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Abstract

A phylogenetic tree describes the relatedness between species in
an evolutionary context. A phylogenetic tree can be reconstructed or
estimated by comparing DNA-sequences for a number of species. In
this thesis we are simulating trees according to a linear birth-death
process. The DNA-evolution in the trees are simulated according to
the Jukes-Cantor model. By performing the analyses with a Bayesian
method and a maximum likelihood method, we study how the inference
change when increasing the number of taxa and/or the length of the
sequences. We compare the estimates with the simulated tree and use
three different measurements. For our comparison of the two methods
we are using the programs MrBayes and PHYLIP. The main result
is that the estimates becomes better when increasing the length of
the sequence but not when we increase the number of taxa. We also
observe that PHYLIP, which uses a maximum likelihood method, has
a tendency to perform better than MrBayes, which use a Bayesian
method.
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1 Introduction

Phylogenetics is the study of how different species are related to each other.
We assume that a group of species has evolved from a common ancestor and
we can illustrate their relatedness in a phylogenetic tree. In a phylogenetic
tree the root is the common ancestor and the tips are all the extant species.

Gibbon

Orangutan

Gorilla

Human

—_ Chimp

Figure 1: A phylogenetic tree for the great and lesser apes

Let us say that we have a group of currently living species and want to recon-
struct their phylogenetic tree. One way to do that is to look at the species
DNA-sequences (DeoxyriboNucleic Acid). If we collect DNA-sequences from
the species and observe how much they differ we can estimate how close the
species are in the evolutionary process.

The positions in a DNA-sequences, further referred to as sites, consist of one
out of four nucleotides; A, G, C or T. The DNA-evolution occurs in different
ways, however in this thesis we will only consider nucleotide substitutions,
when a site changes from one nucleotide to another. We will also assume
that all sites evolve independently of each other and that there is a molecular
clock. With the molecular clock assumption we mean that all sites in all
species DNA-sequences have the same substitution rate for all time periods.

In the evolutionary process a species is eventually divided into two groups,
e.g. when a seed from a plant on one side of a mountain travels to and grows
on the other side of the mountain. When this event happens the species
splits into two new species and they continue to evolve independently of
each other.

In this thesis we will simulate phylogenetic trees and DNA-evolution in those
trees. We are, with the DNA-sequences at the tips of a tree, going to re-
construct or estimate the phylogenetic tree with two different methods. By
comparing the estimates from the two methods with the true tree we can
study how the inference depends on the number of taxa and length of the
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sequences. The analyses will be done by two computer packages (PHYLIP
[3] and MrBayes [6]) and we will compare their performance under different
scenarios.

2 Simulating the data

To compare the estimates of the two program packages we need data to
analyse. In this thesis we will use simulated data. Simulated data is often
used when comparing different inference methods in phylogenetics [7]. One
advantage with simulated data compared to real data is that we know the
answer and we can see how much the estimated trees differ from the real
(simulated) tree. To simulate the data we start by simulating a phylogenetic
tree which connects the species and describes there relatedness. After we
obtained our tree we simulate DNA-evolution in that tree. Finally, our data
will be in the form of a k x n matrix where k is the number of extant species,
for which we want to estimate the phylogenetic tree, and n the length of
their DNA-sequences. All simulations were performed in Octave [1] which is
a free and open source computer program with many similarities to Matlab.

2.1 Simulating the tree

To simulate a tree we use a linear birth and death process [9]. This process
depends on two parameters, the birth rate (A) and the death rate (). The
time between two events is exponentially distributed with parameter i(A+pu),
where 7 is the number of living species in the process. Hence we have that
the expected time between two events

1

Hewamy @

E[Time until next event] =

An event is either a birth or a death, with the probability for a birth

A
P(Birth) = —— 2
(Birth) = @)
and the probability for a death
P(Death) = 1. (3)
A+

Using the above expressions we can simulate a phylogenetic tree by starting
with two branches that evolve from the root and then use the following
algorithm:
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e Simulate the time until the next event occurs

e Add the simulated time to all active branches where an active branch
is a branch that has not been exposed to a death event

e Decide on which branch the event will occur with all branches having
equal probabilities to be chosen

e Decide if the event is a birth or a death.
- If the event is a birth the branch splits into two new branches
- If the event is a death the branch stops growing

e Repeat the algorithm until we have the desired number of living species
in the tree. If a death event occurs at the last branch, restart the
process with two new branches

e When we have got the desired number of species we simulate the time
until next event and add half of that time to all active branches

After the simulation we erase all the dead branches, which represent extinct
species, and then normalize the time in the tree so that the total time from
the root to all taxa is 1. This normalization is done because we want all
simulated trees to have the same height so that we are able to compare them
to each other.

The time in a phylogenetic tree could be expressed in different units, e.g.
expected number of substitutions per site or real time. If we are only using
DNA-sequences it is impossible to estimate the real time in the tree, for that
we need additional information, for example fossils.

In Figure 2 we see an example of a simulated tree where some of the species
have gone extinct. However, it is the tree where the extinct species are
removed, as in Figure 3, that we use for DNA-simulation and try to estimate
with the simulated sequences.

taxa 1

[ taxa2
L taxa 3

I_ taxa 4
taxa 5

[ taxa 6

[ taxa7
L taxa 8

0.1

Figure 2: A simulated phylogenetic tree with extinct species
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taxa 2

taxa 3

taxa 5

taxa 7

taxa 8

Figure 3: The same phylogenetic tree as in Figure 2 but where all the extinct
species have been erased

2.2 DNA-simulation

When simulating the DNA-evolution in a given phylogenetic tree, we start
by simulating the sequence for the root. We randomly draw the state for
each site with equal probability for all the nucleotides. This sequence then
evolves along the branches according to a substitution model until it reaches
the tips of the tree.

The substitution model we use is the Jukes-Cantor model |5] which is a con-
tinuous time Markov chain. In this model we assume that all sites evolve
independently. When a substitution occurs the transition probabilities be-
tween all nucleotides are the same. The model does only depend on one
parameter, the mean substitution rate, which is the same for all sites.

The continuous time Markov chain has four states, the nucleotides, and by
using the Jukes-Cantor model the generator matrix is

=3p p K I
1 1 1 1
ko =3p p I
1 1 1 1

A= B R T (4)

1 1 1 1
2 2 b 3w
1 1 1 1

where 4 is the mean substitution rate.

The transition matrix, P(t), consist of the probabilities that a site changes
from one nucleotide to another at time t, where t is in this case the branch
length. We obtain the transition matrix with the forward or backward equa-



Phylogenetics and inference Fredrik Olsson

tions which have the formal solution

()= et =3 A (5)
n—=0 n.

if the number of states in the chain are finite [9]. In our case the transition
matrix is a 4 x 4 matrix where P;;(t) is the probability that a site changes
from nucleotide ¢ to j in ¢ time units.

However, in this case we are able to calculate the transition matrix and
express it in a matrix form as

1y 3=t 1 _ 1 —tp 1 _1.—tp 1 _1.-tp
1t e 71— 1°¢ 1~ 1°¢ 1~ 1°¢
1 _1—tp 143 —tp 1 __1.—tp 1 _1.—tp
71— 1°¢ 1t e 1 € 1~ 1°¢
P= (6)
1 _1—tp 1 _ 1 —tp 1, 3 —tp 1 __1.-tp
4~ 1°¢ 1 € 1t g€ 71— 1°¢
1 _1—tp 1 _ 1 —tp 1 _1.—tp 1, 3,—tp
4~ 1°¢ 4~ 1°¢ 1 € 1t g€

Using the transition matrix we can simulate DNA-evolution for every site by
randomize if a site has changed and in the case of a change, randomize to
which nucleotide it will change. This way of simulating the DNA-evolution
consumes a lot of computer time. Instead we use the assumption that all
sites evolve independently and at the same rate.

The number of substitutions along a branch with length t will then be bi-
nomial distributed with n equal to the length of the sequence and with the
probability that a site has changed in t time units

et (7)

>~ w
e~ w

4
p(t)=> Py=
=2

Then, for every branch we can randomly draw the number of substitutions
that occurs, at which sites the changes will happen and to which nucleotides
the sites will change.

At the end of the simulation we obtain the DNA-sequence for every node
and tip in the tree. We pick the sequences from the k extant species and
construct a k X n matrix where the k:th row consists of the DNA-sequence
for the k:th species. In Figure 4 we have an example of a small dataset for
the species in Figure 3. We can for instance see that the sequences of taxa
2 and taxa 3 are more similar than the sequences of taxa 2 and taxa 8.
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taxa_2 TGCAAACTCTTAAATAGATGCGTTCGCTATATTATGTTCGTAGAATTCAT
taxa_3 TGCAAACTTTTAAATAGATGCGTTCGCTATATTATGTTCGTAGAATTCAT
taxa_5 TGGAAACTTTTAAATAGATGCGTTCGCTATATTATATTCGTAGAATTCCT
taxa_7 TGGGAACTTTTACATAGATGCGTTCGCTAAATTATATTCGTAGAATTTAT
taxa_8 TGGGAACTGTTACATAGATGCGTTCGCTAAATTATATTCGTAGAATTTAT

Figure 4: An example dataset for the species in Figure 3.

2.3 Model parameters

In our simulations we need to choose the birth and death rates which in
nature differs between different types of species. Since we normalize the tree
height after the simulation we are only interested in the ratio between the
two rates. We want the ratio & to be less than 1, otherwise we have a very
small probability that the tree grows large. On the other hand, if the ratio is
0, we get a pure birth process. The shape of the tree also differs depending
on the ratio. The splits in a tree simulated with a high ratio tends to be
closer to the tips than the splits in a tree simulated with a low ratio [4].

In our study we have used three different values of the ratio, 0, 0.5 and 0.75,
and simulated three trees with 100 extant taxa each (see appendix A). In
our simulated trees we can see that when the ratio was equal to 0.75 (Figure
19) the splits seems to be closer to the tips than when the ratio equals 0.5
(Figure 18) or 0 (Figure 17).

For each root in the trees we have simulated a DNA-sequence with length
20,000. That sequence has evolved in the tree according to our substitution
model. We chose the mean substitution rate so that the expected number of
changes per site and time unit was equal to 0.01 in the substitution model.

2.4 Choosing trees and DNA-sequences

From each of the simulated trees with 100 taxa we picked subtrees to analyse.
First, we construct a subtree that consists of 3 randomly chosen taxa with the
restriction that the subtree should contain the root of the original tree. Then
we add randomly chosen taxa to the tree until we get subtrees containing
of 5, 10, 20, and 50 species. This procedure is repeated twice so that we
finally have 3 subtrees of each 3, 5, 10, 20 and 50 taxa. If we do not have
the restriction that the original root should appear in the subtree, there is
a large risk that our subtrees have different heights. If the subtrees have
different heights it would not be fair to compare them, because they would
not have the same amount of time for their DNA-sequences to evolve.
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For each subtree we pick a subsequence of 1000 sites to which we add sites
until we have subsequences of size 1000, 2000, 5000 and 10000. For every
combination of the number of species, k, and sequence length, n, we can
form a k x n matrix which is the data for our analyses.

3 Computer packages

There are many computer packages which simulate, analyse and summa-
rize phylogenetic data, most of them are still developing and implementing
new methods. In our thesis we will use two different computer packages to
analyse the simulated DNA-sequences, PHYLIP (The PHYLogeny Inference
Package) 3] and MrBayes |6].

3.1 PHYLIP

We have used PHYLIP version 3.67 which is a free and open source computer
package developed by Joe Felsenstein [3]. In our analyses we used the pro-
gram Dnamlk which is a part of PHYLIP. Dnamlk analyses DNA-sequences
with a maximum likelihood approach and assumes a molecular clock.

3.1.1 Maximum likelihood inference

In maximum likelihood inference we collect data X, in our case the DNA-
sequences, and formulate the likelihood function L(7, b(7)|X) where 7 is the
tree topology and b(7) branch lengths for topology 7. The likelihood func-
tion expresses how likely the values on the parameters are given the observed
data. The values of 7 and b(7) that maximize the likelihood function will be
our estimates for the parameters. Since all the sites are mutually indepen-
dent this likelihood could, for a given topology, be expressed as a product
7, L(7,b(7)|X;) where X; denotes the i:th column in our data matrix.

One problem with maximizing the likelihood is when the number of taxa
increases, because then the number of possible topologies grows very fast. It
has been shown [2] that the number of rooted bifurcating trees with n taxa
is % The time to calculate the branch lengths that maximizes the
likelihood function for every possible topology would increase fast when the

number of taxa in our analyses increases.

To overcome this problem we start with two taxa and successively add taxa
to that tree instead of considering all possible topologies. We place every
added taxa where it maximizes the likelihood function. When the last taxa
is added to the tree it is possible to rearrange the placements of the taxa.
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When rearranging, we change the placement for the taxa one by one in order
to find a new topology which yields a higher value for the likelihood function

2],

3.2 MrBayes

MrBayes is developed by Fredrik Ronquist, John P. Huelsenbeck and Paul
van der Mark, and like PHYLIP it is an open source and free computer pro-
gram. MrBayes uses a Bayesian approach and analyses the DNA-sequences
with the Markov Chain Monte Carlo (MCMC) method.

3.2.1 Bayesian inference

In Bayesian inference we regard the parameters as random variables and
we are interested in the parameters posterior distribution. This is the dis-
tribution of the parameters given the data and our prior knowledge about
the parameters. To find the posterior distribution we use Bayes’ theorem to
combine the parameters prior distributions, which describes our prior beliefs
or knowledge about the parameters, with the observed data. If we do not
have any beliefs or knowledge about the parameters we try to construct a
non-informative prior.

The posterior distribution is often difficult to calculate especially for com-
plex problems like the ones in phylogenetics. But in the end of the 20th
century the Bayesian approach became popular for phylogenetics when a
new method, MCMC, was proposed to solve the posterior problem [8]. In
MCMC we formulate a Markov chain with the posterior distribution as its
stationary distribution. If we run the Markov chain until it approximately
reaches it stationary distribution and then take samples from it, we get ap-
proximate samples from the unknown posterior distribution.

4 Analysis

Both programs have a lot of different options and we will explain our choices
in the following section. Our goal is to use the same models in both programs
to get a fair comparison of them.

4.1 PHYLIP

The analyses with PHYLIP were performed with the program DNAMLK.
The substitution model we used is the Jukes-Cantor model and we enabled
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the global rearrangements option. With this option we try to rearrange the
topology after the last taxa is added as we described earlier in section 3.1.1.

4.2 MrBayes

In MrBayes there are a number of parameters and we need to specify their
prior distributions before we can run the analyses. For the branch length
we used a birth and death model with a molecular clock. We set the prior
distribution for the birth rate and the death rate to be uniformly distributed
between (0 and 10, which is default in MrBayes. We used the Jukes-Cantor
model as our substitution model and for the remaining parameters we used
the default prior distributions of MrBayes.

A problem when using MrBayes is knowing when to stop the analysis, when
is the sampled distribution close enough to the posterior distribution? To
decide when to stop we used a stop-rule which is implemented in MrBayes.
For every analysis with MrBayes we ran two separate Markov chains and at
every 1000th generation MrBayes calculate the average standard deviation
of split frequencies between these two runs. This value is calculated from 75
% of the past generations and is a measure on how much the two samples
differ. When this value gets low the samples become more and more simular
and we consider that we have reached the stationary distribution. In our
analysis we used the default stopvalue which is 0.01.

After we decided that we have reached the stationary distribution we sum-
marized the samples with the sump and sumt commands in MrBayes. In the
analysis we discarded the first 25% of the generations when we decided that
the chains had converged, therefore we omit the first 25% samples when we
summarize the analysis and consider that as the burnin period.

4.3 Program performance

The time to run an analysis with the two programs differs, especially when
the amount of data increases. The mean time of 10 runs with a data set
consisting of 20 taxa with sequence lengths of 5000 sites, on an AMD Turion
X2 Ultra Dualcore Mobile ZM-82 2200 MHz 1MB cache, was 326 seconds
for MrBayes and 42 seconds for PHYLIP. Hence, for this dataset PHYLIP
was almost 8 times faster than MrBayes.

Both MrBayes and PHYLIP also encountered problems when analysing data
sets with large number of taxa and short DNA-sequences. PHYLIP produced
a segmentation fault and MrBayes froze at the beginning of the analyse. To
solve these problems we changed the input order in PHYLIP and reran the
analysis with MrBayes. If both programs had a problem to analyse the same
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dataset we chose a new sequence to analyse for that tree. However this did
not solve the problem for all the analyses when we had 50 taxa with 1000
sites as our data, therefore this data is discarded from the analysis.

5 Comparing two estimated trees

In order to compare two estimated trees with each other we need some mea-
surements on how good the estimates are. A measurement also helps us to
study how the inference changes when the number of taxa or the length of
the sequences changes. We have used two measurements in this thesis, the
proportion of correct splits and the absolute branch length distance. We
also study how the estimates of the node-heights, in a tree with three taxa,
changes as we add new taxa to that tree.

5.1 Topology measure

In order to measure how close the estimated topology is to the true topology
we study the proportion of correct splits. This meassure is similar to the
symmetric distance metric presented by Robinson and Foulds[10|. From
each split in a topology there are a number of taxa that have descended and
the split divides those taxa into two groups. If we compare a split in an
estimated tree with the true topology we consider the split to be correct if
we, for any split in the true topology, can construct the exact same groups of
taxa as we observed for the split in the estimated topology. The proportion
of correct splits is then the number of correct splits divided by the total
number of splits in the tree.

5.2 Branch length measure

In order to compare branch lengths in trees with different topologies we
study the absolute branch length distance between the estimated tree and
the simulated one. Let x;; be the true sum of the length of branches which
connects the two taxa 7 and j in a simulated tree with k taxa, and let Z;; be
the corresponding sum in the estimated tree. This distance is then defined
by

k—1 k
D=3 > lwy— iyl (8)
i=1 j=i+1

and a low value of D means that the estimated branch lengths are close to
the simulated tree. With this measures we see how much the estimated tree

10
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differs from the true tree and we do not need to estimate the correct topol-
ogy, in fact we can compare the branch lengths in estimates with different
topologies.

5.3 Difference between the measurements

Which of these measurements is preferable? To answer this question we must
know what we are interested in and what we consider to be a good estimate.
In Figure 5 we have the true tree and we have two estimated trees in Figure
6 and Figure 7. If we look at the proportion of correct splits we see that all
of the splits in Figure 7 are correct but only one third of the splits in Figure
6 are correct. On the other hand, the D-value for the tree in Figure 6 is
much lower than it is for the tree in Figure 7.

D

t 9

Figure 5: The true topology and branch lengths

D

t 9

Figure 6: Estimated tree with incorrect topology

5.4 Adding taxa with fixed sequence length
To study the performance of the programs when we hold the length of the

sequence fixed and successively add taxa we start by looking at a normalized
tree with three taxa. Such a tree has 2 splits where the height of the split,

11
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t ?

Figure 7: Estimated tree with correct topology

that is not the root, lies between zero and one. By comparing that height
with the corresponding height in the true topology we can study how the
inference changes when we add new taxa to the tree.

6 Results

6.1 Proportion of correct splits

In Table 1, 2 and 3 we have the mean proportion of correct splits for three
trees when we have various number of taxa and length of the sequences.
When we analyse a tree with few taxa there are only a few possible values
for each cell. Therefore, it is not surprising if cells with few taxa have the
same mean proportion for different sequence length. Because we discarded
the data sets with 50 taxa and 1000 sites we have no estimate for these cells.

Both program estimated the correct splits for all trees that consisted of three
taxa for all considered sequence length. As we can see the proportion seems
to increase as we increase the length of the sequences and fix the number of
taxa. This is expected because when we increase the length of the sequences
we increase the amount of information.

When we hold the sequence length fix and increase the number of taxa we
see that the proportion in table 1 and 3 decreases but that pattern does
not appear in table 2. One possible reason why both programs did not find
many correct splits when we used 5 taxa in Table 2 is that many of the splits
in these topologies are close to each other and they are therefore hard to
estimate.

In Table 2, the proportion of correct splits decreased dramatically when
we analysed 5 taxa and the sequence length increased from 5000 sites to
10000 sites. The splits in these trees were hard to estimate because they
were close to each other. It is possible that, by chance, the additional 5000

12
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sites increased the support for a topology separate from the true topology.
This explanation becomes more reasonable because both program behaved
similar.

In Table 3, the tree was simulated with the ratio § = 0.75 and we estimated
more correct splits than in the other two tables. In that tree the splits tend
to be near the tips and it should therefore be easier to find the splits, when
we have few taxa, than for an equally sized tree but with the splits near the
root.

If we compare the programs to each other we see that they estimate approx-
imately the same proportion of correct splits in most cases and we cannot
see with this data that one of the programs performs better than the other.

Length of sequence
k  Program | 1000 | 2000 | 5000 | 10000
3 MrBayes 1 1 1 1
PHYLIP 1 1 1 1
5 MrBayes | 0.83 | 0.83 | 0.83 | 0.83
PHYLIP | 0.83 | 0.83 | 0.83 | 0.83
10 MrBayes | 0.56 | 0.85 | 0.93 | 0.93
PHYLIP | 0.63 | 0.85 | 0.85 | 0.85
20 MrBayes | 0.67 | 0.77 | 0.86 | 0.79
PHYLIP | 0.79 | 0.81 | 0.89 | 0.82
50 MrBayes | Na | 0.73 | 0.80 | 0.85
PHYLIP | Na | 0.65 | 0.86 | 0.85

Table 1: Every cell consists of the mean proportion of correct splits for three
trees. The subtrees are sampled from a tree simulated with % =0

Length of sequence
k  Program | 1000 | 2000 | 5000 | 10000
3 MrBayes 1 1 1 1
PHYLIP 1 1 1 1
5 MrBayes | 0.58 | 0.58 | 0.83 | 0.50
PHYLIP | 0.58 | 0.58 | 0.83 | 0.42
10 MrBayes | 0.70 | 0.67 | 0.70 | 0.74
PHYLIP | 0.70 | 0.70 | 0.78 | 0.81
20 MrBayes | 0.79 | 0.77 | 0.82 | 0.96
PHYLIP | 0.79 | 0.81 | 0.84 | 0.96
50 MrBayes | Na | 0.76 | 0.89 | 0.92
PHYLIP | Na | 0.66 | 0.88 | 0.92

Table 2: Every cell consists of the mean proportion of correct splits for three
trees. The subtrees are sampled from a tree simulated with ff =0.5

13
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Length of sequence
k  Program | 1000 | 2000 | 5000 | 10000
3 MrBayes 1 1 1 1
PHYLIP 1 1 1 1
5 MrBayes 1 1 1 1
PHYLIP 1 1 1 1
10 MrBayes | 0.85 1 1 1
PHYLIP 1 1 1 1
20 MrBayes | 0.82 | 0.93 1 1
PHYLIP | 0.74 | 0.87 1 1
50 MrBayes | Na | 0.80 | 0.90 | 0.92
PHYLIP | Na | 0.78 | 0.88 | 0.90

Table 3: Every cell consists of the mean proportion of correct splits for three
trees. The subtrees are sampled from a tree simulated with % =0.75

14
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6.2 Comparing branch lengths when increasing sequence length

In figures 8-12 we can see the absolute branch length difference for our es-
timated trees with the number of taxa fixed. The mean D-value decreases
as we increase the sequence length in all figures except in one case when we
analyse three taxa. The spread among the estimate also decreases as the
sequences gets longer which is to expect because we add more data to the
analyses. We also notice that the lines, which represent the mean D-value for
the estimates from both the programs, seems to follow each other, especially
when the sequences becomes longer.

3 taxa
® T T
MrBayes o
0.25 PHYLIP X
MrBayes ««xxxee+
8 0 © PHYLIP s
N—r
0] 0 X
02 Q 4
[8)
c X o
e X
() X
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e © © X o
=
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X
o 0l1rp . 4
g X
c X
£ R —
S 0.05 - X i
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; ;
o ¥
X o
o g .8 5

0 2000 4000 6000 8000 10000
Length of sequence

Figure 8: D-values for MrBayes and PHYLIP where a dot represent a single
observation and the line represent the mean values for the dots. For every
length of the sequence there are 9 observations for each of the programs.
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Figure 9: D-values for MrBayes and PHYLIP where a dot represent a single
observation and the line represent the mean values for the dots. For every
length of the sequence there are 9 observations for each of the programs.

10 taxa
X ‘ MrBayes = ©
PHYLIP X
20 MrBayes ««««xe:+ b
PHYLIP oo

[

13
T
I

=

o
T
o)
I

ox

3]
T

X
[0]
[o]

Branch length difference (D)

SOFO0K

...........
..............

ARRAAAAAS,
1

0 2000 4000 6000 8000 10000
Length of sequence

X
RO

Figure 10: D-values for MrBayes and PHYLIP where a dot represent a single
observation and the line represent the mean values for the dots. For every
length of the sequence there are 9 observations for each of the programs.
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Figure 11: D-values for MrBayes and PHYLIP where a dot represent a single
observation and the line represent the mean values for the dots. For every
length of the sequence there are 9 observations for each of the programs.

50 taxa
350 [ X ‘ ‘ MiBayes o
PHYLIP X
MrBayes «x«eex
— PHYLIP s
0 300 - |
Nt
0]
g
250 R
[0]
p -
]
E
S 200 b
c
B
m X
c 150 - B
Q@
S
c 100 B
g 3
m o]
50 - oo 1
X
| | | | g
0 2000 4000 6000 8000 10000

Length of sequence

Figure 12: D-values for MrBayes and PHYLIP where a dot represent a single
observation and the line represent the mean values for the dots. For every
length of the sequence there are 9 observations for each of the programs.
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In our analyses every data set is analysed with both programs and we have
therefore obtained paired observations which we can compare to see if there
are any difference between the programs. By performing a t-test for the dif-
ferences of the D-values, for every combination of taxa and sequence length,
we see in Table 4 that there are two significant differences with a 5% signif-
icance level. In both these test did PHYLIP have a significant lower mean
D-value than MrBayes.

Because of the number of tests we perform the probability that we would get
two significant results by chance is high and we should consider to modify
the significance level. Another way of constructing a test with 5% signif-
icance level for the overall difference is to construct a new t-statistic from
the t-values in table 4 which are standalized and comparable. With that
test we get a P-value of 0.06 and we cannot reject the hypothesis that there
is a difference between both programs estimates of the total branch-length
distance on a 5% significance level. However, this low P-value does indicate
a tendency that PHYLIP is performing better with respect to the absolute
branch length difference measure.

Length of sequence

1000 | 2000 | 5000 | 10000

3 taxa T-value | 1.24 | 0.75 | -1.44 | 1.10
P-value | 0.25 | 048 | 0.19 0.30

5 taxa T-value | 2.76 | 3.41 | 0.94 0.05
P-value | 0.02 | 0.01 | 0.37 | 0.96

10 taxa T-value | 0.92 | 142 | -0.57 | 0.56
P-value | 0.39 | 0.19 | 0.59 0.59

90 taxa T-value | 1.22 | -0.49 | 0.58 | 0.35
P-value | 0.26 | 0.64 | 0.58 | 0.74

50 taxa T-value | Na | -1.22 | 0.65 | -1.21
P-value | Na | 0.26 | 0.53 | 0.26

Table 4: T-values and P-values when testing if there is any difference of the
estimates of the branch lengths
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6.3 Comparing branch lengths when adding taxa

If we, for a fixed sequence length, add taxa to our analyses we can see in
Figure 13-16 that our estimates in most cases do not improve. The spread
decreases a little bit, but in Figure 13 and in Figure 15 the mean value is
almost not affected. If we want to estimate the node-height the precision
should increase if we add new taxa below the split [11], altought only at a
rate proportional to the logarithm of the number of taxa. In our case many
of the taxa are added above the split and that could be a reason why we do
not see an improvement of the estimates.

If we compare the programs we see that the mean values in Figure 13-16 at
many places are lower for MrBayes than for PHYLIP. To test if there is a
difference we can use the fact that we have pairwise observations as we did in
section 6.2. With that test we do not get any significance difference and by
performing a test with overall significance level of 5 % we obtain a P-value
of 0.2.
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Figure 13: Node-height difference for MrBayes and PHYLIP where a dot
represent a single observation and the line represent the mean values for
the dots. For every number of taxa there are 9 observations for each of the
programs.
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Figure 14: Node-height difference for MrBayes and PHYLIP where a dot
represent a single observation and the line represent the mean values for
the dots. For every number of taxa there are 9 observations for each of the
programs.
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Figure 15: Node-height difference for MrBayes and PHYLIP where a dot
represent a single observation and the line represent the mean values for
the dots. For every number of taxa there are 9 observations for each of the
programs.
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Figure 16: Node-height difference for MrBayes and PHYLIP where a dot
represent a single observation and the line represent the mean values for
the dots. For every number of taxa there are 9 observations for each of the
programs.

7 Discussion

In this thesis we have simulated phylogenetic trees and DN A-sequences. The
tree simulation model could be a good simplification of the real world. When
simulating the trees, the birth and death rates were not randomly chosen and
because we use Bayesian inference in MrBayes we should in a future study
consider to randomize these rates from their prior distributions in MrBayes.

If we look at the model for DNA simulation we conclude that it is far from
realistic. We have only considered one type of DNA-evolution, nucleotide
substitution, but we know that the evolutionary process involves lots of more
factors. The model for DNA-substitution, the Jukes-Cantor model, is also
a rough simplification and we have for example not regarded the correlation
between sites close to each other. But since we have used these simplified
models in the analyses of both programs, we can compare the programs
estimates and study how they depend on the number of taxa and the length
of the sequences.

In our analyses, when we held the number of taxa constant and increased
the sequence length, we can see that in most cases the estimates gets better
with longer sequences. In figure 8, where we have three taxa, we did not see
the same trend but in that case we probably have much information even
with a sequence length of 1000 sites. It would have been good to analyse
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sequences with less than 1000 sites for these trees. We would then probably
see that the precision of the estimates increase when we increase the number
of sites.

When we, for a fixed length of the sequence, increased the number of taxa
we did not see the expected improvement of the estimates. Most of the
trees with three taxa had their split near the tips. To investigate how the
inference change in these cases we should have analysed some trees with the
split closer to the root.

All the trees we simulated and analysed are normalized so that the root is
at height 1. Although the time is on a relative scale we could measure the
time in units of expected number of substitutions per site. The estimated
branch length are in units of expected number of substitutions per site and
by expressing our simulated tree in the same units we would not have to
normalize the programs estimates.

As we can see in our analyses there where no significant difference between
the estimates from both the programs. However, there was a tendency that
PHYLIP performs better when increasing the sequences length with fixed
amount of taxa. Another important difference is that the analyses in Mr-
Bayes took considerable more time than they did in PHYLIP. We would
therefore recommend PHYLIP for analyses of datasets similar to the ones
that we have analysed.
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A Simulated trees

In Figure 17-19 we see the trees of size 100 that we used in our
When the ratio % increases more species go extinct and we can see,
enumeration, that there are 339 extinct species in Figure 19.
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Figure 18: The simulated tree with & = 0.5
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Figure 19: The simulated tree with & = 0.75
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