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Abstract

The use of linear time series models to model economic data can
be put into question by the commonly held view that many economic
phenomena is, in some sense, nonlinear. One example is the business
cycle that by many is believed to be asymmetric. The expansions of
the economy tend to last longer with moderate growth while reces-
sions are short-lived with steep downturns in economic activity. To
deal with nonlinearities, several nonlinear times series models have
been developed. In this study, we compare autoregressive integrated
moving average (ARIMA) models with the nonlinear models logistic
smooth transition autoregressive (LSTAR) and self exiting threshold
autoregressive (SETAR). We use monthly data of Swedish industrial
production in 28 branches over the period January 1990 to December
2008. Each model type is fitted to successive subsets of each time
series. Based on the fitted models we make out of sample predictions
of the industrial production over the next 12 months. We compare
the relative performance of the models as judged by the mean square
error of their predictions. Our results show that in general, ARIMA
models outperform both SETAR and LSTAR models. ARIMA mod-
els performed better over the whole range of the prediction horizon.
When we break down the results by industrial branch we find a few
branches where LSTAR and SETAR models appear to perform better.
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1 Introduction

It is a rather widely accepted view that the economy is nonlinear in the sense
that major economic variables have nonlinear relationships. In economic the-
ory it is common that for example production and investment functions are
specified in terms of nonlinear functions. Business cycle theory is an area
in economics where it has long been argued for the presence of nonlinear
relationships. John Maynard Keynes argued that recessions are character-
ized by rapid decline in economic activity while economic expansions are
characterized by a more moderate rate of change in economic activity that
extends for a longer period of time (as compared to recessions). A business
cycle with such characteristics would be asymmetric. Linear models (i.e. au-
toregressive integrated moving average, ARIMA) lack the ability to generate
such asymmetric processes and thus might be a less suitable choice for mod-
eling macroeconomic time series that follows an asymmetric business cycle
(Granger and Teräsvirta, 1993). An alternative approach would be to use
nonlinear models such as threshold autoregressive models (TAR) or smooth
transition autoregressive models (STAR). These models have made positive
contribution to the analysis of macroeconomic time series, for examples, see
Montgomery, Zarnowitz, Tsay, and Tiao (1998) (TAR) and Teräsvirta, van
Dijk, and Medeiros (2005) (STAR).

In this study, time series of Swedish industrial production will be modeled
with STAR, TAR and ARIMA models. Based on these models we will make
predictions of future values of the time series in order to compare their
suitability as models for this type of macroeconomic series as judged by
the performance of the predictions. The time series of industrial produc-
tion, industrial production index (IPI) is published by Statistics Sweden
(SCB).

2 Theory

2.1 Mean function, covariance function and stationarity

Let {Xt} be a time series and let E(X2
t ) <∞. We define the mean function

as:
µX(t) = E(Xt)

We define the covariance function of {Xt} as:

γX(r, s) = Cov(Xr, Xs) = E [(Xr − µX(r))(Xs − µX(s))]

for all integers r och s.
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We can now define a weakly stationary process. {Xt} is weakly stationary
if E(X2

t ) <∞ and if:
µX(t) (1)

and

γX(t, t+ h) (2)

is independent of t for each h (Brockwell and Davis, 2002).

2.2 ARMA and ARIMA models

A widely used group of parametric models in time series analysis is autore-
gressive moving-average models (ARMA). We define a general ARMA pro-
cess in accordance with Brockwell and Davis (2002): {Xt} is an ARMA(p, q)
process if {Xt} is weakly stationary and it holds for every t that:

Xt − φ1Xt−1 − ...− φpXt−p = Zt + θ1Zt−1 + ...+ θqZt−q (3)

and the polynomials (1 − φ1z − ... − φpzp) and (1 + θ1z + ... + θqz
q) have

no common factors. {Zt} is white noise, i.e. a sequence of uncorrelated
stochastic variables with the same expected value (here 0) and variance σ2,
which we will denote {Zt} ∼WN(0, σ2).

A process {Xt} is an autoregressive integrated moving-average, ARIMA(p, d, q)
process if

Yt := (1−B)dXt is an ARMA(p, q)-process. (4)

(Brockwell and Davis, 2002). The operator B is the backward shift operator
and its application gives BXt = Xt−1, d is a non-negative integer. The case
d = 0 gives directly that Xt is an ARMA process. We can conclude from the
preceding that ARIMA models can be used to model non-stationary time
series as long as transformation of the original series according to (4) gives
a series that can be modeled as a stationary ARMA process.

2.3 SETAR models

We define a TAR model in accordance with Peña Sánchez de Rivera, Tiao,
and Tsay (2001):

Xt = φ
(j)
0 + φ

(j)
1 Xt−1 + ...+ φ(j)pj Xt−pj + Zt if γj−1 ≤ Xt−d < γj (5)
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where

Zt ∼WN(0, σ2) and −∞ = γ0 < γ1 < ... < γk−1 =∞

Xt−d is the threshold variable and γj , j = 0, ..., k − 1 are our thresholds.
Since the threshold variable is the series d lagged value this version of TAR
is referred to as Self Exciting TAR (SETAR).

Within the k different regimes the model follows separate autoregressive
models (AR). An AR model is an ARMA model as defined in (3) where
θj = 0 for j = 1, ..., q. In econometric applications, when the aim is to
capture the different dynamics that is believed to govern the economy during
expansions and contractions, SETAR models are often restricted to contain
two regimes.

2.4 LSTAR models

Criticism of the use of TAR models for modeling macro economic time series
was partly concerned with the model’s sharp switching between the different
regimes. Critics claimed that even though individual economic actors might
change their behavior in a dramatic and quick fashion, those changes would
not occur simultaneously in time and on an aggregated level more smooth
transition between the states of the economy would be more realistic. The
LSTAR model was suggested as an alternative model that did not suffer from
this shortcoming (Granger and Teräsvirta, 1993).

We define a LSTAR model in accordance with Dijk, Teräsvirta, and Franses
(2002), however with the modification that we allow the order of the AR-
models to differ (p1 does not have to equal p2). The following is our defining
equation of the LSTAR model:

Xt = (φ1,0 + φ1,1Xt−1 + ...+ φ1,p1Xt−p1) + (6)
(φ2,0 + φ2,1Xt−1 + ...+ φ2,p2Xt−p2)G(Xt−d; γ, c) + Zt

where Zt ∼ WN(0, σ2). the first subscript i, in φi,j indicates regime mem-
bership and the second subscript, j, indicates which order the parameter
has in its regime. Furthermore we have d, γ and c which are constants where
d > 0 and γ > 0.

The function G(Xt−d; γ, c) = {1 + exp(−γ(Xt−d − c))}−1, i.e. the logistic
function which has the properties G(Xt−d; γ, c) ∈ [0, 1] and it is also contin-
uous. The character of the logistic function depends on the value of γ. In
general, higher values of γ gives a more sharp transition between the two
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regimes. For high values of γ the logistic function tends towards the indi-
cator function 1[Xt−d>c]. This means that the LSTAR model in such cases,
from a practical point of view, is a SETAR model. The parameter c acts as
a threshold value and we can note that G(Xt−d = c; γ, c) = 0.5 (Dijk et al.,
2002).

In figure 1 we have plotted the logistic function for different values of γ.
Higher values of γ shrink the interval ofXt−c that gives values ofG(Xt−d; γ, c)
that are neither close to 1 or 0.
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Figure 1: the logistic function for different values of γ

6



2.5 Methods of prediction

2.5.1 Predictions based on ARMA and ARIMA models

The following description of prediction methods based on ARMA and ARIMA
models is mainly based on Brockwell and Davis (2002). Assume that we have
observed the n first observations of a stationary time series {X1, ..., Xn}.
When predicting Xn+h , h > 0 we will use the best linear predictor by which
we intend the linear combination of 1, X1, ..., Xn that minimizes the mean
squared error of the prediction. We let PnXn+h denote the best linear pre-
dictor of Xn+h based on 1, X1, ..., Xn. The predictor takes on the following
form

PnXn+h = a0 + a1Xn + ...+ anX1

and we can decide the coefficients a0, a1, ..., an by minimizing the func-
tion

S(a0, a1, ..., an) = E
[
(Xn+h − a0 − a1Xn − ...− anX1)

2
]

We take the partial derivative with respect to each coefficient aj and put
them equal to zero

∂S(a0, a1, ..., an)

∂aj
= 0 , j = 0, 1, ..., n (7)

and end up with the following system of equations

E

[
Xn+h − a0 −

n∑
i=1

aiXn+1−i

]
= 0 (8)

E

[
(Xn+h − a0 −

n∑
i=1

aiXn+1−i)Xn+1−j

]
= 0 , j = 1, ..., n (9)

We can consider the operator Pn as a special case of a general prediction oper-
ator P (Y |W) where Y and W = (Wn, ...,W1) are any random variables with
finite second moments and known means µ = E[Y ], µi = E[Wi] and known
covariances Cov(Y, Y ), Cov(Y,Wi), Cov(Wi,Wj). P (·|W) is a function that
converts Y into P (Y |W). In the case of Pn we have that W = (Xn, ..., X1).
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The prediction operator P (·|W) has a number of useful properties that can
facilitate the calculation of the best linear predictor.

If we assume that E[U2] <∞, E[V 2] <∞, Γ = Cov(W,W) and β, α1, ..., αn
are constants. The prediction operator P (·|W) has (among others) the fol-
lowing three properties (Brockwell and Davis, 2002)

1. P (α1U + α2V + β|W) = α1P (U |W) + α2P (V |W) + β

2. P (
∑n

i=1 αiWi + β|W) =
∑n

i=1 αiWi + β

3. P (U |W) = E[U ] if cov(U,W) = 0

If we now study the defining equation for a stationary AR(p)-model (i.e. an
ARMA(p, 0))

Xt = φ1Xt−1 + ...+ φpXt−p + Zt (10)

Zt ∼ WN(0, σ2) and Zt is uncorrelated with Xs for each s < t. For n > p
we then apply the prediction operator Pn to both sides of 10 (changing the
time index by t = n+ 1) and receive

PnXn+1 = Pn(φ1Xn + ...+ φpXn+1−p + Zn)

= φ1PnXn + ...+ φpPnXn+1−p + PnZn

= φ1Xn + ...+ φpXn+1−p + PnZn

= φ1Xn + ...+ φpXn+1−p

(11)

Where we have used, in order, property 1-3 above and thus concluded that
the best linear predictor of an AR(p)-model can be determined directly from
its defining equation. This result will be reused when we make predictions
based on SETAR and LSTAR models.

We will now decide the best linear predictor based on an ARIMA model.
We have a time series {Xt} and further, according to (4),

(1−B)dXt = Yt, t = 1, 2, ... (12)

where {Yt} is an ARMA(p, q) process. The preceding equation can be rewrit-
ten as

Xt = Yt −
d∑
j=1

(
d

j

)
(−1)jXt−j , t = 1, 2, ... (13)
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To simplify the notation we will change the indexation of the time t. We as-
sume that we have observed X1−d, X2−d, ..., Xn of the time series {Xt} which
means that we have observed Y1, ..., Yn of the series {Yt}. We want to de-
cide PnXn+h, i. e. the best linear predictor of Xn+h based on 1, Xn−d, ..., Xn

which is equivalent to deciding the best linear predictor based on 1, X1−d, ...,
X0, Y1, ..., Yn. If we apply the operator Pn to (13) and use the linearity of
Pn we get

PnXn+h = PnYn+h −
d∑
j=1

(
d

j

)
(−1)jPnXn+h−j (14)

where t = n+ h.

To decide the best linear predictor we further have to assume that
(Xn−d, ..., X0) is uncorrelated with Yt, t > 0. With this assumption we can
conclude that PnYn+h is a prediction of an ARMA process which we already
know how to decide from the beginning of this section. We further note that
PnXn+1−j = Xn+1−j for j ≥ 1. To predict h steps ahead we start with h = 1
and decide PnXn+1. We can then decide the right side of (14). For h = 2
we repeat the process and use PnXn+1 as if it was the observation of Xn+1.
By iteration of this process we can decide PnXn+h for h ≥ 2.

2.5.2 Predictions based on SETAR models

We determine the one step prediction based on n observations, PnXn+1,
by deciding the best linear predictor of the AR model that the process is
assumed to follow at time t = n. In section 2.5.1 we have shown that the
best linear predictor of an AR(p) model is determined by:

PnXn+1 = φ0 + φ1Xt−1 + ...+ φpXt−p (15)

In our case we have SETAR models with two regimes, the threshold variable
Xt−d and the threshold value γ

PnXn+1 = φ
(j)
0 + φ

(j)
1 Xt−1 + ...+ φ(j)pj Xt−pj (16)

where j indicates regime membership which is determined by whether or not
Xt−d is greater than γ.
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Predicting h steps ahead, PnXn+h, h > 1 is achieved by iterating prediction
in one step, h times. In each iteration we use the previous prediction as an
observation.

2.5.3 Predictions based on LSTAR models

Prediction in one step based on n observations, PnXn+1, is decided by deter-
mining the best linear predictor of the AR model that the process is assumed
to follow at time t = n. The reasoning is analogous to the one used when
deciding prediction for SETAR models. The LSTAR model at time t is
assumed to follow an AR(max(p1, p2)) model in accordance with (6):

Xt = (φ1,0 + φ1,1Xt−1 + ...+ φ1,p1Xt−p1) +

(φ2,0 + φ2,1Xt−1 + ...+ φ2,p2Xt−p2)G(Xt−d; γ, c) + Zt

The one step best linear predictor is known from section 2.5.1:

PnXn+1 = (φ1,0 + φ1,1Xt−1 + ...+ φ1,p1Xt−p1) +

(φ2,0 + φ2,1Xt−1 + ...+ φ2,p2Xt−p2)G(Xt−d; γ, c)

As with SETAR-models we decide prediction in h steps, h > 1, by iterating
prediction in one step h times and for each new iteration we use the previous
prediction as an observation.

3 The Study

3.1 Description of the data

In order to make a comparison of the three models at hand we apply them to
data from industrial production index (IPI) which is produced by Statistics
Sweden. The times series are seasonally and calendar adjusted. Seasonal
effects can be for example holiday shutdown of industries and christmas
shopping. Calendar effects are for example effects due to the number of
working days during a certain period (SCB, 2010). The reason for using
seasonally adjusted data is that there are no established methods of seasonal
adjustment based on the nonlinear models studied here.
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IPI is constituted of a great number of indices over production in different
industrial branches. The indices are produced and published monthly. The
indices we use in this study cover the period January 1990 up to december
2008. The indices are classified according to the standard NACE 2002. We
are only using indices that are complete over the selected period. We have
also made the selection of indices in order to maximize the number of time
series without including indices that overlap. To clarify, IPI might include
indices for NACE X, Y and Z but also a more highly aggregated index of
NACE X, Y and Z together (NACE X-Z). In such a case, we choose to
include the indices for X, Y and Z, but not the combined index X-Z because
the latter is an aggregate of the former and adds little new information. In
total 28 indices are included in the study. Further description of IPI can be
found in the appendix (7.2) as well as lists of the included indices (7.2.1)
and plots (7.2.2).

Each of our 28 indices constitutes a time series {Xt}228t=1. From each series we
create 128 partial time series according to the following pattern: {Xt}101t=1,
{Xt}102t=1,...,{Xt}228t=1. This gives us a total of 3584 partial series. To each of
these we will apply our three types of models (ARIMA, SETAR and LSTAR).
Based on each type of model we will predict the index value of the 12 coming
months and based on theses predictions we can calculate the MSE.

3.2 Transformation of data

When modeling economic time series, it is common practice to transform the
series by taking the logarithm. The primary motive for this transformation
is stabilization of the variance. A study by Luetkepohl and Xu (2009) inves-
tigates under what circumstances log transformation has a positive impact
on the accuracy of forecasts. The study shows that log transformation has a
positive impact on forecast accuracy if taking logs contributes to more stable
variance. It is also shown that forecast accuracy suffers if log transformation
is made without achieving a more stable variance. A study of the time series
plots in section 7.2.2 gives that the series with NACE code 24.4, 32 and 34
seem to have unstable variance and thus we have chosen to apply the models
to the log transformed series in these particular cases.

3.3 Handling of outliers

Extreme observations (outliers) in time series can strongly influence the pa-
rameter estimation and other aspects of the modeling process (Peña Sánchez de
Rivera et al., 2001). This is something we have to take into account in the
study at hand, but we wish to refrain from getting engrossed in the count-
less theoretical and practical aspects of handling outliers. For our purpose -
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which is to make sure that the presence of outliers does not effect the gen-
eral comparison of the models -the rather simple method outlined in this
section will suffice. Observations that are treated as outliers are marked in
the plots in section 7.2.2. The study is performed on the outlier adjusted
time series.

When adjusting the ARIMA-models we will fix d = 1 which in practice
means that we apply an ARMA model to Yt = Xt−Xt−1. In the same way,
we will apply the LSTAR and SETAR models to Yt. For this reason we can
perform outlier adjustment directly on Yt. An observation will be considered
an outlier if

|yt − µ̂Yt |
σ̂2Yt

> 2.58

where 2.58 is the 99.5-th percentile of the normal distribution, µ̂Yt is the
sample mean and σ̂2Yt is the sample variance. An outlier is replaced with a
linearly interpolated value according to the following:

ŷt = yt−h + h
yt+k − yt−h
k + h

(17)

If an outlier is not preceded nor succeeded by an outlier then h = k = 1.
When several outliers occur in sequence h is the number of observations since
the last non-outlier and k is the number of observations from t to the next
non-outlier observation. To illustrate our method in action we have applied
it to the index of NACE 10-12. The result is plotted in figure 2.
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Figure 2: Procedure for handling outlier as applied to index of NACE 10-12
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3.4 Model selection - ARIMA

When choosing a model with good properties for prediction, one is not well
served by letting p and q be of arbitrarily high order. In general, the white
noise variance of a model of higher order will tend to be lower. But the
MSE of the predictions depends not only on the white noise variance but
also on errors of the parameter estimates. A model of higher order tends
to have greater such errors because of the greater number of parameters
(Brockwell and Davis, 2002). We will thus need a criteria for model selec-
tion that punishes overparameterization of the models. Akaike’s information
criterion(AIC) is one of several criteria that is developed to serve this pur-
pose. The definition of AIC is 2k − 2log(L) where L is the maximum of the
likelihood function and k is the number of parameters in the model. When
selecting among models the one with the lowest AIC is preferred. For each
series we apply a procedure for automatic model selection that exists in the
software R (R Development Core Team, 2009), provided by the package fore-
cast (Hyndman, 2009). The procedure compares ARIMA models of different
order where d = 1 and p and q is allowed to vary up to maximum 15. The
motivation for fixing d = 1 is that the we need to take the first difference
of the series in order to achieve stationarity (se section 7.3). A more de-
tailed account of the estimation of ARIMA models can be found in section
7.1.1.

3.5 Model selection - SETAR

The model selection process for SETAR models will also be based on AIC.
To each series, an automatic model selection process supplied in R through
the package tsDyn (Antonio et al., 2008) will be applied. The procedure will
compare models where p1 and p2 are allowed to vary up to maximum 8 and
d is allowed to take on the values 1, 2 and 3. The procedure will only take
into account models with a threshold γ that results in a model where the
regime with the least number of observations contains at least 15 percent of
the total number of observations.

The SETAR models are applied to the outlier adjusted first difference of the
original series Yt = Xt−Xt−1 where Xt is the original series. Details on the
estimation of SETAR models can be found in section 7.1.2.

3.6 Model selection - LSTAR

Consistent with the reasoning in section 3.4 and 3.5 we let the model selec-
tion process for LSTAR be guided by AIC to prevent overparameterization.
The models will be applied to the outlier adjusted first difference of the
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original series Yt = Xt −Xt−1 where Xt is the original series. A procedure
for automatic model selection is provided in R through the package tsDyn
(Antonio et al., 2008). All models where d = 1 and p1 and p2 are allowed to
take on the maximum value of 6 are considered. Details of the estimation
process for LSTAR models can be found in section 7.1.3.

3.7 Trimming of predictions

In some studies where predictions based on a large number of models are
studied, a technique for trimming the predictions is applied. Trimming refers
to the procedure of replacing an ”unreasonable” prediction with a more con-
servative one according to some rule. Stock and Watson (1998) employed
such a technique that we will reuse in this study, If |PnYn+h| ≥ max(|Yt|) it
is replaced with µ̂Yt , where µ̂Yt is the sample mean of Yt. The motivation
for trimming is that it is a way to simulate the involvement of humans in
the forecasting procedure. A human forecaster would disregard model based
predictions that by all reasonable standards is deemed as just plain foolish.
There could be situations where the predictions - even though judged as un-
reasonable - still contains some information about where the series is headed.
One could therefore argue that instead of just ignoring the predictions by
replacing them with the sample mean we could apply a trimming rule that
just moderates the predictions. However, it was clear that in the majority of
cases where the trimming procedure came into play in this study, the models
had produced predictions that just seemed raving mad.

4 Results

4.1 SETAR versus ARIMA

We let MSEijk denote MSE of model type i, time series j and prediction
horizon k. A comparison of ARIMA and SETAR models shows that in 254
of 336 cases ARIMA models produces predictions with a lower MSE while
in 82 cases SETAR models produces better predictions. In figure 3 we have
plotted the ratio of MSESETAR,jk/MSEARIMA,jk. A ratio greater than 1 thus
means that the ARIMA models made better predictions and a ratio less than
1 means that SETAR models predicted better.

In figure 5, we break down the results by time series (index). From this figure
we can se that the relative performance of the models tend to differ between
different series. There are 13 series where ARIMA models perform better on
every prediction horizon. For 6 of the 28 series SETARmodels perform better
than ARIMA models on at least half of the predictions horizons. There are
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no series where SETAR models perform better than ARIMA models over
every prediction horizon. In figure 4, we break down the MSE ratios by
prediction horizon. From this figure we get the impression that the relative
performance of the models does not seem to vary with the length of the
prediction horizon.
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Figure 3: MSE ratio (SETAR/ARIMA)
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Figure 5: MSE ratio (SETAR/ARIMA), by prediction horizon

The procedure for trimming predictions affected in total 17 SETAR models
(out of a total of 3584) as summarized in table 4.1.
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Table 1:
NACE code number of SETAR models affected by trimming
10-12 2
15+16 2
20.1 1
24 excl. 24.4 1
27.4+27 2
29 2
33 2
35 2
E 3

4.2 LSTAR versus ARIMA

In figure 6, we have plotted the ratio MSELSTAR,jk/MSEARIMA,jk. In 219 of
336 instances ARIMA models outperformed LSTAR models. In the remain-
ing 117 cases LSTAR models performed better than ARIMA. In figure 7, we
break down the MSE ratios by time series (index). The figure shows that
the relative performance of the models vary between the series. For 11 se-
ries ARIMA models outperformed LSTAR models on all prediction horizons.
For 10 series LSTAR models achieve better predictions on at least half of
the prediction horizons. In figure 8, we break down the results by prediction
horizon. We can se that on all horizons ARIMA models perform better. The
relative performance of the models does not seem to be depending on the
prediction horizon.
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Figure 6: MSE ratio (LSTAR/ARIMA)
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Figure 8: MSE ratio (LSTAR/ARIMA), by prediction horizon

The procedure for trimming predictions affected in total 28 LSTAR models
(out of a total of 3584) as summarized in table 2. The ARIMA models
were subjected to the same trimming procedure, but no predictions were
trimmed.

We finally take a look at the values of γ received when fitting our LSTAR
models. In figure 9 boxplots of the γ values for the different indices are
displayed. It is quite obvious that in many cases the LSTAR model has
values that are so great that from a practical aspect makes it behaves much
like a SETAR model. The indices in the study have an accuracy of one tenth
of an index point. We recall the logistic function {1+exp(−γ(Xt−d−c))}−1.
For example, if γ = 40 and Xt−d − c changes from 0.1 to −0.1 the logistic
function changes from approximatively 0.98 to 0.02.
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Table 2:
NACE code number of LSTAR models affected by trimming
10-12 2
13.2 1
14 1
15+16 1
17-19 1
20.2-20 3
23 2
24 excl. 24.4 3
27.4+27 1
28 1
29 2
33 2
35 1
36+37 1
E 6

5 Conclusions

It is clear that ARIMA models produce better predictions than both SETAR
and LSTAR models in this study. Prediction based on ARIMA models per-
form better over the whole range of the prediction horizon considered (1-12
months). There are individual time series where LSTAR and SETAR models
manage to perform better, but for the majority of the 28 series considered,
ARIMA models are clearly better. One possible explanation is that for most
branches of industry, the development of Swedish production over time is
not nonlinear, at least not in a sense that is well captured by LSTAR and
SETAR models. There seems to be no reason for using LSTAR and SETAR
models as an alternative to ARIMA for modeling Swedish industrial produc-
tion in general. Someone with an interests in particular industrial branches
and with sufficient resources at their disposal might want to consider SETAR
or LSTAR models as options or complements to ARIMA models. Careful
examination of how the models preform when applied to the actual data
could in some cases reveal benefits of choosing a nonlinear model.

6 Tables
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7 Appendix

7.1 Estimation

7.1.1 Estimation ARIMA parameters

In section 7.3 we concluded that the original series Xt shows clear signs of
non-stationarity. The first difference of the original series Yt := (1−B)dXt,
d = 1 on the other hand shows signs of stationarity and we will therefore
estimate ARIMA(p, 1, q) models to our time series which by definition means
that we adjust ARMA(p, q) models to the first difference of the original se-
ries. All ARMA(p, q) models where p and q are allowed to take on the
maximum value of 15 are considered. The parameters are estimated accord-
ing to the description found in Brockwell and Davis (2002) by maximum
likelihood. For our time series X = (X1, ..., Xn) we assume a multivariate
normal distribution with the density function

fX(X) = (
1

2π
)n/2

1√
det(Γ)

exp{(X− µ)′Γ−1(X− µ)} (18)

where Γ is the autocovariance matrix

Γ =



γ(0) γ(1) · · · γ(n− 1)
γ(1) γ(0) · · · γ(n− 2)
· · · ·
· · · ·
· · · ·

γ(n− 1) γ(n− 2) · · · γ(0)


The autocovariance matrix can be expressed in terms of the (unknown)
model parameters and its entries are determined by the order of the ARMA
model. The parameters are estimated in order to maximize the likelihood
function. Even if the assumption of the multivariate normality of X does
not quite seem to hold, it is still appropriate to estimate the parameters by
maximizing 18 (Brockwell and Davis, 2002).

7.1.2 Estimation SETAR parameters

For every threshold γ we get two AR models. The parameters of the two
models are estimated by linear regression. We have yj = (yj1 , ..., yjnj

)′ where
yj are the observations of the time series that belong to regime j. Further,
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we have the matrix X′j = (xj1 , ...,xjnj
)′ and xji = (yji−1, yji−2, ..., yji−pj )

′,
pj denotes the order of the AR model being estimated in regime j and nj
denotes the total number of observations in regime j. In our case we only
study SETAR models with two regimes and thus j=1, 2.

In the final step we estimate the two linear regression models.

yj = XjΦj + εj , j = 1, 2

7.1.3 Estimation LSTAR parameters

The parameters of the LSTARmodel are estimated by nonlinear least squares
as described in Dijk, Teräsvirta, and Franses (2002). We have a vector of pa-
rameters θ = (Φ1,Φ2, γ, c) where Φ1 = (φ1,0, ..., φ1,p1) and Φ2 = (φ2,0, ..., φ2,p2).

θ̂ = argmin
θ

n∑
i=1

(yi − F (xi; θ))
2

F (xi; θ) is given by the definition of the model as in 6 (excluding the white
noise term):

F (xi; θ) = (φ1,0 + φ1,1Xt−1 + ...+ φ1,p1Xt−p1) +

(φ2,0 + φ2,1Xt−1 + ...+ φ2,p2Xt−p2)G(Xt−d; γ, c)

7.2 Description of industrial production index (IPI)

Industrial production index (IPI) is produced by Statistics Sweden (SCB).
The index is published monthly and gives information about the total swedish
industrial production as well as industrial production in different industrial
branches. There are several different kinds of sources for the index. About
75 percent is based on data over sales which is gathered from the survey
Konjunkturstatistik för industrin. The data in this survey is collected from
2200 companies that are sampled from the business register at SCB. The
method used to collect this data is stratified random sampling. About five
percent is based on information about worked hours which is gathered by a
survey at SCB that collects data on the wages in the private sector. Finally,
about 20 percent is based on information about production volume gathered
from selected companies and/or branch organizations (SCB, 2009).
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7.2.1 List of indicies included in the study

NACE 2002 Name
10-12 Mining and quarrying of energy producing materials
13.1 Iron ore mines
13.2 Other metal ore mines
14 Other mines and quarries
15+16 Food product, beverage and tobacco industry
17-19 Textile industry, industry for wearing and Tanneries
20.1 Saw-mills and planing-mills; wood impregnation plants
20.2-20.5 Industry for wood, products of wood; except furniture
21.11 Industry for pulp
21.12 Industry for paper and paperboard
21.2 Industry for articles of paper and paperboard
22 Publishers and printers; other industry for recorded media
23 Industry for coke, refined petroleum products and nuclear fuel
24.4 Industry for pharmaceuticals, medicinal chemicals

and botanical products
24 excl. 24.4 Manufacture of chemicals and chemical products except

pharmaceuticals, medicinal chemicals
25 Industry for rubber and plastic products
26 Industry for other non-metallic mineral products
27.1-27.3 Manufacture of basic iron and steel and of ferro-alloys, tubes

and other first processing of iron
27.4+27.5 Manufacture of basic precious and non-ferrous

metals and casting of metals
28 Industry for fabricated metal products, except machinery

and equipment
29 Industry for machinery and equipment n.e.c.
31 Industry for electrical machinery and apparatus n.e.c.
32 Industry for radio, television and communication equipment

and apparatus
33 Industry for medical, precision and optical instruments,

watches and clocks
34 Industry for motor vehicles, trailers and semi-trailers
35 Industry for other transport equipment
36+37 Other manufacturing industry n.e.c.
E Electricity, gas and water works
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7.2.2 Plots of IPI
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20.1 Saw−mills and planing−mills; wood impregnation plants
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23 Industry for coke, refined petroleum products and nuclear fuel
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27.4+27.5 Manufacture of basic precious and non−ferrous metals 
 and casting of metals
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34 Industry for motor vehicles, trailers and semi−trailers
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7.3 Plots of ACF of indices before and after taking the first
difference

As we concluded in section 2.1 ARIMA models can be used to model non-
stationary time series. We also want to apply LSTAR and SETAR models
to series that are stationary. A common way of determining if a time series
meets the conditions of stationarity is to study the autocorrelation function.
We have already defined the autocovariance function (ACVF) (2). The au-
tocorrelation function (ACF), which we denote ρ(·), is defined as

ρ(h) =
γ(h)

γ(0)
(19)

(Brockwell and Davis, 2002). We use data to estimate the ACF. If x1, ..., xn
are observations from a time series we estimate the mean of the series by the
average

x̄ = n−1
n∑
t=1

xt.

and we have the following estimation of the AVCF

γ̂(h) := n−1
n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n.

and thus the estimation of the ACF becomes

ρ̂(h) =
γ̂(h)

γ̂(0)
, −n < h < n.

A common sign of non-stationarity is that the ACF is decreasing slowly as a
function of h (Brockwell and Davis, 2002). The transformation of the series
by taking the first difference if often sufficient to achieve stationarity of the
transformed series Yt = Xt − Xt−1. In our case, the ACF of Xt decreases
slowly while the ACF of the transformed series Yt does not show any sign
of this behavior so typical of non-stationarity. Thus it seems reasonable to
draw the conclusion that Yt is stationary, but not Xt. In the figures below
the ACF of Xt and Yt are plotted for 28 time series in the study.
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