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Abstract

The common disease-common variant hypothesis postulates that multiple
common genetic variants influence the susceptibility of complex diseases. By
genotyping a large number of genetic markers (SNPs) across the genome
and performing association studies (GWAS), one can identify regions that
harbor such disease susceptability variants. However, statistical power is a
continuing obstacle as GWAS require very large sample sizes. By combining
study samples from several studies, the statistical power increases and more
reliable statistical inference is possible.

The lack of overlapping genetic markers constitutes a problem when com-
bining study samples performed on different platforms. Here, imputation
methodology is useful, in order to “fill in” the information for those SNPs
that are present on a platform but not the other. However, it is not known
whether certain choices of genetic markers are more suitable for imputation
than others or if different reference populations are preferred for the impu-
tations. In this thesis we compare two studies, CAPS and CAHRES that
were genotyped using chips from Affymetrix and Illumina respectively, and
two reference popultations, CEU from HapMap phase 2 and phase 3.

Validation of imputations, carried out on samples from the two studies that
use different genetic markers, show that individuals from CAHRES impute
better than those from CAPS. Possible explanations for the difference in im-
putation results are the selection of genetic markers, the quantity of genetic
markers and how well the reference population resembles the study sample
individuals.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Swe-
den. E-mail: emil.rehnberg@gmail.com Supervisors: Juni Palmgren, Monica Leu, Keith
Humphreys
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1 Introduction

During the past decade efforts have been put into finding genetic factors that
contribute to complex diseases such as many cancers, cardiovascular disease,
Alzheimer’s disease and Crohn’s disease. Many of these efforts have been
based upon the common disease-common variant (CD-CV) hypothesis [1]
which postulates that multiple genetic variants influence the susceptibility
of complex diseases. Most of the human genome is the same from person
to person. The single-base locations on the DNA sequence that can take
multiple forms are called SNPs (Single Nucleotide Polymorphism). The CD-
CV hypothesis has driven genetic research to search for SNPs that might
be associated with complex diseases. The procedure of reading the pair of
alleles constituting the genotypes at certain SNP loci is called “genotyping”.
To establish whether SNPs are associated with disease, the value of genetic
variants is compared across individuals with different phenotype (disease)
values. These studies are known as genetic association studies. The case-
control study, for example, compares cases (i.e. individuals with the disease)
and controls (individuals free from the disease). In recent years it has be-
come possible to genotype a large number (hundreds of thousands of SNPs)
across the genome at a reasonable cost, and association studies that utilizes
this technology are known as a Genome Wide Association Study (GWAS) [2].

In 2007, the Wellcome Trust Case-Control Consortium published an arti-
cle based on GWAS, providing conslusive evidence that certain genes are
involved in Crohn’s disease, type 1 and 2 diabetes, rheumatoid arthritis,
bipolar disease, and coronary artery disease [3]. They compare 7 different
disease groups each with 2000 cases (seperately) to a single set of 3000 con-
trols. This provided evidence that controls can be shared between GWAS
studies. In building up to this success of the GWAS study, there were three
crucial developments. First, the international HapMap project, which doc-
uments the variation and correlation between known SNPs in the human
genome [4]. Second, the evolution of dense genotyping chips made the high
throughtput genotyping possible for hundreds of thousands of SNPs, provid-
ing good genome coverage. Third, reasonably large and well-characterized
sample collections were assembled for multiple common diseases.

Genotyping cost is one of the obstacles when perfoming GWAS. Sharing
controls for different studies decreases this burden. Creating control pools
would save studies from genotyping controls for every study and focus could
be more on the genotyping of cases.

When performing high throughput genotyping for an individual, not all of
the known SNPs in the genome are genotyped since SNPs are correlated
with each other and there is a lot of redundancy. Costs are proportional
to the number of SNPs genotyped. Hence, one genotype a clever selection
of SNPs that can capture most of the genomic variation for an individual.
This selection of SNPs differs between different high throughput genotyp-
ing chips manifactured by genotyping companies. Two of these companies
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are Affymetrix [5] and Illumina [6]. The percentage of overlapping SNPs for
these two chips is about 20%. Thus individuals from studies genotyped using
different genotyping chips are uncomparable and a simple merge of data is
not possible. One solution is to impute the missing SNPs (i.e. fill in the
missing SNP information) by using the correlation structure between SNPs
from completely genotyped populations, and to add the imputed data to the
individuals in the control pool. We can estimate the non-genotyped SNPs in
the genome using the correlation structures of a suitable HapMap reference
population. The correlation structure is a feature on the population level,
so to estimate non-genotyped SNPs, one needs a reference population that
has close genomic patterns to the population we predict missing genotypes
for. Currently there are 2 relevant versions of HapMap, phase 2 and phase 3.
Phase 3 includes a large number of populations, and uses a different approach
regarding SNP quality controls compared to phase 2.

This thesis focuses on imputations for the purpose of creating a control
pool. We ask the following questions: Are there selections of SNPs that
are preferable for imputations? Which version of HapMap is most suitable
for imputation in our studies? Are certain individual’s genotypes hard to
predict? Are certain SNPs hard to predict?

In section 2 there is a short genetic summary on genetic terminology used
in this thesis. Sections 3 and 4 cover information on our data and HapMap
respectively. The statistical methods for imputation and for validation of
these imputations are covered in section 5 followed by a results section 6. An
overall discussion on the methods used and the results are given in section
7.

2 A short guide to genetic terminology

Humans carry genetic information in the form of double helix string consist-
ing of nucleotides. This double helix string is called DNA (deoxyribonucleic
acid) where the four possible nucleotides form complementary pairs. The
whole DNA sequence, also known as the genome, is partitioned into 46 pieces
called chromosomes, 23 pairs with one pair of sex chromosomes. In Figure
1 the letters A, C, G and T illustrates the nucleotides, the double helixes in
the top and bottom of the figure make up a part of one chromosome pair.
On a chromosome, the nucleotides bind to each other deterministically, A
always binds to T and C always binds to G.

Most of the DNA is identical between individuals, but at some loci (ge-
netic positions, locus in singular) different variants exist called alleles. More
specifically, one allele represents one locus and is consisting of one nucleotide.
In Figure 1 the highlighted G and T make up the two alleles on opposite
chromosomes. This pair (G,T ) is called a genotype. If the rarer allele has a
frequency of at least 1% then the variation at this locus constitutes a SNP
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Figure 1: Illustration of the DNA structure

(Single Nucleotide Polymorphism). The ordered combination of alleles along
a single chromosome is called a haplotype. The two haplotypes in Figure 1
are TTCCCTAGGTG in the area labeled 1, and TTCCTTAGGTG in area
2.

When the DNA is copied during meiosis (i.e. the making of sperm and
egg cells), the copying process might be broken and continue the copying on
the opposite chromosome. This occurence is called a genetic recombination,
and makes the offspring inherit a combination of the chromosome segments
from the two parents.

3 Data

In this thesis we use controls from two studies carried out at the Department
of Medical Epidemiology and Biostatistics (MEB). We explore the possibility
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of using controls from these two studies as a potential Swedish control pool,
for comparing with Swedish cases, of a particular disease.

3.1 CAPS

The CAPS [CAncer Prostate in Sweden] study [7] has GWAS data on 1705
controls. The subjects were selected from the Swedish Population Registry,
to geographically match the cases in that study. The controls were men (gen-
erally of age 60+) from two regions, where one region represents the north
and the other represents the middle of Sweden. Table 1 shows the age stati-
fication for the CAPS study controls:

CAPS # of contols % of controls
≤59 275 16.1
60-69 739 43.3
≥70 691 40.5

Table 1: The age stratification of the CAPS controls

Due to financial issues, not all individuals could be genotyped. We will
use the 1028 controls with genome-wide data in this thesis.

3.2 CAHRES

The other study was a Swedish breast cancer study, CAHRES (CAncer and
Hormone REplacementS) [8]. The cases and controls were all Swedish-born
women between 50 and 74 years of age, resident in Sweden from 1993 to 1995.
The controls were randomly selected from the Swedish Population Registry
to geographically match the cases in 5-year age strata (and all the cases were
identified at diagnosis through the six regional cancer registries in Sweden).
The original study included 3000 controls. Out of these, only 764 women
were genotyped due to financial issues.

4 The International HapMap Project

The aim of the International HapMap Project has been to determine the
common patterns of DNA sequence variation in the human genome, by char-
acterizing sequence variants, their frequencies, and the correlations between
them.
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The HapMap project officially started late October 2002 as a collaboration
between researchers from Canada, China, Japan, Nigeria, the United King-
dom and the United States. Originally the project studied 4 populations:
30 trios (mother, father and child) from Ibadan, Nigeria (YRI), another 30
trios from US residents with european ancestry (CEU), 44 unrelated people
from Tokyo, Japan (JPT) and 45 unrelated individuals from Beijing, China
(CHB).

The correlation structure between SNPs is a population feature, so it was
necessary to include populations from different parts of the world. One way
to study the common patterns of variation in the human DNA is to examine
a haplotype map (a HapMap).

Currently there are two completed phases of the HapMap and a third phase
draft is released. Phases 1 and 2 analysed 270 individuals from 4 different
populations and has had multiple releases. Phase 3 on the other hand has
released a first draft where 1115 individuals have been analysed from 11 pop-
ulations. The expectation is that this new release will give a more accurate
HapMap by genotyping more individuals from more populations and by be-
ing more stringent with the SNP genotype quality control (QC).
Because of the stricter QC, there are less SNPs in phase 3 than phase 2.
The new phase contains about 38% of the SNPs from the previous phase
(the remaining 62% were discarded) and 4% of the SNPs in phase 3 are new.
Table 2 presents the populations currently in HapMap phase 3.

Population
ASW African ancestry in Southwest USA
CEU Utah residents with Northern and Western

European ancestry from the CEPH collection
CHB Han Chinese in Beijing, China
CHD Chinese in Metropolitan Denver, Colorado
GIH Gujarati Indians in Houston, Texas
JPT Japanese in Tokyo, Japan
LWK Luhya in Webuye, Kenya
MEX Mexican ancestry in Los Angeles, California
MKK Maasai in Kinyawa, Kenya
TSI Toscani in Italia
YRI Yoruba in Ibadan, Nigeria

Table 2: The populations in HapMap phase 3

Table 3 shows an overview of the number of individuals and SNPs in the
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two HapMap phases (and Table 9 on page 24 shows a more detailed compar-
isons between the two phases). Here, the CEU population is written in bold
because of it’s importance for this thesis.

Population # individuals # SNPs
Phase 2 Phase 3 Phase 2 (r19) Phase 3 (r2)

ASW NA 71 NA 1 632 186
CEU 90 162 3 901 408 1 634 020
CHB 45 82 3 903 524 1 637 672
CHD NA 70 NA 1 619 203
GIH NA 83 NA 1 631 060
JPT 45 82 3 902 623 1 637 610
LWK NA 83 NA 1 631 688
MEX NA 71 NA 1 614 892
MKK NA 171 NA 1 621 427
TSI NA 77 NA 1 629 957
YRI 90 163 3 806 920 1 634 666
Total 270 1115 3 819 322 1 525 445

Table 3: HapMap’s populations sizes and number of SNPs over the two
phases

5 Statistical Methods

5.1 Imputation

Adequate handling of missing data is a common problem in statistical mod-
eling and inference. One approach is to discard observations that are in-
complete. Another approach is to fill in the missing information. Using
probability models to solve the puzzle in the latter approach is called imput-
ing.

Imputation is often used to handle incompleteness of data so that an analysis
can be performed on “complete” data. Otherwise, discarding observations
containing missing information can reduce power and introduce a selection
bias.

Figure 2 is an example of imputation for missing genotypes. The geno-
types are coded as 0, 1 or 2, while the alleles are coded as 0 or 1 (the coding
for a certain allele being 0 or 1 is arbitrary) and haplotypes are strings of
0 and 1. Missing genotypes are denoted as ?. By using haplotypes from a
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reference popultaion it is possible to impute the ?:s, and hopefully end up
with a table like the one to the right in Figure 2, with no ?:s. However, the
table to the right is an over-simplification of the imputation output. The
output are probability distributions over the genotypes 0,1 or 2 (as seen in
the lower right of the figure), and these are then used to estimate the missing
genotypes.

Figure 2: An example of how imputation works. A set of haplotypes is used
to complete a set of incomplete genotypes.

There are many ways to perform imputations. In this thesis we will use
a Hidden Markov Model for this purpose.

5.2 Hidden Markov Models

In a regular Markov model states can be observed directly, in contrast to the
Hidden Markov Model (HMM), were the states are hidden and one observe
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stochastic outcomes of these states. As the states have a probability dis-
tribution over it’s outcomes, the observations of these outcomes thus carry
information about the states themselves.

Figure 3 below provides a graphical representation of a HMM. Here X =
{x1, x2, x3} represents the hidden states and Y = {y1, y2, y3, y4} represents
the possible outcomes of X, {aij} are the state transition probabilities (from
state i to state j) and {bij} are the probabilities of the outcomes for each
state (xi having the outcome yj).

Figure 3: An example of a Hidden Markov Model. The set {X} represents a
Markov chain with hidden states, the set {Y } are the outcomes of an element
of {X}, {aij} are the transition probabilities in the Markov chain and {bij}
are the probabilities of the outcomes from an element i of the set {X}

Returning to the example in Figure 2: the observations are the panel of
haplotypes and the hidden states are the sample genotypes. More precisely,
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given a locus, the hidden states are the two haplotypes for the two alleles in
each genotype, hence each genotype is estimated using it’s two haplotypes
(at that locus). Due to mutations, the two haplotypes do not determine the
genotype deterministically. Here, the transition probabilties are the proba-
bilities of the genotype given the haplotypes at a locus.

5.3 Imputing genotypes using a Hidden Markov Model

Let us denote H = {H1, .., HN} as a set of N known haplotypes where
Hi = {Hi1, .., HiL} denote the alleles of haplotype i at the L SNP locus sites
(in Figure 2, N = 4 and L = 14). Each Hij is an indicator variable for
whether the locus j in haplotype i contains the allele labelled “1” (at each
locus there are two possible alleles, one is coded as “1” and the other as “0”).
Now let G = {G1, .., GK} be the random variables denoting genotypes of K
individuals (in Figure 2, K = 8), where Gi = {Gi1, .., GiL} and each Gij

takes values in the set {0, 1, 2,missing}. I.e. the Gij denotes the number of
the allele coded as 1 at the SNP for individual i at locus j.

The basic idea of the imputation algorithm proposed by Marchini et. al
[9] is to consider the N haplotypes in HapMap as “ancestral” and that all
haplotypes observed in the current sample are derived (through mutations
and recombination events) from this “pool” of ancestral haplotypes.

5.4 Incomplete data model

As we are interested in the distribution of the missing genotypes in the cur-
rent sample, we partition the G vector into missing and observed genotypes
G = {GO, GM}. Index O is for observed and M is for missing. By assum-
ing that the genotype vectors of the K individuals are independent, we can
express the required distribution:

P (GM |GO, H) ∝ P (GM , GO|H) = P (G|H) =
K
∏

i=1

P (Gi|H) (1)

Each individual’s genotype vector, given the haplotypes, P (Gi|H) is a Hidden
Markov model with the hidden states Gi and the pair of haplotypes (that are

being copied to form the genotypes) (Z
(1)
i , Z

(2)
i ), where Z

(j)
i = {Z

(j)
i1 , .., Z

(j)
iL }

for both alleles j ∈ {1, 2} and each Z
(j)
il ∈ {1, .., N}. That is, Z

(j)
il denotes

which haplotype is observed at allele j and locus l for individual i. There
are two alleles j = 1 and j = 2 for each locus and these are the alleles at
opposite chromosomes for a specific locus (e.g. the G and T pointed out in
figure 1 at page 6) that constitutes the genotype at that locus.
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By applying the law of total probability, we get:

P (Gi|H) =
∑

Z
(1)
i

,Z
(2)
i

P (Gi|Z
(1)
i , Z

(2)
i , H)P (Z

(1)
i , Z

(2)
i |H)

5.4.1 Transition probabilities

The “hidden” haplotypes for individuals are constructed as combinations of
the N different haplotypes in the HapMap pool, with transition probabilities

(in the sub-model P (Z
(1)
i , Z

(2)
i |H)) parametrised by population recombina-

tion rates. Based on coalescent theory assuming a constant population size
Ne (that of the sample to be imputed) and an ancestral set of haplotypes
of size N (i.e. HapMap). Li and Stephens suggests the following model for
recombination [10]:

Let rl be the genetic distance between locus l and l + 1, Ne be the effec-
tive population size and the scaled recombination rate is ρl = 4Nerl [11].
The algorithm proposed by [9] uses the estimate Ne = 11418.

The number of recombinations X between two loci l and l + 1 are assumed
to follow a Poisson distribution Po( ρl

N
). So, P (X = 0) = e−

ρl
N

(ρl/N)0

0!
= e−

ρl
N

and, P (X 6= 0) = 1 − e−
ρl
N .

Also, assume that P (Z
(j)
i(l+1) = Z

(j)
il |X 6= 0) = 1

N
. That is, if there is recom-

bination between locus l and l + 1 then, the loci l + 1 is placed on any of
the haplotypes with equal probability. So each Z

j
i |H is a Markov chain with

state space {1, .., N}, where the lengths of staying on the same haplotype is
exponentially distributed (the length of stay at a haplotype is a function of
genetic distance between the loci) and uniform transition probabilities over
all the haplotypes.

It then follows that,

P (Z
(j)
i(l+1) = Z

(j)
il ) =

∑

x

P (Z
(j)
i(l+1) = Z

(j)
il |X = x)P (X = x)

= P (X = 0)P (Z
(j)
i(l+1) = Z

(j)
il |X = 0)

+ P (X 6= 0)P (Z
(j)
i(l+1) = Z

(j)
il |X 6= 0)

= e−
ρl
N · 1 + (1 − e−

ρl
N ) ·

1

N

= e−
ρl
N +

1 − e−
ρl
N

N

and,
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P (Z
(j)
i(l+1) 6= Z

(j)
il ) =

∑

x

P (Z
(j)
i(l+1) 6= Z

(j)
il |X = x)P (X = x)

= P (X = 0)P (Z
(j)
i(l+1) 6= Z

(j)
il |X = 0)

+ P (X 6= 0)P (Z
(j)
i(l+1) 6= Z

(j)
il |X 6= 0)

= e
−ρl
N · 0 + (1 − e−

ρl
N )(1 −

1

N
)

= (1 − e−
ρl
N ) ·

N − 1

N

Let us evaluate P (Z
(1)
i , Z

(2)
i |H). Theinitial state (i.e at the first locus l = 1)

of the Markov Chain is uniformly distributed of the N2 possible haplotype
states:
P (Z

(1)
i1 , Z

(2)
i1 |H) = 1

N2

The transition probabilities that the haplotype status changes from locus
l to l + 1 (i.e. there is a recombination) is given by equation 2 [10].

P ({Z
(1)
il , Z

(2)
il } → {Z

(1)
i(l+1), Z

(2)
i(l+1)}|H) =



















(e−
ρl
N + 1−e

−

ρl
N

N
)2 if A happens

2(e−
ρl
N + 1−e

−

ρl
N

N
)(N−1

N
(1 − e−

ρl
N )) if B happens

(N−1
N

(1 − e−
ρl
N ))2 if C happens

(2)

With events A,B, and C defined as follows:

A as the case Z
(j)
il = Z

(j)
i(l+1) for both j = {1, 2}. I.e. there are no recombina-

tion between the loci (mirrored in the e−
ρl
N expression) or either loci might

have had multiple recombinations and come back to the original haplotype

(which corresponds to the 1−e
−

ρl
N

N
expression).

B as the case Z
(j)
il = Z

(j)
i(l+1) for j = 1 but not j = 2 or vice versa. I.e. there

is a change in haplotypes between l and l + 1 for one allele (which is the
N−1

N
(1−e−

ρl
N ) expression), but no change for the other allele (mirrored in the

e−
ρl
N + 1−e

−

ρl
N

N
expression).

C as the case Z
(j)
il 6= Z

(j)
i(l+1) for both j = {1, 2}. I.e. both alleles change

haplotypes between loci l and l + 1 .

We express the chain of events as:

14



P (Z
(1)
i , Z

(2)
i |H) = P (Z

(1)
i1 , Z

(2)
i1 |H)

L−1
∏

l=1

P ({Z
(1)
il , Z

(2)
il } → {Z

(1)
i(l+1), Z

(2)
i(l+1)}|H)

(3)

Coming back to Figure 3, the Z’s correspond to the hidden states X’s in
the figure, H correponds to the outcomes of the states Y , the transition
probabilities aij = 1 if j = i + 1 and 0 otherwise (as the estimation of Z is
done in a set order) and the outcome probabilities bij are the probabilities in
equation 3.

5.4.2 Mutation probabilities

We now write out P (Gi|Z
(1)
i , Z

(2)
i , H). This term is mimicing the effects of

mutations as the haplotypes are being copied, so the observed genotype will

be close to the haplotypes copied but not always exact. Let θ = (
N−1
∑

i=1

1
i
)−1

be the mutation parameter [10]. Then λ = θ
2(θ+N)

is the probability of a

mutation [10]. Moreover, the number of mutations at a SNP is ∼ Bin(2, λ).
So the probability of there being no mutations is (1 − λ)2, one mutation at
either allele is 2λ(1−λ) and two mutations at a SNP is λ2. Let the following
Table 4 describe P ((H

Z
(1)
il

l
+ H

Z
(2)
il

l
) → Gil)

Gil

0 1 2
0 (1 − λ)2 2λ(1 − λ) λ2

H
Z

(1)
il

l
+ H

Z
(2)
il

l
1 λ(1 − λ) λ2 + (1 − λ)2 λ(1 − λ)

2 λ2 2λ(1 − λ) (1 − λ)2

Table 4: Probability table for the haplotypes → genotype

The rows where the haplotypes sum to 0 and 2 are straight-forward (as the
quantity of mutation are ∼ Bin(2, λ)). Though the row where the haplotypes
sum to 1 is explained as follows: As the haplotypes sum to 1 we have two
different alleles in the haplotypes. Assume that the first allele is 0 (0-allele)
and the second is 1 (1-allele). If only the first allele mutates, then the geno-
type is read as 2 (as the allele mutates from the 0-allele to the 1-allele, you
will have two 1-alleles) but if instead only the second allele mutates, then the
genotype is read as 0 (as this allele mutates from the 1-allele to the 0-allele,
you will have two 0-alleles). So these two scenarios require a certain allele to
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mutate, giving both scenarios the probability λ(1 − λ). Now, there are two
scenarios for the genotype being read as 1, given that the haplotypes sum to
1. Either no mutation occured or both alleles mutate. So the probability for
this scenario is λ2 + (1 − λ)2.
We end up with:

P (Gi|Z
(1)
i , Z

(2)
i , H) =

L
∏

l=1

P (Gi|Z
(1)
il , Z

(2)
il , H) =

L
∏

l=1

P ((H
Z

(1)
il

l
+ H

Z
(2)
il

l
) → Gil)

P (Gi|Z
(1)
i , Z

(2)
i , H) also constitutes a HMM. Refering to Figure 3, the geno-

types G are the hidden states X in the figure, while the haplotype indicators
Z are the outcomes Y , the transition probabilities aij = 1 if j = i + 1 and
0 otherwise (because we estimate the genotypes in a set order) and table 4
shows the outcome probabilities b in the figure.

5.5 Methods for validating imputations

Imputing is perfomed based on Bayes formula for P (GM |GO, H) (see (1) on
page 12). For each SNP we end up with a probability distribution across
genotypes for each individual. To measure the imputations success a vali-
dation procedure can be used to evaluate the probability distributions. We
consider a subset of the known SNPs as unknown and evaluate how well the
imputed distributions for the SNPs correspond to the genotyped values.

5.5.1 PRESS

To quantify the prediction error for the imputed SNPs, we use the prediction
error sum of squares (PRESS). Denote Y = {ykm} as the known genotypes
for a set of SNPs for n individuals with k denoting the SNP and m ∈ {0, .., n}.
Consider a subset of these SNPs YU = {yim} as unknown, with {i} ⊂ {k}.
Impute the unknown SNPs in YU with the help of Y \ YU (the set of Y not
included in YU). The imputations give estimated probabilities pjkm (where
j ∈ {0, 1, 2}) for the values 0, 1 or 2 for each SNP.

We will evaluate the statistic:

PRESSm =
∑

i

2
∑

j=0

pjim(yim − j)2
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for each individual m, and the prediction error for each SNP i:

PRESSi =
∑

m

2
∑

j=0

pjim(yim − j)2

High posterior probabilities far from the true genotype contribute to high val-
ues of PRESS. Good imputation quality implies a low PRESS for individuals
and SNPs, respectively.

5.5.2 RMSEP

RMSEP stands for root mean square error of prediction and is defined as
PRESS

n
, where n is size of the sets of SNPs {i} or individuals {m}. The

scaling of the PRESS statistic is needed in order to make a fair comparison
between HapMap phase 2 and 3, since the two phases differ in the number
of SNPs (see Table 9 at page 24).

5.6 Imputation of CAPS and CAHRES

In this thesis the missing data occur because specific genotyping chips are
set to read the genome at predetermined SNPs, thus the missingness is not
expected to be informative for the genotype-disease association. The docu-
mented correlation structures across the genome (haplotype structure), i.e.
the correlation structure between the missing and the observed SNPs will
provide the basis for performing imputations.

When imputing for CAPS and CAHRES, we need haplotypes from a ref-
erence population, which are matched to be geographically close and thus
has a higher likelihood of similar SNP correlation structure (linkage dise-
quilibrium) and allele frequences [12]. We use the CEU population from
HapMap (i.e. Utah residents with Northern and Western European ances-
try), which is the closest geographically matched population to the Swedish
population and it is present in both phase 2 and phase 3 of HapMap.

The CAPS data was genotyped on two different versions of the Affymetrix
chip [5]. When the CAPS samples were genotyped, Affymetrix used an un-
biased and completely random SNP selection.

The CAHRES data were genotyped using an Illumina chip [6]. Illumina uses
a selection of tagSNPs for genotyping. TagSNPs are selected SNPs which
are known to have high correlation with other SNPs. By choosing a good
selection of tagSNPs, one can hope for good genome coverage.
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5.7 Validation of imputation on CAPS and CAHRES

Our purpose is to compare the prediction of SNPs based on data from the two
platforms, so we have chosen to validate imputations only for the overlapping
SNPs between the two control groups/genotyping platforms. By choosing
the overlapping SNPs (for which the genotype is known), we expect a fair
comparison between the two studies/genotyping platforms. Table 5 shows
the overlap between the SNPs from the studies for each chromosome.

CAHRES CAPS Overlap CAHRES% CAPS%
1 39105 34593 6770 17.31 19.57
2 42357 35971 7224 17.06 20.08
3 35301 29702 5919 16.77 19.93
4 31398 27383 5030 16.02 18.37
5 32421 28029 5455 16.83 19.46
6 34341 28727 5683 16.55 19.78
7 28342 23387 4593 16.21 19.64
8 29655 23915 4954 16.71 20.72
9 25276 20267 4347 17.20 21.45

10 27282 24960 4928 18.06 19.74
11 25543 23000 4495 17.60 19.54
12 25356 22034 4548 17.94 20.64
13 19518 16530 3182 16.30 19.25
14 17317 13864 3014 17.40 21.74
15 15542 12449 2744 17.66 22.04
16 15821 13267 2804 17.72 21.14
17 13571 10192 2319 17.09 22.75
18 15759 12815 2638 16.74 20.59
19 9083 6240 1478 16.27 23.69
20 13439 11069 2324 17.29 21.00
21 7825 6226 1313 16.78 21.09
22 7971 5663 1304 16.36 23.03

Table 5: Amount and percetages of SNPs overlapping between CAHRES and
CAPS

The validation for each study is made so that we exclude the overlapping
SNPs and impute them by using the correlation structures from HapMap on
the non-overlapping SNPs. Subsequently, we compare the imputed genotype
distributions for the overlapping SNPs with the real genotypes for those SNPs
using the RMSEP statistics.
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6 Results

The analyses were carried out for three chromosomes, number 8, 17 and 21.
Chromosomes 8, 17 were selected due to being repeatedly found associated
to various cancers, while chromosome 21 (which is the smallest, non sex chro-
mosome) was chosen as a test chromosome. Table 6 shows the mean RMSEP
over SNPs and over individuals (they are identical by definition) and mean
standard deviation (SD) also over SNPs and individuals for chromosome 8
for both studies and HapMap phases.

Mean RMSEP SNP SD Individual SD
CAHRES phase 2 0.0244 0.0358 0.0029
CAHRES phase 3 0.0231 0.0353 0.0030

CAPS phase 2 0.0558 0.0587 0.0354
CAPS phase 3 0.0587 0.0607 0.0350

Table 6: Chromosome 08 RMSEP means and standard deviations (SD) for
the individual and SNP means with HapMap phase 2 and 3

Judging by this table it seems that for the individuals in the CAHRES study
the imputation does better than for CAPS (i.e. the RMSEP is generally
lower and varies less for CAHRES than CAPS), both for each SNP and each
individual. It also appears that for the CAHRES controls, the HapMap
phase 3 CEU population seems to be slightly better as a reference popula-
tion than the corresponding CEU population for phase 2 of HapMap, while
the opposite holds for the CAPS controls. In conclusion, neither HapMap
phase is consistently superior to the other. The standard deviations (SD) of
the mean RMSEP for individuals is smaller than the SDs for SNPs, which
indicates that the imputation accuracy is less stable for single SNPs than for
single individuals especially with individuals from the CAHRES study (as
the SNP SD ≈ 10×Individual SD). This is also the case for the CAPS study,
though not as convincing. These results are replicated in all of the three
tested chromosomes.

Figure 4 shows histograms over the RMSEPs for individuals (to the right)
SNPs (to the left), where the CAPS validation with HapMap phase 2 and 3
are placed on the first and second row respectively and the CAHRES vali-
dation with HapMap phase 2 and 3 are placed on the third and fourth row
respectively. The histograms make a very convincing case for that the missing
SNPs in the CAHRES population are imputed better than the same missing
SNPs in the CAPS population.

Figure 5 shows the RMSEP correlation for the two HapMap phases and
the two studies. The RMSEP plotted in the phase 2 vs 3 plots are for each
individual, as only the individual validation is comparable between HapMap
phase 2 and 3 within a study. Whilst in the CAPS vs CAHRES plots, it
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Figure 4: Validation histograms of RMSEP for chromosome 8. SNP vali-
dation (left) and individual validation (right). (a) CAPS HapMap phase 2;
(b) CAPS HapMap phase 3; (c) CAHRES HapMap phase 2; (d) CAHRES
HapMap phase 3

is the RMSEP for each SNP that is plotted, as we have studied the same
SNPs in both studies. The correlation between the individual RMSEPs for
phase 2 and phase 3 of HapMap is high for both studies, meaning that if an
individual has been imputed bad for one phase, he/she will be imputed bad
for the other phase as well. Comparing the studies and their respective SNP
score vs each other, shows once again that CAHRES generally impute better
than CAPS as most SNPs show a worse RMSEP in CAPS compared to their
CAHRES counterpart.

A complementary question that we were interested in was whether certain
genotypes are harder to predict than others. Tables 7 and 8 show the distri-
bution over how the imputed data fits the real data for CAPS and CAHRES.
The tables present the real genotype vs the imputed (predicted) genotypes.
For example in Table 8 the SNPs with the AA genotype have an average of
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Figure 5: Correlation overview of the RMSEP values for chromosome 8.
(top row) Individual RMSEP with HapMap phase 2 vs 3 for CAPS (left)
and CAHRES (right); (bottom row) SNP RMSEP with CAPS vs CAHRES
for HapMap phase 2 (left) and phase 3 (right)

0.925 for AA, 0.066 for Aa and 0.009 for aa in the imputed genotype proba-
bility distribution.

In general it seems like it is slightly harder to impute SNPs with a heterozy-
gote genotype (Aa) than SNPs with either of the homozygote genotypes (AA
and aa). It also turns out that this a general result for all chromosomes and
HapMap phases in our study.

As seen in all of these analysises, CAHRES impute better than CAPS on
basically every level. However, it is very hard to know what this is attributed
to.
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Predicted AA Predicted Aa Predicted aa
Real AA 0.966 0.032 0.002
Real Aa 0.033 0.936 0.031
Real aa 0.002 0.032 0.966

Table 7: Average prediction distribution table for CAHRES chromosome 8
with HapMap phase 2

Predicted AA Predicted Aa Predicted aa
Real AA 0.925 0.066 0.009
Real Aa 0.075 0.851 0.074
Real aa 0.008 0.067 0.925

Table 8: Average prediction distribution table for CAPS chromosome 8 with
HapMap phase 2

7 Discussion

For assessing the accuracy of the imputations we used the overlapping SNPs
genotyped in both CAPS and CAHRES data. These SNPs were temporarily
treated as missing and then imputed. A more thorough comparison would
be to have partitioned the validation so that one would not exclude all the
SNPs at once. The optimal solution would have been to leave one out at a
time, but computing time consideration made this impossible for this thesis.
The reason for why it might not be fair to exclude all the overlapping SNPs
at once, is that the imputation is affected by how many genotyped SNPs are
close to the SNP that is going to be estimated. Basically, with more sur-
rounding directly genotyped SNPs, one expects better imputation accuracy.
Thus, if the overlapping SNPs are more clustered for one study compared to
the other, then we are not making a fair comparison. Another issue could be
if the percentage of overlapping SNPs for the studies differs a lot. Say that
the excluded SNPs make up 10% in one study and 20% in the other, then
the imputation results might be drastically worse for the study which had
20% of the SNPs excluded compared to the study where only 10% of SNPs
were dropped. The overlapping percentages and the quantity of SNPs differs
between the CAPS and CAHRES studies. It is hard to know how much this
impacts the results. But if we look at chromosome 8, which we have used as
our example in the results section, there are about 30% more SNPs in the
CAHRES data set if we take away the overlapping SNPs ( 29655−4954

23915−4954
≈ 1.30

) so it is not surprising that these individuals have better imputed values.

Another problem with comparing the Illumina and Affymetrix chips is that
it is hard to assess the impact of the SNP selection on these two chips on the
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imputation quality. We have seen here that CAHRES were better imputed
than CAPS. Does this imply that the Illumina SNP selection is better for
imputations compared to Affymetrix? It might be that Affymetrix’s geno-
typing platform is less suited for imputation, i.e. the capacity to predict
untyped variation is not as good as for Illumina’s chip. But it might also
be that the CAPS study population resembles the reference population in
HapMap (CEU) worse and therefore is harder to impute. Large geographical
distances has been shown to mirror differenced in genomic allele frequencies
and correlations. The question remains whether there is geographical pop-
ulation structure over smaller distances such as within Sweden and whether
the CEU population of HapMap is better reflecting some regions of the coun-
try. The CAPS and CAHRES samples have slightly different geographical
locations, and if the Swedish population exhibits a genetic population struc-
ture, this could affect the accuracy of the imputations.

In order to make a more thorough validation of HapMap 2 and 3 and the
Illumina and Affymetrix chips, one could validate all chromosomes. Chro-
mosomes might differ in terms of linkage disequilibrium patterns and SNP
density or they might be impacted by specific differences (mutations, inver-
sions, etc) between the sample and reference populations. Thus, even though
the results in this study are remarkably similar for all 3 chromosomes, one
might extend these investigations to the entire genome.

The statistic PRESSm that we use for the validation has given equal weight
to all SNPs. It might be interesting to weight each SNP contribution by it’s
Minor Allele Frequency (MAF). It would also be interesting to first assess
whether imputing accuracy varies systematically according to MAF.

Whilst imputing SNPs for a control pool with individuals typed on differ-
ent platforms offers clear benifits (the possibility of increasing the number of
controls and thus the statistical power), it is less clear whether, for a pool
of controls with GWAS data from the same genotyping platform, there is a
potential gain in power from imputing untyped HapMap SNPs to be included
in testing genetic association. Published literature [9] claims that it may be
useful to impute those parts of the genome with poor tagging (i.e. parts of
the genome where no SNPs pick up the variation). So imputing SNPs for
direct use in GWAS studies might have been useful a couple of years ago.
Nowadays the genotyping chips from Illumina and Affymetrix genotype ∼ 1
million SNPs so the tagging across the genome is very good with the modern
genotyping chips. Thus studies genotyped with the newer chips will benifit
less from imputations for GWAS.

23



8 Appendix

8.1 Computational considerations

The software “impute” [9] was used to impute the missing genotypes. Using
a computer with a Intel(R) Xeon(R) CPU X7350 @ 2.93GHz processor and
around 100 Gb of RAM, an imputation of chromosome 8 for 1000 individu-
als takes approximately 48 hours. “PLINK” [14] was used for GWAS data
management.

8.2 HapMap phase comparison table

New SNPs in phase 3 Deleted Phase 2 SNPs
Chr % new SNPs # new SNPs % deleted SNPs # deleted SNPs
1 5.47 7,120 61.41 195,612
2 3.25 4,238 62.14 206,964
3 3.89 4,193 60.69 159,958
4 3.82 3,726 62.84 158,608
5 3.52 3,473 62.52 158,983
6 3.92 4,030 64.48 179,323
7 4.40 3,726 63.09 139,045
8 3.10 2,626 63.00 139,875
9 2.85 2,039 63.16 119,159
10 2.71 2,236 62.94 136,285
11 3.93 3,121 63.60 133,358
12 3.80 2,929 63.09 126,932
13 2.16 1,268 64.46 104,229
14 3.80 1,931 61.37 77,652
15 4.32 2,039 58.86 64,550
16 5.61 2,791 58.22 65,455
17 8.03 3,427 57.25 52,568
18 1.94 891 63.50 78,160
19 12.58 3,714 55.84 32,627
20 3.01 1,208 68.38 84,061
21 2.58 559 60.32 32,245
22 5.09 1,155 62.92 36,565

Total 4.11 66,418 62.42 2,482,214

Table 9: Chromosome wise comparison between phase 2 and 3 of HapMap

24



8.3 Results plots
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Figure 6: Validation histograms of RMSEP for chromosome 17. SNP vali-
dation (left) and individual validation (right). (a) CAPS HapMap phase 2;
(b) CAPS HapMap phase 3; (c) CAHRES HapMap phase 2; (d) CAHRES
HapMap phase 3
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Figure 7: Validation histograms of RMSEP for chromosome 21. SNP vali-
dation (left) and individual validation (right). (a) CAPS HapMap phase 2;
(b) CAPS HapMap phase 3; (c) CAHRES HapMap phase 2; (d) CAHRES
HapMap phase 3
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Figure 8: Correlation overview of the RMSEP values for chromosome 17.
(top row) Individual RMSEP with HapMap phase 2 vs 3 for CAPS (left)
and CAHRES (right); (bottom row) SNP RMSEP with CAPS vs CAHRES
for HapMap phase 2 (left) and phase 3 (right)
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Figure 9: Correlation overview of the RMSEP values for chromosome 21.
(top row) Individual RMSEP with HapMap phase 2 vs 3 for CAPS (left)
and CAHRES (right); (bottom row) SNP RMSEP with CAPS vs CAHRES
for HapMap phase 2 (left) and phase 3 (right)
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and Arvid Sjölander for missing data discussion.

References

[1] Doris PA (Ferbruary 2002). Hypertension genetics, single nucleotide poly-
morphisms, and the common disease:common variant hypothesis Hyper-
tension 39 Pt 2; 323 - 331

[2] Risch N and Merikangas K (September 1996). The Future of Genetic
Studies of Complex Human Diseases. Science Vol. 273.; 1516 - 1517

[3] Wellcome Trust Case Control Consortium (June 2007). Genome-wide as-
sociation study of 14,000 cases of cases of seven common diseases and
3,000 shared controls. Nature 447; 661-678

[4] The International HapMap Consortium (December 2003). The Interna-
tional HapMap Project. Nature 426; 789 - 796

[5] http://www.affymetrix.com/

[6] http://illumina.com/

[7] Lindström S, Wiklund F, Adami H-O, Augustsson Balter K, Adolfsson
J, and Grönberg H (November 2006). Germ-Line Genetic Variation in
the Key Androgen-Regulating Genes Androgen Receptor, Cytochrome
P450, and Steroid-5-a-Reductase Type 2 Is Important for Prostate Cancer
Developmen Cancer Research 66; 11077 - 11083

[8] Magnusson C, Baron J A., Correia N, Bergström R, Adami H-O and
Persson I (November 1999). Breast-cancer risk following long-term ostro-
gen and oestrogen- progestin-replacement therapy International Journal
of Cancer Volume 81 Issue 3; 339 - 344

29



[9] Marchini J, Howie B, Myers S, McVean G Donnelly P (July 2007). A new
multipoint method for genome-wide association studies by imputation of
genotypes Nature Genetics 39; 906 - 913

[10] Li N and Stephens M (December 2003). Modeling linkage disequilibrium
and identifying recombination hotspots using single-nucleotide polymor-
phism data. Genetics 165(4); 2213-2233

[11] Hartl D L., Clark A G.(October 1997). Principles of Population Genet-
ics. Sinauer Associates 3rd edition; Chapter 7

[12] Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko A R., Auton A, Indap
A, King K S., Bergmann S, Nelson M R., Stephens M Bustamante C D.
(November 2008). Genes mirror geography within Europe Nature 456;
98 - 101

[13] Pardo L, Bochdanovits Z, de Geus E, Hottenga J J, Sullivan P, Posthuma
D, Penninx B WJH, Boomsma D and Heutink P (January 2009). Global
similarity with local differences in linkage disequilibrium between the
Dutch and HapMap-CEU populations European Journal of Human Ge-
netics advance online publication

[14] http://pngu.mgh.harvard.edu/∼purcell/plink/

30


