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Phylogenetis and infereneFredrik Olsson∗May 2009AbstratA phylogeneti tree desribes the relatedness between speies inan evolutionary ontext. A phylogeneti tree an be reonstruted orestimated by omparing DNA-sequenes for a number of speies. Inthis thesis we are simulating trees aording to a linear birth-deathproess. The DNA-evolution in the trees are simulated aording tothe Jukes-Cantor model. By performing the analyses with a Bayesianmethod and a maximum likelihood method, we study how the inferenehange when inreasing the number of taxa and/or the length of thesequenes. We ompare the estimates with the simulated tree and usethree di�erent measurements. For our omparison of the two methodswe are using the programs MrBayes and PHYLIP. The main resultis that the estimates beomes better when inreasing the length ofthe sequene but not when we inrease the number of taxa. We alsoobserve that PHYLIP, whih uses a maximum likelihood method, hasa tendeny to perform better than MrBayes, whih use a Bayesianmethod.
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Phylogenetis and inferene Fredrik Olsson1 IntrodutionPhylogenetis is the study of how di�erent speies are related to eah other.We assume that a group of speies has evolved from a ommon anestor andwe an illustrate their relatedness in a phylogeneti tree. In a phylogenetitree the root is the ommon anestor and the tips are all the extant speies.

Figure 1: A phylogeneti tree for the great and lesser apesLet us say that we have a group of urrently living speies and want to reon-strut their phylogeneti tree. One way to do that is to look at the speiesDNA-sequenes (DeoxyriboNulei Aid). If we ollet DNA-sequenes fromthe speies and observe how muh they di�er we an estimate how lose thespeies are in the evolutionary proess.The positions in a DNA-sequenes, further referred to as sites, onsist of oneout of four nuleotides; A, G, C or T. The DNA-evolution ours in di�erentways, however in this thesis we will only onsider nuleotide substitutions,when a site hanges from one nuleotide to another. We will also assumethat all sites evolve independently of eah other and that there is a moleularlok. With the moleular lok assumption we mean that all sites in allspeies DNA-sequenes have the same substitution rate for all time periods.In the evolutionary proess a speies is eventually divided into two groups,e.g. when a seed from a plant on one side of a mountain travels to and growson the other side of the mountain. When this event happens the speiessplits into two new speies and they ontinue to evolve independently ofeah other.In this thesis we will simulate phylogeneti trees and DNA-evolution in thosetrees. We are, with the DNA-sequenes at the tips of a tree, going to re-onstrut or estimate the phylogeneti tree with two di�erent methods. Byomparing the estimates from the two methods with the true tree we anstudy how the inferene depends on the number of taxa and length of the1



Phylogenetis and inferene Fredrik Olssonsequenes. The analyses will be done by two omputer pakages (PHYLIP[3℄ and MrBayes [6℄) and we will ompare their performane under di�erentsenarios.2 Simulating the dataTo ompare the estimates of the two program pakages we need data toanalyse. In this thesis we will use simulated data. Simulated data is oftenused when omparing di�erent inferene methods in phylogenetis [7℄. Oneadvantage with simulated data ompared to real data is that we know theanswer and we an see how muh the estimated trees di�er from the real(simulated) tree. To simulate the data we start by simulating a phylogenetitree whih onnets the speies and desribes there relatedness. After weobtained our tree we simulate DNA-evolution in that tree. Finally, our datawill be in the form of a k×n matrix where k is the number of extant speies,for whih we want to estimate the phylogeneti tree, and n the length oftheir DNA-sequenes. All simulations were performed in Otave [1℄ whih isa free and open soure omputer program with many similarities to Matlab.2.1 Simulating the treeTo simulate a tree we use a linear birth and death proess [9℄. This proessdepends on two parameters, the birth rate (λ) and the death rate (µ). Thetime between two events is exponentially distributed with parameter i(λ+µ),where i is the number of living speies in the proess. Hene we have thatthe expeted time between two events
E[Time until next event] =

1

i(λ + µ)
. (1)An event is either a birth or a death, with the probability for a birth

P (Birth) =
λ

λ + µ
(2)and the probability for a death

P (Death) =
µ

λ + µ
. (3)Using the above expressions we an simulate a phylogeneti tree by startingwith two branhes that evolve from the root and then use the followingalgorithm: 2



Phylogenetis and inferene Fredrik Olsson
• Simulate the time until the next event ours
• Add the simulated time to all ative branhes where an ative branhis a branh that has not been exposed to a death event
• Deide on whih branh the event will our with all branhes havingequal probabilities to be hosen
• Deide if the event is a birth or a death.- If the event is a birth the branh splits into two new branhes- If the event is a death the branh stops growing
• Repeat the algorithm until we have the desired number of living speiesin the tree. If a death event ours at the last branh, restart theproess with two new branhes
• When we have got the desired number of speies we simulate the timeuntil next event and add half of that time to all ative branhesAfter the simulation we erase all the dead branhes, whih represent extintspeies, and then normalize the time in the tree so that the total time fromthe root to all taxa is 1. This normalization is done beause we want allsimulated trees to have the same height so that we are able to ompare themto eah other.The time in a phylogeneti tree ould be expressed in di�erent units, e.g.expeted number of substitutions per site or real time. If we are only usingDNA-sequenes it is impossible to estimate the real time in the tree, for thatwe need additional information, for example fossils.In Figure 2 we see an example of a simulated tree where some of the speieshave gone extint. However, it is the tree where the extint speies areremoved, as in Figure 3, that we use for DNA-simulation and try to estimatewith the simulated sequenes.

Figure 2: A simulated phylogeneti tree with extint speies3
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Figure 3: The same phylogeneti tree as in Figure 2 but where all the extintspeies have been erased2.2 DNA-simulationWhen simulating the DNA-evolution in a given phylogeneti tree, we startby simulating the sequene for the root. We randomly draw the state foreah site with equal probability for all the nuleotides. This sequene thenevolves along the branhes aording to a substitution model until it reahesthe tips of the tree.The substitution model we use is the Jukes-Cantor model [5℄ whih is a on-tinuous time Markov hain. In this model we assume that all sites evolveindependently. When a substitution ours the transition probabilities be-tween all nuleotides are the same. The model does only depend on oneparameter, the mean substitution rate, whih is the same for all sites.The ontinuous time Markov hain has four states, the nuleotides, and byusing the Jukes-Cantor model the generator matrix is
A =
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(4)
where µ is the mean substitution rate.The transition matrix, P (t), onsist of the probabilities that a site hangesfrom one nuleotide to another at time t, where t is in this ase the branhlength. We obtain the transition matrix with the forward or bakward equa-4



Phylogenetis and inferene Fredrik Olssontions whih have the formal solution
P (t) = eAt =

∞
∑

n=0

tnAn

n!
(5)if the number of states in the hain are �nite [9℄. In our ase the transitionmatrix is a 4 × 4 matrix where Pij(t) is the probability that a site hangesfrom nuleotide i to j in t time units.However, in this ase we are able to alulate the transition matrix andexpress it in a matrix form as

P =
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. (6)
Using the transition matrix we an simulate DNA-evolution for every site byrandomize if a site has hanged and in the ase of a hange, randomize towhih nuleotide it will hange. This way of simulating the DNA-evolutiononsumes a lot of omputer time. Instead we use the assumption that allsites evolve independently and at the same rate.The number of substitutions along a branh with length t will then be bi-nomial distributed with n equal to the length of the sequene and with theprobability that a site has hanged in t time units

p(t) =
4

∑

i=2

P1i =
3

4
−

3

4
e−tµ. (7)Then, for every branh we an randomly draw the number of substitutionsthat ours, at whih sites the hanges will happen and to whih nuleotidesthe sites will hange.At the end of the simulation we obtain the DNA-sequene for every nodeand tip in the tree. We pik the sequenes from the k extant speies andonstrut a k × n matrix where the k:th row onsists of the DNA-sequenefor the k:th speies. In Figure 4 we have an example of a small dataset forthe speies in Figure 3. We an for instane see that the sequenes of taxa2 and taxa 3 are more similar than the sequenes of taxa 2 and taxa 8.5



Phylogenetis and inferene Fredrik Olssontaxa_2 TGCAAACTCTTAAATAGATGCGTTCGCTATATTATGTTCGTAGAATTCATtaxa_3 TGCAAACTTTTAAATAGATGCGTTCGCTATATTATGTTCGTAGAATTCATtaxa_5 TGGAAACTTTTAAATAGATGCGTTCGCTATATTATATTCGTAGAATTCCTtaxa_7 TGGGAACTTTTACATAGATGCGTTCGCTAAATTATATTCGTAGAATTTATtaxa_8 TGGGAACTGTTACATAGATGCGTTCGCTAAATTATATTCGTAGAATTTATFigure 4: An example dataset for the speies in Figure 3.2.3 Model parametersIn our simulations we need to hoose the birth and death rates whih innature di�ers between di�erent types of speies. Sine we normalize the treeheight after the simulation we are only interested in the ratio between thetwo rates. We want the ratio µ
λ
to be less than 1, otherwise we have a verysmall probability that the tree grows large. On the other hand, if the ratio is0, we get a pure birth proess. The shape of the tree also di�ers dependingon the ratio. The splits in a tree simulated with a high ratio tends to beloser to the tips than the splits in a tree simulated with a low ratio [4℄.In our study we have used three di�erent values of the ratio, 0, 0.5 and 0.75,and simulated three trees with 100 extant taxa eah (see appendix A). Inour simulated trees we an see that when the ratio was equal to 0.75 (Figure19) the splits seems to be loser to the tips than when the ratio equals 0.5(Figure 18) or 0 (Figure 17).For eah root in the trees we have simulated a DNA-sequene with length20,000. That sequene has evolved in the tree aording to our substitutionmodel. We hose the mean substitution rate so that the expeted number ofhanges per site and time unit was equal to 0.01 in the substitution model.2.4 Choosing trees and DNA-sequenesFrom eah of the simulated trees with 100 taxa we piked subtrees to analyse.First, we onstrut a subtree that onsists of 3 randomly hosen taxa with therestrition that the subtree should ontain the root of the original tree. Thenwe add randomly hosen taxa to the tree until we get subtrees ontainingof 5, 10, 20, and 50 speies. This proedure is repeated twie so that we�nally have 3 subtrees of eah 3, 5, 10, 20 and 50 taxa. If we do not havethe restrition that the original root should appear in the subtree, there isa large risk that our subtrees have di�erent heights. If the subtrees havedi�erent heights it would not be fair to ompare them, beause they wouldnot have the same amount of time for their DNA-sequenes to evolve. 6



Phylogenetis and inferene Fredrik OlssonFor eah subtree we pik a subsequene of 1000 sites to whih we add sitesuntil we have subsequenes of size 1000, 2000, 5000 and 10000. For everyombination of the number of speies, k, and sequene length, n, we anform a k × n matrix whih is the data for our analyses.3 Computer pakagesThere are many omputer pakages whih simulate, analyse and summa-rize phylogeneti data, most of them are still developing and implementingnew methods. In our thesis we will use two di�erent omputer pakages toanalyse the simulated DNA-sequenes, PHYLIP (The PHYLogeny InferenePakage) [3℄ and MrBayes [6℄.3.1 PHYLIPWe have used PHYLIP version 3.67 whih is a free and open soure omputerpakage developed by Joe Felsenstein [3℄. In our analyses we used the pro-gram Dnamlk whih is a part of PHYLIP. Dnamlk analyses DNA-sequeneswith a maximum likelihood approah and assumes a moleular lok.3.1.1 Maximum likelihood infereneIn maximum likelihood inferene we ollet data X, in our ase the DNA-sequenes, and formulate the likelihood funtion L(τ, b(τ)|X) where τ is thetree topology and b(τ) branh lengths for topology τ . The likelihood fun-tion expresses how likely the values on the parameters are given the observeddata. The values of τ and b(τ) that maximize the likelihood funtion will beour estimates for the parameters. Sine all the sites are mutually indepen-dent this likelihood ould, for a given topology, be expressed as a produt
Πn

i=1L(τ, b(τ)|Xi) where Xi denotes the i:th olumn in our data matrix.One problem with maximizing the likelihood is when the number of taxainreases, beause then the number of possible topologies grows very fast. Ithas been shown [2℄ that the number of rooted bifurating trees with n taxais (2n−3)!
(n−2)!2n−3 . The time to alulate the branh lengths that maximizes thelikelihood funtion for every possible topology would inrease fast when thenumber of taxa in our analyses inreases.To overome this problem we start with two taxa and suessively add taxato that tree instead of onsidering all possible topologies. We plae everyadded taxa where it maximizes the likelihood funtion. When the last taxais added to the tree it is possible to rearrange the plaements of the taxa.7



Phylogenetis and inferene Fredrik OlssonWhen rearranging, we hange the plaement for the taxa one by one in orderto �nd a new topology whih yields a higher value for the likelihood funtion[2℄.3.2 MrBayesMrBayes is developed by Fredrik Ronquist, John P. Huelsenbek and Paulvan der Mark, and like PHYLIP it is an open soure and free omputer pro-gram. MrBayes uses a Bayesian approah and analyses the DNA-sequeneswith the Markov Chain Monte Carlo (MCMC) method.3.2.1 Bayesian infereneIn Bayesian inferene we regard the parameters as random variables andwe are interested in the parameters posterior distribution. This is the dis-tribution of the parameters given the data and our prior knowledge aboutthe parameters. To �nd the posterior distribution we use Bayes' theorem toombine the parameters prior distributions, whih desribes our prior beliefsor knowledge about the parameters, with the observed data. If we do nothave any beliefs or knowledge about the parameters we try to onstrut anon-informative prior.The posterior distribution is often di�ult to alulate espeially for om-plex problems like the ones in phylogenetis. But in the end of the 20thentury the Bayesian approah beame popular for phylogenetis when anew method, MCMC, was proposed to solve the posterior problem [8℄. InMCMC we formulate a Markov hain with the posterior distribution as itsstationary distribution. If we run the Markov hain until it approximatelyreahes it stationary distribution and then take samples from it, we get ap-proximate samples from the unknown posterior distribution.4 AnalysisBoth programs have a lot of di�erent options and we will explain our hoiesin the following setion. Our goal is to use the same models in both programsto get a fair omparison of them.4.1 PHYLIPThe analyses with PHYLIP were performed with the program DNAMLK.The substitution model we used is the Jukes-Cantor model and we enabled8



Phylogenetis and inferene Fredrik Olssonthe global rearrangements option. With this option we try to rearrange thetopology after the last taxa is added as we desribed earlier in setion 3.1.1.4.2 MrBayesIn MrBayes there are a number of parameters and we need to speify theirprior distributions before we an run the analyses. For the branh lengthwe used a birth and death model with a moleular lok. We set the priordistribution for the birth rate and the death rate to be uniformly distributedbetween 0 and 10, whih is default in MrBayes. We used the Jukes-Cantormodel as our substitution model and for the remaining parameters we usedthe default prior distributions of MrBayes.A problem when using MrBayes is knowing when to stop the analysis, whenis the sampled distribution lose enough to the posterior distribution? Todeide when to stop we used a stop-rule whih is implemented in MrBayes.For every analysis with MrBayes we ran two separate Markov hains and atevery 1000th generation MrBayes alulate the average standard deviationof split frequenies between these two runs. This value is alulated from 75
% of the past generations and is a measure on how muh the two samplesdi�er. When this value gets low the samples beome more and more simularand we onsider that we have reahed the stationary distribution. In ouranalysis we used the default stopvalue whih is 0.01.After we deided that we have reahed the stationary distribution we sum-marized the samples with the sump and sumt ommands in MrBayes. In theanalysis we disarded the �rst 25% of the generations when we deided thatthe hains had onverged, therefore we omit the �rst 25% samples when wesummarize the analysis and onsider that as the burnin period.4.3 Program performaneThe time to run an analysis with the two programs di�ers, espeially whenthe amount of data inreases. The mean time of 10 runs with a data setonsisting of 20 taxa with sequene lengths of 5000 sites, on an AMD TurionX2 Ultra Dualore Mobile ZM-82 2200 MHz 1MB ahe, was 326 seondsfor MrBayes and 42 seonds for PHYLIP. Hene, for this dataset PHYLIPwas almost 8 times faster than MrBayes.Both MrBayes and PHYLIP also enountered problems when analysing datasets with large number of taxa and short DNA-sequenes. PHYLIP produeda segmentation fault and MrBayes froze at the beginning of the analyse. Tosolve these problems we hanged the input order in PHYLIP and reran theanalysis with MrBayes. If both programs had a problem to analyse the same9



Phylogenetis and inferene Fredrik Olssondataset we hose a new sequene to analyse for that tree. However this didnot solve the problem for all the analyses when we had 50 taxa with 1000sites as our data, therefore this data is disarded from the analysis.5 Comparing two estimated treesIn order to ompare two estimated trees with eah other we need some mea-surements on how good the estimates are. A measurement also helps us tostudy how the inferene hanges when the number of taxa or the length ofthe sequenes hanges. We have used two measurements in this thesis, theproportion of orret splits and the absolute branh length distane. Wealso study how the estimates of the node-heights, in a tree with three taxa,hanges as we add new taxa to that tree.5.1 Topology measureIn order to measure how lose the estimated topology is to the true topologywe study the proportion of orret splits. This meassure is similar to thesymmetri distane metri presented by Robinson and Foulds[10℄. Fromeah split in a topology there are a number of taxa that have desended andthe split divides those taxa into two groups. If we ompare a split in anestimated tree with the true topology we onsider the split to be orret ifwe, for any split in the true topology, an onstrut the exat same groups oftaxa as we observed for the split in the estimated topology. The proportionof orret splits is then the number of orret splits divided by the totalnumber of splits in the tree.5.2 Branh length measureIn order to ompare branh lengths in trees with di�erent topologies westudy the absolute branh length distane between the estimated tree andthe simulated one. Let xij be the true sum of the length of branhes whihonnets the two taxa i and j in a simulated tree with k taxa, and let x̂ij bethe orresponding sum in the estimated tree. This distane is then de�nedby
D =

k−1
∑

i=1

k
∑

j=i+1

|xij − x̂ij| (8)and a low value of D means that the estimated branh lengths are lose tothe simulated tree. With this measures we see how muh the estimated tree10



Phylogenetis and inferene Fredrik Olssondi�ers from the true tree and we do not need to estimate the orret topol-ogy, in fat we an ompare the branh lengths in estimates with di�erenttopologies.5.3 Di�erene between the measurementsWhih of these measurements is preferable? To answer this question we mustknow what we are interested in and what we onsider to be a good estimate.In Figure 5 we have the true tree and we have two estimated trees in Figure6 and Figure 7. If we look at the proportion of orret splits we see that allof the splits in Figure 7 are orret but only one third of the splits in Figure6 are orret. On the other hand, the D-value for the tree in Figure 6 ismuh lower than it is for the tree in Figure 7.

Figure 5: The true topology and branh lengths

Figure 6: Estimated tree with inorret topology5.4 Adding taxa with �xed sequene lengthTo study the performane of the programs when we hold the length of thesequene �xed and suessively add taxa we start by looking at a normalizedtree with three taxa. Suh a tree has 2 splits where the height of the split,11
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Figure 7: Estimated tree with orret topologythat is not the root, lies between zero and one. By omparing that heightwith the orresponding height in the true topology we an study how theinferene hanges when we add new taxa to the tree.6 Results6.1 Proportion of orret splitsIn Table 1, 2 and 3 we have the mean proportion of orret splits for threetrees when we have various number of taxa and length of the sequenes.When we analyse a tree with few taxa there are only a few possible valuesfor eah ell. Therefore, it is not surprising if ells with few taxa have thesame mean proportion for di�erent sequene length. Beause we disardedthe data sets with 50 taxa and 1000 sites we have no estimate for these ells.Both program estimated the orret splits for all trees that onsisted of threetaxa for all onsidered sequene length. As we an see the proportion seemsto inrease as we inrease the length of the sequenes and �x the number oftaxa. This is expeted beause when we inrease the length of the sequeneswe inrease the amount of information.When we hold the sequene length �x and inrease the number of taxa wesee that the proportion in table 1 and 3 dereases but that pattern doesnot appear in table 2. One possible reason why both programs did not �ndmany orret splits when we used 5 taxa in Table 2 is that many of the splitsin these topologies are lose to eah other and they are therefore hard toestimate.In Table 2, the proportion of orret splits dereased dramatially whenwe analysed 5 taxa and the sequene length inreased from 5000 sites to10000 sites. The splits in these trees were hard to estimate beause theywere lose to eah other. It is possible that, by hane, the additional 500012



Phylogenetis and inferene Fredrik Olssonsites inreased the support for a topology separate from the true topology.This explanation beomes more reasonable beause both program behavedsimilar.In Table 3, the tree was simulated with the ratio µ
λ

= 0.75 and we estimatedmore orret splits than in the other two tables. In that tree the splits tendto be near the tips and it should therefore be easier to �nd the splits, whenwe have few taxa, than for an equally sized tree but with the splits near theroot.If we ompare the programs to eah other we see that they estimate approx-imately the same proportion of orret splits in most ases and we annotsee with this data that one of the programs performs better than the other.Length of sequenek Program 1000 2000 5000 100003 MrBayes 1 1 1 1PHYLIP 1 1 1 15 MrBayes 0.83 0.83 0.83 0.83PHYLIP 0.83 0.83 0.83 0.8310 MrBayes 0.56 0.85 0.93 0.93PHYLIP 0.63 0.85 0.85 0.8520 MrBayes 0.67 0.77 0.86 0.79PHYLIP 0.79 0.81 0.89 0.8250 MrBayes Na 0.73 0.80 0.85PHYLIP Na 0.65 0.86 0.85Table 1: Every ell onsists of the mean proportion of orret splits for threetrees. The subtrees are sampled from a tree simulated with µ
λ

= 0Length of sequenek Program 1000 2000 5000 100003 MrBayes 1 1 1 1PHYLIP 1 1 1 15 MrBayes 0.58 0.58 0.83 0.50PHYLIP 0.58 0.58 0.83 0.4210 MrBayes 0.70 0.67 0.70 0.74PHYLIP 0.70 0.70 0.78 0.8120 MrBayes 0.79 0.77 0.82 0.96PHYLIP 0.79 0.81 0.84 0.9650 MrBayes Na 0.76 0.89 0.92PHYLIP Na 0.66 0.88 0.92Table 2: Every ell onsists of the mean proportion of orret splits for threetrees. The subtrees are sampled from a tree simulated with µ
λ

= 0.513
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Length of sequenek Program 1000 2000 5000 100003 MrBayes 1 1 1 1PHYLIP 1 1 1 15 MrBayes 1 1 1 1PHYLIP 1 1 1 110 MrBayes 0.85 1 1 1PHYLIP 1 1 1 120 MrBayes 0.82 0.93 1 1PHYLIP 0.74 0.87 1 150 MrBayes Na 0.80 0.90 0.92PHYLIP Na 0.78 0.88 0.90Table 3: Every ell onsists of the mean proportion of orret splits for threetrees. The subtrees are sampled from a tree simulated with µ
λ

= 0.75

14



Phylogenetis and inferene Fredrik Olsson6.2 Comparing branh lengths when inreasing sequene lengthIn �gures 8-12 we an see the absolute branh length di�erene for our es-timated trees with the number of taxa �xed. The mean D-value dereasesas we inrease the sequene length in all �gures exept in one ase when weanalyse three taxa. The spread among the estimate also dereases as thesequenes gets longer whih is to expet beause we add more data to theanalyses. We also notie that the lines, whih represent the mean D-value forthe estimates from both the programs, seems to follow eah other, espeiallywhen the sequenes beomes longer.
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Figure 8: D-values for MrBayes and PHYLIP where a dot represent a singleobservation and the line represent the mean values for the dots. For everylength of the sequene there are 9 observations for eah of the programs.
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Figure 9: D-values for MrBayes and PHYLIP where a dot represent a singleobservation and the line represent the mean values for the dots. For everylength of the sequene there are 9 observations for eah of the programs.
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Figure 10: D-values for MrBayes and PHYLIP where a dot represent a singleobservation and the line represent the mean values for the dots. For everylength of the sequene there are 9 observations for eah of the programs. 16
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Figure 11: D-values for MrBayes and PHYLIP where a dot represent a singleobservation and the line represent the mean values for the dots. For everylength of the sequene there are 9 observations for eah of the programs.
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Figure 12: D-values for MrBayes and PHYLIP where a dot represent a singleobservation and the line represent the mean values for the dots. For everylength of the sequene there are 9 observations for eah of the programs.17



Phylogenetis and inferene Fredrik OlssonIn our analyses every data set is analysed with both programs and we havetherefore obtained paired observations whih we an ompare to see if thereare any di�erene between the programs. By performing a t-test for the dif-ferenes of the D-values, for every ombination of taxa and sequene length,we see in Table 4 that there are two signi�ant di�erenes with a 5% signif-iane level. In both these test did PHYLIP have a signi�ant lower meanD-value than MrBayes.Beause of the number of tests we perform the probability that we would gettwo signi�ant results by hane is high and we should onsider to modifythe signi�ane level. Another way of onstruting a test with 5% signif-iane level for the overall di�erene is to onstrut a new t-statisti fromthe t-values in table 4 whih are standalized and omparable. With thattest we get a P-value of 0.06 and we annot rejet the hypothesis that thereis a di�erene between both programs estimates of the total branh-lengthdistane on a 5% signi�ane level. However, this low P-value does indiatea tendeny that PHYLIP is performing better with respet to the absolutebranh length di�erene measure. Length of sequene1000 2000 5000 100003 taxa T-value 1.24 0.75 -1.44 1.10P-value 0.25 0.48 0.19 0.305 taxa T-value 2.76 3.41 0.94 0.05P-value 0.02 0.01 0.37 0.9610 taxa T-value 0.92 1.42 -0.57 0.56P-value 0.39 0.19 0.59 0.5920 taxa T-value 1.22 -0.49 0.58 0.35P-value 0.26 0.64 0.58 0.7450 taxa T-value Na -1.22 0.65 -1.21P-value Na 0.26 0.53 0.26Table 4: T-values and P-values when testing if there is any di�erene of theestimates of the branh lengths
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Phylogenetis and inferene Fredrik Olsson6.3 Comparing branh lengths when adding taxaIf we, for a �xed sequene length, add taxa to our analyses we an see inFigure 13-16 that our estimates in most ases do not improve. The spreaddereases a little bit, but in Figure 13 and in Figure 15 the mean value isalmost not a�eted. If we want to estimate the node-height the preisionshould inrease if we add new taxa below the split [11℄, altought only at arate proportional to the logarithm of the number of taxa. In our ase manyof the taxa are added above the split and that ould be a reason why we donot see an improvement of the estimates.If we ompare the programs we see that the mean values in Figure 13-16 atmany plaes are lower for MrBayes than for PHYLIP. To test if there is adi�erene we an use the fat that we have pairwise observations as we did insetion 6.2. With that test we do not get any signi�ane di�erene and byperforming a test with overall signi�ane level of 5 % we obtain a P-valueof 0.2.
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Figure 13: Node-height di�erene for MrBayes and PHYLIP where a dotrepresent a single observation and the line represent the mean values forthe dots. For every number of taxa there are 9 observations for eah of theprograms.
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Figure 14: Node-height di�erene for MrBayes and PHYLIP where a dotrepresent a single observation and the line represent the mean values forthe dots. For every number of taxa there are 9 observations for eah of theprograms.
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Figure 15: Node-height di�erene for MrBayes and PHYLIP where a dotrepresent a single observation and the line represent the mean values forthe dots. For every number of taxa there are 9 observations for eah of theprograms. 20
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Figure 16: Node-height di�erene for MrBayes and PHYLIP where a dotrepresent a single observation and the line represent the mean values forthe dots. For every number of taxa there are 9 observations for eah of theprograms.7 DisussionIn this thesis we have simulated phylogeneti trees and DNA-sequenes. Thetree simulation model ould be a good simpli�ation of the real world. Whensimulating the trees, the birth and death rates were not randomly hosen andbeause we use Bayesian inferene in MrBayes we should in a future studyonsider to randomize these rates from their prior distributions in MrBayes.If we look at the model for DNA simulation we onlude that it is far fromrealisti. We have only onsidered one type of DNA-evolution, nuleotidesubstitution, but we know that the evolutionary proess involves lots of morefators. The model for DNA-substitution, the Jukes-Cantor model, is alsoa rough simpli�ation and we have for example not regarded the orrelationbetween sites lose to eah other. But sine we have used these simpli�edmodels in the analyses of both programs, we an ompare the programsestimates and study how they depend on the number of taxa and the lengthof the sequenes.In our analyses, when we held the number of taxa onstant and inreasedthe sequene length, we an see that in most ases the estimates gets betterwith longer sequenes. In �gure 8, where we have three taxa, we did not seethe same trend but in that ase we probably have muh information evenwith a sequene length of 1000 sites. It would have been good to analyse21



Phylogenetis and inferene Fredrik Olssonsequenes with less than 1000 sites for these trees. We would then probablysee that the preision of the estimates inrease when we inrease the numberof sites.When we, for a �xed length of the sequene, inreased the number of taxawe did not see the expeted improvement of the estimates. Most of thetrees with three taxa had their split near the tips. To investigate how theinferene hange in these ases we should have analysed some trees with thesplit loser to the root.All the trees we simulated and analysed are normalized so that the root isat height 1. Although the time is on a relative sale we ould measure thetime in units of expeted number of substitutions per site. The estimatedbranh length are in units of expeted number of substitutions per site andby expressing our simulated tree in the same units we would not have tonormalize the programs estimates.As we an see in our analyses there where no signi�ant di�erene betweenthe estimates from both the programs. However, there was a tendeny thatPHYLIP performs better when inreasing the sequenes length with �xedamount of taxa. Another important di�erene is that the analyses in Mr-Bayes took onsiderable more time than they did in PHYLIP. We wouldtherefore reommend PHYLIP for analyses of datasets similar to the onesthat we have analysed.
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Phylogenetis and inferene Fredrik OlssonA Simulated treesIn Figure 17-19 we see the trees of size 100 that we used in our study.When the ratio µ
λ
inreases more speies go extint and we an see, by theenumeration, that there are 339 extint speies in Figure 19.

Figure 17: The simulated tree with µ
λ

= 0
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Figure 18: The simulated tree with µ
λ

= 0.5
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Figure 19: The simulated tree with µ
λ

= 0.75
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