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tA phylogeneti
 tree des
ribes the relatedness between spe
ies inan evolutionary 
ontext. A phylogeneti
 tree 
an be re
onstru
ted orestimated by 
omparing DNA-sequen
es for a number of spe
ies. Inthis thesis we are simulating trees a

ording to a linear birth-deathpro
ess. The DNA-evolution in the trees are simulated a

ording tothe Jukes-Cantor model. By performing the analyses with a Bayesianmethod and a maximum likelihood method, we study how the inferen
e
hange when in
reasing the number of taxa and/or the length of thesequen
es. We 
ompare the estimates with the simulated tree and usethree di�erent measurements. For our 
omparison of the two methodswe are using the programs MrBayes and PHYLIP. The main resultis that the estimates be
omes better when in
reasing the length ofthe sequen
e but not when we in
rease the number of taxa. We alsoobserve that PHYLIP, whi
h uses a maximum likelihood method, hasa tenden
y to perform better than MrBayes, whi
h use a Bayesianmethod.
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Phylogeneti
s and inferen
e Fredrik Olsson1 Introdu
tionPhylogeneti
s is the study of how di�erent spe
ies are related to ea
h other.We assume that a group of spe
ies has evolved from a 
ommon an
estor andwe 
an illustrate their relatedness in a phylogeneti
 tree. In a phylogeneti
tree the root is the 
ommon an
estor and the tips are all the extant spe
ies.

Figure 1: A phylogeneti
 tree for the great and lesser apesLet us say that we have a group of 
urrently living spe
ies and want to re
on-stru
t their phylogeneti
 tree. One way to do that is to look at the spe
iesDNA-sequen
es (DeoxyriboNu
lei
 A
id). If we 
olle
t DNA-sequen
es fromthe spe
ies and observe how mu
h they di�er we 
an estimate how 
lose thespe
ies are in the evolutionary pro
ess.The positions in a DNA-sequen
es, further referred to as sites, 
onsist of oneout of four nu
leotides; A, G, C or T. The DNA-evolution o

urs in di�erentways, however in this thesis we will only 
onsider nu
leotide substitutions,when a site 
hanges from one nu
leotide to another. We will also assumethat all sites evolve independently of ea
h other and that there is a mole
ular
lo
k. With the mole
ular 
lo
k assumption we mean that all sites in allspe
ies DNA-sequen
es have the same substitution rate for all time periods.In the evolutionary pro
ess a spe
ies is eventually divided into two groups,e.g. when a seed from a plant on one side of a mountain travels to and growson the other side of the mountain. When this event happens the spe
iessplits into two new spe
ies and they 
ontinue to evolve independently ofea
h other.In this thesis we will simulate phylogeneti
 trees and DNA-evolution in thosetrees. We are, with the DNA-sequen
es at the tips of a tree, going to re-
onstru
t or estimate the phylogeneti
 tree with two di�erent methods. By
omparing the estimates from the two methods with the true tree we 
anstudy how the inferen
e depends on the number of taxa and length of the1
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es. The analyses will be done by two 
omputer pa
kages (PHYLIP[3℄ and MrBayes [6℄) and we will 
ompare their performan
e under di�erents
enarios.2 Simulating the dataTo 
ompare the estimates of the two program pa
kages we need data toanalyse. In this thesis we will use simulated data. Simulated data is oftenused when 
omparing di�erent inferen
e methods in phylogeneti
s [7℄. Oneadvantage with simulated data 
ompared to real data is that we know theanswer and we 
an see how mu
h the estimated trees di�er from the real(simulated) tree. To simulate the data we start by simulating a phylogeneti
tree whi
h 
onne
ts the spe
ies and des
ribes there relatedness. After weobtained our tree we simulate DNA-evolution in that tree. Finally, our datawill be in the form of a k×n matrix where k is the number of extant spe
ies,for whi
h we want to estimate the phylogeneti
 tree, and n the length oftheir DNA-sequen
es. All simulations were performed in O
tave [1℄ whi
h isa free and open sour
e 
omputer program with many similarities to Matlab.2.1 Simulating the treeTo simulate a tree we use a linear birth and death pro
ess [9℄. This pro
essdepends on two parameters, the birth rate (λ) and the death rate (µ). Thetime between two events is exponentially distributed with parameter i(λ+µ),where i is the number of living spe
ies in the pro
ess. Hen
e we have thatthe expe
ted time between two events
E[Time until next event] =

1

i(λ + µ)
. (1)An event is either a birth or a death, with the probability for a birth

P (Birth) =
λ

λ + µ
(2)and the probability for a death

P (Death) =
µ

λ + µ
. (3)Using the above expressions we 
an simulate a phylogeneti
 tree by startingwith two bran
hes that evolve from the root and then use the followingalgorithm: 2
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• Simulate the time until the next event o

urs
• Add the simulated time to all a
tive bran
hes where an a
tive bran
his a bran
h that has not been exposed to a death event
• De
ide on whi
h bran
h the event will o

ur with all bran
hes havingequal probabilities to be 
hosen
• De
ide if the event is a birth or a death.- If the event is a birth the bran
h splits into two new bran
hes- If the event is a death the bran
h stops growing
• Repeat the algorithm until we have the desired number of living spe
iesin the tree. If a death event o

urs at the last bran
h, restart thepro
ess with two new bran
hes
• When we have got the desired number of spe
ies we simulate the timeuntil next event and add half of that time to all a
tive bran
hesAfter the simulation we erase all the dead bran
hes, whi
h represent extin
tspe
ies, and then normalize the time in the tree so that the total time fromthe root to all taxa is 1. This normalization is done be
ause we want allsimulated trees to have the same height so that we are able to 
ompare themto ea
h other.The time in a phylogeneti
 tree 
ould be expressed in di�erent units, e.g.expe
ted number of substitutions per site or real time. If we are only usingDNA-sequen
es it is impossible to estimate the real time in the tree, for thatwe need additional information, for example fossils.In Figure 2 we see an example of a simulated tree where some of the spe
ieshave gone extin
t. However, it is the tree where the extin
t spe
ies areremoved, as in Figure 3, that we use for DNA-simulation and try to estimatewith the simulated sequen
es.

Figure 2: A simulated phylogeneti
 tree with extin
t spe
ies3
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Figure 3: The same phylogeneti
 tree as in Figure 2 but where all the extin
tspe
ies have been erased2.2 DNA-simulationWhen simulating the DNA-evolution in a given phylogeneti
 tree, we startby simulating the sequen
e for the root. We randomly draw the state forea
h site with equal probability for all the nu
leotides. This sequen
e thenevolves along the bran
hes a

ording to a substitution model until it rea
hesthe tips of the tree.The substitution model we use is the Jukes-Cantor model [5℄ whi
h is a 
on-tinuous time Markov 
hain. In this model we assume that all sites evolveindependently. When a substitution o

urs the transition probabilities be-tween all nu
leotides are the same. The model does only depend on oneparameter, the mean substitution rate, whi
h is the same for all sites.The 
ontinuous time Markov 
hain has four states, the nu
leotides, and byusing the Jukes-Cantor model the generator matrix is
A =


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
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
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(4)
where µ is the mean substitution rate.The transition matrix, P (t), 
onsist of the probabilities that a site 
hangesfrom one nu
leotide to another at time t, where t is in this 
ase the bran
hlength. We obtain the transition matrix with the forward or ba
kward equa-4
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h have the formal solution
P (t) = eAt =

∞
∑

n=0

tnAn

n!
(5)if the number of states in the 
hain are �nite [9℄. In our 
ase the transitionmatrix is a 4 × 4 matrix where Pij(t) is the probability that a site 
hangesfrom nu
leotide i to j in t time units.However, in this 
ase we are able to 
al
ulate the transition matrix andexpress it in a matrix form as

P =






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






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1
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. (6)
Using the transition matrix we 
an simulate DNA-evolution for every site byrandomize if a site has 
hanged and in the 
ase of a 
hange, randomize towhi
h nu
leotide it will 
hange. This way of simulating the DNA-evolution
onsumes a lot of 
omputer time. Instead we use the assumption that allsites evolve independently and at the same rate.The number of substitutions along a bran
h with length t will then be bi-nomial distributed with n equal to the length of the sequen
e and with theprobability that a site has 
hanged in t time units

p(t) =
4

∑

i=2

P1i =
3

4
−

3

4
e−tµ. (7)Then, for every bran
h we 
an randomly draw the number of substitutionsthat o

urs, at whi
h sites the 
hanges will happen and to whi
h nu
leotidesthe sites will 
hange.At the end of the simulation we obtain the DNA-sequen
e for every nodeand tip in the tree. We pi
k the sequen
es from the k extant spe
ies and
onstru
t a k × n matrix where the k:th row 
onsists of the DNA-sequen
efor the k:th spe
ies. In Figure 4 we have an example of a small dataset forthe spe
ies in Figure 3. We 
an for instan
e see that the sequen
es of taxa2 and taxa 3 are more similar than the sequen
es of taxa 2 and taxa 8.5
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e Fredrik Olssontaxa_2 TGCAAACTCTTAAATAGATGCGTTCGCTATATTATGTTCGTAGAATTCATtaxa_3 TGCAAACTTTTAAATAGATGCGTTCGCTATATTATGTTCGTAGAATTCATtaxa_5 TGGAAACTTTTAAATAGATGCGTTCGCTATATTATATTCGTAGAATTCCTtaxa_7 TGGGAACTTTTACATAGATGCGTTCGCTAAATTATATTCGTAGAATTTATtaxa_8 TGGGAACTGTTACATAGATGCGTTCGCTAAATTATATTCGTAGAATTTATFigure 4: An example dataset for the spe
ies in Figure 3.2.3 Model parametersIn our simulations we need to 
hoose the birth and death rates whi
h innature di�ers between di�erent types of spe
ies. Sin
e we normalize the treeheight after the simulation we are only interested in the ratio between thetwo rates. We want the ratio µ
λ
to be less than 1, otherwise we have a verysmall probability that the tree grows large. On the other hand, if the ratio is0, we get a pure birth pro
ess. The shape of the tree also di�ers dependingon the ratio. The splits in a tree simulated with a high ratio tends to be
loser to the tips than the splits in a tree simulated with a low ratio [4℄.In our study we have used three di�erent values of the ratio, 0, 0.5 and 0.75,and simulated three trees with 100 extant taxa ea
h (see appendix A). Inour simulated trees we 
an see that when the ratio was equal to 0.75 (Figure19) the splits seems to be 
loser to the tips than when the ratio equals 0.5(Figure 18) or 0 (Figure 17).For ea
h root in the trees we have simulated a DNA-sequen
e with length20,000. That sequen
e has evolved in the tree a

ording to our substitutionmodel. We 
hose the mean substitution rate so that the expe
ted number of
hanges per site and time unit was equal to 0.01 in the substitution model.2.4 Choosing trees and DNA-sequen
esFrom ea
h of the simulated trees with 100 taxa we pi
ked subtrees to analyse.First, we 
onstru
t a subtree that 
onsists of 3 randomly 
hosen taxa with therestri
tion that the subtree should 
ontain the root of the original tree. Thenwe add randomly 
hosen taxa to the tree until we get subtrees 
ontainingof 5, 10, 20, and 50 spe
ies. This pro
edure is repeated twi
e so that we�nally have 3 subtrees of ea
h 3, 5, 10, 20 and 50 taxa. If we do not havethe restri
tion that the original root should appear in the subtree, there isa large risk that our subtrees have di�erent heights. If the subtrees havedi�erent heights it would not be fair to 
ompare them, be
ause they wouldnot have the same amount of time for their DNA-sequen
es to evolve. 6
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h subtree we pi
k a subsequen
e of 1000 sites to whi
h we add sitesuntil we have subsequen
es of size 1000, 2000, 5000 and 10000. For every
ombination of the number of spe
ies, k, and sequen
e length, n, we 
anform a k × n matrix whi
h is the data for our analyses.3 Computer pa
kagesThere are many 
omputer pa
kages whi
h simulate, analyse and summa-rize phylogeneti
 data, most of them are still developing and implementingnew methods. In our thesis we will use two di�erent 
omputer pa
kages toanalyse the simulated DNA-sequen
es, PHYLIP (The PHYLogeny Inferen
ePa
kage) [3℄ and MrBayes [6℄.3.1 PHYLIPWe have used PHYLIP version 3.67 whi
h is a free and open sour
e 
omputerpa
kage developed by Joe Felsenstein [3℄. In our analyses we used the pro-gram Dnamlk whi
h is a part of PHYLIP. Dnamlk analyses DNA-sequen
eswith a maximum likelihood approa
h and assumes a mole
ular 
lo
k.3.1.1 Maximum likelihood inferen
eIn maximum likelihood inferen
e we 
olle
t data X, in our 
ase the DNA-sequen
es, and formulate the likelihood fun
tion L(τ, b(τ)|X) where τ is thetree topology and b(τ) bran
h lengths for topology τ . The likelihood fun
-tion expresses how likely the values on the parameters are given the observeddata. The values of τ and b(τ) that maximize the likelihood fun
tion will beour estimates for the parameters. Sin
e all the sites are mutually indepen-dent this likelihood 
ould, for a given topology, be expressed as a produ
t
Πn

i=1L(τ, b(τ)|Xi) where Xi denotes the i:th 
olumn in our data matrix.One problem with maximizing the likelihood is when the number of taxain
reases, be
ause then the number of possible topologies grows very fast. Ithas been shown [2℄ that the number of rooted bifur
ating trees with n taxais (2n−3)!
(n−2)!2n−3 . The time to 
al
ulate the bran
h lengths that maximizes thelikelihood fun
tion for every possible topology would in
rease fast when thenumber of taxa in our analyses in
reases.To over
ome this problem we start with two taxa and su

essively add taxato that tree instead of 
onsidering all possible topologies. We pla
e everyadded taxa where it maximizes the likelihood fun
tion. When the last taxais added to the tree it is possible to rearrange the pla
ements of the taxa.7
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hange the pla
ement for the taxa one by one in orderto �nd a new topology whi
h yields a higher value for the likelihood fun
tion[2℄.3.2 MrBayesMrBayes is developed by Fredrik Ronquist, John P. Huelsenbe
k and Paulvan der Mark, and like PHYLIP it is an open sour
e and free 
omputer pro-gram. MrBayes uses a Bayesian approa
h and analyses the DNA-sequen
eswith the Markov Chain Monte Carlo (MCMC) method.3.2.1 Bayesian inferen
eIn Bayesian inferen
e we regard the parameters as random variables andwe are interested in the parameters posterior distribution. This is the dis-tribution of the parameters given the data and our prior knowledge aboutthe parameters. To �nd the posterior distribution we use Bayes' theorem to
ombine the parameters prior distributions, whi
h des
ribes our prior beliefsor knowledge about the parameters, with the observed data. If we do nothave any beliefs or knowledge about the parameters we try to 
onstru
t anon-informative prior.The posterior distribution is often di�
ult to 
al
ulate espe
ially for 
om-plex problems like the ones in phylogeneti
s. But in the end of the 20th
entury the Bayesian approa
h be
ame popular for phylogeneti
s when anew method, MCMC, was proposed to solve the posterior problem [8℄. InMCMC we formulate a Markov 
hain with the posterior distribution as itsstationary distribution. If we run the Markov 
hain until it approximatelyrea
hes it stationary distribution and then take samples from it, we get ap-proximate samples from the unknown posterior distribution.4 AnalysisBoth programs have a lot of di�erent options and we will explain our 
hoi
esin the following se
tion. Our goal is to use the same models in both programsto get a fair 
omparison of them.4.1 PHYLIPThe analyses with PHYLIP were performed with the program DNAMLK.The substitution model we used is the Jukes-Cantor model and we enabled8
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ribed earlier in se
tion 3.1.1.4.2 MrBayesIn MrBayes there are a number of parameters and we need to spe
ify theirprior distributions before we 
an run the analyses. For the bran
h lengthwe used a birth and death model with a mole
ular 
lo
k. We set the priordistribution for the birth rate and the death rate to be uniformly distributedbetween 0 and 10, whi
h is default in MrBayes. We used the Jukes-Cantormodel as our substitution model and for the remaining parameters we usedthe default prior distributions of MrBayes.A problem when using MrBayes is knowing when to stop the analysis, whenis the sampled distribution 
lose enough to the posterior distribution? Tode
ide when to stop we used a stop-rule whi
h is implemented in MrBayes.For every analysis with MrBayes we ran two separate Markov 
hains and atevery 1000th generation MrBayes 
al
ulate the average standard deviationof split frequen
ies between these two runs. This value is 
al
ulated from 75
% of the past generations and is a measure on how mu
h the two samplesdi�er. When this value gets low the samples be
ome more and more simularand we 
onsider that we have rea
hed the stationary distribution. In ouranalysis we used the default stopvalue whi
h is 0.01.After we de
ided that we have rea
hed the stationary distribution we sum-marized the samples with the sump and sumt 
ommands in MrBayes. In theanalysis we dis
arded the �rst 25% of the generations when we de
ided thatthe 
hains had 
onverged, therefore we omit the �rst 25% samples when wesummarize the analysis and 
onsider that as the burnin period.4.3 Program performan
eThe time to run an analysis with the two programs di�ers, espe
ially whenthe amount of data in
reases. The mean time of 10 runs with a data set
onsisting of 20 taxa with sequen
e lengths of 5000 sites, on an AMD TurionX2 Ultra Dual
ore Mobile ZM-82 2200 MHz 1MB 
a
he, was 326 se
ondsfor MrBayes and 42 se
onds for PHYLIP. Hen
e, for this dataset PHYLIPwas almost 8 times faster than MrBayes.Both MrBayes and PHYLIP also en
ountered problems when analysing datasets with large number of taxa and short DNA-sequen
es. PHYLIP produ
eda segmentation fault and MrBayes froze at the beginning of the analyse. Tosolve these problems we 
hanged the input order in PHYLIP and reran theanalysis with MrBayes. If both programs had a problem to analyse the same9
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hose a new sequen
e to analyse for that tree. However this didnot solve the problem for all the analyses when we had 50 taxa with 1000sites as our data, therefore this data is dis
arded from the analysis.5 Comparing two estimated treesIn order to 
ompare two estimated trees with ea
h other we need some mea-surements on how good the estimates are. A measurement also helps us tostudy how the inferen
e 
hanges when the number of taxa or the length ofthe sequen
es 
hanges. We have used two measurements in this thesis, theproportion of 
orre
t splits and the absolute bran
h length distan
e. Wealso study how the estimates of the node-heights, in a tree with three taxa,
hanges as we add new taxa to that tree.5.1 Topology measureIn order to measure how 
lose the estimated topology is to the true topologywe study the proportion of 
orre
t splits. This meassure is similar to thesymmetri
 distan
e metri
 presented by Robinson and Foulds[10℄. Fromea
h split in a topology there are a number of taxa that have des
ended andthe split divides those taxa into two groups. If we 
ompare a split in anestimated tree with the true topology we 
onsider the split to be 
orre
t ifwe, for any split in the true topology, 
an 
onstru
t the exa
t same groups oftaxa as we observed for the split in the estimated topology. The proportionof 
orre
t splits is then the number of 
orre
t splits divided by the totalnumber of splits in the tree.5.2 Bran
h length measureIn order to 
ompare bran
h lengths in trees with di�erent topologies westudy the absolute bran
h length distan
e between the estimated tree andthe simulated one. Let xij be the true sum of the length of bran
hes whi
h
onne
ts the two taxa i and j in a simulated tree with k taxa, and let x̂ij bethe 
orresponding sum in the estimated tree. This distan
e is then de�nedby
D =

k−1
∑

i=1

k
∑

j=i+1

|xij − x̂ij| (8)and a low value of D means that the estimated bran
h lengths are 
lose tothe simulated tree. With this measures we see how mu
h the estimated tree10
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orre
t topol-ogy, in fa
t we 
an 
ompare the bran
h lengths in estimates with di�erenttopologies.5.3 Di�eren
e between the measurementsWhi
h of these measurements is preferable? To answer this question we mustknow what we are interested in and what we 
onsider to be a good estimate.In Figure 5 we have the true tree and we have two estimated trees in Figure6 and Figure 7. If we look at the proportion of 
orre
t splits we see that allof the splits in Figure 7 are 
orre
t but only one third of the splits in Figure6 are 
orre
t. On the other hand, the D-value for the tree in Figure 6 ismu
h lower than it is for the tree in Figure 7.

Figure 5: The true topology and bran
h lengths

Figure 6: Estimated tree with in
orre
t topology5.4 Adding taxa with �xed sequen
e lengthTo study the performan
e of the programs when we hold the length of thesequen
e �xed and su

essively add taxa we start by looking at a normalizedtree with three taxa. Su
h a tree has 2 splits where the height of the split,11
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Figure 7: Estimated tree with 
orre
t topologythat is not the root, lies between zero and one. By 
omparing that heightwith the 
orresponding height in the true topology we 
an study how theinferen
e 
hanges when we add new taxa to the tree.6 Results6.1 Proportion of 
orre
t splitsIn Table 1, 2 and 3 we have the mean proportion of 
orre
t splits for threetrees when we have various number of taxa and length of the sequen
es.When we analyse a tree with few taxa there are only a few possible valuesfor ea
h 
ell. Therefore, it is not surprising if 
ells with few taxa have thesame mean proportion for di�erent sequen
e length. Be
ause we dis
ardedthe data sets with 50 taxa and 1000 sites we have no estimate for these 
ells.Both program estimated the 
orre
t splits for all trees that 
onsisted of threetaxa for all 
onsidered sequen
e length. As we 
an see the proportion seemsto in
rease as we in
rease the length of the sequen
es and �x the number oftaxa. This is expe
ted be
ause when we in
rease the length of the sequen
eswe in
rease the amount of information.When we hold the sequen
e length �x and in
rease the number of taxa wesee that the proportion in table 1 and 3 de
reases but that pattern doesnot appear in table 2. One possible reason why both programs did not �ndmany 
orre
t splits when we used 5 taxa in Table 2 is that many of the splitsin these topologies are 
lose to ea
h other and they are therefore hard toestimate.In Table 2, the proportion of 
orre
t splits de
reased dramati
ally whenwe analysed 5 taxa and the sequen
e length in
reased from 5000 sites to10000 sites. The splits in these trees were hard to estimate be
ause theywere 
lose to ea
h other. It is possible that, by 
han
e, the additional 500012
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e Fredrik Olssonsites in
reased the support for a topology separate from the true topology.This explanation be
omes more reasonable be
ause both program behavedsimilar.In Table 3, the tree was simulated with the ratio µ
λ

= 0.75 and we estimatedmore 
orre
t splits than in the other two tables. In that tree the splits tendto be near the tips and it should therefore be easier to �nd the splits, whenwe have few taxa, than for an equally sized tree but with the splits near theroot.If we 
ompare the programs to ea
h other we see that they estimate approx-imately the same proportion of 
orre
t splits in most 
ases and we 
annotsee with this data that one of the programs performs better than the other.Length of sequen
ek Program 1000 2000 5000 100003 MrBayes 1 1 1 1PHYLIP 1 1 1 15 MrBayes 0.83 0.83 0.83 0.83PHYLIP 0.83 0.83 0.83 0.8310 MrBayes 0.56 0.85 0.93 0.93PHYLIP 0.63 0.85 0.85 0.8520 MrBayes 0.67 0.77 0.86 0.79PHYLIP 0.79 0.81 0.89 0.8250 MrBayes Na 0.73 0.80 0.85PHYLIP Na 0.65 0.86 0.85Table 1: Every 
ell 
onsists of the mean proportion of 
orre
t splits for threetrees. The subtrees are sampled from a tree simulated with µ
λ

= 0Length of sequen
ek Program 1000 2000 5000 100003 MrBayes 1 1 1 1PHYLIP 1 1 1 15 MrBayes 0.58 0.58 0.83 0.50PHYLIP 0.58 0.58 0.83 0.4210 MrBayes 0.70 0.67 0.70 0.74PHYLIP 0.70 0.70 0.78 0.8120 MrBayes 0.79 0.77 0.82 0.96PHYLIP 0.79 0.81 0.84 0.9650 MrBayes Na 0.76 0.89 0.92PHYLIP Na 0.66 0.88 0.92Table 2: Every 
ell 
onsists of the mean proportion of 
orre
t splits for threetrees. The subtrees are sampled from a tree simulated with µ
λ

= 0.513
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Length of sequen
ek Program 1000 2000 5000 100003 MrBayes 1 1 1 1PHYLIP 1 1 1 15 MrBayes 1 1 1 1PHYLIP 1 1 1 110 MrBayes 0.85 1 1 1PHYLIP 1 1 1 120 MrBayes 0.82 0.93 1 1PHYLIP 0.74 0.87 1 150 MrBayes Na 0.80 0.90 0.92PHYLIP Na 0.78 0.88 0.90Table 3: Every 
ell 
onsists of the mean proportion of 
orre
t splits for threetrees. The subtrees are sampled from a tree simulated with µ
λ

= 0.75

14



Phylogeneti
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e Fredrik Olsson6.2 Comparing bran
h lengths when in
reasing sequen
e lengthIn �gures 8-12 we 
an see the absolute bran
h length di�eren
e for our es-timated trees with the number of taxa �xed. The mean D-value de
reasesas we in
rease the sequen
e length in all �gures ex
ept in one 
ase when weanalyse three taxa. The spread among the estimate also de
reases as thesequen
es gets longer whi
h is to expe
t be
ause we add more data to theanalyses. We also noti
e that the lines, whi
h represent the mean D-value forthe estimates from both the programs, seems to follow ea
h other, espe
iallywhen the sequen
es be
omes longer.
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Figure 8: D-values for MrBayes and PHYLIP where a dot represent a singleobservation and the line represent the mean values for the dots. For everylength of the sequen
e there are 9 observations for ea
h of the programs.
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Figure 9: D-values for MrBayes and PHYLIP where a dot represent a singleobservation and the line represent the mean values for the dots. For everylength of the sequen
e there are 9 observations for ea
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Figure 10: D-values for MrBayes and PHYLIP where a dot represent a singleobservation and the line represent the mean values for the dots. For everylength of the sequen
e there are 9 observations for ea
h of the programs. 16
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Figure 11: D-values for MrBayes and PHYLIP where a dot represent a singleobservation and the line represent the mean values for the dots. For everylength of the sequen
e there are 9 observations for ea
h of the programs.
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e Fredrik OlssonIn our analyses every data set is analysed with both programs and we havetherefore obtained paired observations whi
h we 
an 
ompare to see if thereare any di�eren
e between the programs. By performing a t-test for the dif-feren
es of the D-values, for every 
ombination of taxa and sequen
e length,we see in Table 4 that there are two signi�
ant di�eren
es with a 5% signif-i
an
e level. In both these test did PHYLIP have a signi�
ant lower meanD-value than MrBayes.Be
ause of the number of tests we perform the probability that we would gettwo signi�
ant results by 
han
e is high and we should 
onsider to modifythe signi�
an
e level. Another way of 
onstru
ting a test with 5% signif-i
an
e level for the overall di�eren
e is to 
onstru
t a new t-statisti
 fromthe t-values in table 4 whi
h are standalized and 
omparable. With thattest we get a P-value of 0.06 and we 
annot reje
t the hypothesis that thereis a di�eren
e between both programs estimates of the total bran
h-lengthdistan
e on a 5% signi�
an
e level. However, this low P-value does indi
atea tenden
y that PHYLIP is performing better with respe
t to the absolutebran
h length di�eren
e measure. Length of sequen
e1000 2000 5000 100003 taxa T-value 1.24 0.75 -1.44 1.10P-value 0.25 0.48 0.19 0.305 taxa T-value 2.76 3.41 0.94 0.05P-value 0.02 0.01 0.37 0.9610 taxa T-value 0.92 1.42 -0.57 0.56P-value 0.39 0.19 0.59 0.5920 taxa T-value 1.22 -0.49 0.58 0.35P-value 0.26 0.64 0.58 0.7450 taxa T-value Na -1.22 0.65 -1.21P-value Na 0.26 0.53 0.26Table 4: T-values and P-values when testing if there is any di�eren
e of theestimates of the bran
h lengths

18
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e Fredrik Olsson6.3 Comparing bran
h lengths when adding taxaIf we, for a �xed sequen
e length, add taxa to our analyses we 
an see inFigure 13-16 that our estimates in most 
ases do not improve. The spreadde
reases a little bit, but in Figure 13 and in Figure 15 the mean value isalmost not a�e
ted. If we want to estimate the node-height the pre
isionshould in
rease if we add new taxa below the split [11℄, altought only at arate proportional to the logarithm of the number of taxa. In our 
ase manyof the taxa are added above the split and that 
ould be a reason why we donot see an improvement of the estimates.If we 
ompare the programs we see that the mean values in Figure 13-16 atmany pla
es are lower for MrBayes than for PHYLIP. To test if there is adi�eren
e we 
an use the fa
t that we have pairwise observations as we did inse
tion 6.2. With that test we do not get any signi�
an
e di�eren
e and byperforming a test with overall signi�
an
e level of 5 % we obtain a P-valueof 0.2.
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Figure 13: Node-height di�eren
e for MrBayes and PHYLIP where a dotrepresent a single observation and the line represent the mean values forthe dots. For every number of taxa there are 9 observations for ea
h of theprograms.
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Figure 14: Node-height di�eren
e for MrBayes and PHYLIP where a dotrepresent a single observation and the line represent the mean values forthe dots. For every number of taxa there are 9 observations for ea
h of theprograms.
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Figure 16: Node-height di�eren
e for MrBayes and PHYLIP where a dotrepresent a single observation and the line represent the mean values forthe dots. For every number of taxa there are 9 observations for ea
h of theprograms.7 Dis
ussionIn this thesis we have simulated phylogeneti
 trees and DNA-sequen
es. Thetree simulation model 
ould be a good simpli�
ation of the real world. Whensimulating the trees, the birth and death rates were not randomly 
hosen andbe
ause we use Bayesian inferen
e in MrBayes we should in a future study
onsider to randomize these rates from their prior distributions in MrBayes.If we look at the model for DNA simulation we 
on
lude that it is far fromrealisti
. We have only 
onsidered one type of DNA-evolution, nu
leotidesubstitution, but we know that the evolutionary pro
ess involves lots of morefa
tors. The model for DNA-substitution, the Jukes-Cantor model, is alsoa rough simpli�
ation and we have for example not regarded the 
orrelationbetween sites 
lose to ea
h other. But sin
e we have used these simpli�edmodels in the analyses of both programs, we 
an 
ompare the programsestimates and study how they depend on the number of taxa and the lengthof the sequen
es.In our analyses, when we held the number of taxa 
onstant and in
reasedthe sequen
e length, we 
an see that in most 
ases the estimates gets betterwith longer sequen
es. In �gure 8, where we have three taxa, we did not seethe same trend but in that 
ase we probably have mu
h information evenwith a sequen
e length of 1000 sites. It would have been good to analyse21
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s and inferen
e Fredrik Olssonsequen
es with less than 1000 sites for these trees. We would then probablysee that the pre
ision of the estimates in
rease when we in
rease the numberof sites.When we, for a �xed length of the sequen
e, in
reased the number of taxawe did not see the expe
ted improvement of the estimates. Most of thetrees with three taxa had their split near the tips. To investigate how theinferen
e 
hange in these 
ases we should have analysed some trees with thesplit 
loser to the root.All the trees we simulated and analysed are normalized so that the root isat height 1. Although the time is on a relative s
ale we 
ould measure thetime in units of expe
ted number of substitutions per site. The estimatedbran
h length are in units of expe
ted number of substitutions per site andby expressing our simulated tree in the same units we would not have tonormalize the programs estimates.As we 
an see in our analyses there where no signi�
ant di�eren
e betweenthe estimates from both the programs. However, there was a tenden
y thatPHYLIP performs better when in
reasing the sequen
es length with �xedamount of taxa. Another important di�eren
e is that the analyses in Mr-Bayes took 
onsiderable more time than they did in PHYLIP. We wouldtherefore re
ommend PHYLIP for analyses of datasets similar to the onesthat we have analysed.
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s and inferen
e Fredrik OlssonA Simulated treesIn Figure 17-19 we see the trees of size 100 that we used in our study.When the ratio µ
λ
in
reases more spe
ies go extin
t and we 
an see, by theenumeration, that there are 339 extin
t spe
ies in Figure 19.

Figure 17: The simulated tree with µ
λ

= 0
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Figure 18: The simulated tree with µ
λ

= 0.5
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Figure 19: The simulated tree with µ
λ

= 0.75
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