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Abstract

The subject of this master thesis is the application of survival analysis to predict

policy churns in a non-life insurance industry. Especially, models and methods

are applied to estimate survival probabilities on customer-level in a competing risk

setting, where churns occur of different types of causes.

By following motor policy holders over a 3-year period, probabilites are esti-

mated which enables scoring of customers, especially those likely to churn within

this time period.

Cause-specific semiparametric hazard functions are modelled with Cox regres-

sion given customer data at the beginning of the study period. The models are

estimated from data on private customers in the Danish insurance company Codan.

The main conclusion is that time-fixed covariate and time-invariant effect mod-

els that are used for prediction here might be an over-simplification of churns on

customer-level, as they disregard the impact of customers-specific events during

follow-up. This suggests more flexible models when analysing churns.
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1 Introduction

Many (non-life) insurance markets are saturated and competitive ones, where cus-

tomers almost instantaneously can cancel insurance policies, according to statute.

Especially, this enables customers to transfer insurances to a competeting insur-

ance company, a process where cancellation is notified by either the customer or

the competing company. Respective of which, there will be little or no time trying

to retain the customer.

This has resulted in an increased interest in customer relationship management

(CRM) over the last decades, in which relationships are monitored and analyzed.

Since insurance policy holders are associated with risks - the risk of having future

claims, delayed payments etc. - but also with needs, companies want to learn as

much as possible of these factors in order to conclude when focus should be put

on a customer. And since each customer show case its own set of risks and needs,

it is crucial for this relationship management to be specific and accurate in its

conclusions.

Somewhat simplified, successful CRM results in customer satisfaction, which is

substantial for customer longevity.

There is, however, an outflow of customers in an insurance company. This can

be seen as a transition from a state of being an active customer to a state of being

inactive. Especially, this transistion could be due to different causes, as seen in fig.

1, since customers cancel their policies for different causes.

Inactive, cause 1

Active customer

))TTTTTTTTTTTTTTTTTT

55jjjjjjjjjjjjjjjjjj

...

Inactive, cause L

Figure 1: Outflow of customers. Each customer can cancel an insurance of one out
of L different causes.

There is also an inflow: new customers are attracted by marketing, campaigns

and other means. Due to the saturated and mature nature of insurance markets,

where companies offer similar products and services and most potential customers

are most likely to be found in competeting companies, attracting customers that

already have insurance coverage from a competitor is of great importance. Lastly, a

substantial part of the customers will renew their policies, extending their customer

duration and displaying their attitude towards the company. Most commenly, non-

life insurance policies run for one year and are renewed unless notice of cancellation

has been given, in which case the cancellation will have its impact from the written
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policy’s date of expiration.1

Insurance companies, like other types of customer based businesses, wish to

optimize their customer base by controlling the in- and outflow, as described above,

of customers. Different strategies to accomplish this are available, but common

for all is the need of knowledge of market conditions and customer behaviours.

When deducing underlying principles of the latter, especially on customer longevity,

analysis of cancellations is necessary.

This will give the company an idea on when the risk of losing a customer is

high/low and what causes this. It also gives the ability to identify high-risk cus-

tomers, which is useful when targeting new customers in campaigns, since it enables

customer segmentation highlighting customers with high/low predicted lifetime du-

ration.

Of course, longevity is not all when it comes to the profitability of a customer,

but should be looked at with respect to premiums and margins in order to seperate

high profitable customers from other customers. This produces a powerful tool for

customer segmentation and enables the company to further direct and optimize

campaigns, by using this customer value.

1For different countries and markets, different rules apply as to when a note of cancellation has
its effect. For the Danish private market, which is considered here, the cancellation will have its
impact on the renewal date.

2



2 Preliminaries

This section gives the definitions and theoretical concepts that are used throughout

the text. It starts by reviewing the purpose of the study as well as its applications

in 2.1, along with some notes on previous work in related fields in 2.2. In 2.3 and

2.4, the necessary non-technical concepts are definied and discussed. Finally, in 2.5,

some of the basic technical concepts of survival analysis are reviewed.

2.1 Objectivies

In this thesis we are concerned with customer tenure, more specificely on customer

duration, in a non-life insurance company. The main purpose is to model duration

in order to score (i.e. rank) customers, thus be able to answer the question:

Which customer is more likely to stay?

This is of course a very general question, and will be further specified in order

to be answered.

By applying statistical methods from survival analysis, we suggest methods to

estimate customer survival function and customer hazard function on product-level

in order to gain insight in customer behaviours. This will be used to develop time

until event regression models, more specifically Cox models (Cox [7]), including and

measuring effects relevant for duration.

The analysis will consider competing risks, i.e. we will investigate duration in

the presence of different cancellation causes. Using these cause-specific effects, we

develop fixed covariate and time invariant effect models to predict survival proba-

bilities over a finite time period, given initial covariates. This is done by stacking

data and performing stratified analysis and allowing for cause-specific effects to be

equal over strata.

In practice, the time period could be set to 12 month, in which case the survival

probability would be intepreted as the probability of renewal.

The reason for including competing risks is to conclude whether or not it is

relevant and possible to pinpoint which covariates effect which causes. This will

be useful when focusing on retention and other CRM activities, since it enables

scoring of customers that are more likely to cancel their policies from causes of

certain interest for the company.

We will also look at the possibility to include time-varying effects, thus fitting

a generalized Cox model to the data, as suggested in e.g. Therneau and Gramb-

sch [21]. In this part will seek to find effects that might vary over time and thus

violates some assumptions on time-invarians that are imposed under certain dura-

tion models.

The model development is preceded by a fairly thoroughly presentation of basic

concepts and topics in survival analysis. The development part will be based on

and presented in the framework of martingale theory. Specifically, the models are

based on the theory of counting processes.
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Furthermore, we will profile high respectively low loyalty customer, thus high-

lighting customer characteristics which are useful for market targeting.

The model is applied to a data set from the Danish non-life insurance company

Codan, part of the RSA Group.

2.2 Previous studies

Overall, very little has been written on survival analysis and customer lifetime dura-

tion applied to the insurance industry. Other industries are more well-represented.

In Lu [16], churn analysis is carried out in a telecommunication company by look-

ing at historical customer data which is used for predictive modelling of customer

duration.

In van den Poel and Larivère [22], a similar model is used with time-varying

data when predicting churn incidences in the financial service market.

Other industries where survival analysis has been proved useful are marketing

science, political science and reliability engineering.

Guillen, Nielsen, Scheike and Perez-Marin [11], however, analyze customer life-

time duration in the insurance industry and apply an extended Cox model to re-

tention time after an initial, partial cancellation of insurance policies. They find

empirical evidence of time-dependent effects of factors explaining duration and sug-

gest methods to identify customers with high risk of cancelling all remaining policies

and how the risk varies over time.

Our setting is somewhat different, in that we will develop models with respect

to products - i.e. customers will be scored for each product (listed below) that is

considered here - in the presence of competing risks.

2.3 Definitions and Exclusions

Here, a few concepts from customer relationship management (CRM) and the in-

surance industry are defined, which will appear, or already have appeared, in the

text.

Customer - in this context a domestic household, containing one or more policy

holders, represented by a primary policy holder with at least one active insur-

ance at the beginning of the study period. The primary customer is either a

person or a company, small enough to, in a sense, be considered as a person.2

Focus Customer (FC) - customers who have an insurance portfolio containing at

least one of the following insurance policies: home, car, accident and compre-

hensive household. These policies are refereed to as focus products (FP).3

Churn - a broad term of the action of cancelling an service, which in this case

translates to cancelling insurance coverage. Furthermore, this cancellation

2These customers are those who will be used in campaigns and thus will be scored.
3We exclude customers holding life and pension insurance policies, carried on from the time

when the company held this type of policies.
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must not be disrupted by renewal4 within 12 months. In other words, a

customer is not considered churned if the customer returns within one year,

i.e. we consider net churns.

Loyalty - here used in the sense of longevity, i.e. customer duration measured in

some fixed time unit. Thus, a loyal customer is someone who will stay within

the company for a considerable amount of time intervals.

Profitability - with respect to the concept of focus products, all focus customers

are considered profitable, since these products correspond to the greatest part

of the premium volume and/or are given most attention in direct sale mar-

keting and campaigns. We disregard the cost of claims in this definition.

The necessity of these definitions of customer-centric metrics are not only be-

cause of precision in statistical assumptions and interpretation of results, but for

business metrics in general; as Berry and Linoff [6] remark, a business often becomes

what it is measured by.

Some clearifications of these concepts might be needed. Since our main objective

is to model customer duration, we are interested in the time until the relationship

with the customer has ended in the sense of net churns. That is, we are not really

interested in the object being covered by the insurance policy. For example, assume

a car assurer sells the car which is covered by a insurance company. The need of

coverage ceases, since there is no longer any risk, or object, to insure. The rela-

tionship, however, does not necessarily end with this: there might still be another

person in the household with a car insurance.

When it comes to the actual churning occurence, the churning point, we let this

be defined as the date at which the policy is deactivated. This date is not always

possible to detect in other businesses, where churns are not open, such as various

product subscriptions businesses.

Loyalty, or rather the causal relationship between loyalty and its ancedents, is

often described by behavioural and (relative) attitudinal factors (Dick and Basu [9]

and Beerli, Martín and Quintana [5]). E.g. how is a customer’s attitude towards the

insurance company effected by a shift in premiums or how do customers behave in

case of inefficient claim handling processes? Although this is, conceptually, a more

appealling view of loyalty compared to customer duration it is not as obvious how

to measure its effects over time. Especially, it is rather difficult to see the direct

effect of a specific CRM activity on loyalty since, during the follow-up time of this

activity, the customers probably will undergo other activites (e.g. marketing, claims

handling, information) which also will effect their attitude towards the company.

The problem here is that it takes time to observe time and conditions are not

constant during the course of time.

Hence, one might argue that the concept of loyalty is not fully utilized here in

favor of measurability. Thus, “disloyalty” is synonymous with “churning” in that

4This ’final’ cancellation of insurance coverage is known as lapsing in some parts of the world,
where churn would imply cancellation by replacement of another policy.
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sense.

Furthermore, in the definition of a customer we exclude large companies and

instead focus on private households and smaller companies, that are subject to

conventional products through campaigns.

In terms of these definitions, our objective is to estimate customer duration

for focus customers and doing this for each focus product - i.e. one estimated

probability for each type of focus product - by investigating churns over time.

2.4 Classification of risks

As mentioned above, our analysis considers competing risks; customers can churn

for different causes. Typically, risk and cause refer to the same condition, but the

reference differ with respect to the occurrence of the event. In other words, a “risk”

becomes a “cause” if an event has occurred. This explains why it is difficult to

measure loyalty in the sense of attitude towards the company, since “circumstances”

- which affects the attitude - and “cause” do not necessarily have this relation.

However, “risk” and “cause” are affected and explained by attitude and circum-

stances respectively, but not necessarily jointly. E.g. if a customer chooses to churn,

this decision is based on attitude - which in turn is based on previous happenings

- but this attitude is not the cause of churning: it is the circumstance yielding the

cause of churning and is refered to as risk.

Here we classify the competing risks used in the study5:

I. Insurance policy transferred to competitor

II. Insurance policy cancelled on internal initiative

III. Need of coverage ceased

IV. Insurance policy cancelled by customer

V. Residual

Examples of I. would be when a customer moves the primary policy to a competing

insurance company (which could be because of e.g. price or terms).

Case II. occurs when the company has remarks on a customer, e.g. if the cus-

tomer has delayed payments or is considered as too risky with respect to underwrit-

ing criterias, and chooses to cancel the policy according to legislation.

Case III. consists of those not having any need of insurance, e.g. if the insured

house is sold and the assured moves to an apartment or customer has deceased.

Case IV. is similiar to I. in that they are both (more or less) voluntary and

initiated by the customer, but in the former case the company does not know if

the risk will be covered by another company. In fact, the risk could be covered by

another internal insurance held by a policy holder within the same household, in

which case the relation may or may not be retained. An example of this type would

churning due to adjustments in premiums or due to household reconstellations.

5Originally there were 32 risks, internally defined by the insurance company
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Finally, there is a residual group, consisting of churns that can be seen as mix-

tures of cases I-IV, policies cancellations that are not as easily grouped as the others.

Also, this group has showed to be small in numbers, compared to the other groups.

Overall, this classification is useful since it greatly reduces the causes of churning,

to a more suitable number, upon which the analysis will be performed. In fact, there

might be necessary to further regroup causes when some of the groups I.-V. are too

rare to make inference, in which case one might draw suspect conclusions about

certain covariates effect on these rare events. When this is the case, the regrouping

will typically depend on which product we are analyzing, but we will usually link

I. with IV. and II. with V., leaving III. unchanged. This reclassification is then

somewhat similar to one common in other industries where churning is treathed as

either voluntary, unvoluntary or expected, see Berry and Linoff [6].

The main purpose of investigating these different types of risk is to conclude

whether or not customers belonging to different risk groups have different survival

times. Also, different groups are interesting to the company for different reasons:

II. and IV. tells us something about customer behaviours and the subject being

insured, whereas I. might tell us something about market conditions and indicate

that a competitor offers a lower price or different terms.

Due to our setting it is possible to belong to different risk-classes at the same

time. In order to perform unique classification, we set up rules for this situations.

This is of course only a problem when several insurances - all of the same focus

product - are churned on the same date. Otherwise, we only look at the last date

of churns and simply pick that reason as the reason of why the relation has ended.

For ties we let customer belong to I., if this class is represented. If not, we choose

class IV., otherwise III and then II.

This way, we favor churns that are initiated by the customer and for some

situations this might be appropriate, for other not. See section 6.1 for comments

on this and other data related issues.

To illustrate the classification (and the issue with statistical power for some of

the classes) consider the table below, which gives the number of churned customers

due to each cause during the study period. Here class 0 is of course those customers

who didn’t churn at all.

As seen, more than 40 % of those customers holding at least one motor policy

at the beginning of 2005, churned within three years. Among these customers, the

most common cause of churning was that of transferring the policy to a competing

company, followed by those due to ceased risk. The remaining risk classes make up

for 5 % of the churns.

2.5 Concepts from Survival Analysis

2.5.1 Essentials

Let T represent the time measured in some unit for an object from some reference

point, called time of origin, up to the occurence of an event or to the end of the
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Class # of churns churns, %
0. 48605 57.78
I. 22321 26.54
II. 693 0.82
III. 11248 13.37
IV. 726 0.86
V. 521 0.62

I.-V. 35509 42.22

Table 1: Churns during 2005-2007 for motor insurance.

study period. The lenght of this interval is the survival time and is treated as a

non-negative continuous random variable with a cumulative distribution function

FT (t) = P (T ≤ t) and probability density funtion fT (t) = d
dtFT (t). (Note that

T ∈ (0,∞), but in some cases it may be more realistic to let T be finite.)6

Along with the survival time is the event, which either occurs or does not occur

during the study period. Examples of an event could be death, divorce or some

medical diagnos. For this reason introduce a dummy status variable, δ, to indicate

whether the event of the study has occured or not, i.e.

δ =





1, if event has occured

0, if event has not occured

In our case, an event has occured, i.e. δ = 1, once all of the insurances within

a focus product have been cancelled. As we defined risk classes in 2.4, we realize

that an event could occur due to different reasons and we will come back to this in

2.5.4.

A third component is of course explanatory information on objects, which is

given at the start of the study and recorded during the study period.

2.5.2 Censored and truncated data

Survival data is usually subject to various censoring schemes and other special fea-

tures, which will be mentioned here. For more details, see Klein and Moeschberger

[15].

What is known about a subject, is that eventually the event will de facto occur

or already has occured, but not when. The must common case is the former - where

subjects have not had the event during study period, but might have it directly

after - and is known as right censoring. It is also possible that subjects drop out of

the study, for whatever reason, making data incomplete. Due to the construction

of insurance policies, the date of churn will always be known and, hence, censored

observation are those who haven’t had an event at the end of the study period. In

other words, all censored observations are so, simply because we have not followed

6This cases could then be dealt with by using conditional survival and hazard functions.
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them long enough. Due to the (right) censoring, no insight can be obtained about

the upper tail of the ditstribution of the lifetime.

There are, however, some complications in this matter in a competing risks

setting: subjects who have had an event are considered censored from risks other

than that which caused the event. Alternatively the risks could be assumed to be

independent, i.e. the occurence of an event due to some cause would not effect the

likelihood for an event due to some other, had it not happen. See e.g. Crowder [8]

for more discussion on this theme.

If the event is only known to have occured before some point in time, this is

known as left censoring. If the time of event occurrence is known to be somewhere

between two times, this is known as interval censoring. Right and left censoring

can thus be seen as special cases of interval censoring, with right time limit set to

∞ and left time limit set to 0.

Another feature in survival data is truncation. Left truncation is present if

subjects have been exposed to the risk of having the event before participating in

the study, e.g. if a customer had a focus product before time of origin. Right

truncation is nothing else than left censoring.

All of the above mentioned censoring schemes can emerge from different study

designs. If the subjects in the study are followed for a fixed, predetermined period

of time, they are subject to type I censoring. Here, the number of events that may

occur is random, but the study period is fixed. A generalization of this, called fixed

censoring, would be to let each subject have its own potential maximum observation

time, τi.

If they instead are followed until a fixed (in advance) number of the subjects,

d, have had the event, they are subject to type II censoring. In this case, study

period is random and d determines the precision of the study and could be used as a

design parameter. In a more general setting, called random censoring, each subject

is associated with a potential censoring time, Ci, and a potential lifetime, Ti.In this

design, observations are terminated for reasons that are not under control. It also

is possible that entry times vary randomly across subjects and these entry times are

not decided by the study. The entry times for customers in an insurance company

could typically be considered as random.

When dealing with survival time, one must consider what time variabel is ob-

served, i.e. if it is time until event, T , or time until censoring, C. For right censored

data, we will observe T̃i = min(Ti, Ci) for subject i. The censoring time is also

considered as random, with the same restrictions as T and assumed to follow some

distribution, Ci ∼ G.

Along with lifetime, we observe δi = I(Ti ≤ Ci), which gives us the necessary

information to distinguish actual events from (right) censored observations, and xi,

covariates on subject i. To summarize, we observe the triplet (T̃i, δi, xi) for each

subject and wish to draw inference about Ti. For random censoring, we also observe

a subject-specific entry time Vi, at which the subject is left truncated.

In order to do inference on T , the censoring must be non-informative, i.e. Ti
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and Ci are assumed to be independent. This assumption typically means that if

a subject is censored, we will not be able to say anything of its lifetime, except it

being larger than the censoring time. If this is violated, estimations are severely

biased and the direction of this bias depends on the situation.

2.5.3 Hazard and stratified hazard models

Since we are interested in the probability of survival, let ST (t) = 1−FT (t) = P (T >

t) be the complement of the distribution function. Hence, this function has support

in R
+ with boundary condition S(0) = 1 and S(∞)=0.

Next, consider

α(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)

∆t
= lim

∆t→0

F (t + ∆t) − F (t)

∆t
·

1

S(t)
=

=
f(t)

S(t)
(1)

which is interpreted as the risk of having the event instantaneously after time t,

given survival up to t. The quantity α(t) is called the hazard at time t. Note that

α(t) ≥ 0 for t ≥ 0, and can thus not to be intepreted as a probability.

By using the fact that f(t) = dF (t)
dt = −dS(t)

dt , we get

α(t) = −
d

dt
log S(t) ⇐⇒ S(t) = exp

(
−

∫ t

0

α(u)du

)
(2)

From (1) and (2), important relations between hazard, density and survival are

seen. These are useful for mathematical treatments of models, where it is necassary

to move from one representation to another.

Formula (2) can also be expressed using the cumulative hazard as

S(t) = exp (−A(t)) ,

where A(t) =
∫ t

0
α(u)du. Note that this relation only holds true for continuous

distributions.

Standard estimator of the survival function is the Kaplan-Meier estimator, de-

fined for t ∈ [0, τ ] and with assumption of non-informative censoring as

Ŝ(t) =





1, if t < t1
∏

ti≤t[1 − d(ti)
Y (ti)

], if t ≥ t1,

where t1 denotes the first event time, d(ti) is the number of events at event time ti

and Y (ti) is the number of subjects who potentially could have an event at ti, i.e.

Y (ti) is populated with all those subjects who have survived to a time just before

ti. (Y (ti) will later be defined as the risk set at ti.) The quantity d(ti)/Y (ti) is

thus a conditional probability of having an event, given no event up to time ti.

If the last observed time, τ , is a censoring time, the Kaplan-Meier estimator is
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not well defined for time points after this.

The variance of the Kaplan-Meier estimator is estimated by Greenwood’s for-

mula:

V̂ [Ŝ(t)] = Ŝ(t)2
∑

ti≤t

d(ti)

Y (ti)(Y (ti) − d(ti))

Note that if d(ti) = 1 for each event time ti and all observations are complete, i.e.

if events occur one at the time and there are no censoring, Greenwood’s formula

reduces to a standard binomial varance estimator.

The cumulative hazard, which provides a crude estimator of the hazard rate α(t)

by studying its slope, is often estimated using the Nelson-Aalen estimator

Â(t) =





0, if t < t1
∑

ti≤t
d(ti)
Y (ti)

, if t ≥ t1,

with variance estimated by

V̂ [Â(t)] =
∑

ti≤t

d(ti)

Y (ti)2

Here, the same assumptions as for the Kaplan-Meier estimator are used.

When fitting models to survival data there are essentially two families of models:

accelerated failure time (AFT) models and proportional hazard models. For the

former, (transformed) lifetime is modelled using a conventional linear model, e.g.

log Ti = β′xi + εi ⇐⇒ Ti = exp(β′xi)T0i,

where β′ is the transposed vector of β. Here a distribution for εi = log(T0i) is

specified. Often used distributions for the error term, are log-normal, gamma and

extreme value distributions (Allison [3]).

The other case focuses on modelling hazard and parametric assumptions are

only imposed on for the effect of the predictors on the hazard. Cox [7] suggested a

proportional hazard regression modell on the form

λi(t) = λ0(t) exp(βT xi) = λ0(t) exp(β1xi1 + β2xi2 + . . . + βixik), (3)

where β is a vector with regression coefficients, which we later want to estimate,

and xi is our covariate vector for individual i. λ0(t) is a baseline hazard and could

be regarded as a benchmark hazard, in common for all individuals. (As mentioned

above, this part of the model is non-parametric.) Here λi(t) = Yi(t)αi(t), where

αi(t) is definied in (1) and Yi(t) is a binary variabel indicating if subject i is at risk

at t. We will refer to λi(t) as the intensity at t.

The sum, Y·(t) =
∑n

i=1 Yi(t) is called the risk set and gives the number of

subjects at a time point right before t, who potentially could have an event at t.
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Note that Y·(ti) equals the set Y (ti), which was introduced earlier.

The baseline hazard, λ0(t), is not assumed to follow any particular distribution,

but still has the properties of hazards, i.e. non-negative and real for t ≥ 0. This

implies that λi(t) also have this properties.

By manipulating (3) we find that

log

(
λi(t)

λ0(t)

)
= β1xi1 + β2xi2 + . . . + βixik,

where λi(t)
λ0(t) is the hazard ratio for i to the baseline.

A characteristic for the model (3) is that the hazard ratio for two subjects, i

and i∗, is independent of time, since

λi(t)

λ∗
i (t)

=
λ0(t) exp(βT xi)

λ0(t) exp(βT x∗
i )

=
exp(βT xi)

exp(βT x∗
i )

= exp

(
k∑

i=1

βi(xi − x∗
i )

)

hence proportional. This does not imply that the hazards for the subjects are

constant over time, only that the ratio of their hazards is. The quantity is intepreted

as the relative risk of having an event at t for a subject with covariates xi compared

to a subject with covariates x∗
i .

We are also interested in letting the hazard differ across subgroups. For this

reason, let

λl(t) = λl0(t) exp(βT
x)

be the hazard for strata l = 1, . . . , L. Here, we let each strata have a unique

baseline hazard but allow for risk parameter to have the same effect on covariates

across different strata. By doing this, subjects in different subgroups are effected

by covariates in the same way but the baseline may differ. (We will later relax this

assumption in a competing risk setting.) This operation is necessary when there are

evidence of non-proportionality for some covariate. One vital requirement is that

the grouping of subjects is based on the past, not on future events.

When estimating parameters in the stratified Cox model, one maximizes the

partial likelihood per stratum, as

L(β) =
∏

l

Ll(β),

where

Ll(β) =

n∏

j=1

exp(βT xj)∑
k∈Rlj

exp(βT xk)

Here, j = 1 . . . n are ordered event times and Rlj is the risk set at event time tj in

stratum l. We have assumed here that no ties are present, an assumptions that need

to be relaxed in our setting. Methods for handling ties are discussed in Hosmer and
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Lemeshow [13]. We will use the method originally suggested by Efron [10], who let

the partial likelihood be

Ll(β) =

n∏

j=1

exp(βT sj)
∏dlj

i=1

(∑
k∈Rlj

exp(βT xk) − i−1
dlj

∑
k∈Dlj

exp(βT xk)
) ,

where sj =
∑

k∈Dlj
xk is a sum of covariate vectors and Dlj is the set of all subjects

who experience the event from cause l at tj and dlj is the cardinality of this set.

This method has shown to be more accurate than other methods, e.g. Breslow’s

method, and the difference is apparent when data contains a lot of ties.

In a extended version of (3), one lets the covariates be time-varying, thus violat-

ing the proportionality property. Furthermore predictions are diffucult to interpret

since our covariates are, what Klein and Moeschberger [15] refer to as, internal

as in subject specific. This means that, we would need to predict covariate paths

(which might be possible in some cases and difficult or even impossible in other) for

each customer in order to predict survival probabilities.

However, this inclusion might provide a more realistic model of customer be-

haviours, since information on customers do change over time. E.g. customers

move, their premiums are adjusted etc. and this will effect the customer relation-

ship.

2.5.4 Cumulative incidences

In many studies the probability of experiencing the event of interest is altered due to

the presence of competing risks. In our case, we have defined five causes as to why

a relationship potentially can end. Before proceeding with model development of

hazard function, investigation on how these are effected by specific causes is needed.

This is done by considering the cumulative incidence function, given initial co-

variates x0,

P0l(t|x0) = P (T ≤ t, L = l|x0),

for definied competing risks, or causes of failure, l = 1, . . . , L. Generally, survival

data emerges from a two-state process, where an event either has happened or it has

not. By splitting the state where it has happened, we arrive at the competing risk

model, which is a Markov chain model. Each movement in this model is interpreted

as the probability of having the event of interest before or at time t and that the

observed failure is due to cause l. In the case of only one cause of failure, this

probability is simply the distribution function. It is also possible to include more

states into the Markov chain, one example being the three-state illness-death model.

(See Crowder [8] for further details on competing risks models.)

We also define the overall survival probability as P00(t|x0) = P (T > t|x0), i.e.

the probability of not having the event before time t, given initial covariates. (We

use subindex 00 to distinguish the overall probability P00 from the cause specific
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event probabilities P0l.) We will use the relation P00(t|x0) = 1−
∑L

l=1 P0l(t|x0) for

this reason.

Next, define the cause-specific hazard as

α0l(t) = lim
∆t→0

P (t ≤ T < t + ∆t, L = l|T ≥ t)

∆t
, l = 1, . . . , L

Letting Y (t) denote the risk indicator, which allows for right censoring (and left

truncation), we assume that

λ0l(t) = Y (t)α0l(t), α0l(t) = αl0(t) exp(βT xl),

for l = 1, . . . , L. Here, αl0(t) is again a unspecified baseline hazard for cause l

and xl is a cause-specific covariate vector, computed from x as described in 4.x.

The second part of the right-hand side, exp(βT xl), is the individual effect on the

hazard and depends on the covariates of the subject. In this case we have assumed

a multplicative form of this hazard, as in the Cox model in (3), but additive and

mixtures of additive and multiplicative are also possible forms, see Scheike and

Martinussen [19] for details on various hazard models.

Associated with this hazard is the integrated baseline hazard, which we encoun-

tered above in (2), Al0(t) =
∫ t

0 αl0(s)ds.

The parameter vector β is common for all causes, since the covariates are cause-

specific, as mentioned in 2.5.3. If no effect is common for different stratas, this will

give one fitted Cox model per stratum. The strategy of fitting different models for

diferent stratas is, however, not sufficient when effects are alloweded to be identical

across strata, as argued in Rosthøj, Andersen and Abildstrom [18]. The arguments

are applied here, since the competing risks are similar in some senses.

Again, this (cause-specific) hazard is not a probability, but a rate and gives the

risk of having an event by cause l in the next time interval, given no event (by any

cause) up to a point in time.

Based on this quantity, we can express the cumulative incidence function as

P0l(t|x0) = P (T ≤ t, L = l|x0) =

∫ t

0

α0l(s)S(s−)ds,

where S(s) was defined earlier as the survival function, with S(s−) = limt↑s S(t).

In terms of intensities, the survival function is expressed as

S(t) = exp

(
−

∫ t

0

α(s)ds

)
= exp

(
−

∫ t

0

L∑

l=1

α0l(s)ds

)
,

where α(t) =
∑L

l=1 α0l(t) is the total intensity at time t.

Based on a sample {(T̃i, Li, xi)}
n
i=1 of n observation - where T̃ is observered

failure time, only equal to actual survival time in case of event and L is failure

variable (L = 0 if no event) - the cumulative incidence function is estimated based

on the estimators β̂ and Âl0(t, β̂). These are in turn estimated from the stratified

14



Cox model and the underlying Nelson-Aalen estimator, respectively.

Order the event times (for any cause) as 0 = t0 < t1 < · · · < tm < τ , for events

over the study interval (0, τ ], and let dlj ≥ 1 denote the number of event of cause l

occuring at tj . The overall survival probibility is then estimated by

P̂00(tm|x0) =

m−1∏

j=1

(1 − dÂ0(tj |x0)),

with Â0(tj |x0) =
∑L

l=1 Âl0(tj , β̂) exp(β̂T xl
0). Here xl

0 is the cause specific covariate

vector computed from x0. This estimator have the same conceptual interpretation

as the Kaplan-Meier estimator, since survival up to a certain time is conditional on

survival up to the time prior to this, and so forth. From this, an estimator of the

cumulative incidence function can be derived as

P̂0l(tm|x0) =

m∑

j=1

P̂00(tj−1|x0)dÂl0(tj |β̂) exp(β̂T xl
0),

under the Cox model.

Technically, the competing risk model is as mentioned a special case of a multi

state Markov model and the estimator P̂0l(tm|x0) is derived from that setting in

Anderson, Borgan, Gill and Keiding [4]. In this terminology each transistion out of

the “active” state and into one of the “inactive” states (as in fig. 1) are absorbing.

Thus, the transition probability matrix P (t), defined for s < t ≤ τ , is

P (s, t) =




P00(s, t) P01(s, t) . . . P0L(s, t)

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1




where P0l(t), l = 0, . . . L is the probability of moving from state 0 (the “active”

state) into state l (“active” for l = 0 and “inactive” for l = 1, . . . , L) in the time

interval (s, t], conditional on being in state 0 at time s. All other probabilities are 0

or 1, because we then condition on being in an absorbing state. The corresponding

transition intensity matrix, is given by

α(t) =




−
∑L

l=1 α0l(t) α01(t) . . . α0L(t)

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0




,

since all transitions out of the initial state 0 are absorbing. Now, the Kolmogorov
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equation P ′(t) = αP (t) yields the differential equations

∂

∂t
P00(s, t) = −P00(s, t)

∑

l

α0l(t)

∂

∂t
P0l(s, t) = −P0l(s, t)α0l(t),

with solutions:

P00(s, t) = exp

(
−

∫ t

s

L∑

l=1

α0l(u)du

)
,

P0l(s, t) =

∫ t

s

α0l(u)P00(s, u)du.

Again, the purpose here is to calculate P00(t) = P00(0, t), the probability of not

transiting into one of the absorbing states, by estimating the probabilities of these

transitions over time.
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3 Models and methods

As mentioned above, survival data is often subject to complex censoring schemes,

suggesting other regression models than e.g. ordinary and logistic regression models.

An appealing approach is the one developed by Aalen [1], who combined the theories

of stochastic integration, martingales and counting processes into a methodology

well suited for survival and event history data. For an introduction to the subject,

see Therneau and Grambsch [21] and Anderson et al. [4].

This chapter will start with presenting survival analysis in a counting process

setting, deriving the cumulative hazard function and survival function estimators,

as well as the log-rank test.

3.1 Counting processes and survival analysis

Let N(t), t ≥ 0 be a counting process, i.e. N(t) ∈ Z
+ is a stochastic process with

properties N(0) = 0, P (N(t) < ∞, t ≥ 0) = 1 and with right-continuous paths and

dN(t) ∈ {0, 1}, where dN(t) denote the increment of the process over a (small)

intervall (t, t + dt]. This means that the process starts in 0 at some time of origin

and has a jump of size 1 at a time point if there is one (and only one) event at this

time point, and is unchanged if there is no event. Let the intensity, i.e. the rate of

which the events in the process occur, be λ(t), as defined in 2.5.3,

An example of a counting process is the (homogeneous) Poisson process, with

intensity λ. Another would be, as in our case, customer churns in a insurance

company where N(t) counts the number of churns up to time t where churns occur

with some intensity λ(t).

For subjects i = 1, . . . , n, we let the corresponding counting process be denoted

by Ni(t) = I(Ti ≤ t, δi = 1), yielding the aggregated counting process N·(t) =
∑n

i=1 Ni(t) =
∑

ti≤t δi, for distinct event times ti. Ni(t) could be thougth of as a

slow Poisson process, which start as 0 and at the subject specific event time has a

jump of size 1.

Let the accumulated history up to time t of the customers be denoted by Ft,

which contains all information on customers gathered during the study period. This

quantity is formally known as the (self-existing) filtration of the counting process

and consists of σ-algebras, Ft, generated by the (aggregated) counting process up

to and including time t, i.e. Ft = {F0, . . . ,Ft} where Ft = σ(N·(s), 0 ≤ s ≤ t).

That is, all history or all information on the subjects, is contained in the filtration.

Under the assumption of independent censoring, we say that N(t) is adapted to

Ft. Technically, this means that N(t) is Ft-measurable for each t. This assumption

is automatically fulfilled in the type I and type II censoring schemes discussed

in 2.5.2. If censoring is random the observed counting process is not adapted to the

history and we need to enlarge the history with that generated by the censoring

process, using a result known as the innovation theorem, see e.g. Aalen, Borgan

and Gjessing [2] for discussion on this result. This follows from the fact that in type

I and II censoring schemes, the censoring times are stopping times relative to the
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history Ft and the form of the intensity process is preserved even if we consider the

larger history.

Besides these quantities, we need a definition of (continous) martingales. Let

M = {M(t); t ∈ [0, τ ]} be a stochastic process. M is a martingale relative to the

history Ft if it is adopted to the history and it has the property

E(M(t)|Fs) = M(s), for all t > s.

These concepts are fundamental in stochastic calculus and probability theory,

see e.g. Klebaner [14] for an introduction to the subject.

Given history up to a time right before t, i.e. given all information that is

gathered and known up to this point, we have

E(dN(t)|Ft−) = P (t ≤ T ≤ t + dt|Ft−) = λ(t)dt = Y (s)α(s)dt

Next, define the cumulative intensity Λ(t) by
∫ t

0
λ(s)ds [=

∫ t

0
Y (s)α(s)ds], for

t ≥ 0. This process has the property

E(N(t)|Ft−) = E(Λ(t)|Ft−) = Λ(t),

since Y (t) is assumed to be predictable and thus fixed, given history up to t−.

Let M(t) = N(t) − Λ(t) be the martingale counting process, with increments 0,

given history. This is seen from

E(dM(t)|Ft−) = E(dN(t) − dΛ(t)|Ft−) =

= E(dN(t)|Ft−) − E(λ(t)dt|Ft− ) =

= 0.

It can be shown that M(t) is a martingale with respect to F. The martingale

property is satisfied, since for s < t

E(M(t)|Fs) − M(s) = E(M(t) − M(s))|Fs) =

= E

(∫ t

s

dM(u)|Fs

)
=

=

∫ t

s

E(E(dM(u)|Fu−)|Fs) =

= 0.

From the martingale counting process, we see the relation N(t) = Λ(t) + M(t),

with differential

dN(t) = dΛ(t) + dM(t) =λ(t)dt + dM(t)

=Y (t)α(t)dt + dM(t),
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where, as in 2.5.3, the intensity λ(t) can be expressed as λ(t) = Y (t)α(t) with risk

indicator Y (t) and hazard α(t).

This is conceptually similiar to ordinary regression models; the left-hand side is

the observed quantity, while the first term on the right-hand side is the systematic

part of the model (which represents signal) and the second term is the random part

(which represents noise). When Y (t) is non-zero we have,

dN(t)

Y (t)
= α(t)dt +

dM(t)

Y (t)
. (4)

Conditional on Ft− , this gives, since Y (t) is predictable,

E

(
dM(t)

Y (t)
|Ft−

)
=

E(dM(t)|Ft−)

Y (t)
= 0,

Var

(
dM(t)

Y (t)
|Ft−

)
=

Var(dM(t)|Ft−)

Y (t)2
=

E[(dM2(t))|Ft− ]

Y (t)2
=

d〈M〉(t)

Y (t)2

In the nominator in last quantity, 〈M〉(t) is known as the predictable variation

process (of M(t)), with increments

d〈M〉(t) = Var(dM(t)|Ft−) = Var(dN(t)|Ft−) = dΛ(t)(1 − dΛ(t)) ≈ dΛ(t),

which gives 〈M〉(t) = Λ(t). We also mention the concept of optional variation

process for a martingale, [M ]. Formally, these two concepts are defined as:

〈M〉(t) = lim
n→∞

n∑

k=1

Var(∆Mk|F(k−1)t/n),

and

[M ](t) = lim
n→∞

n∑

k=1

(∆Mk)2,

where the time interval [0, t] is partitioned into n subintervals of equal length t/n

and ∆Mk = M(kt/n)−M((k− 1)t/n). From the defintion of the optimal variation

process, it follws that [M ] = N .

Using these definitions along with that of martingales, we therefore have that

Var(M(t)) = E(M(t)2) = E〈M〉(t) = E[M ](t).

Now, letting J(t) = I(Y (t) > 0), 1 if (at least one) subject is at risk at t and 0

otherwise, and using the convention 0/0=0, integrating (4) yields

∫ t

0

J(s)

Y (s)
dN(s) =

∫ t

0

J(s)α(s)ds +

∫ t

0

J(s)

Y (s)
dM(s) =

=

∫ t

0

J(s)dA(s) +

∫ t

0

J(s)

Y (s)
dM(s) (5)
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which suggests the estimator

Â(t) =

∫ t

0

J(s)

Y (s)
dN(s)

for the (stochastic) integrated hazard function,
∫ t

0 α(s)ds, and is refered to as the

Nelson-Aalen estimator.

Ideally, we seek the estimator of A(t), which is not possible since there is a

(depending on sample size) probability that Y (s) = 0. But if this probability is

small then J(s) = 1 for most s and A∗(t) =
∫ t

0 J(s)α(s)ds ≈
∫ t

0 α(s)ds. Using these

two notations, reformulate (5) as

Â(t) − A∗(t) =

∫ t

0

J(s)

Y (s)
dM(s) (6)

The heuristic behind our derived estimator is now: because the process M(t) is a

martingale (with zero mean), the stochastic integral
∫ t

0
J(s)
Y (s)dM(s) is also a mar-

tingale when the integrand is predictable. Thus the estimator is unbaised, i.e.

E[Â(t) − A∗(t)] = 0, and it can be shown by applying the martingale central limit

theorem that, under regularity conditions, n1/2(Â(t) − A∗(t)) converges in distri-

bution towards a Gaussian martingale for t ∈ [0, τ)7. An unbiased estimator of the

variance, σ2, is then obtained by applying the optimal variation process:

σ̂2(t) =

∫ t

0

J(s)

Y 2(s)
dN(s) (7)

Practically, the Nelson-Aalen estimator is a sum calculated over the distinct

event times of the process, Â(t) =
∑

ti≤t
1

Y (ti)
, since integrating over a counting

process is equivalent to summing the integrand over the jump times. The estimator

has already been stated in 2.5.3. Note that here di ≡ 1, i.e. the event times are

distinct, whereas in 2.5.3 di ≥ 1, and ties could be dealt by using e.g. Efron’s

approximation.

The derivation of a survival function estimator appeared in 2.5.3 and is restated

here: Kaplan-Meier estimator is given by

Ŝ(t) =
∏

ti≤t

(1 −
1

Y (ti)
) =

∏

ti≤t

(1 − ∆Â(ti)),

where ∆Â(t) = Â(t)− Â(t−) is the increment in the Nelson-Aalen estimator. Note

that this estimator is only valid for (absolutely) continuous distributions. For gen-

eral distributions, one needs to apply product-integrals to estimate the survival

function. Furthermore, one can show that n1/2(Ŝ(t) − S(t)) asymptotically is dis-

7See [4] for formal derivation and formulation of the martingale CLT.
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tributed as a men zero Gaussian process, with variance estimated by

τ̂2(t) = Ŝ(t)2σ̂2(t) = Ŝ(t)2
∑

ti≤t

1

Y (ti)2

with σ̂2(t) as in (7). Alternatively, this is replaced by

τ̃2(t) = Ŝ(t)2
∑

ti≤t

1

Y (ti)(Y (ti) − 1))

From this we can create (point-wise) confidence interval for the Kaplan-Meier

estimator; a standad 100(1 − α)% confidence interval for Ŝ(t) has the form Ŝ(t) ±

z1−ατ̂ (t).

For testing equality of hazard functions between subgroups of a population,

a standard approach is the log-rank test. One is then interested in testing the

hypothesis

H0 : α1(t) = α2(t) = · · · = αk(t) for t ∈ [0, τ ],

for k subgroups. Let N· =
∑k

h=1 Nh and Y· =
∑k

h=1 Yh be the aggregated counting

process and risk set, respectively, of all subgroups. Introduce a nonnegative and

predictable weight process K(t), which is 0 whenever Y· is 0. Define the process

Zh(t) =

∫ t

0

K(s)dNh(s) −

∫ t

0

K(s)
Yh(s)

Y·(s)
dN·(s),

for h = 1, . . . k, which can be showned to be zero mean martingales under the null

hypothesis. An unbiased estimator of the covariance for two of these processes is

given by

Vhj(t) =

∫ t

0

K2(s)
Yh(s)

Y·(s)

(
δhj −

Yj(s)

Y·(s)

)
dN·(s),

where δhj denotes the Kronecker delta, equal to 1 when h = j, 0 otherwise. The

Zh’s can be seen as observed-minus-expected processes, weighted by some process

K. (The expected term is not really an expected number in its true sense, since

that term is stochastic, but under the null its) See Aalen, Borgan and Gjessing [2]

for more information on nonparametric testing.

Since the sum of these processes,
∑

h Zh(t), is 0 we introduce a vector of di-

mension (k − 1), Z(t) = (Z1(t), . . . , Zk−1(t))
T to test the hypothesis. In addition

we need the covariance matrix V (t) = {Vhj(t)}
k−1
h,j=1. With these two matrices we

create the test statistic

X2(t) = Z(t)T V (t)−1Z(t),

which, under the null, approximately follows a chi-squared distribution (with k − 1

degrees of freedom).
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Different choices of K(t) results in different tests, and the log-rank test is equiv-

alent to setting K(t) = I(Y·(t) > 0).

Since it is often of interest to control for other potentially important factors

when comparing differences of survival times across the primary covariate, one ex-

tend the results above to stratified analysis. The null stated above would then be

reconstructed as

H0 : α1l(t) = α2l(t) = · · · = αkl(t) for t ∈ [0, τ ] l = 1, . . . , L

When creating a test statistic we add an index to the Zh’s and Vhj ’s to indicate

the dependence on the stratum. That is, we let

Zhl(t) =

∫ t

0

Kl(s)dNhl(s) −

∫ t

0

Kl(s)
Yhl(s)

Y·l(s)
dN·l(s),

Vhjl(t) =

∫ t

0

K2
l (s)

Yhl(s)

Y·l(s)

(
δhj −

Yjl(s)

Y·l(s)

)
dN·l(s),

This gives a test statistic that aggregate information over L strata:

X2(t) =

(
∑

l

Zl(t)

)T (∑

l

V l(t)

)−1(∑

l

Zl(t)

)
,

which, again, is approximately chi-squared distributed with k− 1 df under the null.

The log-rank test is a powerful test against an alternative of proportional hazard,

or the Cox model assumption, and detects consistent differences in survival times

over the study period.

3.2 Cox model

For regression models in survival analysis, assume we have counting processes

N(t) = (N1(t), . . . , Nn(t))T with intensities λ(t) = (λ1(t), . . . , λn(t))T , as in (3).

The intensities under a Cox model are expressed as λi(t) = Yi(t)α0(t) exp(βT
xi(t)),

with covariates xi(t) and where Yi(t) is a risk indicator - 1 if subject i is at risk

at time t, 0 otherwise. As mentioned in 2.5.3, we use the partial likelihood the

find estimate of β, by, for each distinct event time, comparing the covariates of the

subject having an event with those who are in the risk set just prior to the that

event time and multipying over all observed event times. That is, we find values of

βi to maximize

L(β) =
∏

tj

exp(βT xi(tj))∑n
i=1 Yi(tj) exp(βT xi(tj))

=
∏

tj

exp(βT xi(tj))∑
Rj

exp(βT xi(tj))
,
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for event times tj . Here Rj is the risk set at tj . Let

S(0)(β, t) =

n∑

i=1

Yi(t) exp(βT xi(t)) =
∑

Rt

exp(βT xi(t)),

S(1)(β, t) =

n∑

i=1

Yi(t)xi(t) exp(βT xi(t)) =
∑

Rt

xi(t) exp(βT xi(t)),

S(2)(β, t) =
n∑

i=1

Yi(t)xi(t)
⊗2 exp(βT xi(t)) =

n∑

Rt

xi(t)
⊗2 exp(βT xi(t)),

where x⊗2 is the Kronecker product of the column vector x. The logarithm of the

partial likelihood can then be expressed as

l(β) =

n∑

i=1

∫ τ

0

{βT xi(s) − log S(0)(β, s)}dNi(s)

The score function then becomes

U(β) =
∂

∂β
l(β) =

n∑

i=1

∫ τ

0

{
xi(s) −

S(1)(β, s)

S(0)(β, s)

}
dNi(s)

Solving U(β̂) = 0, gives the estimate β̂. See Scheike et al. [19] for different

approaches for deriving this result.

For large samples, it can be shown that, under certain conditions, the maximum

partial likelihood estimator β̂ is approximately multivariate normal around the true

β and with covariance matrix estimated by inverse of observed information matrix.

Under the Cox model, the observed information matrix is equal to

I(β) =

{
−

∂2

∂βh∂βj
log L(β)

}
= −

∂

∂βT
U(β)

=

∫ τ

0





S(2)(β, s)

S(0)(β, s)
−

(
S(1)(β, s)

S(0)(β, s)

)⊗2



dN·(s),

and the covariance matrix is estimated by I(β̂)−1.

Using these quantities, we eaily arrive at some familiar test statistics for hy-

pothesis testing. Especially we have for tests on the form H0 : β = β0

Likelihood ratio test: χ2
LR = 2{logL(β̂) − log L(β0)}

Score test: χ2
SC = U(β0)

T I(β0)
−1U(β0)

Wald test: χ2
W = (β̂ − β0)

T I(β̂)(β̂ − β0)

All of these test statistics are asymptotically equal and under the null hypothesis,
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chi-squared with p (the number of parameters in the model) degrees of freedom.

Then we estimate the cumulative baseline hazard, A0(t) =
∫ t

0 α0(s)ds, by first

noting that the intensity of the aggregated counting process N·(t) =
∑

i N(t) is on

the form

λ·(t) =
∑

i

λi(t) = α0(t)

(
∑

i

Yi(t) exp(βT xi(t))

)

With known β, this would be a multiplicative intensity process, in which case

A0(t) would be estimated by

Â0(t, β) =

∫ t

0

dN·(s)∑
i Yi(s) exp(βT xi(s))

By replacing β with its estimate, we arrive at the Brelsow estimator of the

cumulative baseline hazard:

Â0(t) =

∫ t

0

dN·(s)
∑

i Yi(s) exp(β̂
T
xi(s))

=
∑

tj≤t

1
∑

Rj
exp(β̂

T
xi(tj))

Given fixed covariate values, xt(0), at time of origin, we have the estimate Â(t|x0) =

exp(β̂
T
x0)Â0(t). In a stratified version of the Cox model, the results here extend

as indicated in 2.5.3.

An extension of the Cox model is a generalization of the proportional hazard

model (3) by letting covariates, some or all, as well as effects vary over time. This

will, of course, make the assumption of proportional hazard invalid.

In a Cox model with time-varying covariates and time-dependent effects, the

(mulitplicative) intensity for subject i is modelled as

λi(t) = Yi(t)λ0(t) exp(β(t)
T
xi(t)), (8)

where xi(t) is a p-dimensional bounded covariate vector. Both Yi(t) and xi(t) are

predictable, which means that both are fixed just prior to t. We will however only

consider the case of fixed covariates, i.e. xi(0).

The model in (8) represents an extremely flexible type of models, and a semi-

parametric version of it, suggested by Martinussen, Scheike and Skovgaard [17], is

on the form

λi(t) = Yi(t)λ0(t) exp(β(t)T xi(t) + γT zi(t)) (9)

Here, zi(t) is a q-dimensional covariate vector with time invariant effect vector γ,

while xi(t) and β(t) now has dimension p − q. By letting β(t) ≡ β and xi(t) ≡ xi,

we have the model stated in (3).

The idea is to use the model in 9 for testing the Cox model assumption of

proportional hazard, specifically if its effects are time invariant. If this is true for

at least one effect, the Cox model is misspecified and need some more care.
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Inference in this model, as well as other dynamic hazard models, is based on the

cumulative regression function

B(t) =

∫ t

0

β(s)ds,

where the individual regression coefficients βj are “smooth” enough to be integrated.

If we suspect time varying effects, we are interested in finding deviations from the

(time invariant) Cox model. For that reason, express the regression coefficients as

βj(t) = βj + θjgj(t),

where gj(t) is some know function. One is then interested in testing the hypothesis

H0 : θj = 0, for all j. A standard choice is gj(t) = log(t) and by using the score

function and the observed information matrix one can evaluate a test statistic for

the devation from the Cox model, see Martinussen and Sckeike [19] for details.

Formal tests for testing time-varying effects includes the Kolmogorov-Smirnov

test (KS) and the Cramer-von Mises (CvM) test. The KS test is a supremum

kind of thest between the differences of grouped counting processes, weighted by

appropriate quantities, such as the group-specific risk sets. The alternative CvM test

is a infinium kind of test of the differences between the grouped counting processes.

Both of the them test whether or not one can reject the null hypothesis of linear

trend B(t) = βt.

3.3 Method

Using the concepts from 2.5, we study the cumulative incidence functions on product

and customer level for focus customers. Incidences are the result of some cause and

we want to estimate survival time by first estimating the hazard for each of the

causes given covariates.

Survival time is here the number of churn-free time units (months) from time

of origin to end of study after 35 time units. The initial risk set, Y·(t0), consists

of those customers with at least one specific focus product at t0. The risk set at

the end of the study, Y·(τ), consists of those that have not had an event so far.

Customers are thus subject to right censoring and left truncation.

As described in 2.1, there are two types of models being considered: time-

invariant and dynamic. The first is based on information given at the time of origin.

The second uses the same information while allowing for effects to be time-varying.

The analysis is carried out using the statistical softwares SAS and R. Especially

proc phreg - which is a flexible procedure for estimating proportional hazard

regression models and testing e.g. hypothesis on the regressors - in SAS and the

survival - which contains a number of non-parametric estimates and tests, for

example the Kaplan-Meier estimate and the log-rank test - and timereg - which

allows for estimation of dynamic regression models of the sort in (8) as well as

additive models - libraries in R are used. Also, additional SAS macros are used
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to estimate cumulative incidence functions and to score customers, see Rosthøj et

al. [18]. Data manipulation is done is SAS.

The predictive models are produced in three step:

1. Based on a stepwise selection method with significance level of confidence

limits set to near 1, we produce a sequence of models - ranging from the null

to the full model - by minimizing the AIC statistic at each step.

2. From this sequence of models, we compare in detail those in a neighbourhood

of the optimal model (the on with lowest AIC) by switching to a best subset

selection approach. The neighbourhood is of arbitrary size and depends on

whether or not there exists a unique optimal model. It is created by letting

the number of included covariates vary over an interval including the number

of the optimal model.

3. From the list of best subsets models, we choose which ever one - not necessary

the originally optimal - has the lowest AIC.

This method is suggested in Shtatland, Kleinman and Cain [20]. The AIC is

defined as

AIC = −2 logLC + 2p,

where p is the number of covariates introduced into the model and LC is the partial

likelihood produced in the Cox model. By including p covariates in the model, the

sequence will produce Lp models (where L is the number of causes defined), which

is a manageble number compared to the possible 2Lp models.

In step 2. we consider models with number of included covariates near the

optimal model, i.e. over an interval [Lp− c1, Lp+ c2] for some constants c1, c2. The

reason for choosing a best subset selection approach in this step instead of stepwise

or forward/backward selection is due to the relative unstable estimates that are

produced in those methods. Also, since the number of possible covariates grow

rapidly because of the competing risk setup, we need methods to manage this.

In addition, we will test for equality of cause-specific covariates across risk strata.

For insignificant differences we will refit the model with these redefined combined

covariates, described in 3.2.

In our study, we have introduced a lot of ties. While we proposed Efron’s method

for dealing with these in section 2.5.3, not all software features this method and

assumes event to happen one at the time. Thus, we need to break these ties and

this is done by adding random (uniform) noise to end points of the intervals where

an event occurs.

Since time in this study refers to calender time, one need to be observant about

this when modelling. Due to the construction of policies, there is a natural end

date of a version of a policy, at which the cancellation take effect. This typically

means that churns will occur (in most cases) in the same calender month as it
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was originally first signed, i.e. churns occur during renewal period. This impose a

certain structure on the model, which is handled by stratify on renewal month.

In figure 2, the survival function is estimated for two subpopulations among mo-

tor focus customers: those with renewal in January and June, respectively. Studying

the graphs, there seems to be a cyclic trend where there are sudden drops in the

curves. For customers with renewal in January, there are drops in the curve after

12 and 24 months and similarly 6, 18 and (in smaller extent) 30 for customers with

renewal in June. The shapes of the curves are the same, however, which suggests

that there is no difference in the risk itself between subpopulations, but that there

is a shift in time. This effect that arises due to our study design is as mentioned,

solved by letting each subpopulation has its own baseline hazard but letting them

share individual effects, as described in 2.5.3.
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Figure 2: Kaplain-Meier estimates stratified on expiration months for motor policy
holders for January and June.

The same effect can also been seen from table 2 below, where we compare the

fraction of churns (C) within a calender month (1, . . ., 12) to those with renewal

(R) in that month. (Note that each row sum to 100%, since we consider all churns

in observed in that month.)

Especially, we see the that for all motor policy holder that churned in the month

of January (either in 2005, 2006 or 2007), nearly 50% of them had renewal in the

same month, but only 4% had renewal in the next month.

Our predictive model will involve one more stratification, in order to handle the

competing risks. This is done by stacking stacking covariates, with as many copies

or stacks of the original data set (with n observations) as the number of causes

used. Each stack has a numeric stratum indicator, l = 1, . . . , L, created by letting

the first n observations corresponding to the first cause of cancellation have l = 1

and the next n correspondning to the second cause have l = 2, and so forth. For
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R 1 2 . . . 11 12

C 1 47% 4% . . . 5% 6%
2 11% 41% . . . 5% 5%
...

...
...

...
...

...
11 8% 5% . . . 28% 5%
12 6% 4% . . . 8% 32%

Table 2: Percentage of cancellations (C) in renewal months (R) among motor cus-
tomers during 2005-2007

each covariate effective for a specific cause, a cause-specific covariate is included in

the stacked data. If Z is effective for cause 1, then we include the new covariate

Z1 = Z while l = 1 (i.e. for the first n observations) and Z1 = 0 for l 6= 1. If Z is

effective for cause 2 as well, we let Z2 = Z while l = 2 (i.e. for observation n + 1 to

2n) and Z2 = 0 for l 6= 2.

The idea here is to use the concept of non-informative censoring when letting

each copy of the data correspond to one cause. When a event occur due to a

cause other than that of interest, we set it as right censored and assume that this

would not imply any sort of knowledge on potential events after, would this first,

“uninteresting”, event not had occured.

If the effect is equal in both stratas, let Z12 = Z for l = 1, 2 and 0 otherwise.

If no effects are equal over stratas, these stratified Cox models are equivalent to

fitting L seperate Cox models. But applying the latter fitting strategy would not

allow us to test equality of covariates across strata.
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4 Data

The data is made out of two parts: historical and present data. The historical part

consists of data on claims frequency and exposure prior to study. The present data

contains specific information such as age, number of insurances of each product,

at the beginning of the study. Note that, with respect to our definitions, most of

these data is on household level. However, some data is on primary customers, e.g.

age. Usually, only one member of a household is subject to campaigns and thus

the primary customer has to fulfill communiction and hygiene rules set for specific

campaigns.

A complete overview of used data is seen below.

Index Covariate Description

1 ANC Survival time, calender time (in months)
2 D Censoring variable, 1 if event, 0 otherwise
3 TYPE Churning cause, I.-V. if D=1, 0. otherwise
4 EXPMONTH Expiration month on primary policy
5 ANCPRE Duration (in months) prior to study
6 AGE Age of primary customer at beginning of study
7 GROUP 1 if customer has membership in some organisation
8 FORSAAR Total exposure over preceding 4 year period
9 CLAIM Number of claims reported over preceding 4 year period
10 CLAIMPCT Claim ratio over preceding 4 years
11 FAM 1 if at least 1 home insurance, 0 otherwise
12 HUS 1 if at least 1 house insurance, 0 otherwise
13 OLY 1 if at least 1 accident insurance, 0 otherwise

Table 3: Data on customers given at beginning of study.

Covariate 1-3 are the observed results during the study. Covariate 4 is used as

stratification variable and divide the population into 12 subgroups, depending on

renewal months.

Covariate 5, ANCPRE, refers to how long a customer has had a specific product

prior to the study. When modelling e.g. duration among motor policy holders, this

covariate states how long a customers has been a motor policy holder.

Covariate 7 could be interesting, since membership in organisation with some

contract with the insurance company can entitle discounts or other benefits or

special service. Some customers have more than one membership, so without fully

investigating how different memberships effect duration we simply group on none

or at least one membership.

Covariate 8 measure the total exposure of the customer during the last 4 years,

i.e. the total amount of time units which the insurance company has been exposed

to some risk. A policy (no matter what line of business) contributes with 1, if it runs

for 1 year. For each customer, the total exposure is thus (strictly) positive, with a

highest observed value of 51, which is equivalent to about (51/4 ≈ )11 policies on

average per year.
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Covariate 9 ranges from 0 to 20, and gives the number of reported claims during

the last 4 years. This variable is regrouped, by grouping customer with 1-3 claims

and customer with more than 3 claims into CLAIM1 and CLAIM2, respectively.

CLAIM0 is the group of customers without any reported claims. Note that these

are not product-specific claim and could be of any sort and size.

Covariate 10 is calculated as the contribution to the RBNS reserve of claims

reported during the last 4 years (the same historical time period as covariate 8 and

9) over net earned premiums. This claims-to-premiums ratio is set to 0 if there are

no claims reported or if the claim size or net earned premium is negative. The latter

case occur if there were claims prior to this 4-year period, the of size which were

overestimated and then recalculated in the 4-year period. The premiums could also

be negative, in similar fashion, if the policies were cancelled before renewal and the

premiums were accounted for in the previous period. Both of these situations occur

due to accounting principles and by setting the ratio to 0 in these cases, although

not entirely accurate, disregards claims dated prior to the 4-year period. As with

covariate 9, CLAIM, this is not product-specific, but rather an overall ration for

specific customers. It ranges from 0 to 60, for a few extreme observations. Everyone

over 1 are all the customers that the insurer have had more expenses on than income

from.8

Covariates 11-13 tell us about the focus product portfolio of the household at

the beggining of the study. FAM and HUS can initially be treated as two seperate

products, as customers can purchase both of them, either if the live in a house (in

which case they also might need a house insurance) or a flat.

As mentioned earlier, our data is subject to type I censoring, see 2.5.2. The first

monthly data is measured at the date 31.01.2005, time of origin t0 , and the last at

the date 31.12.2007, called τ , giving a study period of 36 months. Events after τ

are considered censored. For a customer to be in the risk set at t0, there has to be

at least one active product-specific policy in the portfolio at that time point.

By defining the risk set at the end of each month, we will make the risk set

for the (beginning of the) next month predictable. Practically this means that in a

time interval, e.g. a month, the risk set is created first and then churns are excluded

from this set at the end of the interval. This will create semi open time intervals,

with left end points open and right points closed, in line with the counting process

format described below.

In addition to the monthly data, which has a repeated measurement setup, we

have an overview table, which is used for controlling the observations in the primary

data. This overview table is on product level and is created with respect to our

definition of focus products and customer relationship characteristics, see definitions

in 2.3. This means that for each customer we have the latest coherent relationship,

which might have been preceded by a relationship that was disrupted for more than

8Claims ratio, or claims percentage, is a important ratio on an aggregated level for insurance
companies when measuring the profitability of the product portfolio. In particular, the claims
ratio is one part when calculating the COR (combinded operating ratio), the second being that of
expenses over written business.
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12 months, thus considered churned. Also, the table gives information on when the

policies originally were signed and - if they were - cancelled.

This control is important when looking at the monthly data, in which a customer

can have zero focus products, but are not removed when the customer return with

at least one focus product within 12 months. This allows temporarily interruptions

in line with the company’s definitions.

We then divide this table into tables corresponding to each focus product and

conclude which customer has which focus product during our study period and how

many. By letting the first signing date define the start and the last cancellation date

define the end of the corresponding relationship, per focus product, we have created

coherent intervals for each customer wherein the customer is a focus customer. If

this interval overlaps the study period, we keep the customer in the study.
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5 Results

Here results from the analysis on motor customers are presented. We start by

presenting some of the univariate analysis, for determining which covariates might

influence survival time, if we disregard the competing risks for the moment. In

5.2 Model selection we present a multivariate Cox model to use as reference when

calculating cumulative incidence functions in 5.3.

5.1 Covariate analysis

From a total of roughly 85 000 customers (those in table 1, p. 8) who had at least

one active motor policy at the beginning of the study period, a sample of 5 000

where used for the analysis. We used a simple random sample, while controlling for

the stratification variable EXPMONTH.

Due to the large size of the sample, the same set were used for the univariate

analysis.

By comparing the distribution of age among churned customers to that of those

who didn’t, we come up with a reasonable grouping of age. The Kaplan-Meier

estimate for this grouping is seen in figure 3(a). This suggests that younger customer

have a higher churning probability than the other groups. Age group 55-70 has the

highest probability, albeit 70+ is not very far off. (There are some reasons as to

why we want to keep these groups seperated through the analysis, and they will

thus be threated as two distinct groups.) It is seen that among 20-39 years old

customers, ca 40 % is still in the risk set after 3 years, compared to ca 75 % among

55-70 years old. This is supported when performing a log-rank test, which gives a

test statistic X2(τ) = 131 on 3 degrees of freedom under the null of no difference

in survival bewteen age groups - a highly significant result. Extending the test to

its statrified version, yielded a test statistic on 164 on 3 df.

When examining the effect of membership, we introduced a dummy variable, 1

if the household is a member in at least one partner, 0 otherwise. This is a rather

unprecise classification, but is a reasonable start.

Performing a log-rank test for the two groups, we found a test statistic on 99.2

on 1 df, corresponding to a p-value near 0 and we conclude that there is a difference

in survival times between them.

A stratifed version of the test, controlling for the renewal month variable, EXP-

MONTH, gives the same conclusion, based on a slighlty higher chi-squared test

statsitc.

Using a Kaplan-Meier estimate, it is obvious that customers with membership

are more likely to renew their motor policies. Ca 50% of non-members have churned

during the 3 years, while only ca 25% of members, as seen in figure 3(b).

When examining these two variables, one finds that among members, ca 40%

belong to age group 55-70 and another 33% to age group 70+. In other words, it is

more common among older customers to have a membership, so there seems to be

an interaction here.
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Figure 3: (a) Kaplan-Meier estimates for age groups among motor policy holders.
(b) Kaplan-Meier estimates for membership among motor policy holders.

To examine the effect of prior product-specfic duration to survival, we use a

penalised smooting spline with 4 degrees of freedom in a Cox model with this as

the only covariate. That is, we perform estimation of the form

α̂(t|x) = s(x),

where x is the the covariate at hand and s(x) is a penalised smoothing spline that

takes the covariate as argument. (See e.g. Hastie, Tibshirani and Friedman [12] for

details on non-parametric smoothing splines.)

When plotting this predictor against the outcome, as seen in figure 4, we get a

feeling for the functional form of the covariate.

The same procedure is used for the covariate FORSAAR, which is the total

exposure of the household in a 4-year period prior to the study. With the influence

on the y-axis, it seems to have a decreasing effect on survival as the prior duration

increases, up to a point at abut 20 years (=240 months) after which the effect

flats out. This would imply that the risk of churning is decreasing the longer the

customer relationship is active, at least up to a certain point. After this point, there

is not enough data to support the increasing trend. It is however plausible to think

that after such along time, the customer has reached a certain age and might no

longer need a car.

From the other graph, one can conclude that the risk decreases lineary as the

exposure increases, i.e. customers with more policies a more likely to stay. Again,

data is skewly distributed over the range of exposure, with highest concentration in

between 10 and 20 exposure years, which corresponds to ca 2-5 policies on average

per year.

While disregarding the tails in the graphs in figure 4, where data is sparse, the

seem to be a log-linear trend in ANCPRE and FORSAAR, which would suggest

that we could model model them directly in a Cox model. We will however return
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to this in the next section.
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Figure 4: (a) Effect of prior duration. (b) Effect of total exposure

Log-rank test of covariate CLAIM, gives a borderline significant effect of the

number of claims reported prior to the study on survival time. If assuming no

difference between the different classes, we over estimate the survival of those cus-

tomers without any claims.

Class n Observed Expected
0 claims 1870 846 804

1: 1-3 claims 2405 997 1053
2: ≥4 claims 705 319 304

Chisq=5.9 on 2 df, p=0.05

Table 4: Stratified log-rank test for claim groups, when controlling for renewal month

By plotting the survival estimator for the claim groups, see 5, the same result

is seen. The other plots in the figure, shows the effect on survival time of having

other focus product than motor. E.g. those customers that have home insurance

(FAM), in addition to a motor insurance, at the beginning of the study seem to be

more likely to stay with their motor policy. The same thing for house insurance

(HUS), and also for accident (OLY) to a smaller extent.

When modelling the effect of other insurance (FAM, HUS and OLY), there seem

to be some deviations from Cox model assumption, when testing for violation. When

using a hazard model with these as the only covariates and allowing for time-varying

effects, we produced the plots of the cumulative regression function, seen in figure

6. The top-left curve is the cumulative baseline hazard (correspondig to those with

all the others covariates equal to 0), while the others are the individual cumulative

effect of having at least one other focus product. From the curves, it looks like the

effect are linear for both FAM and HUS, wheras the confidence interval of OLY

crosses 0 for most time interval, suggesting insignificance of influence on duration.

Combining these curves with the formal KS and CvM tests mentioned in 3.2,
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Figure 5: Kaplain-Meier estimates on other focus products (FAM, HUS, OLY) and
claim groups.

tests of time invariant effects, suggest that the effect of FAM (i.e of having an home

insurance at t0) would vary with time - a result not easily interpreted.

Multiplicative Hazard Model

Test for nonparametric terms

Test for non-significant effects

Supremum-test of significance p-value H_0: B(t)=0

(Intercept) 72.30 0

fam 10.90 0

hus 14.80 0

oly 4.62 0

Test for time invariant effects

Kolmogorov-Smirnov test p-value H_0: B(t)=b t

(Intercept) 2.08 0.128

fam 3.58 0.023

hus 1.50 0.381
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Figure 6: Estimated cumulative regression functions with 95% pointwise confidence
interval.

oly 1.99 0.111

Cramer von Mises test p-value H_0: B(t)=b t

(Intercept) 50.6 0.056

fam 208.0 0.001

hus 19.0 0.281

oly 27.1 0.172

A consequence of this, is that FAM violates the Cox model assumption and need

some more care. A first method was to interact it with HUS, thus replacing the main

effects of FAM and HUS with a combination, FAMHUS, of them: 1 if customer has

at least one home or house insurance, 0 otherwise. Doing this results in the same

conclusion, that there effect of FAMHUS is varying over time, which can be seen

in the table below. The result was obtained by using the cox.zph function in R,

which checks for devations from specified model, when modelling hazard as a time

invariant Cox model with FAMHUS and OLY as only covariates. The underlying

Cox model suggest that FAMHUS is significant, while OLY is not, but that both

violates the Cox assumption (eqiuvalent to small p-values in the test for model

violation). A incorrect interpretation here would thus be that, among motor policy
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holders, having a home or a house insurance in addition would decrease the churn

risk by 0.5 (= exp(−0.694)).

coef exp(coef) se(coef) z p

factor(fam_hus)1 -0.6939 0.500 0.0601 -11.55 0.00

factor(oly)1 -0.0635 0.938 0.0466 -1.36 0.17

Likelihood ratio test=149 on 2 df, p=0 n= 5000

Test for model violation:

rho chisq p

factor(fam_hus)1 0.0897 17.91 2.31e-05

factor(oly)1 0.0389 3.39 6.54e-02

GLOBAL NA 32.17 1.03e-07

In order to handle this time varying effect we could either create a time-dependet

version of FAMHUS, which takes on different values for different, non-overlaping,

time periods. Alternatively we stratify on this covariate, allowing seperate basline

hazard for the two group of FAMHUS. Since we are mainly interested in applying

the model to prediction, we choosed the latter.

As showned above, it seemed to be no difference between the claim groups.

Indeeed, it might be difficult to show the impact of prior claims, without any further

knowledge on the matter or size of the claims. This is why we included claim ratio,

CLAIMPCT, which compares the claims expenses with earned premiums, in order

for some measure on the profitability of the customer. If this is large, the customer

have had some claims that are big in relation to their premiums during a preceding

4 year period. Due to the its skew distribution- ranging from 0 to ca 4.5 - it was

reasonable to try some classfication of it. Based on a quantile distribution, we set

break points at 0.025, and 0.33, creating a three level variable labelled as ’low’,

’middle’ and ’high’ claims ratio. A stratified log-rank test, when controlling for

the two stratification variables EXPMONTH and FAMHUS, is seen in table below.

There is a significant difference between the groups. However, when investigating

Class, interval n Observed Expected
Low, [0,0.025) 2463 1064 1127

Middle, [0.025,0.33) 1235 510 516
High, [0.33,4.5) 1302 596 526

Chisq=13.2 on 2 df, p=0.001

Table 5: Stratified log-rank test for claims ratio classes

further, the difference between the ’low’ and ’middle’ classes is very little, making

them indistinguishable. Thus a new classification emerged by joining ’low’ with

’middle’ and label it is as ’low’. An updated stratified log-rank test, with only two

levels, gave a chi-squared test statistic equal to 12.4 on 1 df.
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To summarize, our data set before next step includes the covariates:

Index Covariate Description

1 ANC Survival time, calender time (in months)
2 D Censoring variable, 1 if event, 0 otherwise
3 TYPE Churning cause, I.-V. if D=1, 0. otherwise
4 EXPMONTH Expiration month on primary policy
5 ANCPRE Duration (in months) prior to study
6 AGEGROUP 0:[20,40), 1:[40,55), 2:[55,70), 3:[70,90)
7 GROUP 1 if customer has membership in some organisation
8 FORSAAR Total exposure over preceding 4 year period
9 CLAIMPCTG Claim ratio groups, 1: [0,0.33), 2: [0.33,4.5)
10 FAMHUS 1 if at least 1 home or house insurance, 0 otherwise

Here we use EXPMONTH and FAMHUS as stratification variables, resulting

in (12*2=) 24 baseline hazards. AGEGROUP is a 4-level covariate and is broken

into binary variables AGEGROUP1 (=1 if AGEGROUP=1, 0 otherwise), AGE-

GROUP2 and AGEGROUP3.

5.2 Model selection and survival prediction

Before presenting final model, we check for interaction terms between the covariates

in 5.1. This is done by performing ANOVA on the models and including significant

interactions terms, one at the time. Let M denote the main effect model from last

section and consider extension of the model of the sort M + ci× cj, with interaction

between covariates ci and cj for index i, j = 5, . . . , 9.

When calculating the corresponding p-values for the ANOVA tables we found

no significant interactions. That is, when controlling for the covariates, the trends

of interaction we saw earlier in the univariate analysis disappeared.

This means that we have only main effects in the Cox model for the last step.

For checking for any violation of the Cox model assumption, we performed similar

test as above. As seen below, there is no individual nor global evidence that the

covariates would not enter the model linearily. From the parameter estimates one

concludes e.g. that the risk of churning among agegroup 3 (55-70 years) is only 66%

of that of agegroup 1 (20-39 years), while controlling for everything else. Similarily,

having had a high claims ratio would increase the risk of 25%.

Test for model violation:

rho chisq p

anc_pre -0.00238 0.01243 0.9112

forsaar -0.03668 2.85900 0.0909

factor(agegroup)1 0.01910 0.78932 0.3743

factor(agegroup)2 0.00855 0.15842 0.6906

factor(agegroup)3 0.01179 0.28772 0.5917

factor(grupp)1 0.00118 0.00289 0.9571

factor(skadpctg2)2 -0.04159 3.75730 0.0526
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GLOBAL NA 8.52008 0.2890

Multivariate Cox model:

coef exp(coef) se(coef) z p

anc_pre -0.000934 0.999 0.000224 -4.17 3.0e-05

forsaar -0.021972 0.978 0.003910 -5.62 1.9e-08

factor(agegroup)1 -0.301842 0.739 0.061858 -4.88 1.1e-06

factor(agegroup)2 -0.413593 0.661 0.063047 -6.56 5.4e-11

factor(agegroup)3 -0.218617 0.804 0.074286 -2.94 3.3e-03

factor(grupp)1 -0.225021 0.798 0.048240 -4.66 3.1e-06

factor(skadpctg)2 0.226580 1.254 0.049144 4.61 4.0e-06

In the above table, the second column - exp(coef) - is the hazard ratio while con-

trolling for everything else. z2 is the Wald statistic and p is the corresponding

p-value.

Because of the rare events of some of the causes, it is reasonable to regroup the

risk classes, as discussed in 2.4. This will generally depend on the the product at

hand, and for motor policies we combine riks classes I. with IV., and II with V, and

let III be unchanged, in order to make inference.

Then we stack the data as described in 3.3. With the new classification of risks,

we made 3 copies of the data yielding (5×3=) 15 covariates. By appliyng the model

selection steps in the same section, we arrived at a 14 covariates model which we

tested equality across risk strata. The test is a linear hypothesis on the relationship

between the cause-specific covariate and conclusions are made from considering a

Wald statistic.

Linear Hypotheses Testing Results

Wald

Label Chi-Square DF Pr > ChiSq

EqualAnc_pre 5.8064 1 0.0160

EqualForsaar 1.7973 1 0.1800

EqualAgegroup1 0.7199 2 0.6977

EqualAgegroup2 13.0962 2 0.0014

EqualAgegroup3 4.2857 1 0.0384

EqualClaimpctg 2.4885 2 0.2882

EqualGroup 0.6056 2 0.7387

From the hypothesis testing, there seem to be equality among the covariates FOR-

SAAR, AGEGROUP1, AGEGROUP3, CLAIMPCTG and GROUP. By considering

the individual cause-specific (partial maximum likelihood) estimates among these
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covariates we get an idea which might be equal and can test if the differences are

equal on a 5% significance level between all causes of just two of them.

The result from these test along with the estimated hazard ratio are seen below.

Hazard

Variable Ratio

ANC_PRE_13 0.999

ANC_PRE_2 0.996

FORSAAR_1 0.985

FORSAAR_23 0.954

AGEGROUP1_123 0.754

AGEGROUP2_1 0.725

AGEGROUP2_2 0.452

AGEGROUP2_3 0.568

AGEGROUP3_1 0.535

AGEGROUP3_2 0.143

AGEGROUP3_3 1.667

CLAIMPCTG_13 1.151

CLAIMPCTG_2 2.193

GROUP_123 0.806

The subindex indicates which effects are equal across causes. E.g ANCPRE13

indicates that ANCPRE has a similar effect on cause 1 as well 3 and that the risk

of churning of cause 1 or 3 is decreasing as this covariate grows. The corresponding

risk for cause 2 decreases faster.

From the output we also conclude that when comparing age group 0 (20-39

years) with age group 1 (40-54 years), the relative risk among the latter is only 75%

of that among the former group and that this holds for all causes. This is not the

case for the other two age groups. Especially, we notice that the relative risk of

churning of cause 3 is almost 67% higher among age group 3 (70+ years) compared

to age group 0. This is however expected, since it more likely that someone of age

70 or more doesn’t need a car and hence no motor insurance. Cause 2 (internal

churning) is more likely for younger customer.

Finally, when calculating the cumulative incidence functions, as described in

2.5.4. This gives us a tool for calculating the estimated survival probabilty given

covariates. Here we apply the calculations to three customers in order to demon-

strate it and we let only the age vary between them, letting everything else be the

same. In this case we let each customer have had a motor policy for 2 years and

had (on average) 1 policy per year and no claims (i.e CLAIMPCTG=1) and let the

customer be member in some partner. Customer 0 belong to age group 0 (20-39),
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customer 1 to group 1 (40-55), and so forth. P01 is the estimated probabilty of

churning of cause 1, and similarily for P02 and P03, while P00 = 1−
∑3

j=1 P0j is the

overall survival probability.

Customer Time (months) P01 P02 P03 P00

0 0 0.000 0.000 0.000 1.000
0 12 0.106 0.004 0.055 0.835
0 24 0.217 0.007 0.106 0.669
0 36 0.298 0.010 0.162 0.530
1 0 0.000 0.000 0.000 1.000
1 12 0.083 0.003 0.042 0.872
1 24 0.174 0.006 0.084 0.736
1 36 0.243 0.008 0.133 0.616
2 0 0.000 0.000 0.000 1.000
2 12 0.081 0.002 0.034 0.883
2 24 0.171 0.003 0.067 0.757
2 36 0.241 0.005 0.107 0.647
3 0 0.000 0.000 0.000 1.000
3 12 0.057 0.001 0.0943 0.847
3 24 0.118 0.001 0.184 0.697
3 36 0.163 0.001 0.285 0.550

Table 6: Cumulative incidenct function calculated at different time points for dif-
ferent age groups while controlling for other effects.

What can be said from this simple example is that the most loyal customer are

in the age interval 40-70, with a overall survival probability of up to ca 10% higher

than those outside side interval. One can also see that churning of cause 3 (need

of insurance coverage ceased) is more likely to occur among older customers, while

churning of cause 1 (tranferring to competitor) is more common among younger

customer, which is plausible. Churning due to cause 2 (internal churning) is more

rare than the other among motor customers, but is again more likely to happen

among younger customers.

Furthermore, the “rank” of the survival groups seems to be preserved over time,

i.e the annual rate of churned customers seems to be about the same within groups,

with some reservation for churns due to cause 2 (internal churns), which is expected,

since these kinds of cancellations should tend to decrease over time.
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6 Conclusions and Discussions

In this thesis, we have considered possible prediction methods for customer duration

in a non-life insurance industry on a product-customer level. While concentrating

on motor policy holders, the same methods could be applied to other products.

Given some data we were able to calculate the changes in the survival function,

especially in a competing risk setting.

Overall, a customer is more likely to stay, depending on

1. how long the policy have been active

2. how old the customer is

3. how many policies the customer have had prior

4. how large claims the customer have had

5. if the customer has a membership with a partner

Besides these factor, we also found that structure of the model depended on

renewal period and if the customer had home or house insurance, which we included

in the baseline hazard.

Among these factors, we found evidence of different effects on different causes.

E.g. having had an motor policy for a long time, implies a smaller risk of churning

due to internal causes (that is, when the churn is initiated by the insurance company)

than that of other causes. This is logical, since most internal churns on motor

policies are likely to occur relatively near signing date and a long relationship would

have removed most of these.

We also found that customers of age over 70 years, are 67% more likely to

churn due to ceased risk (e.g. sold the car) but 50% less as likely to churn due to

transferring to a competitor, compared to a customers of age 20-40. Again, this

is what we can expect, since older people drive less and typically are not as price

sensitive.

There might, of course, be additional information that influence the duration

which might be investigated in the future.

6.1 Comments on further analysis

We considered a short study period in order for sharper predictions under the

assumption that the complexity of the real world wasn’t easy to capsulate, making

fixed covariate models somewhat unrealistic for long-time prediction. This would

suggest that it might be useful to consider time-varying, dynamic models (e.g Aalen,

Aalen-Cox models) to investigate the influence of events (such as claims or move

or churning of other products). It would also be interesting to consider a longer

study period in order to find those customers that are truly loyal and profitable for

a company, which would require a different study design than that used in here, e.g

following customers from time first entering the company up to churning.
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One important thing omitted here, was the model assesment and prediction

capability. With survival data of this sort it could be dealt with by extended

Brier scores to see where the model predicts well, while allowing for features such

as censored data. The main object was however not finding an optimal model

in a prediction application, but rather to suggesting a method for handeling and

measuring customer duration. And in my opinion it is difficult to apply this sort

of prediction algorithms to quantify customer’s churning behaviours, since there is

too much individual “noise” that could lead to a churn. However, measuring it and

analysing it is still very important since it directly effects the profitability of the

portfolio and on product level, duration might be a more manageble concept. It

could then used to see where customer loyalty programs actually have an effect or

where programs shold be started in order to create loyalty.

6.2 Comments on data

An important part of data in this study was that of churning causes. One might

argue that this validity is difficult to assume and to investigate, but the manuel pro-

cess of gathering this sort of information is accepted within the company although

the precision might be questioned at times. The classification of causes was thus

necessary, in an attempt to further controll the precision of causes.

In 2.4 relationships were decided to belong to different risk classes in case of

cancellation. For ties (on churning dates) this meant that one class had to represent

the cause of cancellation above others. For the rest, the cause of the last churned

policy represented the given cause.

It is, however, likely that for a customer holding several product-specific policies

that there is a more complex course of events yielding this final churn, i.e. the final

churn is a result of previous churns and the timing of those. (Here, we disregard

the cause of any previous, recent or not, churns.)

Thus, there are some uncertainties in defining a unique cause of an ended (prod-

uct specific) relationship, since the cause of the final churn might be dependent on

previous and not representative for the relationship as a whole.

But again, the classification of causes treats the causes as either initiated by the

company or the customer and this level there are no ambiguities.
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