however, eligible to take the model into continuous

Figure 4: Histogram of 10000 simulated and transformed values from F .
Here, p = 0.002, µ = log 1.001, σ = 0.01, µb = −1.83, σb = 0.1 and s = ∞;
except for s, these parameter values are the same as in simulation i) of
Section 5.
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time before proceeding with other developments, but the full realization of
this is beyond the scope of this thesis. We will instead present a few results
on the number of CMACs facilitating this accomplishment; as these are
rather technical they are shown in this section.

Given time k and N(k) = m > 0, the time to the next event, i.e. birth of
a new CMAC or death of a living one, is the minimum of two first success-
distributed random variables W = Wg + 1 and V = Vg + 1, where Wg ∼
Ge(pb) and Vg ∼ Ge(1 − (1 − p)m); Vg represents the minimum of the m
geometrically distributed life times of the CMACs alive.
Now, let the time be rescaled with p so that W and V are scaled to pW
and pV . Then, if pb → 0 such that pb/p → ρ, we have that pW and pV
converge to exponentially distributed random variables with intensity ρ and
m respectively, see Appendix A.5, and thus that the time to the next event
in the process converges to the minimum of these two random variables,
which is Exp(ρ + m)-distributed.

This means that the system converges to a M/1/M/∞ queue with arrival in-
tensity ρ representing births and departure intensity m representing deaths;
the departure intensity depends on the number of CMACs in the cell popula-
tion. The stationary distribution of the M/1/M/∞ system will be Poisson(ρ)
[16]. This convergence is not surprising; choosing memoryless geometric
distributions for CMAC life times in discrete time gives us convergence to
memoryless exponential distributions in continuous time, and our discrete
process for the number of CMACs in the cell population is the analogue of

Figure 5: µ(y), E(log Xj(k)| log Xj(k − 1) = y), ν = 0.
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a M/1/M/∞-process in continuous time.
In fact, the number of CMACs in our discrete-time model also shows a good
fit to the Poisson distribution, see Figure C.9, resembling the behaviour seen
in data, see Figure C.2; these quantile-quantile plots illustrate the normal
approximation to the Poisson distribution. This, together with the results
on the expected value of the number of CMACs in the model shown in Sub-
section 4.3.1, shows that the model depicts the development of the number
of CMACs well.

5 Model simulations

Computer based model simulation can be used to validate a model and con-
cretize analytical results, providing visualization of and insight into (long-
time) model behaviour. Simulations can also be used to study model per-
formance in situations where no analytical results can be obtained. Here,
computer simulations will be used to illustrate model behaviour in three
different situations.
i) When the substrate threshold s is set to some finite value, the distribu-
tion of CMAC area differs from the corresponding distribution for infinite s,
which were derived analytically in Subsection 4.3.2. It is of interest to study
this distribution and compare it to the corresponding empirical distributions
from data.
ii) It is eligible to estimate the parameters of a model. When a new model is
constructed, parameter estimation is often an important step in confirming
the ability of the model to mirror empirical results. As meticulous parame-
ter estimation is beyond the scope of this thesis, we will instead derive rough
parameter estimates, further described below, to study the relation between
model and data.
iii) When the cellular system is perturbed, as described in Subsection 3.1,
CMAC behaviour may vary. Two perturbations facilitating different be-
haviour of the CMAC population are overexpression of the proteins rac and
rho respectively. We will examine the ability of the model to qualitatively
resemble the behaviour of the CMAC population in these perturbed states.
In i) and iii), the values of the parameters pb, p and µ will be intuitively cho-
sen or motivated by biological reasons. In all simulations, the parameter ν,
regulating expected CMAC area growth as CMAC area becomes larger than
s, will be set to 0 for simplicity, and σb and σ, the standard deviations of the
distribution of CMAC area at birth and of the multiplicative factor respec-
tively, will be set to small values, 0.1 and 0.01, to keep the system robust.
The parameter µb will be set to −1.83, as this corresponds to the smallest
experimentally detectable value (exp(−1.83) ≈ 0.16) of CMAC area; other
values could be used here, e.g. the smallest area at which an integrin cluster
can be considered to be a CMAC, but as this is no more than a matter of
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scaling we will use −1.83.

i) In this situation, we will study the ability of the model distribution of
CMAC area, when s < ∞, to resemble the corresponding empirical distri-
bution. We will also explain the setup and the output of the simulations.
Figure 6 shows an example of a simulation with pb = 0.08, p = 0.002, s = 5,
µ = log 1.001 and µb = −1.83; the parameter values are arbitrarily chosen to
provide a reasonable simulation setup. As we are interested in the behaviour
of the process at stationarity, the first 20000 time steps will not be consid-
ered; in the plots, time steps 20000 to 40000 are used. The upper plot shows
the progress of the simulation, with the coloured lines representing the de-
velopment of individual CMAC areas, and the lower left plot shows, in line
with Figure C.1, the progress of total CMAC area, the number of CMACs,
the average CMAC area multiplied by 10 and the maximum CMAC area
multiplied by 10. The lower right plot shows the simulated distribution of
CMAC area at the end of the simulation.

Figure 6: Example of model simulation with pb = 0.08, p = 0.002, s = 5,
µ = log 1.001 and µb = −1.83.

In the lower left plot, we see that the simulation resembles data fairly well.
The number of CMACs and the total CMAC area vary around their av-
erages, and the average CMAC area is almost constant. The lower right
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plot also shows a good resemblance to the empirical distributions of CMAC
area seen in data. In the upper plot, we see model CMAC area progression,
which differs from real CMAC area progression, as discussed in Subsection
4.2, although here the trajectories are visually amplified by the scaling. The
threshold specified by s = 5 is only reached by the areas of two CMACs,
but we see that their increase is halted there. Another simulation example
which may be used for comparison is shown in Figure C.11.

To further validate our results, we will consider instantaneous empirical dis-
tributions of CMAC area from three different simulation setups, plots of
which can be seen in Figure C.10. We see that, for all the choices of param-
eters, the simulated instantaneous empirical distributions of CMAC area
correspond well to those seen in data, cf Figure C.5, and therefore conclude
that the model is able to provide reasonable distributions for CMAC area
when s < ∞.

ii) Parameter estimation in the model is difficult, both due to the quality of
data and the nature of the parameter setup in the model. Despite this, we
will present estimates of the parameters. These estimates are very rough,
meaning that they lack analytically derived properties, and the methods
used in obtaining them are also questionable. Furthermore, we have chosen
our estimators intuitively as it is beyond the scope of this thesis to conduct
a wider study of possible estimators. Nevertheless, we want to include these
estimates to show that this model have the ability to resemble data, and
therefore might capture the relevant biological mechanisms behind CMAC
behaviour. The estimation procedure is presented in Appendix B.
Using data from field 3 of the 090527 dataset we get the parameter estimates
p = 0.00092, pb = 0.026, s = 2.25 and µ = 1.0008. An example of a
simulation using these parameters can be seen in Figure C.11, in which we
see that model behaviour using our rough parameter estimates resembles
data.

iii) It is of interest to study the capability of our model to describe CMAC
behaviour in situations outside its usual scope. Therefore, we will describe
CMAC behaviour in perturbed cells; these are not wild-type (unperturbed)
cells, the behaviour of the CMAC population of which we attempt to model.
We will qualitatively study the ability of the model to resemble CMAC be-
haviour in a system that has been perturbed with either overexpression of
the protein rac or overexpression of the protein rho, comparing our results
with the corresponding data in the static 090316 dataset.
The cellular proteins rac and rho are important in regulating the formation
and disassembly, and growth of CMACs [7], having different functionality in
these processes. Rac induces formation and growth, shorter life times and
lower maximum area, while rho gives fewer, long-lived CMACs, which has
increased probability to grow large. Rac and rho exist naturally in the cell,
although in varying concentration in different parts.
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Figure C.12 shows the empirical distributions of CMAC area in 4 different
cells from each perturbation and from the unperturbed system, all from the
090316 data. The two perturbed systems differ in the number of CMACs,
with the rac perturbation having 144 to 446 CMACs and the rho perturba-
tion 18 to 40 CMACs. The distribution of CMAC area also differ with much
emphasis on the small values in the rac perturbation and larger values in
the rho perturbation.
The two perturbations correspond to a varying turnover and an alternating
number of CMACs in the model, both of which are related to the param-
eters p and pb. Additionally, the distribution of CMAC area will also be
regulated by these if µ is unchanged. As this is a qualitative comparison, p,
pb and the other parameters of the model are set according to our biological
knowledge and then fine-tuned for illustrative purposes. Figures C.13 and
C.14 shows instantaneous distributions from the simulations corresponding
to overexpression of rac and rho respectively, and we see a good resemblance
to results in data.

All in all, our simulations show that the model is able to produce output that
are similar to that which we have seen in data. Our analysis has certainly
been very brief, but as the main purpose of our simulations is to illustrate
model behaviour and not to make strong conclusions, we are satisfied with
this.

6 Discussion

In this thesis, we have made a first try at modelling the development of the
CMAC population in one wild-type cell, with respect to the areas of the
CMACs in the population, their life times and the number of CMACs in the
cell.

Setting out from exploratory data analysis on CMAC populations in real
cells, and biological theory, we have deduced a stochastic model for the
CMAC population with respect to the properties described above. Analyt-
ical results has been derived to validate and increase the understanding of
the model, and simulations has been performed to provide visualization and
further insight into model behaviour. We have seen that the model is able
to mimic the behaviour of the CMAC population in one cell, with respect
to most aspects of the properties described above, in different situations.

As noted in Subsection 4.2, the model does not capture the characteristics
of CMAC life time and individual CMAC area progression seen in data to
their full extent.
The empirical distributions of CMAC life time are of a more heavy-tailed
character than the geometric distribution of CMAC life time in the model,
which is also less skewed than the empirical distributions. This means that
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the model fails to encompass the large amount of short life times and the
longest life times seen in data, which also affects e.g. the model distribution
of CMAC area. A possible extension of the model correcting for this problem
would be to change the distribution of CMAC life time and possibly also the
distribution of the time that passes between births; this would mean that
the Markov property is lost, making model analysis more difficult. Another
addition that might change the distribution of CMAC life time would be to
allow different death probabilities of CMACs, dependent of life time or area,
corresponding to a biological mechanism with different CMAC phenotypes;
this has to be further experimentally studied though.
The progression of CMAC area over time in data, shown in Figure C.7,
shows a predominantly concave character, while CMAC area trajectories
in the model typically show an initial increase followed by a stage of zero
expected growth and instant death. Thus, our model is unable to capture
CMAC area development fully. It is known by biologists that the life of
CMACs end from different reasons, affecting area progression in various
ways. Therefore, implementing more possibilities for CMAC death in the
model, inducing different behaviours of CMAC area, might help in correct-
ing this issue. It should be remembered though, in both of these situations,
that changing the model may give rise to new discrepancies.
Aside from these dissimilarities, we have seen that the model captures the
behaviour of CMAC areas and the number of CMACs in one cell well, using
both analytical results and simulations. The distribution of CMAC area in
the model shows a good resemblance to data, see e.g. Figure C.10, and the
average CMAC area is almost constant over time, see e.g. Figure 6. The
number of CMACs in the model shows a good fit to the Poisson distribu-
tion, as described in Subsection 4.4, and the average value of the number of
CMACs in the model is constant over time. Considering our modest ambi-
tions for modelling and the simplicity of our model, the performance of the
model meets our expectations by far.

The properties of the parameter space and estimation of the parameters has
only been briefly considered in this thesis. It would be of interest to further
study the connections between the parameters and to identify subsets of
the parameter space that yields specific model results. Improved parameter
estimation would aid an increased understanding of the parameter space and
also facilitate more insight into the relationship between model and reality;
furthermore, it is very important in developing the predictive qualities of
the model. It is important to remember though, that there might be some
model improvements, further discussed below, that will facilitate further
understanding of the parameters, that might be considered first.

There are many ways to gain an increased analytical understanding of the
model and/or develop the model setup; this may also facilitate insight into
the properties of the CMAC population. As stated in Subsection 4.2, it
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is eligible to take the model into continuous time to eliminate time scale
dependency. Additionally, this may also reduce the number of parameters,
which will facilitate parameter estimation and understanding of the param-
eter space. Thus, taking the model into continuous time will also aid other
analytical undertakings, such as inferential procedures and sensitivity anal-
ysis, for both of which improved parameter estimation also is vital.

Expansion of the model through the inclusion of new explanatory variables,
facilitating an increased understanding of the model and the behaviour of
the CMAC population, can be done in several ways. When adding new
variables to the model, it is important that they have good descriptive qual-
ities of their own, contributing to a deeper insight into CMAC behaviour.
Also, a close collaboration with biologists, facilitating increased theoretical
insight and further developments in experimental design, as well as widened
exploratory analysis, will be of great importance. Adding new variables to
the model will increase model complexity and thorough analysis of both
data and model is critical in this process.
There are a few variables, other than CMAC area and the number of CMACs,
that has been suggested to have good explanatory features, e.g. the velocity
and mean intensity of CMACs. The velocity and the life length of CMACs
has been put forward by biologists as together being important in explaining
CMAC area, and the mean intensity is a, for Staffan Strömblad’s research
group unique, measure of CMAC concentration that is believed to be of
importance.
Another way to expand the model is to add a spatial dimension. This will
make it possible to describe the development of the CMAC population in
different parts of the cell more closely instead of restricting the model to
some part of the cell.

Modelling biological systems is complicated, both from the complexity of the
system and, often, from limitations in data. Although our data are impaired
with some difficulties, as discussed in Subsection 3.3, their single-molecule
resolution in both space and time provides unique information enabling mod-
elling and analysis of CMAC behaviour. That said, there are also areas of
improvement, e.g. the time resolution, which is already experimentally en-
hanced.
How to handle biological complexity raises several issues in modelling. Clas-
sically, cellular systems are often modelled by a reductionist, bottom-up
approach, where subsystems are added to an increasing model. Cellular
systems are, however, complex by nature, being built up from networks of
interacting genes and proteins, including interwined positive and negative
feed-back loops [2]. There is also the possibility of emergent phenomena,
i.e. that the system as a whole is more than the sum of its parts. It has
therefore been suggested that reductionist approaches will not suffice in or-
der to describe biological systems [17]. We have therefore used a top-down
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approach in trying to find the simplest possible population model that can
account for the observed distributions.
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A Analytical results

A.1 Notes on the lognormal distribution

The lognormal distribution is closely related to the normal distribution;
the definition of a lognormal random variable X is that log X is normally
distributed [3]. The lognormal distribution is often parameterized by the
parameters for the corresponding normal distribution, µ and σ2, and corre-
spondingly, the notation used within this thesis is logN(µ, σ2). The lognor-
mal distribution is positive-valued, with density

f(x) =

 1√
2πσx

e−
(log x−µ)2

2σ2 if x > 0

0 if x ≤ 0.

The expected value of the lognormal distribution is

E(X) = eµ+ 1
2
σ2

and the variance is
V ar(X) = (eσ2 − 1)e2µ+σ2

.

A.2 Transition probabilities of {N(k), k ≥ 0}

Let Y ∼ Be(pb) and Z ∼ Bin(m, p) be independent, and let N(k− 1) = m,
then N(k) = m + Y − Z . This follows since Y will be the number of new
CMACs and Z will be the number of dead CMACs in time step k. The
transition probabilities can then be derived as follows.

Pm,m+1 = P (N(k) = m + 1|N(k − 1) = m)

= P (Y = 1, Z = 0|N(k − 1) = m)

= P (Y = 1|N(k − 1) = m) · P (Z = 0|N(k − 1) = m)

= pb(1− p)m

Pm,n = P (N(k) = n|N(k − 1) = m)

= P ({Y = 0, Z = m− n} ∪ {Y = 1, Z = m− n + 1}|N(k − 1) = m)

= (1− pb)
(

m
m−n

)
pm−n(1− p)n + pb

(
m

m−n+1

)
pm−n+1(1− p)n−1

= pm−n(1− p)n−1
((

m
n

)
(1− p) + pb

((
m

m−n+1

)
p−

(
m
n

)
(1− p)

))
= pm−n(1− p)n−1

((
m
n

)
− p

(
m
n

)
+ pb

((
m+1

n

)
p−

(
m
n

)))
=

(
m
n

)
pm−n(1− p)n−1

(
1− p + pb

(
m+1

m+1−np− 1
))

, n ≤ m.
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A.3 Expected value of N(k)

Let Y ∼ Be(pb) and Z ∼ Bin(m, p) be independent. The expected value of
N(k) conditional on N(k − 1) is

E(N(k)|N(k − 1)) = N(k − 1) + E(Y − Z)
= N(k − 1) + pb − pN(k − 1)
= (1− p)N(k − 1) + pb.

Now put k = 1 and take expectation of both sides of the equation above.
Then, if E(N(0)) = pb/p, it follows that

E(N(1)) = (1− p)E(N(0)) + pb

= (1− p)N(0) + pb

= (1− p)pb
p + pb

= pb
p

and, assuming that E(N(l)) = pb/p, we have for k = l + 1 that

E(N(l + 1)) = E(E(N(l + 1)|N(l)))
= E((1− p)E(N(l)) + pb)
= (1− p)pb

p + pb

= pb
p

and the result E(N(k)) = pb/p follows by induction.

If N(0) 6= pb/p we will show that

E(N(k)) = (1− p)kN(0) + pb
1− (1− p)k

p
.

Then it follows that E(N(k)) → pb/p as k → ∞. We will again use induc-
tion; for k = 1 we have

E(N(1)) = (1− p)1N(0) + pb
1− (1− p)1

p
.

Assuming that

E(N(l)) = (1− p)lN(0) + pb
1− (1− p)l

p
,

we have

E(N(l + 1)) = E(E(N(l + 1)|N(l)))

= E
(
(1− p)

(
(1− p)lN(0) + pb

1−(1−p)l

p

)
+ pb

)
= (1− p)l+1N(0) + pb

1−(1−p)l

p − pb(1− (1− p)l) + pb

= (1− p)l+1N(0) + pb

(
1−(1−p)l−p(1−(1−p)l)+p

p

)
= (1− p)l+1N(0) + pb

(
1−(1−p)l+p(1−p)l

p

)
= (1− p)l+1N(0) + pb

1−(1−p)l+1

p
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and then we are done.

A.4 Distribution of the life time of a randomly chosen CMAC

Fix a time point k and let K >> k. Let b1 < b2 < . . . < bN ≤ K denote the
birth times of CMAC j = 1, . . . , N born before or at time K and d1, . . . , dN

the corresponding death times. Then Ij = [bj , dj ] denotes the life time of
CMAC j. Choose J randomly from {1, . . . , N}. Let LJ = max(0, k − bJ).
As we are interested in the distribution of the time that a CMAC has lived
so far given that it is alive at k, P (LJ = i|IJ covers k) is the quantity of
interest. For i ≥ 0 we have that

P (LJ = i|IJ covers k) ∝ P (LJ = i, IJ covers k)
=

∑K
b=0 P (LJ = i, IJ covers k|bJ = b)P (bJ = b)

= P (|IJ | ≥ i + 1)P (bJ = k − i)
= (1− p)iP (bJ = k − i).

Since {bj} constitutes a discrete time renewal process, we have as a conse-
quence of the Key Renewal Theorem [14] that, as K grows, P (bJ = k − i)
will tend to a constant function of i when k is large enough, in the sense
that

max
0≤i≤imax

lim
k→∞

lim
K→∞

K|P (bJ = k − i)− 1/K| = 0

for any fixed (and large) imax. Asymptotically, we may therefore drop the
term P (bJ = k − i), and so the right-hand side is proportional to the prob-
ability function of a geometric distribution.

A.5 Weak convergence of first success random variables

For X ∼ Fs(p) we have that, pX
d→ Z, where Z ∼ Exp(1), when p → 0.

For x ∈ R+, consider

P (pX > x) = P (X > x
p ) = P (X >

[
x
p

]
) = (1− p)

h
x
p

i
⇔ log P (pX > x) =

[
x
p

]
log (1− p),

which goes to −x as p → 0. Thus, P (pX > x) goes to e−x as n → ∞ and
the result is shown.

As for the situation in Subsection 4.4, since pb/p → ρ and (1−(1−p)m)/p →
m, we have that

pY = min
((

p
pb

)
pbW,

(
p

1−(1−p)m

)
(1− (1− p)m)V

)
d→ min

(
Z1
ρ , Z2

m

)
as p → 0, where Z1 and Z2 are independent Exp(1)-distributed random
variables, and thus, pY ∼ Exp(ρ + m).
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B Rough parameter estimates

In this section we assume that we have data from one cell observed in k time
steps with a total of m CMACs observed during the whole experiment.

The parameter s is estimated from data with the average of the maxima
of the areas of those CMACs whose average area is larger than 0.8, and
whose life times are at least 4 (these values are chosen to match field
3 of the 090527 data). These boundaries are set because we want the
areas of the CMACs used in the estimation to be reasonably large and
that the their life time should be so long that they have been able to
reach the substrate threshold. Assuming that CMAC j in data lives in
the time index interval [bj , dj ], and that we have n ≤ m observations
(xj1(bj1), ..., xj1(dj1)), ..., (xjn(bjn), ..., xjn(djn)) of the areas over time of CM-
ACs j1, ..., jn, having the abovementioned properties, we have

ŝ =

∑jn

i=j1
max(xi(bi), ..., xi(di))

n
.

The parameter p is estimated by the reciprocal of the average of CMAC life
lengths corrected with the difference in resolution between simulation and
data; as there are approximately 210 time steps in the model for each time
index in data when simulating 20000 time steps we multiply our estimate
with 1/210. Given m observations y1, ..., ym of CMAC life lengths, we have

p̂ =
1

210 · ȳ
.

To estimate pb, we use the fact that the expected value of the number of
CMACs in the model is λ = pb/p and that it, with observations z1, ..., zk of
the number of CMACs in time indexes 1, ..., k, can be estimated by λ̂ = z̄.
Together with p̂, this estimate is used to derive the estimate of pb as

p̂b = λ̂ · p̂.

When estimating µ, we will have to consider the discrepancy between CMAC
area progression in the model, giving multiplicative growth up to a threshold,
and in data, which show a predominantly concave appearance of CMAC area
trajectories. Thus, we will restrict our use of data to two observations of
the area of every CMAC, its area at birth, and its area when one of the
following events occur: the area reaches the estimate of s or, if the estimate
of s is never reached, the area reaches its maximum over the life time of the
CMAC in question. The value of the area of CMAC j when one of these
events occurs is called amax

j . As before, we will only use data on CMACs
with an average area over 0.8 and a life length of at least 4 time steps.
With observations of CMACs j1, ..., jn as above, our estimate of µ is

36



µ̂ =

∑jn

i=j1

(
amax

i
xi(bi)

) 1
(di−bi)·210

n
,

i.e. we use the quotient of CMAC area at that time index when one of the
criterions above has been fulfilled and CMAC area at the first time index
at which the CMAC in question is measured. These quotients are raised to
1/(CMAC life length*210), giving the average of the multiplicative growth
factor over the whole life time of the CMAC in question, corrected for the
difference in resolution. Finally, we take the average of these quotients to
yield µ̂.

C Figures

Figure C.1: The total CMAC area, number of CMACs, average CMAC area
multiplied by 10 and maximum CMAC area multiplied by 10 in 10 cells
(fields; each field corresponds to one cell) from the 090527 data. Fields 1, 9,
12, 19 and 21 undergo cell division at some point.
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Figure C.2: Normal quantile-quantile plot of the number of CMACs over
time in fields 3, 16, 17 and 23 in the 090527 data. Each field corresponds to
one cell.
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Figure C.3: Formation and disassembly of CMACs over time and their sim-
ple moving averages in 8 cells from the 090618 data. Cell division occurs in
time index 0-8 in field 11.
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Figure C.4: CMAC area distribution in subsequent equidistant time indexes
of the cell corresponding to field 5 from the 090618 data. The number of
CMACs is shown inside the histogram.
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Figure C.5: CMAC area distribution in subsequent equidistant time indexes
of the cell corresponding to field 29 from the 090618 data. The number of
CMACs is shown inside the histogram.
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Figure C.6: CMAC life times in 8 cells from the 090618 data. The lines
represent the estimated geometric distribution from the data for the cor-
responding field. Field 11 might be erroneous due to inclusion of corrupt
data from time index 0-8. Note that, since there are no CMACs with a life
time (defined as the number of time indexes that a CMAC lives minus one)
shorter than 1, the geometric distributions are estimated outside the range
of data.
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Figure C.7: CMAC area trajectories for CMACs with an average size larger
than 1 and a life time of more than 4 (the plots show the number of time
indexes that the CMAC in question is alive) in field 16 from the 090527
data.
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Figure C.8: CMAC life time vs average area in 8 fields from the 090618
data. Field 11 might be erroneous due to inclusion of corrupt data from
time index 0-8.

Figure C.9: Normal quantile-quantile plot of the number of CMACs from
4 simulations with pb = 0.08 and p = 0.002. The number of CMACs is
recorded every 1000 time steps, starting from time step 10000, giving a
total of 291 observations in every simulation.
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Figure C.10: Instantaneous empirical distribution of CMAC area at time
points 10000, 13000, 16000 from three different simulations using the follow-
ing parameter configurations: row 1, p = 0.01, pb = 0.0002, µ = log 1.0005,
s = 2; row 2, p = 0.01, pb = 0.0002, µ = log 1.001, s = 2; row 3, p = 0.004,
pb = 0.0002, µ = log 1.0003, s = 2.
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Figure C.11: Example of a model simulation with pb = 0.026, p = 0.00092,
s = 2.25, µ = log 1.0008 and µb = −1.83.
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Figure C.12: Empirical distributions of CMAC area in different cells from
the 090316 dataset. The upper row shows 4 cells perturbed with overex-
pression of the protein rac, the middle row shows 4 cells perturbed with
overexpression of the protein rho and the lower row shows 4 unperturbed
cells for comparison. The scaling of the histograms differ between the rows.
The structure of the static data is somewhat involved and we will not present
any details of the data used.
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Figure C.13: Empirical distribution of CMAC area at time points 10000,
13000, 16000 and 2000 from a simulation with parameters p = 0.3, pb =
0.001, µ = log 1.0007 and s = 10.
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Figure C.14: Empirical distribution of CMAC area at time points 10000,
13000, 16000 and 2000 from a simulation with parameters p = 0.01, pb =
0.0004, µ = log 1.0008 and s = 10.
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