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1 Introduction

The new Solvency II regulation that will substitute the current solvency di-
rective for insurance companies is expected to be fully implemented at the
end of 2012, but many companies have already started to adopt the new
methods proposed and are developing internal models for the market-based
valuation of their assets and liabilities. In Italy, professors Massimo De Fe-
lice at Università di Roma “La Sapienza” and Franco Moriconi at Università
di Perugia have developed a system that is currently being used by several
large Italian insurance companies such as Fondiaria-SAI Group, Gruppo
Reale Mutua Assicurazioni, RAS Group and Alleanza Assicurazioni. This
method, which was first applied in the insurance business and taught in
actuarial courses in the early 1990’s and thus by now is well-established in
Italy, will be at the center of this thesis. Applied to an example policy it
will be used to calculate the mark-to-market reserve, the value of business
in force, the cost of the embedded minimum guarantee and the required risk
capital for the contract. Moreover, the new solvency capital requirement
will be calculated and compared to the current solvency margin imposed
under the Solvency I directive.

The outline of this thesis is as follows: First some background information
will be presented regarding participating policies, which are very common in
Italy and also will have a central role in the following calculations, and the
Solvency II regulation, which constitutes the foundation in the development
of internal models. Next an example policy will be introduced demonstrating
the participation mechanism and the minimum guarantee. It will be used to
illustrate the De Felice-Moriconi (DFM) model in the chapter that follows.
The stochastic processes underlying the valuation model will be described,
leading up to a valuation equation and its solution through parameter cali-
bration and Monte Carlo simulation. The procedure for pricing the options
embedded in the contract will then be derived and subsequently definitions
of value of business in force and risk capital will be made. The latter will be
used in the calculation of the solvency capital requirement. Finally, having
laid the theoretical foundation the DFM model will be applied to real data
provided by an Italian mutual insurance company.

2 Background

2.1 Participating policies

Participating life policies were introduced on the Italian market in the early
1980’s as a way to protect the insured benefits from inflation. Today almost
every contract offered by Italian life insurance companies is of this kind.
The participating policies provide an annual revaluation of the benefits, and
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sometimes also of the premia, based on the return of a fund that the insurer
manages separately from the rest of their activities and in which the policy
reserves are invested. For this reason they are called separate funds1. The
Italian companies’ separate funds are mainly composed of bonds with low
credit risk2.

The revaluation mechanism is specific of the policy type. Conceptually it is
analogous to an indexation3 but with a minimum guarantee. It is based on
the idea of letting the insured in on a part of the financial profit that arises
if the fund return is higher than the technical rate. The minimum guarantee
ensures that the policy holder gets at least a specified minimum rate even
if the fund return should drop below this level. From a financial point of
view this type of policy is a derivative contract, with the separate fund as
the underlying asset.

Before the introduction of participating policies many Italian insurance com-
panies, particularly the mutual ones, still offered their customers forms of
profit participation but the conditions were often discretionary of the insurer.
In today’s participating policies the profit participation is contractualized
in a precise and binding “revaluation rule”. Through this rule the amount
of the benefits is linked to the capital market and therefore any valutaion
method used for pricing the policy has to be consistent with the valuation
method used in capital markets.

2.2 Solvency II

The Solvency II framework is a review of the current insurance directives
(Solvency I ). One of its aims is to update the approach to determining capi-
tal requirements in an insurance company, i.e. the amount of capital needed
to be held against unforseen losses. Another aim is to enhance supervi-
sory control and transparency within the companies. This will lead to both
higher protection for the insurance holders and an increased competition be-
tween EU companies. Solvency II introduces a common European approach
to asset-liability management that is based on economic principles instead
of on the simple factor-based models developed in the early 1970’s under
Solvency I. It is a risk-based approach, which means that risk is measured
on consistent principles and the capital is allocated accurately to where the
risks are.

1Throughout the thesis the term “reference fund”, and also simply “the fund”, will
often be used to indicate the separate fund. The three terms are considered equivalent.

2A bond’s credit risk is the risk that the face value and/or interest will not be repaid
by the issuer.

3Generally, an indexation is a periodic adjustment of the value of some regular sched-
uled payment based on the movement of a price index.
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2.2.1 Capital requirements

The traditional solvency margin, i.e. the capital requirement under Sol-
vency I, is based on prudential technical assumptions and does not account
for market risk. Since it is also more or less arbitrary the level of required
capital often differs between countries.

Solvency II has two thresholds:

• the solvency capital requirement (SCR), which is the target level of
capital enabling the insurer to meet their obligations while taking into
consideration adverse scenarios connected to various sources of risk
(e.g. underwriting risk, market risk and operational risk). If an insurer
is not able to meet the SCR, supervisory action will be triggered and
the company will be required to restore the lacking capital;

• the minimum capital requirement (MCR), which is the lowest level of
capital required. A breach of this level will trigger severe supervisory
actions, including closure of the company to new business.

Since the SCR is calculated under a risk-based approach the amount of
capital needed will be proportional to the risks involved, which leads to a
more efficient use of finances. It prevents the companies from having to
hold too much capital, which would impede them in making investments
and increase the cost of insurance for their customers. In the same way, a
risk-based SCR also prevents the companies from holding to little capital,
which would lead to a higher risk of failure. Solvency II provides a stan-
dard model for calculating the SCR, but companies can also use their own
internal models or a combination of both. Since the standard model can-
not reflect company-specific characteristics like the focusing on particular
business niches or strategies or the use of reinsurance programs with dif-
ferent features, the development of internal models is strongly encouraged.
However, these models have to be consistent with the Solvency II directive4.

2.2.2 Mark-to-market valuation vs. traditional valuation

Under Solvency II the valuation of assets and liabilities should be made
using market data. For many assets and some liabilities market data is
readily available, but when this is not the case the valuation has to be
performed with market-consistent techniques. One such technique is the use
of stochastic processes to model the courses of the various components on the

4Before an internal model can be used it needs to be approved by Solvency II regulators.
The insurer will have to show that the model is fully embedded in their business, that
it is calibrated according to Solvency II definitions and that it is based on adequate
actuarial and statistical techniques. They will also have to provide a detailed and up-to-
date documentation of the model.
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market (interest rates, stock market indices etc.). The process of revaluating
a security to reflect its current market value instead of its aquisition price
is called marking to market. Mark-to-market valuation is also often referred
to as fair valuation. In [4] fair value is defined as “the market value, if a
sufficiently active market exists, OR an estimated market value, otherwise”.
With the traditional valuation approach the reserve is statutory, and this
means that even if the policy is participating it will be valued as if it weren’t.
As a consequence there is no way of pricing the minimum guarantee option
embedded in the contract, nor the excess-return, and the financial risks
associated with the contract cannot be accounted for. As with the SCR, the
mark-to-market valuation can be done using either the Solvency II standard
approach or an approved internal model.

3 An example contract

To illustrate the DFM valuation model we use the case of an endowment
insurance contract with annual premium payments. If the insured is alive
at maturity time T they will receive the benefit CT . If they should die at
time t < T the benefit Ct will be payed out. The policy is a participating
one, which means that the initial sum insured C0 increases every year by
a fraction β of the return It earned by the fund in which the premium is
invested. The policy also has a minimum guarantee imin, which means that
even if It < i, where i is the technical rate and imin ≥ i, the sum insured
will not decrease. The benefit Ct at the end of year t, for t = 1, 2, . . . , T , is
thus readjusted as follows:

Ct = Ct−1(1 + ρt), (1)

where ρt is the readjustment rate, defined as:

ρt =
max{βIt, i

min} − i

1 + i
.

The rate of return It is defined as:

It =
Ft

Ft−1
− 1, (2)

where Ft is the market value of the fund at time t. β and i are specified
by the contract and are fixed at time 0. For integers t and n such that
0 ≤ t ≤ n ≤ T expression (1) can be written as:

Cn = CtΦ(t, n), (3)

where

Φ(t, n) =
n
∏

k=t+1

(1 + ρk)
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is the readjustment factor and Φ(t, t) = 1. In this example policy the an-
nual premium An is revalued in the same way as the benefit Cn, and for
simplicity’s sake we use the same readjustment factor. Analogous to (3) we
can therefore write the year n premium as:

An = AtΦ(t, n).

Now let Yn denote the liability of the insurer at time n, n = t+1, t+2, . . . , T .
This amount is defined through the following “probability stream”:

Yn =

{

Cn with probability Pt(Cn;n)
0 with probability 1 − Pt(Cn;n)

The probability measure P is contractually specified and identified through
given mortality tables. The expression Pt(Cn;n) is to be interpreted as the
probability at time t that the amount Cn will be payed at time n (for t < n).
For the time n premium Xn we analogously get:

Xn =

{

An with probability Pt(An;n)
0 with probability 1 − Pt(An;n)

We see that Yn and Xn are affected by both financial and technical (ac-
tuarial) uncertainty. The financial uncertainty has to do with the course
of the market in which the reserves are invested and is thus linked to the
readjustment factor Φ. The technical uncertainty depends on the life of the
insured and is therefore relative to the probability measure P. This means
that both (Cn, An) and (Yn,Xn) are random variables. In this valuation
model it is assumed that the two uncertainties are independent, which lets
us compute them separately.

Here we introduce the valuation functional V (t;Z) that assigns a value at
time t to the random variable Z. We can now write:

V (t;Yn) = V (t;Cn)Pt(Cn;n) = CtV (t; Φ(t, n))Pt(Cn;n).

Analogously for the premia we have:

V (t;Xn) = V (t;An)Pt(An;n) = AtV (t; Φ(t, n))Pt(An;n).

If this were a non-participating policy we would have V (t; Φ(t, n)) = V (t; 1) =
(1+ i(t, n))−(n−t) and the financial uncertainity would disappear: the valua-
tion functional would be the market discount factor v(t, n) = (1+i(t, n))−(n−t),
being i(t, n) the market rate in t with maturity n. Unfortunately things get
more complicated when dealing with participating policies. Premia and ben-
efits are exposed to not only technical but also financial uncertainity and
the valuation functional is expressed by the stocastic valuation factor

u(t, n) = V (t; Φ(t, n)).
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We define the expected values of the benefits and the premia, respectively
Ȳt(n) and X̄t(n), as:

Ȳt(n) = CtPt(Cn;n) (4)

X̄t(n) = AtPt(An;n) (5)

for the streams of benefits Y = {Yn;n = t + 1, t + 2, . . . , T} and premia
X = {Xn;n = t + 1, t + 2, . . . , T}. The traditional reserve Rt is defined as:

Rt =
T
∑

n=t+1

Ȳt(n)(1 + i)−(n−t) −
T
∑

n=t+1

X̄t(n)(1 + i)−(n−t), (6)

where v(t) = (1+ i)−(n−t) is the contractual discount factor calculated using
the technical interest rate i. The stochastic reserve Vt is defined as:

Vt = V (t,Y) − V (t,X) =
T
∑

n=t+1

Ȳt(n)u(t, n) −
T
∑

n=t+1

X̄t(n)u(t, n). (7)

The factor u(t, n) can be interpreted as the time t price of an indexed zero-
coupon bond (ZCB) with maturity n and face value 1. The benefits are
then valued as a portfolio consisting of T stochastic ZCB with maturity
n = t + 1, t + 2, . . . , T and face value Ȳt(n). The discussion is of course the
same for the premia.

By calculating u(t, n) the functional V (t;Yn) gives us a marked-based (fair)
valuation of the outstanding liabilities generated by the policy, and to do
this we need to use a stochastic pricing model. In the following section the
DFM approach to calculating the stochastic reserve Vt will be presented,
using the assumption of independence between the financial and the techni-
cal uncertainties to divide expression (7) into two parts that are computed
separately. Since the financial part involving the factor u(t, n) is the most
complicated it will be discussed more thoroughly. The calculation of the
technical part is more straightforward and will be dealt with later in section
4.6.

4 Specification of the valuation model

The following discussions will be based on the assumption of a perfect mar-
ket, i.e. a “theoretical free-market situation where

1. buyers and sellers are too numerous and too small to have any degree
of individual control over prices,

2. all buyers and sellers seek to maximize their profit (income),

3. buyers and sellers can freely enter or leave the market,
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4. all buyers and sellers have access to information regarding availability,
prices, and quality of goods being traded, and

5. all goods of a particular nature are homogeneous, hence substitutable
for one another.” (cited from [3])

Typically the reference funds contain both bonds and stock (at least)5. To
be able to price a contract we therefore need to determine the characteristics
of the stochastic process Ft representing the market value of the reference
fund. We thus assume:

Ft = αSt + (1 − α)Wt, 0 ≤ α ≤ 1,

where St is a stock index, Wt is a bond index and α is a fixed constant.
Since the yearly return It is linked to Ft through equation (2) it too will
depend on these variables. It is thus affected by interest rate risk through
the spot rate rt and stock market risk through the stock index St

6. In the
DFM approach the interest rate risk and the stock market risk are modeled
using the Cox-Ingersoll-Ross (CIR) model and the Black-Scholes (BS) model
respectively. The two sources of uncertainty rt and St are correlated, and
by combining the CIR and the BS models the complete valuation model is
obtained.

4.1 Interest rate uncertainty

The spot rate rt can be seen as a diffusion process described by the stochastic
differential equation

drt = f r(rt, t)dt + gr(rt, t)dZ
r
t ,

where Zr
t is a standard Brownian motion, f r is the drift function and gr is

the diffusion function. In the CIR model these last two functions are of the
forms:

f r(rt, t) = α(γ − rt), α, γ > 0

gr(rt, t) = ρ
√

rt, ρ > 0

This model is characterized by the dynamics of “return”, or revertion to the
mean. In the long run the rate will become constant, settling on the level γ.
The parameter α is the speed of adjustment to this level (also called mean-
reversion coefficient). With ρ being the volatility parameter, the CIR model
is a mean-reverting square-root process having a non-centered chi-square
transition density. It is mathematically more complicated to deal with than
for example the Vasicek model described in [8], pp. 318–320. Even so it is

5Other components could be government bonds, real estate etc.
6If there are more sources of risk the model has to be extended; for example, if a policy

also provides inflation protection a factor for real interest risk must be added.
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considered more suitable for describing rt because it doesn’t allow negative
values of the spot rate which for long maturities could produce discount
factors greater than 1.

To prevent arbitrage, the market price of interest risk in the CIR model
is described by the function:

hr(rt, t) = π

√
rt

ρ
,

where π ∈ R is a constant of arbitrary sign (see also [8] p. 301).

4.2 Stock price uncertainty

The diffusion process for the stock index St is given by:

dSt = fS(St, t)dt + gS(St, t)dZ
S
t ,

where ZS
t is a standard Brownian motion. In the BS model the functions

fS and gS have the forms:

fS(St, t) = µSt, µ ∈ R

gS(St, t) = σSt, σ > 0

The process thus describes a geometrical Brownian motion with instanta-
neous expected return µ and volatility σ, which implies that St has a log-
normal transition density.

The market price of stock market risk in the BS model is described by
the function:

hS(St, t) =
µ − rt

σ
.

4.3 The valuation equation

Since the price at time t of our indexed ZCB is a stochastic diffusion process
it is by the Markovian property not only a function of time but also of the
state variables rt and St:

u(t, T ) = u(rt, St, t;T ), 0 ≤ t ≤ T.

It can be described by the following stochastic differential equation:

du = a(r, S, t)dt + br(r, S, t)dZr + bS(r, S, t)dZS .

The coefficients a, br and bS are specified using Itô’s lemma7 (in two vari-
ables):

a(r, S, t) =
1

2
(gr)2

∂2u

∂r2
+

1

2
(gS)2

∂2u

∂S2
+ηgrgS ∂2u

∂r∂S
+f r ∂u

∂r
+fS ∂u

∂S
+

∂u

∂t
(8)

7Itô’s lemma is described in appendix A.
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br(r, S, t) = gr ∂u

∂r
(9)

bS(r, S, t) = gS ∂u

∂S
(10)

Here η is the instantaneous correlation coefficient between the two sources
of risk:

Covt(dZ
r
t , dZS

t ) = ηdt, η ∈ R,

where Covt(·) is the covariance conditional of the information available in
t. In coherence with the arbitrage pricing theory8, u can be described as
satisfying the relation:

a − ru = hrbr + hSbS. (11)

By substituting the functions a, br and bS in (11) with the expressions (8),
(9) and (10) respectively, we get:

1

2
(gr)2

∂2u

∂r2
+

1

2
(gS)2

∂2u

∂S2
+ ηgrgS ∂2u

∂r∂S

+ (f r − hrgr)
∂u

∂r
+ (fS − hSgS)

∂u

∂S
+

∂u

∂t
= ru

This is the valuation equation, and it has the terminal condition

u(T, T ) = Φ(0, T ). (12)

It follows from the fundamental theorem of asset pricing9 that if a risk-
neutral measure Q is constructed then the prices of all derivatives can be
computed using discounted expectations under this measure, ruling out ar-
bitrage. This means that the discounted price process

u(t, T )e−
∫

t

0
rτ dτ , 0 ≤ t ≤ T,

is a martingale with respect to Q, and thus that:

V (t; Φ(t, T )) = u(t, T ) = EQ
t [e−

∫

T

t
rτ dτΦ(t, T )], (13)

where EQ
t [·] is the risk-neutral expectation conditional of the information

available in t. This is the solution to the valuation equation under condition
(12).

Under the natural probability measure P the vector containing the unknown

8According to the arbitrage pricing theory the expected return of a financial asset can
be modeled as a linear function of various factors, where sensitivity to changes in each
factor is represented by a factor-specific coefficient.

9The theorem states in short that if there exists an equivalent martingale measure (i.e.
a risk-neutral probability measure) then there is no arbitrage.
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parameters is p = {α, γ, ρ, µ, σ, η, π}. But if we look at the valuation equa-
tion we see that the coefficients in front of ∂u

∂r and ∂u
∂S are really given by the

functions:

f̂ r = f r − hrgr = α(γ − rt) − πrt = αγ − (α + π)rt,

f̂S = fS − hSgS = µSt − (µ − rt)St = rtSt.

These new coefficients are risk-adjusted ([8], pp. 301–302) and if we let
α̂ = α + π and γ̂ = αγ we get a new vector p̂ = {α̂, γ̂, ρ, σ, η} under the
risk-neutral measure Q containing a reduced set of parameters. These are
sufficient for pricing purposes, but if we want to use percentile methods
based on the underlying density functions (e.g. for calculating risk capitals)
we will need the whole set of natural parameters. This can however easily
be solved by subjectively specifying the level of the long-run rate γ. Then
the remaining parameters α and π are directly derived through:

α =
α̂γ̂

γ
, π = α − α̂.

4.4 Parameter estimation

We start by making the following definition:

The term structure for the CIR model of the time t in-force market prices,
i.e. the set of ZCB prices {v(t, T ), T ≥ t} for all maturities T subsequent to
t, is:

v(t, T ) = AT−te
−rtBT−t ,

where A and B are deterministic functions depending only on the time to
maturity τ = T − t through

Aτ =

(

2de(α̂+d)/2

(α̂ + d)(edτ − 1) + 2d

)ν

and

Bτ =
2edτ − 1

(α̂ + d)(edτ − 1) + 2d

with
d =

√

α̂2 + 2ρ2

and

ν = 2
α̂γ̂

ρ2
.

A somewhat simplified approach to estimating the parameters α̂, γ̂ and ρ of
the CIR model is by calibration on the interest-sensitive securities market.
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Swap rates10 ωT with different maturities are quoted daily on the interest
rate swap market (e.g. Euribor), and since

ωT =
1 − v∗(0, T )
∑T

t=1 v∗(0, t)
,

where v∗(0, T ) is the time 0 price of a ZCB with maturity T , by observing the
values of ωT for different values of T we can solve for v∗(0, T ) = v∗(τk), k =
1, 2, . . . , n, and thus obtain the ZCB term structure. This is then compared
to the CIR term structure v(τk; α̂, γ̂, ρ) and the unknown parameters are
estimated by minimizing the sum of squared errors between model price
and market price, i.e. by solving the minimization problem

min

n
∑

k=1

(v(τk; α̂, γ̂, ρ) − v∗(τk))
2,

where the errors are assumed to be normally distributed and uncorrelated.

The remaining two parameters of the vector p̂, σ and η, can be externally
specified. The value of σ is usually set to the same value as the historical
volatility of the reference fund’s stock component. The correlation coeffi-
cient η is considered to have little effect on the valuation and its value is
usually derived through econometric studies of the Italian market.

As mentioned in the beginning of this section, what is described here is
a simplified calibration technique, but it is sufficient for illustrating pur-
poses. The “standard” calibration procedure is more complicated as it uses
cross sections11 and historical time series12 from a large quantity of data.

4.5 Monte Carlo simulation

Having estimated the parameters of the CIR and BS models we can compute
the price u(t, T ) by solving equation (13). This has to be done numerically,
for example through Monte Carlo simulation. For n = t + 1, t + 2, . . . , T the
procedure is as follows:

1. A descrete time equivalent to the risk-neutral stochastic differential
equations drt = α̂(γ̂ − rt)dt + ρ

√
rtdZ

r
t and dSt = rtStdt + σStdZ

S
t is

defined.

10An interest rate swap is a contract in which two counterparties agree to exchange
interest payments of differing character. The most common interest rate swap is one
where one counterparty pays a fixed rate (the swap rate) while receiving a floating rate.

11Data collected by observing many subjects at the same point of time, or without
regard to differences in time.

12Data collected by following one subject’s changes over the course of time.
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2. A descrete sample path for r and S is generated based on given starting
values r0 and S0.

3. The annual values In of the fund return are calculated along the paths
and the corresponding values of the readjustment factor Φ(t, n) are
then derived.

4. The descrete equivalents of the discount factors e−
∫

n

t
rτdτ are calcu-

lated along the paths.

5. The discounted values Φ(t, n)e−
∫

n

t
rτdτ are computed for each n.

This process is iterated N times (N is usually a large number such as 1000)
and the stochastic valuation factor u(t, n) is derived as the average of the
N discounted values from step 5.

4.6 Technical uncertainty

We now consider the technical part of equation (7) for the stochastic reserve.

For the benefits we have:

Yn =

{

Cn · In−1<Tx≤n, n = t + 1, t + 2, . . . , T − 1
Cn, n = T,

where IE is the indicator function for the event E and Tx is the remaining
lifetime of the insured aged x. For the premia we have:

Xn =

{

An · ITx≥n, n = t + 1, t + 2, . . . , T − 1
0, n = T.

Using actuarial notation we can now express Ȳt(n) and X̄t(n) as:

Ȳt(n) =

{

Ct · n−1px · qx+n−1, n = t + 1, t + 2, . . . , T − 1
CT , n = T

X̄t(n) =

{

At · npx, n = t + 1, t + 2, . . . , T − 1
0, n = T,

where the probabilities are defined according to:

tpx =
l(x + t)

l(x)
= P (Tx > t)

tqx = 1 − l(x + t)

l(x)
= P (Tx ≤ t)

tpx · s−tqx+t =
l(x + t) − l(x + s)

l(x)
= P (t < Tx ≤ s)
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Expression (7) now becomes:

Vt = Ct

T−1
∑

n=t+1

n−1px · qx+n−1 · u(t, n) + CT · u(t, T )

− At

T−1
∑

n=t+1

npx · u(t, n)

Since the actuarial probabilities are easily computed using standard mortal-
ity tables and the value of the financial factor u(t, n) is given by (13), the
time t stochastic reserve Vt is now completely determined.

5 Embedded options

The stochastic reserve can be decomposed with respect to the minimum
guarantee and to the excess-return, enabling the insurer to better survey the
costs of their provided benefits. In order to make the calculations as simple
as possible we will here assume that our example policy has a single premium
and that there is no technical uncertainty, i.e. that Pt(CT ;T ) = 1. This
means that the expressions for the traditional and the stochastic reserves
reduce to

Rt = Ct(1 + i)−(T−t) (14)

and

Vt = V (t;YT ) = CtV (t; Φ(t, T )) = CtV

(

t;

T
∏

n=t+1

(1 + ρn)

)

respectively.

5.1 Put decomposition

In this section we will compare the value Vt of the stochastic reserve with a
“base value” Bt defined as:

Bt = CtV (t; ΦB(t, T )),

where

ΦB(t, T ) =

T
∏

n=t+1

(1 + ρB
n )

is the “base readjustment factor” and

ρB
t =

βIt − i

1 + i

is the “base readjustment rate”. Bt can thus be seen as a policy analogous
to Vt but without the minimum guarantee.
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By considering for a moment only the payoffs Φ(t, T ) and ΦB(t, T ) and
using definition (14) of the traditional reserve we can write:

Φ(t, T ) =
Rt

Ct

T
∏

n=t+1

(1 + max{βIn, imin}),

ΦB(t, T ) =
Rt

Ct

T
∏

n=t+1

(1 + βIn).

To simplify things even more we now consider the case of one time step
[t, t + 1] and make the following decomposition of Φ(t, t + 1):

Φ(t, t + 1) =
Rt

Ct
(1 + max{βIt+1, i

min})

=
Rt

Ct
(1 + βIt+1 + max{imin − βIt+1, 0})

=
Rt

Ct

(

1 + βIt+1 + β max

{

imin

β
− It+1, 0

})

=
Rt

Ct
(1 + βIt+1) +

Rt

Ct
β max

{

imin

β
− It+1, 0

}

= ΦB(t, t + 1) +
Rt

Ct
β

[

imin

β
− It+1

]+

.

We see that if the fund return It+1 < imin

β , that is if it turns out to be lower

than the minimum guaranteed return, then Φ−ΦB > 0 and the policy holder
exercises their right to exchange the payoff of an unguaranteed contract for
that of a guaranteed one. These are the characteristics of a European put
option13 having imin

β as the strike price. Returning to Vt and Bt we now can
write:

Putt = Vt − Bt = Ct

[

V (t; Φ(t, T )) − V (t; ΦB(t, T ))
]+

.

This is the price of the put option embedded in the contract and thus the
time t fair value of the minimum guarantee. Because the option is part of
the contract, unlike ordinary put options it is basically given to the policy
holder without them having to pay for it, so if it is exercised the insurance
company loses money. It is therefore an important part of a company’s risk
management to be able to correctly price these options. If we for illustration
purposes consider the one-year interval [t − 1, t] and for simplicity let i = 0
then according to the participation rule the amount Ct−1 max{βIt, i

min} will

13A European put option is a contract giving the owner the right, but not the obligation,
to sell a specified amount of an underlying security at a specified strike price on a given
date.
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be credited to the policy and the amount Ct−1(It − max{βIt, i
min}) will be

retained by the insurance company. Concentrating only on the rate of return
we first make the following rewritings:

max{βIt, i
min} = βIt + max{imin − βIt, 0}

= βIt + [imin − βIt]
+,

(policy)

It − max{βIt, i
min} = (1 − β)It − max{imin − βIt, 0}

= (1 − β)It − [imin − βIt]
+.

(company)

The allocation of the annual return can now be illustrated in a payoff di-
agram (figure 1). Each year the insurer thus makes an investment gain

Figure 1: Allocation of the annual return

(1 − β)It and shortens14 a put option written on the reference fund. It is
clear that the minimum guarantee embedded in the contract could poten-
tially threaten the company’s solvency. When the fund return is greater
than the minimum guarantee the put option is worthless, so for high re-
turns the put price will be lower. But as soon as the return hit the level
imin

β the put option is exercised, so with falling returns the put price will rise.

We also define
Vt = Bt + Putt

14Shortening a put option means selling the right to sell the underlying asset at a
particular strike price to an option holder. In this case the insurer is “selling” the right
to exchange the payoff of an unguaranteed contract for that of a guaranteed one to the
insured, only without getting payed.
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as the put decomposition of the stochastic reserve. This decomposition is
very useful because it allows us to compare the contract with guaranteed
return to a “pure investment” contract without any guarantees.

5.2 Call decomposition

Here we compare Vt with the value of a minimum guaranteed terminal ben-
efit Gt defined as:

Gt = CtV (t; ΦG(t, T )),

where the “guaranteed readjustment factor” is given by

ΦG(t, T ) = (1 + i)−(T−t)
T
∏

n=t+1

(1 + imin) =
Rt

Ct

T
∏

n=t+1

(1 + imin),

where the last equality follows from (14). Analogously to the case of the put
we now make the following decomposition of Φ(t, t+1) for the time interval
[t, t + 1]:

Φ(t, t + 1) =
Rt

Ct
(1 + max{βIt+1, i

min})

=
Rt

Ct
(1 + imin + max{βIt+1 − imin, 0})

=
Rt

Ct
(1 + imin) +

Rt

Ct
β max

{

It+1 −
imin

β
, 0

}

= ΦG(t, t + 1) +
Rt

Ct
β

[

It+1 −
imin

β

]+

.

If It+1 > imin

β , that is if the return of the fund turns out to be higher than the

minimum guaranteed return, then Φ−ΦG > 0 and the policy holder exercises
their right to participate to the excess-return. This can be recognized as a
European call option15, again with imin

β as the strike price. We thus have:

Callt = Vt − Gt = Ct

[

V (t; Φ(t, T )) − V (t; ΦG(t, T ))
]+

which is the price of the call option embedded in the contract and thus the
time t fair value of the excess-return. We return to the amounts Ct−1 max{βIt, i

min}
and Ct−1(It−max{βIt, i

min}) from the previous section credited to the policy
and the company respectively, but this time we make a different rewriting:

max{βIt, i
min} = imin + max{βIt − imin, 0}

= imin + [βIt − imin]+,
(policy)

15A European call option is a contract giving the owner the right, but not the obligation,
to buy a specified amount of an underlying security at a specified strike price on a given
date.
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It − max{βIt, i
min} = (It − imin) − max{βIt − imin, 0}

= (It − imin) − [βIt − imin]+.
(company)

The functions are the same as before but can be interpreted in a different
way: each year the company collects the payoff It− imin, i.e. the fund return
in excess of the minimum guaranteed return, (or pays it, if negative) and
shortens a call option written on the fund. By exercising the call the policy
holder “buys” in on a piece of this excess-return, but without having to pay.

We define
Vt = Gt + Callt

as the call decomposition of the stochastic reserve. This decomposition lets
us compare the contract with guarantee to one that has a deterministic yield
(i.e. a known terminal benefit).

5.3 The surrender option

Another option that needs mentioning is the one that the insured has to
surrender the contract. This can be done at any time before maturity and
the surrender value at time t is of the form

Σt = Ctγt,

where γt, 0 < γt ≤ 1, is a contractually specified redemption coefficient.
The surrender option can thus be considered as an American put option
embedded in the contract: the insured has the right to at any time sell back
the contract to the insurer at the strike price Σt. But in order to price it
as such we would have to make the assumption that the insured rationally
exercises this right, which is often not the case. Firstly, the insured’s reason
for surrender may not have anything to do with the course of the market.
It could instead depend on the development of their personal finances and
consumptions. Secondly, though Italian insurance companies publish quar-
terly reports on the separate funds the information on the returns is usually
provided with a delay of one or two months, so even if the insured had
“rational” reasons for surrender they would not have all the information
needed to rationally exercise the option. The surrenders will therefore be
treated as purely technical events, i.e. by modeling them using experience-
based probability tables and considering them together with mortality to be
independent of market events.

6 Value of business in force

Up until now we have only considered the pure premium stochastic reserve Vt

calculated upon first order, i.e. prudential, or pessimistic, technical bases.
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There are however other ways to calculate the stochastic reserve, and we
therefore make the following definitions:

V
(2)
t : pure premium stochastic reserve calculated upon second order

technical bases (realistic mortality probabilities)

V
(3)
t : pure premium stochastic reserve calculated upon third order

technical bases (realistic mortality and surrender probabilities)

V̂
(3)
t : office premium stochastic reserve calculated upon third order

technical bases (realistic mortality and surrender probabilities

and premium loading Π)

The difference between the traditional reserve Rt and the reserve V̂
(3)
t ,

Et = Rt − V̂
(3)
t ,

is called the value of business in force (VBIF) of the policy and represents
the value at time t, at current market prices, of the total gross profit gener-
ated by the insurance contract.

The VBIF can be decomposed with respect to the different reserves, with
each component expressing a specific contribution to the total profit:

EF
t = Rt − Vt : financial profit

ED
t = Vt − V

(2)
t : mortality profit

ES
t = V

(2)
t − V

(3)
t : surrender profit

EL
t = V

(3)
t − V̂

(3)
t : premium loading profit

Obviously we have
Et = EF

t + ED
t + ES

t + EL
t .

7 Risk capital

The definition of risk capital16 is quite similar to that of Value-at-Risk
(VaR). Given a portfolio, a fixed probability p and a period θ, the VaR
is the maximum loss in the portfolio’s value during θ with probability p,
caused by an adverse movement of some risk factor. Here θ is usually a very
short period (a few days) and the impact on the VaR of the deterministic
price variation during this time can therefore be neglected. But if we extend

16Also called risk based capital or economic capital.
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the VaR definition to longer time horizons, e.g. where θ = 1 year, these price
variations can no longer be ignored. Moreover, an insurance company that
wants to be able to maintain a given credit rating may want to set p at a
very low level, giving it the signification of a one-year default probability17.
The risk capital can be defined as an extended version of VaR with respect
to θ and p.

7.1 Financial risk capital

In our market model there are two sources of uncertainty: that of bonds
and that of stock, and they are described by an interest rate process rt and
a stock index process St respectively. If we at the valuation time t consider
a contract that at time s > t will pay a random amount Zs that is only
affected by financial uncertainty, then the value loss in [t, T ], where T > t is
fixed, is defined by

L(t, T, rt, St, Zs) = −(V (T, rT , ST , Zs) − V (t, rt, St, Zs)).

This is a random variable that is affected by both uncertainties mentioned
above. We note however that L has a deterministic value variation caused
only by the passing of time: if the market is static we still get a variation in
value when the maturity s is shortened by T − t years. To avoid this time
decay we make the following redefinition:

L′(t, T, rt, St, Zs) = −(V (t, rT , ST , Zs) − V (t, rt, St, Zs)). (15)

This lets us calculate the loss L′ with respect to the value of the contract at
time t, but using the random market conditions of time T .

We now let Kintr(t, T, p, Zs) and Kstock(t, T, p, Zs) represent the interest
rate risk capital and the stock market risk capital respectively. They both
depend on the time interval [t, T ] and a predetermined probability p. If
we consider the variables L′(t, T, rT , St, Zs) (random only with respect to
the interest rate uncertainty) and L′(t, T, rt, ST , Zs) (random only with re-
spect to the stock market uncertainty) we can define the two risk capitals
implicitly through

Probt(L
′(t, T, rT , St, Zs) < Kintr(t, T, p, Zs)) = 1 − p

Probt(L
′(t, T, rt, ST , Zs) < Kstock(t, T, p, Zs)) = 1 − p,

where Probt is linked to the distributions of rt and ST respectively. The cal-
culation of the two risk capitals is then done using the underlying percentile
method:

17A credit rating is an estimate, based on previous dealings, of a company’s ability to
fulfill its financial commitments. Default is the failure to fulfill such a commitment.
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If we assume that the function V (t, r, S, Zs) is strictly monotone with respect
to r and S we can write:

Kintr(t, T, p, Zs) = max{L′(t, T, r+
T , St, Zs), L

′(t, T, r−T , St, Zs)}
Kstock(t, T, p, Zs) = max{L′(t, T, rt, S

+
T , Zs), L

′(t, T, rt, S
−
T , Zs)},

where the percentiles r+
T , r−T , S+

T and S−
T are defined through

Probt(rT < r+
T ) = 1 − p

Probt(rT < r−T ) = p

Probt(ST < S+
T ) = 1 − p

Probt(ST < S−
T ) = p

and are calculated using the distribution functions of rT and ST which as
seen in sections 4.1–4.2 are non-centered chi-squared and lognormal respec-
tively. In this way we only need to consider the quantities L′(t, T, r+

T , St, Zs),
L′(t, T, r−T , St, Zs), L′(t, T, rt, S

+
T , Zs) and L′(t, T, rt, S

−
T , Zs) which in turn

are obtained by calculating V (t, rt, St, Zs), V (t, r+
T , St, Zs), V (t, r−T , St, Zs),

V (t, rt, S
+
T , Zs) and V (t, rt, S

−
T , Zs) and subtracting according to (15).

7.2 Technical risk capital

The technical risk capital is defined separately for mortality and surrender
and like the financial risk capital it is calculated using the underlying per-
centile method.

For the mortality risk capital we get:

Kmort(t, T, p, Zs) = max{L′(t, T, q+
x , Zs), L

′(t, T, q−x , Zs)}.

The “shock” levels q+
x and q−x , where x is the age of the insured at the

valuation time, can be determined using different models. The hypothesis
used here is that of a lognormal one-year mortality rate. We have:

q±x = qxe± ησ , (16)

where qx is obtained from second-order mortality tables, σ is the standard
deviation of the disturbance process of the logarithm of the mortality rate
and η is a factor that depends on the desired confidence level.

The surrender risk capital is calculated in a similar way, i.e.:

Ksurr(t, T, p, Zs) = max{L′(t, T, s+, Zs), L
′(t, T, s−, Zs)}.
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The determination of the “shock” levels s+ and s− follows the indications
in QIS318: in the “up” scenario the central surrender rate s is increased
according to the formula

s+ = max{s + 3%, s · 50%}

and in the “down” scenario it is decreased by 50%.

7.3 Solvency capital requirement

The standard formula for calculating the SCR is divided into different mod-
ules forming the tree structure in figure 2. At the root of the tree is the

Figure 2: SCR structure

overall formula
SCR = BSCR + SCRop.

18As a preparation for Solvency II, the Committee of European Insurance and Occu-
pational Pensions Supervisors (CEIOPS) has launched a number of Quantitative Impact
Studies (QIS) in order to investigate the effect on the proposals on company and industry
levels. Companies participating to QIS fill out extensive pre-defined spreadsheets and the
results are then collected by CEIOPS in an overall report.
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SCRop is the capital charge for operational risk, which is defined in [7] as
“the risk of loss arising from inadequate or failed internal processes, people,
systems or external events”. BSCR is the basic solvency capital requirement
before any adjustments and it combines the charges from five major risk
categories: market risk (SCRmkt), counterparty default risk (SCRdef), life
underwriting risk (SCRlife), non-life underwriting risk (SCRnl) and health
underwriting risk (SCRhealth). A somewhat simplified19 formula for calcu-
lating the BSCR is:

BSCR =

√

∑

r×c

CorrSCRr,c · SCRr · SCRc,

where CorrSCRr,c is the cell in row r, column c of the correlation matrix
CorrSCR in figure 3 and SCRr and SCRc are the capital charges for the
individual SCR risks according to the rows and columns of CorrSCR. With

Figure 3: SCR correlation matrix

this correlation matrix the individual risk modules are linearly combined to
form the overall SCR, with a confidence level of 99.5%. For the purpose
of this thesis we will deal only with the SCRmkt and the SCRlife, which
are associated with the financial risk capital and the technical risk capital
respectively.

7.3.1 The SCR market risk module

In QIS4 the market risk is defined as the risk arising “from the level or
volatility of market prices of financial instruments. Exposure to market
risk is measured by the impact of movements in the level of financial vari-
ables such as stock prices, interest rates, real estate prices and exchange
rates” ([7] p. 131). The SCRmkt is composed of the capital charges of
six sub-risks: interest rate risk (Mktint), equity risk (Mkteq), property risk
(Mktprop), spread risk (Mktsp), risk concentrations (Mktconc) and currency
risk (Mktfx). These are combined in the same way as with the BSCR but

19The complete formula also includes the effects of risk mitigating, i.e. the action to
reduce the severity of a risk.
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using the market correlation matrix CorrMkt in figure 4. The calculation
formula is:

SCRmkt =

√

∑

r×c

CorrMktr,c · Mktr · Mktc

We will here only deal with the Mktint and the Mkteq which we define

Figure 4: Mkt correlation matrix

to equal the interest rate risk capital and the stock market risk capital
respectively from section 7.1.

7.3.2 The SCR life underwriting risk module

This risk arises from the underwriting of life insurance contracts and is
composed of the capital charges of the following sub-risks: mortality risk
(Lifemort), longevity risk (Lifelong), disability/morbidity risk (Lifedis), lapse
risk (Lifelapse), expense risk (Lifeexp), revision risk (Liferev) and catastrophe
risk (LifeCAT). These are combined using the life correlation matrix in figure
5, the calculation formula being

SCRlife =

√

∑

r×c

CorrLifer,c · Lifer · Lifec

We will here only deal with the Lifemort and the Lifelapse which we define to

Figure 5: Life correlation matrix
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equal the mortality risk capital and the surrender risk capital respectively
from section 7.2.

7.4 The traditional solvency margin

The Solvency I margin used in Italy is calculated according to [12] as 4% of
the traditional reserve +0.3% of the positive sums at risk. This is without
considering reinsurance. For term life insurance policies with durations non
longer than 3 years the share of positive sums at risk is instead 0.1% and
for durations between 3 and 5 years it is 0.15%. In the case of our example
policy the formula for calculating the solvency margin (SM) is:

SM = 0.04Rt + 0.003[Ct − Rt]
+. (17)

8 Valuation of the contract

The DFM model will now be used to valuate a contract that has been
provided by an Italian mutual insurance company. Both the value of the
traditional reserve and the stochastic reserve under various assumptions will
be calculated, along with the VBIF and the price of the embedded options.
Finally the SCR will be computed and compared to the traditional solvency
margin.

8.1 Contract description

The contract is of the type decribed in section 3. When we start the valu-
ation ten years have passed since the issue date and five years remain until
maturity. We call this time 0 and thus have t = 0, 1, 2, . . . , T with T = 5.

Characteristics
Tariff type Participating endowment
Premium type Annual readjustable

of the tariff Demographical bases SI81
Technical rate i 4.00%
Participation coefficient β 0.8

Sex M
Policy duration 15 years

of the contract Number of premia 15
Anti-duration (time from issue) 10 years
Age reached 52

We can see that the premium is payed until maturity if the insured should
not die before that time. The mortality tables SI81 are based on demograph-
ical data from 1981 collected by Istituto Nazionale di Statistica (ISTAT) and
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can be found in appendix C.1.

Financial characteristics of the contract
Assured capital - maturity 23 403.08
Assured capital - death 23 403.08

at time 0 Surrender value 14 482.76
Pure premium (-) -1 184.42
Office premium (-) -1 355.94

These figures have been provided by the insurance company and will be
our time 0 “starting values” in the valuation. All amounts are given in EUR.

Management strategy for the fund
Bond component 100.00%
Stock component 0.00%

As we can see, the fund where the premium is invested is made up en-
tirely by bonds which means that the financial part of the valuation only
will be affected by interest rate uncertainty.

8.2 Valuation assumptions

In section 6 four different ways of calculating the stochastic reserve were
presented, each one with a different set of mortality and surrender assump-
tions and with pure or office premium.

Valuation assumptions for the three orders
Order I II III

Mortality assumption central central central
Surrender assumption central central central
Mortality 100.00% SI81 66.00% SI92 66.00% SI92
Surrender 0.00% 0.00% 4.20%

Our example contract uses the SI81 mortality tables for the first order cal-
culations, but for the second and third orders the more recent SI92 tables
are used (see appendix C.2). We are however still dealing with prudential
figures, so to get more realistic assumptions the probabilities are reduced to
66% of their original values.
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Valuation assumptions for the technical risk capital
Order III III III III

Mortality assumption up down central central
Surrender assumption central central up down
Mortality 72.26% SI92 61.20% SI92 66.00% SI92 66.00% SI92
Surrender 4.20% 4.20% 7.20% 2.10%

The mortality “shock” levels are calculated using formula (16) with σ =
2.934% and η = 2.575834. The surrender “shock” levels are set as described
in section 7.2 according to QIS3 and with a central surrender rate of 4.20%.

8.3 Calculation of reserves

All the calculations in this section will be carried out using first order pure
premium assumptions. For the second and third orders and for the office
premium the approach is analogous so the details will be omitted (they can
however be found in appendix B). All the final results will be presented in
the next section.

Values
Year 0 1 2 3 4 5

Death benefit 23 403.08 23 403.08 23 403.08 23 403.08 23 403.08
Maturity benefit 0.00 0.00 0.00 0.00 23 403.08
Surrender value 16 170.01 17 904.61 19.687.61 21 520.07 23 403.08
Pure premium (-) -1 184.42 -1 184.42 -1 184.42 -1 184.42 -1 184.42

The values of the death and maturity benefits and the pure premium are
those provided by the insurance company from the financial characteristics
table in section 8.1. The time t surrender value St is calculated using the
formula

Σt =
Ct(a + t)

d(1 + r)−(T−t)

where a = 10 is the antiduration of the policy, d = 15 is the duration of the
policy and the rate r = 1.50% is contractually specified.

Probabilities at beginning of year (conditional)
Year 0 1 2 3 4 5

Death 0.00809 0.00900 0.01001 0.01107 0.01228
Life 0.99191 0.99100 0.98999 0.98893 0.98772
Surrender 0.00000 0.00000 0.00000 0.00000 0.00000
Premium payment 1.00000 1.00000 1.00000 1.00000 1.00000

The conditional death probability, i.e. the probability of death in year t if
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alive in year t− 1 for an x-year-old individual (here we have x = 52+ t− 1),
is given directly by the SI81 mortality tables. The conditional probability
of remaining alive is of course one minus that of death. For surrender the
probability is 0 since we are dealing with first order assumptions. The con-
ditional probability that the premium will be payed is 1 because it is payed
at the beginning of the year when the insured definitely is alive.

Probabilities at time 0 (non conditional)

Year 0 1 2 3 4 5

Death 0.00809 0.00893 0.00984 0.01078 0.01181
Life 1.00000 0.99191 0.98298 0.97314 0.96236 0.95055
Surrender 0.00000 0.00000 0.00000 0.00000 0.00000
Premium payment 0.99191 0.98298 0.97314 0.96236 0.95055

The unconditional death probability is calculated using the law of total
probability:

P (death in t) = P (death in t|alive in t − 1)P (alive in t − 1).

The unconditional probability of remaining alive in t is the probability of
being alive in t − 1 minus the probability of dying in t. The unconditional
premium probability is the same as that of remaining alive.

Projected cash flows
Year 0 1 2 3 4 5

Death 189.40 209.03 230.22 252.18 276.47
Life 0.00 0.00 0.00 0.00 22 245.76
Surrender 0.00 0.00 0.00 0.00 0.00
Premium payment -1 174.83 -1 164.26 -1 152.60 -1 139.84 0.00

We get the projected cash flows by multiplying the unconditional transi-
tion probabilities by the corresponding amounts from the “Values” table
above.

Rates
Year 0 1 2 3 4 5

Technical rate 4.00% 4.00% 4.00% 4.00% 4.00%
Guaranteed rate besides technical 0.00% 0.00% 0.00% 0.00% 0.00%
Market spot rate 4.68% 4.53% 4.51% 4.52% 4.53%

The technical rate i is contractually specified and serves at the same time as
the minimum guaranteed rate since the “guaranteed rate besides technical”
is 0.00%, i.e. imin = i. The insured is thus not entitled to more than a 4.00%
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rate of return but neither any less should It drop below 4.00%.

Discount factors
Year 0 1 2 3 4 5

Technical rate 1.00000 0.96154 0.92456 0.88900 0.85480 0.82193
Market rate 1.00000 0.95526 0.91525 0.87602 0.83801 0.80115

The technical (v(t)) and market (v(0, t)) discount factors are obtained from
the corresponding rates as follows:

v(t) = (1 + i)−t, v(0, t) = (1 + i(0, t))−t.

Valuation factors
Year 0 1 2 3 4 5

Premium 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039
Benefits 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039
Surrender 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039

The same valuation factors are used for premium, benefits and surrender.
The risk-neutral parameters α̂, γ̂ and ρ of the CIR model have been es-
timated through calibration (we don’t have to consider the parameter σ

belonging to the BS model nor the instantaneous correlation coefficient η

because the fund contains no stock). The values are:

α̂ = 0.215451168

γ̂ = 0.049246370

ρ = 0.045732693

Equation (13) has then been solved through Monte Carlo simulation pro-
ducing the stochastic valuation factor u(0, n) for n = 0, 1, . . . , 5.

Valuation factors (contract without guarantee)
Year 0 1 2 3 4 5

Premium 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590
Benefits 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590
Surrender 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590

This is the “base valuation factor” uB(t, T ) = V (t; ΦB(t, T )) correspond-
ing to the base value Bt used in the put decomposition. It is calculated
in the same way as the valuation factor with guarantee but using the base
readjustment factor ΦB(t, T ) defined in section 5.1.

32



Traditional valuation with technical rate
Year 0 1 2 3 4 5

Pure premium (-) -1 129.65 -1 076.42 -1 024.66 -974.34 0.00
Death benefit 182.11 193.26 204.67 215.57 227.24
Maturity benefit 0.00 0.00 0.00 0.00 18 284.40
Surrender benefit 0.00 0.00 0.00 0.00 0.00

Reserve 15 102.18

The previously calculated projected cash flows for premia and benefits are
discounted to time 0 using the technical discount factor, and their sum gives
the time 0 traditional reserve R0 defined by (6) in section 3.

Traditional valuation with market rate
Year 0 1 2 3 4 5

Pure premium (-) -1 122.27 -1 065.58 -1 009.71 -955.20 0.00
Death benefit 180.92 191.32 201.68 211.33 221.50
Maturity benefit 0.00 0.00 0.00 0.00 17 822.25
Surrender benefit 0.00 0.00 0.00 0.00 0.00

Reserve 14 676.25

In the same way as with the technical rate we here get the traditional mar-
ket rate reserve by discounting the cash flows using the market spot rate.
This reserve will not be used in the following calculations but it is neverthe-
less interesting to look at since it shows the evolution of the valuation from
traditional to stochastic reserve. In other words, it is an approach half way
between the traditional and the stochastic approach: it uses the assumption
of constancy for the future benefits typical of the former and the market
structure typical of the latter.

Fair valuation
Year 0 1 2 3 4 5

Pure premium (-) -1 126.35 -1 070.28 -1 015.87 -963.37 0.00
Death benefit 181.58 192.16 202.91 213.14 224.05
Maturity benefit 0.00 0.00 0.00 0.00 18 027.72
Surrender benefit 0.00 0.00 0.00 0.00 0.00

Reserve 14 865.69

This is the time 0 stochastic reserve V0 defined by (7) in section 3 or in
other words, the contract’s fair value. The cash flows are thus discounted
using the market based valuation factor u(0, n).
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Fair valuation of only the guaranteed benefits
Year 0 1 2 3 4 5

Pure premium (-) -1 122.27 -1 065.58 -1 009.71 -955.20 0.00
Death benefit 180.92 191.32 201.68 211.33 221.50
Maturity benefit 0.00 0.00 0.00 0.00 17 822.25
Surrender benefit 0.00 0.00 0.00 0.00 0.00

Reserve 14 676.25

This is the reserve regarding only the guarantees denoted by Gt in sec-
tion 5.2 (here of course we have the time 0 value G0). Since the guaranteed
rate besides technical is 0 the cash flows are discounted by only the market
rate and G0 is thus equal to the traditional market rate reserve. We will use
this reserve in the calculation of the embedded call option.

Fair valuation of the benefits without guarantee
Year 0 1 2 3 4 5

Pure premium (-) -1 128.70 -1 075.57 -1 024.86 -976.78 0.00
Death benefit 180.49 189.82 199.21 207.97 217.28
Maturity benefit 0.00 0.00 0.00 0.00 17 483.04
Surrender benefit 0.00 0.00 0.00 0.00 0.00

Reserve 14 271.91

The stochastic reserve without guarantees is the base value Bt (here B0)
defined in section 5.1. The cash flows are thus discounted using the “con-
tract without guarantee” valuation factor uB(0, n). We will use this reserve
in the calculation of the embedded put option.

8.4 Embedded options

Components of the stochastic reserve
% of the % of the

stochastic traditional
Components Value reserve reserve

Base component 14 271.91 96.01% 94.50%
Put component 593.78 3.99% 3.93%
Guarantee component 14 676.25 98.73% 97.18%
Call component 189.45 1.27% 1.25%

The time 0 put value is given by the formula

Put0 = V0 − B0 = 14865.69 − 14271.91 = 593.78

derived in section 5.1. This is the cost of the minimum guarantee, and di-
viding by V0 and R0 we get a view of the proportion of the stochastic and
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traditional reserves that the guarantee represents. Figure 6 shows the put
price in percent of the stochastic reserve for different variations of the inter-
est rate. The put price corresponding to the central interest rate is compared
to those corresponding to the rates used as “up” and “down” shocks in the
risk capital calculations. We see that the price of the put option increases as

Figure 6: Put prices in percent of the stochastic reserve under different
interest rate scenarios.

the interest rate, and thus the fund return, decreases and vice versa. This
is consistent with the characteristics of the minimum guarantee discussed in
section 5.1.

The calculations of the time 0 call value from section 5.2 are analougus:

Call0 = V0 − G0 = 14865.69 − 14676.25 = 189.45,

and we get the time 0 fair value of the excess-return generated by the guar-
anteed contract.
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8.5 VBIF

Calculation of the VBIF
Order I II III III
Premium pure pure pure office

Interest rate assumption central central central central
Mortality assumption central central central central
Surrender assumption central central central central

Traditional reserve 15 102.18
Stochastic reserve 14 865.69 14 773.30 14 853.22 14 301.38

This table shows a summary of the stochastic reserve calculations made
with the first, second and third order pure premium assumptions and the
third order office premium assumption. From section 6 we see that they cor-

respond to V0, V
(2)
0 , V

(3)
0 and V̂

(3)
0 respectively. We also have the value of

the traditional reserve R0. This is all the information we need for calculating
the time 0 VBIF:

E0 = R0 − V̂
(3)
0 = 15102.18 − 14301.38 = 800.80.

VBIF decomposition
Financial 236.49
Mortality 92.39
Surrender -79.91
Loading 551.83

Total 800.80

The various components of the VBIF are calculated using the formulae given
in section 6:

EF
0 = R0 − V0 = 15102.18 − 14865.69 = 236.49

ED
0 = V0 − V

(2)
0 = 14865.69 − 14773.30 = 92.39

ES
0 = V

(2)
0 − V

(3)
0 = 14773.30 − 14853.22 = −79.91

EL
0 = V

(3)
0 − V̂

(3)
0 = 14853.22 − 14301.38 = 551.83

We see that the surrender “profit” is actually a loss. It is however covered
by the premium loading which makes the biggest positive contribution to
the VBIF. The second largest profit comes from the financial component
and this shows how a profit can arise just by changing from a statutory to
a stochastic valuation approach.

8.6 Risk capital

For calculating the risk capital we need the natural probability distribution
of the CIR model. From the previous risk-neutral calibration we already
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have the value of ρ, and by assigning a value to γ we can derive the remaining
parameters α and π as described in section 4.3:

γ = 0.042859341

α =
α̂γ̂

γ
=

0.215451168 · 0.049246370
0.042859341

= 0.247558355

π = α − α̂ = 0.247558355 − 0.215451168 = 0.032107187

The CIR density function for these parameter values is illustrated in figure
7. The time interval [t, T ] is 1 year.

Figure 7: The CIR non-central chi-square density function

Interest rate risk capital
Order III III
Premium office office

Interest rate up down
Mortality central central
Surrender central central

Stochastic reserve V̂
(3)∗
0 13 624.57 15 115.44

Difference −(V̂
(3)
0 − V̂

(3)∗
0 ) -676.81 814.06

Adverse market move a.m.m.

Risk capital 814.06
% of stochastic reserve 5.69%
% of traditional reserve 5.39%

Since the reference fund contains only bonds there is no stock market risk
and therefore the interest rate risk capital alone represents the financial risk
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capital. The value loss is calculated based on formula (15) for r+ and r−

with p = 0.005:

L′(t, T, r+
T ) = −(V (t, rT ) − V (t, r+

T ))

= −(14301.38 − 13624.57)

= −676.81

In this case the “loss” turns out to be negative which means that the com-
pany instead makes a profit if the interest rate is high.

L′(t, T, r−T ) = −(V (t, rT ) − V (t, r−T ))

= −(14301.38 − 15115.44)

= 814.06

Since this result is positive we have an adverse market move, i.e. a move (in
this case an interest rate fall) that causes a loss for the risk in question.

The interest rate risk capital is now obtained by taking the maximum of
the two losses, or in this case choosing the only loss. Should both scenarios
lead to a profit the risk capital will be superfluous and therefore be set to 0.

Kintr(t, T, p) = max{L′(t, T, r+
T ), L′(t, T, r−T )}

= max{−676.81, 814.06}
= 814.06

Mortality risk capital
Order III III
Premium office office

Interest rate central central
Mortality up down
Surrender central central

Stochastic reserve V̂
(3)∗
0 14 307.51 14 295.70

Difference −(V̂
(3)
0 − V̂

(3)∗
0 ) 6.12 -5.68

Adverse market move a.m.m.

Risk capital 6.12
% of stochastic reserve 0.04%
% of traditional reserve 0.04%

First the value loss is calculated for the two “shock” levels q+
x and q−x :

L′(t, T, q+
x ) = −(V (t, qx) − V (t, q+

x ))

= −(14301.38 − 14307.51)

= 6.12
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L′(t, T, q−x ) = −(V (t, qx) − V (t, q−x ))

= −(14301.38 − 14295.70)

= −5.68

We then get the mortality risk capital through:

Kmort(t, T, p) = max{L′(t, T, q+
x ), L′(t, T, q−x )}

= max{6.12,−5.68}
= 6.12

Surrender risk capital
Order III III
Premium office office

Interest rate central central
Mortality central central
Surrender up down

Stochastic reserve V̂
(3)∗
0 14 394.30 14 232.81

Difference −(V̂
(3)
0 − V̂

(3)∗
0 ) 92.92 -68.58

Adverse market move a.m.m.

Risk capital 92.92
% of stochastic reserve 0.65%
% of traditional reserve 0.62%

Here the value loss for s+ and s− becomes:

L′(t, T, s+) = −(V (t, s) − V (t, s+))

= −(14301.38 − 14394.30)

= 92.92

L′(t, T, s−) = −(V (t, s) − V (t, s−))

= −(14301.38 − 14232.81)

= −68.58

We then get the surrender risk capital through:

Ksurr(t, T, p) = max{L′(t, T, s+), L′(t, T, s−)}
= max{92.92,−68.58}
= 92.92
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8.7 SCR

Having computed the risk capitals we can now calculate the solvency capital
requirement as described in section 7.3. For the market risk we get:

SCRmkt =

√

∑

r×c

CorrMktr,c · Mktr · Mktc

=
√

CorrMktint,int · (Mktint)2

=
√

1 · (Kintr)2

=
√

1 · 814.062

= 814.06

Because the fund contains only bonds the market risk SCR equals the in-
terest rate risk capital.

For the life underwriting risk we get:

SCRlife =

√

∑

r×c

CorrLifer,c · Lifer · Lifec

=
√

1 · (Kmort)2 + 0 · Kmort · Ksurr + 1 · (Ksurr)2

=
√

6.122 + 92.922

= 93.12

We can now compute the BSCR:

BSCR =

√

∑

r×c

CorrSCRr,c · SCRr · SCRc

=
√

1 · (SCRmkt)2 + 0.25 · SCRmkt · SCRlife + 1 · (SCRlife)2

=
√

814.062 + 0.25 · 814.06 · 93.12 + 93.122

= 830.85

Due to the limited information available about the example contract we
cannot calculate the SCRop so our final result will be a first approximation
to the overall SCR. We thus get:

SCR ≈ BSCR = 830.85.

We define as required capital the amount of capital that the insurance com-
pany would need to hold to be able to meet all its commitments. Under the
DFM approach the required capital for this example contract is:

fair value + SCR = 14865.69 + 830.85 = 15696.54.
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8.8 SM

The traditional Solvency I margin is calculated according to formula (17)
as:

SM = 0.04 · 15102.18 + 0.003 · (23403.08 − 15102.18) = 628.99.

Under the traditional approach the required capital for this contract is thus:

traditional reserve + SM = 15102.18 + 628.99 = 15731.17.

9 Conclusions

The purpose of this thesis has been to describe the theoretical structure of
the DFM internal model and then putting it into practical use by performing
a valuation of a participating policy provided by an Italian insurance com-
pany. The DFM model has proved to be consistent with the future Solvency
II regulations as it provides a market-based valuation of assets and liabilities
that accurately takes into account the different risk factors associated with
a contract. It is also able to price the minimum guarantees embedded in
participating policies; something that is of great importance in Italy, where
virtually all insurance policies are of this type.

The practical application of the model has produced the values of the stochas-
tic reserve and of the embedded put and call options. In addition, the finan-
cial and technical risk capitals have been computed and integrated in the
standard QIS3 model for the calculation of the solvency capital requirement.
The traditional reserve has also been calculated according to current Sol-
vency I principles, and by comparing it to the stochastic reserve the value of
business in force has been derived. As a measure of the difference between
the two valuation approaches the traditional solvency margin has been com-
puted and compared to the SCR. This last result is worth discussing more
deeply:

Looking at the required capitals computed in sections 8.7–8.8 the results
are very similar, but the margins and their proportions of the respective
reserves reveal a greater difference between the two valuation approaches.
In this example, the fact that the SCR is higher than the SM indicates
that according to the DFM model and the assumptions made the Solvency
I margin is not sufficient for covering the risks that the contract is exposed
to. However, the traditional reserve is greater than the stochastic reserve,
or rather it is overabundant with respect to the fair valued commitments.
Thus on the whole the required capital under the traditional approach is
sufficient to cover both the commitments and the risks. It is important
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to note that the valuation performed here generally is extended to a com-
pany’s whole portfolio of contracts, why the results obtained can only be
seen as indicative. In any case, calculation of the required capital using a
market-consistent model gives a better measure of a contract or portfolio’s
risk profile. Since the traditional solvency margin is calibrated solely on the
statutory reserve and the sums of risk it is not able to take into account the
actual riskiness of a contract.

The DFM model involves more aspects than the ones described in this the-
sis. One of them concerns the investment strategy for the reference fund.
Since this to some degree is discretionary of the insurer and since the fund
represents the underlying of the embedded options it follows that the prices
of the minimum guarantees can be partly controlled. Finding the most ad-
vantageous trading strategy is therefore an important aspect of the DFM
approach that together with its more detailed risk analyses would be an
interesting issue to study further.
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A Itô’s lemma

The “total differential” rule states that if y = f(x, t) is a function of the
variables x and t and if it has first derivatives, then it’s differential can
be expressed as the sum of the differentials of the independent variables
multiplied by the relative partial derivatives:

dy =
∂f

∂t
dt +

∂f

∂x
dx.

This rule can be modified to suit the stochastic differential dZ(t):

If Y = f(Z, t) is a function of Z(t) and of time, then the stochastic dif-
ferential of the process Y (t) is expressed by:

dY =

(

∂f

∂t
+

1

2

∂2f

∂Z2

)

dt +
∂f

∂Z
dZ.

More generally, if X(t) is a process described by the stochastic differential
equation

dX = a(X, t)dt + b(X, t)dZ (18)

and if we consider the function Y = f(X, t), then we have:

dY =

(

∂f

∂t
+

1

2
b2(X, t)

∂2f

∂X2

)

dt +
∂f

∂X
dX. (19)

By inserting expression (18) into expression (19) and regrouping the terms
by “dt” and by “dZ”, (19) can be written as:

dY =

(

∂f

∂t
+ a(X, t)

∂f

∂X
+

1

2
b2(X, t)

∂2f

∂X2

)

dt + b(X, t)
∂f

∂X
dZ.

This result is known as Itô’s lemma. Based on this rule it is possible to
describe the “probabilistic dynamics” of a diffusion processes. For example,
if the dynamics of the process Y (t) is described by the stochastic differential
equation

dY = aY (Y, t)dt + bY (Y, t)dZ,

then the dependence Y = f(X, t) implies that the coefficients aY and bY

too are functions of X and t and Itô’s lemma supplies the forms of these
functions:

aY (X, t) =
∂f

∂t
+ a(X, t)

∂f

∂X
+

1

2
b2(X, t)

∂2f

∂X2

and

bY (X, t) = b(X, t)
∂f

∂X
.
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B Additional valuation results

B.1 Second order pure premium valuation

Time
Year 0 1 2 3 4 5

Values
Death benefit - 23403.08 23403.08 23403.08 23403.08 23403.08
Life benefit - 0.00 0.00 0.00 0.00 23403.08
Surrender value - 16170.01 17904.61 19687.61 21520.07 23403.08
Pure premium (-) - 14482.76 14482.76 14482.76 14482.76 0.00

Probabilities
at beginning
of year
(conditional)
Death - 0.00362 0.00408 0.00455 0.00513 0.00573
Life - 0.99638 0.99592 0.99545 0.99487 0.99427
Surrender - 0.00000 0.00000 0.00000 0.00000 0.00000
Premium payment - 1.00000 1.00000 1.00000 1.00000 1.00000

at time 0
(non conditional)
Death - 0.00362 0.00406 0.00452 0.00507 0.00563
Life 1.00000 0.99638 0.99232 0.98780 0.98273 0.97710
Surrender - 0.00000 0.00000 0.00000 0.00000 0.00000
Premium payment - 0.99638 0.99232 0.98780 0.98273 0.97710

Projected
cash flows
Death - 84.67 95.07 105.71 118.61 131.78
Life - 0.00 0.00 0.00 0.00 22867.24
Surrender - 0.00 0.00 0.00 0.00 0.00
Premium payment - 14430.37 14371.53 14306.12 14232.71 0.00

Rates
Technical rate 4.00% 4.00% 4.00% 4.00% 4.00%
Guaranteed rate
besides technical 0.00% 0.00% 0.00% 0.00% 0.00%
Market spot rate 4.68% 4.53% 4.51% 4.52% 4.53%

Factors
of total amount
Guaranteed rate
besides technical 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

discount
Technical rate 1.00000 0.96154 0.92456 0.88900 0.85480 0.82193
Market rate 1.00000 0.95526 0.91525 0.87602 0.83801 0.80115
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valuation
Premium 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039
Benefits 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039
Surrender 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039

valuation
(contract without
guarantee)
Premium 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590
Benefits 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590
Surrender 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590

Valuations
traditional
with technical rate
Pure premium (-) 13875.35 13287.29 12718.09 12166.18 0.00
Death benefit 81.41 87.90 93.97 101.39 108.32
Life benefit 0.00 0.00 0.00 0.00 18795.20
Surrender benefit 0.00 0.00 0.00 0.00 0.00
Reserve 71315.10

traditional
with market rate
Pure premium (-) 13784.69 13153.51 12532.47 11927.22 0.00
Death benefit 80.88 87.01 92.60 99.40 105.58
Life benefit 0.00 0.00 0.00 0.00 18320.15
Surrender benefit 0.00 0.00 0.00 0.00 0.00
Reserve 70183.51

fair value
Pure premium (-) 13834.83 13211.56 12608.98 12029.20 0.00
Death benefit 81.17 87.40 93.17 100.25 106.80
Life benefit 0.00 0.00 0.00 0.00 18531.36
Surrender benefit 0.00 0.00 0.00 0.00 0.00
Reserve 70684.70

fair value
only guaranteed
benefits
Pure premium (-) 13784.69 13153.51 12532.47 11927.22 0.00
Death benefit 80.88 87.01 92.60 99.40 105.58
Life benefit 0.00 0.00 0.00 0.00 18320.15
Surrender benefit 0.00 0.00 0.00 0.00 0.00
Reserve 70183.51

fair value
without guarantee
Pure premium (-) 13801.40 13151.73 12531.64 11943.81 0.00
Death benefit 80.68 86.33 91.47 97.82 103.57
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Life benefit 0.00 0.00 0.00 0.00 17971.46
Surrender benefit 0.00 0.00 0.00 0.00 0.00
Reserve 69859.90

B.2 Third order pure premium valuation

Time
Year 0 1 2 3 4 5

Values
Death benefit - 23403.08 23403.08 23403.08 23403.08 23403.08
Life benefit - 0.00 0.00 0.00 0.00 23403.08
Surrender value - 15836.08 17680.98 19577.67 21527.28 23530.98
Pure premium (-) - -1184.42 -1184.42 -1184.42 -1184.42 0.00

Probabilities
at beginning
of year
(conditional)
Death - 0.00362 0.00408 0.00455 0.00513 0.00573
Life - 0.99638 0.99592 0.99545 0.99487 0.99427
Surrender - 0.04200 0.04200 0.04200 0.04200 0.04200
Premium payment - 1.00000 1.00000 1.00000 1.00000 1.00000

at time 0
(non conditional)
Death - 0.00362 0.00389 0.00415 0.00446 0.00474
Life 1.00000 0.95453 0.91071 0.86847 0.82770 0.78836
Surrender - 0.04185 0.03993 0.03809 0.03631 0.03460
Premium payment - 0.95453 0.91071 0.86847 0.82770 0.78836

Projected
cash flows
Death - 84.67 91.08 97.01 104.28 110.99
Life - 0.00 0.00 0.00 0.00 18450.07
Surrender - 662.71 706.08 745.74 781.73 814.14
Premium payment - -1130.57 -1078.66 -1028.64 -980.35 0.00

Rates
Technical rate 4.00% 4.00% 4.00% 4.00% 4.00%
Guaranteed rate
besides technical 0.00% 0.00% 0.00% 0.00% 0.00%
Market spot rate 4.68% 4.53% 4.51% 4.52% 4.53%

Factors
of total amount
Guaranteed rate
besides technical 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

discount
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Technical rate 1.00000 0.96154 0.92456 0.88900 0.85480 0.82193
Market rate 1.00000 0.95526 0.91525 0.87602 0.83801 0.80115

valuation
Premium 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039
Benefits 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039
Surrender 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039

valuation
(contract without
guarantee)
Premium 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590
Benefits 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590
Surrender 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590

Valuations
traditional
with technical rate
Pure premium (-) -1087.09 -997.28 -914.45 -838.00 0.00
Death benefit 81.41 84.21 86.24 89.14 91.23
Life benefit 0.00 0.00 0.00 0.00 15164.62
Surrender benefit 637.22 652.81 662.96 668.22 669.16
Reserve 15050.39

traditional
with market rate
Pure premium (-) -1079.98 -987.24 -901.11 -821.55 0.00
Death benefit 80.88 83.36 84.99 87.39 88.92
Life benefit 0.00 0.00 0.00 0.00 14781.33
Surrender benefit 633.06 646.24 653.28 655.10 652.25
Reserve 14656.91

fair value
Pure premium (-) -1083.91 -991.60 -906.61 -828.57 0.00
Death benefit 81.17 83.73 85.50 88.14 89.95
Life benefit 0.00 0.00 0.00 0.00 14951.74
Surrender benefit 635.36 649.09 657.27 660.70 659.77
Reserve 14831.73

fair value
only guaranteed
benefits
Pure premium (-) -1079.98 -987.24 -901.11 -821.55 0.00
Death benefit 80.88 83.36 84.99 87.39 88.92
Life benefit 0.00 0.00 0.00 0.00 14781.33
Surrender benefit 633.06 646.24 653.28 655.10 652.25
Reserve 14656.91

fair value
without guarantee
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Pure premium (-) -1128.70 -1075.57 -1024.86 -976.78 0.00
Death benefit 80.68 82.71 83.94 86.00 87.23
Life benefit 0.00 0.00 0.00 0.00 14499.99
Surrender benefit 631.53 641.19 645.27 644.68 639.84
Reserve 13917.16

B.3 Third order office premium valuation

Time
Year 0 1 2 3 4 5

Values
Death benefit - 23403.08 23403.08 23403.08 23403.08 23403.08
Life benefit - 0.00 0.00 0.00 0.00 23403.08
Surrender value - 15836.08 17680.98 19577.67 21527.28 23530.98
Office premium (-) - -1355.94 -1355.94 -1355.94 -1355.94 0.00

Probabilities
at beginning
of year
(conditional)
Death - 0.00362 0.00408 0.00455 0.00513 0.00573
Life - 0.99638 0.99592 0.99545 0.99487 0.99427
Surrender - 0.04200 0.04200 0.04200 0.04200 0.04200
Premium payment - 1.00000 1.00000 1.00000 1.00000 1.00000

at time 0
(non conditional)
Death - 0.00362 0.00389 0.00415 0.00446 0.00474
Life 1.00000 0.95453 0.91071 0.86847 0.82770 0.78836
Surrender - 0.04185 0.03993 0.03809 0.03631 0.03460
Premium payment - 0.95453 0.91071 0.86847 0.82770 0.78836

Projected
cash flows
Death - 84.67 91.08 97.01 104.28 110.99
Life - 0.00 0.00 0.00 0.00 18450.07
Surrender - 662.71 706.08 745.74 781.73 814.14
Premium payment - -1294.29 -1234.86 -1177.59 -1122.31 0.00

Rates
Technical rate 4.00% 4.00% 4.00% 4.00% 4.00%
Guaranteed rate
besides technical 0.00% 0.00% 0.00% 0.00% 0.00%
Market spot rate 4.68% 4.53% 4.51% 4.52% 4.53%

Factors
of total amount
Guaranteed rate
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besides technical 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

discount
Technical rate 1.00000 0.96154 0.92456 0.88900 0.85480 0.82193
Market rate 1.00000 0.95526 0.91525 0.87602 0.83801 0.80115

valuation
Premium 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039
Benefits 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039
Surrender 1.00000 0.95873 0.91929 0.88137 0.84518 0.81039

valuation
(contract without
guarantee)
Premium 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590
Benefits 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590
Surrender 1.00000 0.95295 0.90810 0.86528 0.82469 0.78590

Valuations
traditional
with technical rate
Office premium (-) -1244.51 -1141.70 -1046.88 -959.36 0.00
Death benefit 81.41 84.21 86.24 89.14 91.23
Life benefit 0.00 0.00 0.00 0.00 15164.62
Surrender benefit 637.22 652.81 662.96 668.22 669.16
Reserve 14494.78

traditional
with market rate
Office premium (-) -1236.38 -1130.21 -1031.60 -940.51 0.00
Death benefit 80.88 83.36 84.99 87.39 88.92
Life benefit 0.00 0.00 0.00 0.00 14781.33
Surrender benefit 633.06 646.24 653.28 655.10 652.25
Reserve 14108.09

fair value
Office premium (-) -1240.87 -1135.19 -1037.90 -948.56 0.00
Death benefit 81.17 83.73 85.50 88.14 89.95
Life benefit 0.00 0.00 0.00 0.00 14951.74
Surrender benefit 635.36 649.09 657.27 660.70 659.77
Reserve 14279.89

fair value
only guaranteed
benefits
Office premium (-) -1236.38 -1130.21 -1031.60 -940.51 0.00
Death benefit 80.88 83.36 84.99 87.39 88.92
Life benefit 0.00 0.00 0.00 0.00 14781.33
Surrender benefit 633.06 646.24 653.28 655.10 652.25
Reserve 14108.09
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fair value
without guarantee
Office premium (-) -1292.15 -1231.32 -1173.27 -1118.23 0.00
Death benefit 80.68 82.71 83.94 86.00 87.23
Life benefit 0.00 0.00 0.00 0.00 14499.99
Surrender benefit 631.53 641.19 645.27 644.68 639.84
Reserve 13308.10

C Mortality tables

C.1 The SI81 tables

Male Female

Age Lx qx(·1000) Age Lx qx(·1000)

0 100000 15,33 0 100000 12,04
1 98467 0,77 1 98796 0,71
2 98391 0,53 2 98726 0,49
3 98339 0,40 3 98678 0,32
4 98300 0,34 4 98646 0,25
5 98267 0,33 5 98621 0,23
6 98235 0,31 6 98598 0,21
7 98205 0,30 7 98577 0,22
8 98176 0,30 8 98555 0,20
9 98147 0,28 9 98535 0,17
10 98120 0,28 10 98518 0,17
11 98093 0,27 11 98501 0,18
12 98067 0,31 12 98483 0,18
13 98037 0,40 13 98465 0,22
14 97998 0,52 14 98443 0,25
15 97947 0,69 15 98418 0,26
16 97879 0,90 16 98392 0,28
17 97791 1,03 17 98364 0,30
18 97690 1,14 18 98334 0,34
19 97579 1,15 19 98301 0,37
20 97467 1,10 20 98265 0,39
21 97360 1,09 21 98227 0,39
22 97254 1,09 22 98189 0,35
23 97148 1,05 23 98155 0,35
24 97046 1,04 24 98121 0,35
25 96945 1,01 25 98087 0,39
26 96847 0,98 26 98049 0,42
27 96752 0,98 27 98008 0,42
28 96657 0,97 28 97967 0,44
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Male Female

Age Lx qx(·1000) Age Lx qx(·1000)

29 96563 0,98 29 97924 0,45
30 96468 0,98 30 97880 0,49
31 96373 1,04 31 97832 0,52
32 96273 1,07 32 97781 0,54
33 96170 1,08 33 97728 0,56
34 96066 1,17 34 97673 0,65
35 95954 1,22 35 97610 0,71
36 95837 1,34 36 97541 0,80
37 95709 1,50 37 97463 0,90
38 95565 1,70 38 97375 0,96
39 95403 1,88 39 97282 1,05
40 95224 2,09 40 97180 1,15
41 95025 2,29 41 97068 1,23
42 94807 2,53 42 96949 1,34
43 94567 2,79 43 96819 1,49
44 94303 3,18 44 96675 1,61
45 94003 3,63 45 96519 1,86
46 93662 4,14 46 96339 2,06
47 93274 4,69 47 96141 2,27
48 92837 5,22 48 95923 2,49
49 92352 5,74 49 95684 2,71
50 91822 6,43 50 95425 2,86
51 91232 7,21 51 95152 3,18
52 90574 8,09 52 94849 3,48
53 89841 9,00 53 94519 3,89
54 89032 10,01 54 94151 4,31
55 88141 11,07 55 93745 4,68
56 87165 12,28 56 93306 5,10
57 86095 13,42 57 92830 5,59
58 84940 14,54 58 92311 6,06
59 83705 16,25 59 91752 6,81
60 82345 17,56 60 91127 7,53
61 80899 19,05 61 90441 8,35
62 79358 20,51 62 89686 9,14
63 77730 22,02 63 88866 10,05
64 76018 23,98 64 87973 10,96
65 74195 26,57 65 87009 12,08
66 72224 28,99 66 85958 13,45
67 70130 31,74 67 84802 14,94
68 67904 34,55 68 83535 16,56
69 65558 37,87 69 82152 18,54
70 63075 42,14 70 80629 21,11
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Male Female

Age Lx qx(·1000) Age Lx qx(·1000)

71 60417 46,63 71 78927 23,96
72 57600 51,77 72 77036 27,25
73 54618 57,16 73 74937 30,87
74 51496 62,84 74 72624 34,95
75 48260 68,88 75 70086 39,42
76 44936 76,29 76 67323 44,86
77 41508 83,36 77 64303 50,73
78 38048 90,75 78 61041 57,13
79 34595 98,77 79 57554 63,97
80 31178 107,58 80 53872 71,39
81 27824 117,67 81 50026 79,50
82 24550 127,86 82 46049 88,49
83 21411 138,85 83 41974 98,30
84 18438 150,61 84 37848 109,02
85 15661 163,21 85 33722 120,75
86 13105 176,73 86 29650 133,49
87 10789 191,03 87 25692 147,36
88 8728 206,35 88 21906 162,42
89 6927 222,75 89 18348 178,77
90 5384 240,16 90 15068 196,44
91 4091 258,37 91 12108 215,56
92 3034 277,85 92 9498 236,05
93 2191 298,49 93 7256 258,13
94 1537 320,10 94 5383 281,81
95 1045 343,54 95 3866 307,04
96 686 367,35 96 2679 334,08
97 434 391,71 97 1784 362,11
98 264 416,67 98 1138 392,79
99 154 448,05 99 691 424,02
100 85 470,59 100 398 457,29
101 45 511,11 101 216 490,74
102 22 500,00 102 110 527,27
103 11 545,45 103 52 557,69
104 5 104 23

C.2 The SI92 tables

Male Female

Age Lx qx(·1000) Age Lx qx(·1000)

0 100000 8,79 0 100000 6,91
1 99121 0,45 1 99309 0,44
2 99076 0,33 2 99265 0,30
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Male Female

Age Lx qx(·1000) Age Lx qx(·1000)

3 99043 0,25 3 99235 0,22
4 99018 0,21 4 99213 0,18
5 98997 0,20 5 99195 0,15
6 98977 0,20 6 99180 0,13
7 98957 0,20 7 99167 0,13
8 98937 0,19 8 99154 0,11
9 98918 0,19 9 99143 0,12
10 98899 0,18 10 99131 0,13
11 98881 0,17 11 99118 0,14
12 98864 0,21 12 99104 0,15
13 98843 0,25 13 99089 0,17
14 98818 0,37 14 99072 0,19
15 98781 0,55 15 99053 0,22
16 98727 0,74 16 99031 0,25
17 98654 0,88 17 99006 0,28
18 98567 0,98 18 98978 0,29
19 98470 1,05 19 98949 0,31
20 98367 1,08 20 98918 0,31
21 98261 1,13 21 98887 0,30
22 98150 1,18 22 98857 0,29
23 98034 1,18 23 98828 0,31
24 97918 1,22 24 98797 0,33
25 97799 1,25 25 98764 0,38
26 97677 1,31 26 98726 0,42
27 97549 1,36 27 98685 0,45
28 97416 1,44 28 98641 0,47
29 97276 1,51 29 98595 0,50
30 97129 1,54 30 98546 0,53
31 96979 1,59 31 98494 0,55
32 96825 1,57 32 98440 0,57
33 96673 1,53 33 98384 0,59
34 96525 1,51 34 98326 0,60
35 96379 1,50 35 98267 0,63
36 96234 1,50 36 98205 0,67
37 96090 1,53 37 98139 0,72
38 95943 1,61 38 98068 0,77
39 95789 1,65 39 97992 0,84
40 95631 1,75 40 97910 0,89
41 95464 1,89 41 97823 0,97
42 95284 2,07 42 97728 1,06
43 95087 2,25 43 97624 1,17
44 94873 2,48 44 97510 1,29
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Male Female

Age Lx qx(·1000) Age Lx qx(·1000)

45 94638 2,69 45 97384 1,43
46 94383 3,03 46 97245 1,60
47 94097 3,45 47 97089 1,79
48 93772 3,85 48 96915 1,97
49 93411 4,23 49 96724 2,13
50 93016 4,58 50 96518 2,27
51 92590 4,97 51 96299 2,46
52 92130 5,48 52 96062 2,70
53 91625 6,18 53 95803 3,00
54 91059 6,90 54 95516 3,28
55 90431 7,77 55 95203 3,57
56 89728 8,68 56 94863 3,92
57 88949 9,68 57 94491 4,34
58 88088 10,81 58 94081 4,79
59 87136 12,06 59 93630 5,27
60 86085 13,41 60 93137 5,74
61 84931 14,86 61 92602 6,26
62 83669 16,42 62 92022 6,90
63 82295 18,12 63 91387 7,65
64 80804 19,99 64 90688 8,50
65 79189 22,04 65 89917 9,45
66 77444 24,20 66 89067 10,46
67 75570 26,28 67 88135 11,57
68 73584 28,59 68 87115 12,99
69 71480 31,03 69 85983 14,60
70 69262 34,23 70 84728 16,49
71 66891 36,99 71 83331 18,37
72 64417 40,30 72 81800 20,43
73 61821 43,76 73 80129 22,70
74 59116 47,87 74 78310 25,54
75 56286 52,62 75 76310 28,87
76 53324 58,15 76 74107 32,78
77 50223 63,34 77 71678 37,15
78 47042 69,47 78 69015 42,02
79 43774 76,69 79 66115 47,74
80 40417 84,84 80 62959 54,24
81 36988 94,84 81 59544 62,24
82 33480 105,05 82 55838 71,03
83 29963 115,98 83 51872 80,87
84 26488 127,64 84 47677 91,34
85 23107 140,52 85 43322 103,13
86 19860 153,78 86 38854 116,31
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Male Female

Age Lx qx(·1000) Age Lx qx(·1000)

87 16806 166,55 87 34335 129,87
88 14007 179,62 88 29876 144,23
89 11491 193,19 89 25567 159,70
90 9271 207,96 90 21484 176,60
91 7343 227,70 91 17690 200,62
92 5671 244,58 92 14141 221,41
93 4284 262,61 93 11010 243,87
94 3159 281,42 94 8325 268,23
95 2270 301,32 95 6092 294,32
96 1586 321,56 96 4299 322,40
97 1076 343,87 97 2913 352,56
98 706 366,86 98 1886 383,88
99 447 391,50 99 1162 418,24
100 272 415,44 100 676 452,66
101 159 440,25 101 370 489,19
102 89 471,91 102 189 529,10
103 47 489,36 103 89 561,80
104 24 541,67 104 39 615,38
105 11 545,45 105 15 666,67
106 5 600,00 106 5 600,00
107 2 500,00 107 2 500,00
108 1 1000,00 108 1 1000,00
109 0 109
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Livförsäkringsmatematik II. Stockholm: Svenska försäkringsföreningen.
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