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Abstract

In this thesis we present a model for a detector network of acoustic
sensor nodes to be used in the military underwater setting. The model
accounts for well-known properties of acoustic sensing and communi-
cation equipment, and to this end we employ the traditional decentral-
ized detection framework combined with ideas from the �eld of team
decision theory, thus arriving at a network model which operates with-
out a centralized fusion center. The model instead gives the decision
to sound the alarm to individual detector nodes, which classify the
presence of a target using the classic Bayes' detector framework, ap-
plied for time-dependent sequential hypothesis testing. The detector
network employs an internal message-passing scheme, thus reducing
outside communication to a minimum. Reduction of internal network
communication is achieved through a sensor censoring scheme where
uninformative messages are withheld, and the detector nodes adjust
for these missing data. Indicative simulation results are presented.
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1 Introduction
Underwater environments are among the most di�cult environments to mon-
itor anything but the smallest of areas over extended periods of time. This
remains true whether it be for intruders, chemical spills, or changes in a
wildlife population, to name a few examples. In the military framework �
which will be the focus of this thesis � one is faced with a di�cult and costly
task when trying to e�ciently defend a harbor or other installation against
submarines, unmanned underwater vehicles, scuba divers and other poten-
tial threats which cannot be anticipated. To remedy these problems, the
Swedish Defence Research Agency (Swedish: Totalförsvarets Forskningsin-
stitut, FOI) wish to develop a cost-e�cient wireless underwater sensor
network. The sensor nodes to be used in this case, described in detail in
the FOI report of Grönkvist et al. (2007), are acoustic which means that
communication and data sampling is conducted by means of acoustic micro-
phone and speaker. For a brief survey of the pros and cons for this kind
of communication equipment as compared to other plausible alternatives for
the underwater environment, see the survey article of Liu et al. (2008).

Our idea is to create a model for a detector network which utilizes a
message-passing scheme, thus combining the structure of the traditional de-
centralized detector network with the more general �eld of team deci-
sion theory which sprung from the pioneering work of Borkar and Varaiya
(1982). This approach was suggested for further research in the excellent sur-
vey article on wireless sensor networks of Chamberland and Veeravalli (2007,
p. 23).

In this thesis, we aim to give the reader a short survey on the existing
theory in the �eld of decentralized detection and the wireless sensor network
structure, as well as team decision theory, and will present a basic model for
such an underwater network according to the speci�c setting in this case.
We are only interested in sequential detection problems, i.e. problems of the
type where we wish to test the time-dependent two-way hypothesis

H0(t) : No target present at time t,
vs.

H1(t) : Target present at time t.
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This will be de�ned more stringently in the next chapter. It should however
be stressed that although this model is thought to have a military application,
it could with some generalization apply to more general underwater detection
problems � as well as estimation problems.

The traditional approach for decentralized detection networks is to have
a dedicated so-called fusion center, to which the detectors transmit their
data. However, due to the costliness of underwater communication, we wish
to create a network model without a fusion center.

This thesis is broken into four main areas. In the remainder of this intro-
ductory chapter we will present the problem and will as mentioned conduct a
brief survey on existing theory in the relevant �elds of research. In the next
chapter we will propose a model to be used in this setting, and will go into
detail on the rules for each of the four relevant phases of the detector net-
work: observation, communication, hypothesis classi�cation, and alarming,
as well as listing some possible performance measures. In the third chapter
we give simulation results, and in the �nal chapter we discuss our �nds and
point at a number of issues for further research.

1.1 Setting
In the general sensor network framework, detection is carried out by a net-
work formed by a number of so-called detector nodes � detectors which
are deployed across the area of interest to collect observations from their
immediate surroundings. Before going into further detail on more speci�c
network architectures, let us review our speci�c setting.

In the wireless sensor network (of which the wireless underwater sensor
network can be considered a special case), the detector nodes can generally be
assumed to consist of the following components (Chamberland and Veeravalli,
2007, p. 24):

• a sampling unit,

• a data processing unit,

• a communication unit, and

• a power supply.
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Our detector nodes follow this conventional component scheme with a few
notable exceptions, stemming from the acoustic communication and sampling
equipment. While each node's speaker is strictly a communication device,
its microphone is used both for data sampling and incoming communication.
This, coupled with general underwater constraints, gives a rather speci�c
setting. Let us list these points in order to address them later:

• The detector nodes will carry high initial assembly and deployment
costs, stemming from the high costs of underwater acoustic compo-
nents. Thus, the network size must be limited. We assume that a
network will contain no more than 30 nodes.

• Data processing will be the cheapest component, in monetary as well
as power resources. We thus allow a great deal of processing to be done
at each node.

• Communication will be the most costly action in terms of power con-
sumption and should be limited.

• The communication range (i.e. the signal strength) of sent messages for
each node is variable and can be adjusted before deployment. However,
power consumption increases with range. Thus, our model should let
us keep the communication range low.

• Consisting of sound waves, messages sent from a node will travel isotrop-
ically, i.e. equally fast in all directions, essentially in an expanding
sphere around the node.

• Since acoustic communication is limited to the sound of speed in water,
there will generally be a time delay before a sent message reaches its
target according to the distance between sender and receiver.

• Communication will never be fully reliable; there is always a substantial
risk of lost messages.

• The cost of false alarms will be very high � both in terms of power
consumption since it involves communication to an external receiver,
and in monetary terms because of the likely expense of actions taken at
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a military alarm. The false alarm rate should be kept as low as possible
while still retaining an acceptable detection probability.

The reader should be aware that not much is known about the speci�c
range of these listed restrictions at this time, and that they are speci�ed
to serve as guidelines rather than formal assumptions when developing our
network model. Further formal studies are required in order to �nd optimal
network structures, node con�gurations, etc.

1.2 Decentralized Detection
Let us now give a short review of the rather broad research �eld of decen-
tralized detection. As described in the previously mentioned survey article
of Chamberland and Veeravalli (2007), contemporary decentralized (or dis-
tributed, as it is called by some authors) sensor networks consist of a number
of detector nodes which are distributed across the area of interest to col-
lect data from their surroundings. In addition to these nodes the network
traditionally holds a dedicated so-called fusion center, located in some key
position or possibly outside the area of interest entirely. The nodes transmit
data � reliably or otherwise � to the fusion center, which has the task of
making an informed decision on whether to set o� an alarm based on this
received information. See Figure 1. However, in order to limit the amount
of communication, it is generally desirable to have the nodes not send their
full observation data. Hence, some form of data processing (or aggregation)
is done locally at each node in order to transmit only a summary statistic to
the fusion center. The network is therefore decentralized, as the local detec-
tor nodes themselves are involved in the processing of detector data. With
this approach, as opposed to that of a centralized detection network where
all available raw data is transmitted to the fusion center, the amount of net-
work communication can usually be signi�cantly reduced, with an acceptably
small decrease in detection performance.

Numerous proposals have been made on which summary statistic to be
used, and for some speci�c problems and settings it is possible to �nd an
optimal solution. A few common choices of local data aggregations include
having each node transmit a real-valued statistic of its latest observations
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Figure 1: Outline of the typical decentralized sensor network. A number of
detector nodes are distributed across the area of interest, where they collect
data. The detector nodes transmit summary data to the fusion center, which
in turn decides whether to set o� the alarm.

(sample mean, variance, etc.) (e.g. Appadwedula et al., 2008), or a mes-
sage chosen among a �nite set of possible messages (e.g. Veeravalli, 2001;
Chamberland and Veeravalli, 2003) � a special case being the nodes' local
binary H0/H1 classi�cation (e.g. Niu et al., 2006; Crow and Schwartz, 1996).
A common (and intuitive) result � although it is possible to construct ex-
amples of network structures where this does not hold (Chamberland and
Veeravalli, 2003) � is that the complexity of sent messages can be reduced
as the number of nodes grow, a conclusion reached by Tsitsiklis (1988) and
Chamberland and Veeravalli (2003, 2004) to name a few.

One method of reducing communication is the so-called censoring sensor
scheme (see e.g. Appadwedula et al., 2008; Rago et al., 1996), in which each
node may decide whether to send its latest statistic based on if it is deemed
relevant to the hypothesis testing problem at hand. Thus, a node may for
instance choose to withhold its latest message if the value of the contents or
the corresponding observations fail to exceed a certain threshold.
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Figure 2: Outline of the typical fully decentralized sensor network. A number
of detector nodes are distributed across the area of interest, where they collect
data. The detector nodes communicate with each other, and work together
in determining whether to set o� the alarm.

1.2.1 Fully Decentralized Detection

We wish to take the decentralized nature of the decentralized sensor net-
work one step further, in creating a sensor network which does not employ
a designated fusion center, thus creating what we choose to call a fully de-
centralized sensor network. There are numerous reasons to strive for such a
setup, an important one being the reduced vulnerability that can be achieved
if the network performance is made not to rely on communication reaching a
potentially far-o� fusion center, which might itself be prone to breakdowns.
In our setting, this characteristic should also serve to reduce communication
costs as the nodes may be con�gured to send messages no further than to
their closest neighbors. Further speci�c reasons in our setting include how
both observation sampling and communication are performed by acoustic
means, thus allowing each node to pick up messages sent from neighboring
nodes as part of their regular observation sampling. Finally, in a military
setting, a network with limited external communication is likely to be easily
concealed from intruders, thus indirectly increasing intruder detection.

As brie�y mentioned above, we have decided to implement a message-
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passing scheme in which the communication takes place between the detector
nodes within the network. We will allow a greater subset (possibly all) of the
sensor nodes to make decisions on the presence of a target (in a sense, each
of these sensor nodes will function as a fusion center by themselves), thus
limiting outside communication until a rough network consensus on setting
o� the alarm has been reached. We might however want to impose some
restriction on when a node may set o� the alarm, as each detector node
under most communication schemes can be assumed to have less information
than a designated fusion center would have. See Figure 2.

1.3 Team Decision Theory
To our knowledge, not much research has been done on the fully decentral-
ized sensor network, but much has been written in the more general �eld of
communicating decision makers that seek to �nd a consensus, so-called team
decision theory. We will make a brief survey of this �eld of research, in order
to arrive at a suitable network model.

An often quoted early work in team decision theory is that of Borkar
and Varaiya (1982), in which the authors present a model and convergence
criteria for a network of communicating decision makers (so-called agents)
which seek to reach a consensus by passing messages to each other. Un-
der this model � even allowing for new observations to be taken, random
transmission times, and allowing which messages reach a certain agent to be
random � the network is shown to reach an almost sure asymptotic con-
sensus on estimation and detection problems by letting the agents send to
the others nothing more than their latest point estimate or likelihood ratio
estimate, respectively, if only each agent in the network communicates with
each other agent at least indirectly in�nitely often. Numerous generalizations
and expansions have been made for this model. Tsitsiklis and Athans (1984)
generalized to allow for situations where less than all available information
is remembered, and also to allow for more general problems where a cost
function is to be minimized � a class of problems of which those addressed
by Borkar and Varaiya (1982) are special cases. Furthermore, they show
that similar results hold even when the agents send messages chosen among
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a �nite set (such as their latest H0/H1 classi�cation). However, they do as-
sume that no new observations are collected once network communication
has started, thus weakening the results. In the very general work of Wash-
burn and Teneketzis (1984), these two models are treated as special cases,
and conditions are presented under which also networks using �nite message
models reach consensus. Finally, in the survey article of Varaiya (1985), a
general framework for team decision models is presented, with the mentioned
models as special cases.

The ability of a network to reach a common consensus through such a
limited amount of communication, that would result if all information which
a certain node has received could be summed up in a single statistic, certainly
seems appealing. However, one soon �nds that these and similar models come
with a number of practical concerns. Let us address the model presented by
Borkar and Varaiya (1982), as the problems faced illustrates well the type of
problems which can be found in all of these mentioned models.

First of all, the agents' latest estimate to be sent is de�ned rather theo-
retically; as the conditional expectation given the information (observations
and messages) available to the agent at a given time. For instance,

Lm
t := E {L |Fm

t }

is the current estimate of the likelihood ratio L for agent m at time t, where
Fm

t is the sigma algebra generated by the observations and messages available
to the agent up to time t (Borkar and Varaiya, 1982, p. 650). Besides the
fact that an exact expected value might be calculationally intractable even
without further obstacles, as pointed out by Tsitsiklis and Athans (1984, p.
43) these calculations implicitly rely on the requirement that information on
which agents each sent message has reached are either available to the entire
network at all times, or that the agents make probabilistic inferences on the
history of communication for all other agents in the network.

In the network setting considered in this thesis, neither of these two pos-
sible requirements for the history of communication are satisfactory. Due
to isotropic nature of transmitted messages, the amount of possible receptor
nodes for each message will generally be great, thus making the probabilis-
tic approach intractable for all but the smallest of networks. It might, in
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principle, be possible to have every node in the network know the history
of communication with good enough certainty, but likely not without wast-
ing a good amount of communication and time � two of our most precious
resources.

While a traditional team decision model thus is out of the question, in
order to continue our research on a fully decentralized detection model, we
identify two possibilities for further investigation. One plausible method
would be to keep the notion of a communicating network in which the nodes
aggregate all their available information into one estimate, but where this
aggregation is done in a more ad hoc fashion according to some simple and
intuitive � although not necessarily mathematically stringent � rule. For
instance, a rather simple model in which incoming decisions are added to-
gether using constant weights, which are arbitrarily assigned to the di�erent
decision makers according to their perceived reliability was proposed by De-
Groot (1974). It might be possible to create a model somewhat akin to this,
and to �nd good (in some sense) ad hoc aggregation weights by extensive
simulations. However, while such a sensor network would certainly keep the
amount of communication constantly low, we deem it likely to be both too
unstable (and thus error-prone) and too speci�c (in the sense that it might be
di�cult to �nd general rules that apply in more than one setting). Further
research in this �eld would certainly be of interest, but for this thesis we will
not consider this ad hoc model approach.

The other plausible method � which we have chosen to follow � simply
involves sending more data, while retaining the idea of a network seeking
consensus. In the next section we present this model, which is based on the
traditional Bayesian maximum a posteriori (MAP) detector (see Hippenstiel,
2002, Chap. 4, esp. 4.2�3).
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2 Model1

Suppose we have a network consisting of N detector nodes, labeled 1, . . . , N ,
each of which sequentially receives external observation samples in discrete
time. Based on these samples and network communication, the nodes' ob-
jective is to form a sequential decision. Sequential means that detection goes
on simultaneously with network communication and observation sampling,
and thus that the current hypothesis classi�cation is updated continually in
time.

An outline of a typical detector node's activities are given in Figure 3.
Note that this is only a simple sketch given to increase understanding, and
that it is fully possible to change the order of these activities. Also, we
will see that the model is signi�cantly more complex than shown here. For
instance, some nodes may have a di�erent con�guration, messages from other
nodes are actually received through observations sampling and observations
sampling actually goes on simultaneously with the other activities.

Since we deal with networks with a small number of detector nodes we
will not follow the large-network convention of letting the nodes send as
simple statistics as possible (usually binary H0/H1 messages), and will in-
stead use real-valued statistics conveying more information. For a number
of reasons we choose to take a Bayesian view on the detection problem (as
opposed to a Neyman-Pearson frequentist view). First of all, one will gen-
erally have some idea on the behavior of a possible target to be detected.
For instance, when looking for a moving intruder it would be unreasonable
not to take into account the topology of the network and surrounding envi-
ronment � in essence, the nodes should be aware that no ship will travel
through land. Secondly, the Bayesian approach gives the model a somewhat
increased �exibility in its deployment. Returning to the moving intruder
example, a detector network employed to look for submarines likely needs a
signi�cantly di�erent con�guration than a network looking for divers.

We assume that the nodes operate according to a common, synchronized
clock. In practice, the network will need some form of synchronization pro-

1Parts of this chapter, as well as the appendices referenced herein, are based on the
working paper of Hössjer et al. (to appear), in which this model is presented.
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Figure 3: Outline of the activities of a typical detector node. The node
observes its surroundings and creates observations, it receives messages from
the other nodes in the network, it uses its observations and received messages
to perform a hypothesis test, it communicates these �nds to the others, and
�nally it decides whether to set o� the alarm.

tocol, but this lies outside the scope of this thesis. We will use three di�erent
time scales for measuring time. These are given here, from shortest to longest:

• A time point corresponds to the time needed for a node to receive an
observation sample from the environment, and is thus generally a very
short amount of time.

• A time block consists of r time points and corresponds to the time
between which each node aggregates its latest samples into a summary
statistic, and possibly reevaluates its current hypothesis classi�cation.

• A time window consists of the w latest time blocks and corresponds
to the amount of time a hypothesis classi�cation should be based upon.
Thus, it also corresponds to the length of time a new observation must
be remembered before being discarded.

In our military framework, for reasons which will become clear below, we
assume that the length of a time block corresponds to 1 second, and that
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the nodes sample their surroundings at a rate of at least 1 kHz (i.e. r ≥
1000). Further, as a military detector deals with detecting abrupt changes,
the typical length of a time window could vary between 10 and 120 seconds
(i.e. 10 ≤ w ≤ 120) depending on application.

2.1 Observations Sampling
In compliance with the acoustic nature of the observation sampling equip-
ment, we assume that the detector nodes' incoming data have the shape of
a simply modeled sound wave. Let

Zti = si(t− τ ; θ) cos(ωt + φ) + εti

denote an observation sample available to node i at time t ∈ N, where
N = {1, 2, . . .} is the set of natural numbers. It consists of a target signal
si(t− τ ; θ), which is the time varying non-negative amplitude of a sinusoidal
bandpass signal, corrupted by additive noise. The center frequency ω of
the sinusoidal signal is assumed known, whereas the phase φ is unknown.
The time point τ when the target passes the network is unknown, as is the
parameter vector θ = (θ1, . . . , θp) ∈ Θ that indexes the form of the target
signal. The noise terms εti are assumed to have a Gaussian distribution and
to be independent of each other and the target signal, but they may vary
with time and between nodes (i.e. node positions); εti ∈ N(0, σ2

i (t)).
Typically, si(t − τ ; θ) and σi(t) vary much more slowly than the sinu-

soidal signal, and will be regarded as constant over short time intervals. We
generally assume that the nodes receive di�erent signals but allow for the
possibility that all nodes receive the same signal, in which case we write
si(t− τ ; θ) = s(t− τ ; θ).

2.1.1 Hypothesis Testing and the Target Signal

Leading up to the formal de�nition of the hypothesis testing problem, let us
�rst consider the disjoint decomposition Θ = Θ0∪Θ1 of the parameter space,
where

si(t− τ ; θ) = 0, θ ∈ Θ0,

si(t− τ ; θ) ≥ 0, θ ∈ Θ1,
(1)
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holds for all t and i, with strict inequality in the second equation for at least
one t. Hence, θ ∈ Θ1, and θ ∈ Θ0, correspond to existence, and nonexistence,
of a target respectively. However, this formulation is insu�cient for use in
a hypothesis test, as it is impossible at a given time to distinguish between
the situations where no target exists, and where a target exists but is simply
currently outside the nodes' �eld of vision.

For each t ∈ N, we therefore de�ne the hypothesis testing problem

H0 : θ ∈ Θ0,

H1(t) : θ ∈ Θ1, τ = t
(2)

where τ � as mentioned � denotes the unknown time point when the target
is present in the vicinity of the network. Note that τ is assumed to be a �xed
time point, as the hypothesis testing problem is de�ned for a single time
point t at which the test is performed � in most applications however, a
target will obviously be present for more than a single time point if it is
indeed present. Under the null hypothesis H0, the received observations are
just noise, whereas under the alternative H1(t), a target exists and is present
at the network at time t.

We also assume that

Θ0 = {θ; θ · u = 0},
Θ1 = {θ; θ · u > 0}, (3)

where u is a �xed unit vector in Rp. That is, the null hypothesis corresponds
to a (p − 1)-dimensional subspace of Θ and the alternative hypothesis to a
p-dimensional half plane. This is a rather general formulation which allows
for a large class of possible hypothesis tests, but we will focus on the set of
hypotheses where the null hypothesis corresponds to one or more parameters
in θ, speci�ed according to u, being zero.

Let us now look at some examples of possible target signal models.

Example 1 (Change point) The nodes in the area all receive the same
signal, and are to detect if and when the signal makes a sudden jump in
magnitude. This is a class of problems which has received a great deal of at-
tention in the past (cf. Basseville, 1988; Crow and Schwartz, 1996; Veeravalli,
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2001). Formally, let p = 1 and put

s(t− τ ; θ) = θ1{t−τ≥0},

where θ is the magnitude of the change point and 1{t−τ≥0} equals one if
t − τ ≥ 0 and zero otherwise. We put Θ0 = {0}, Θ1 = (0,∞) and u = 1.
Analogously, a change point with linear trend has

s(t− τ ; θ) = θ(t− τ + 1)+,

with Θ0, Θ1, u and τ the same and x+ = max(0, x).
2

Example 2 (Moving Target) For this model the nodes' objective is to
detect possible intruders. A similar target signal model was proposed by
Choi et al. (2008), although the objective in that article was to estimate the
parameter values of an already known target. We put p = 7 and let (θ1, θ2, θ3)

denote the position in Euclidean space at time τ of a (possible) target. This
target is assumed to be moving along a straight line with velocity vector
(θ4, θ5, θ6). Further, let (xi, yi, zi) denote the position of detector node i and

di(t− τ ; θ) = |(xi, yi, zi)− (θ1, θ2, θ3)− r−1(t− τ)(θ4, θ5, θ6)|

its Euclidean distance to the target at time t. The term r−1 above simply
stems from the convenience of specifying the velocity per time block, as
opposed to per time point. Put

si(t− τ ; θ) = θ7/g(di(t− τ ; θ))

where θ7 is proportional to the (constant) power radiating from the target
and g is some known function, e.g. g(d) = 1 + (d/δ)2 in shallow water and
g(d) = 1 + (d/δ)ν for some 2 < ν ≤ 3 in deep water.2 The parameter δ is
assumed to be a known constant corresponding to the approximate size of the
targets of interest, e.g. δ = 2 if looking for divers or δ = 20 for larger vessels

2This is simply a formulation of the well-known physical property that the strength
of an acoustic signal fades roughly quadratic in shallow water and slightly faster in deep
water.
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assuming the scale is meters. We have Θ0 = R6×{0}, Θ1 = R6× (0,∞) and
u = (0, . . . , 0, 1), where R is the set of real numbers. The reader should note
that the target is assumed to have constant velocity and direction, and also
that the model allows for only one target to be present at each time. These
weaknesses will be discussed in Chapter 4.

2

2.1.2 Aggregation

At �xed and commonly known time points the nodes aggregate their sampled
data into a summary statistic to be used in classi�cation and shared with
the others. As brie�y mentioned above, it will be convenient to partition the
received external observation samples into disjoint time blocks of length r

time units, so that

Zki = {Zti; (k − 1)r + 1 ≤ t ≤ kr}

is node i's vector of observations during the kth time block for any k ∈
N. In this section, we will rely on two strong assumptions regarding the
center frequency. First, we assume that ω is small enough that the value
of cos(ωt + φ) changes negligibly between two consecutive time points, i.e.
ω ¿ 2π. Second, we assume that ω is big enough that cos(ωt + φ) oscillates
a great number of times during the r time points of the time block, i.e. we
require that if we write the frequency as ω = 2πG/r, then G ∝ r. Note that
these assumptions can always be made to hold by adjusting the length of the
time point and the time block. In the military setting where targets generally
appear fast we deem the proposals given at the introduction of Chapter 2
satisfactory.

To begin with, i extracts the feature vector Y ki = (Y1ki, Y2ki), where

Y1ki = (2/r)
∑kr

t=(k−1)r+1 Zti cos(ωt),

Y2ki = (2/r)
∑kr

t=(k−1)r+1 Zti sin(ωt).
(4)

Since noise variance and target signals vary slowly, we assume that

si(t− τ ; θ) is constant with value sk−l,i(θ) =
∑kr

t=(k−1)r+1 si(t− τ ; θ)/r,

σ2
i (t) is constant with value rσ2

ki/2

(5)
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during the kth time block when τ = lr. It then follows that

[Y ki|τ = lr] ∈̃ N


sk−l,i(θ)(cos(φ),− sin(φ)), σ2

ki


 1 0

0 1





 (6)

has an asymptotic bivariate Gaussian distribution, with amplitude sk−l,i(θ)

and noise variance σ2
ki (see Appendix A-1 for a proof). The phase φ is re-

garded as a nuisance parameter. Finally, we get amplitude and noise standard
deviation estimates as

Aki =
√

Y 2
1ki + Y 2

2ki,

σ̂ki =
√

(rbr/2c)−1
∑br/2c

t=1 (Z(k−1)r+2t,j − Z(k−1)r+2t−1,j)2,
(7)

where bxc is the largest integer smaller or equal to x. In the second part of
(7) we have used that the value of cos(ωt+φ) changes negligibly between two
consecutive time points. This implies that σ̂ki can be regarded as a consistent
estimator of σki as r → ∞. It can further be shown that Aki follows a Rice
distribution (cf. Appendix A-2) � a property we will use in the hypothesis
tests below.

For notational simplicity, we will call each pair (Aki, σ̂ki) the observation
of node i for time block k. The observation � which actually is a summary
statistic � should thus not be confused with the corresponding observation
samples.

2.2 Communication Model
The nodes are linked into a communication network. In this section we will
give a model for this communication, which speci�es when the nodes send
messages or forward messages received from other nodes, the contents of
these messages and to which other nodes messages are sent.

2.2.1 Simple Messages

After completion of a time block (and thus creation of a new observation),
each node may send a message to be received by the other nodes. The
contents of each message is a collection of a number of simple messages
(SMs), each one organized according to a message protocol (MP) with the
following four parts:
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MP1 The node j from which the information is originally sent (if j 6= i,
this is a forwarded SM).

MP2 The time block q after which the SM was originally created.

MP3 The observation (Aqj, σ̂qj) based on j's received observation samples
Zqj during time block q.

MP4 The hypothesis classi�cation m̂qj (0 or 1) made by j after time
block q.

Let SMki denote the simple message created by node i after completion of
time block k.

In order to save energy resources, we impose a censoring condition where
the node determines whether to send its own SM according to the real-valued
parameter λ, as

Aki/σ̂ki > λ ⇒ send SMki,

Aki/σ̂ki ≤ λ ⇒ do not send SMki.
(8)

The reader may note that Aki/σ̂ki is a monotone function of the observation
signal-to-noise ratio OSNRkli(θ) = (sk−l,i(θ)/σki)

2 of node i during the kth

time block when τ = lr.3 Thus, (8) implies that the probability of a SM being
sent increases with the OSNR. If λ = 0, nodes always send their own SMs
after completion of a time block. Otherwise, when λ > 0, only a fraction

PH0(send a SM) = PH0(send SMki) ≈ PH0(Aki/σki > λ) = exp(−λ2/2),

of SMs are sent under H0, since then Aki/σki has a Rayleigh distribution.4
Under H1, the amount of communication can be expected to increase as the
target signal increases.

3We have E[(Aki/σki)2] = OSNRkli(θ) + 2. For E[(Aki/σ̂ki)2] the result holds asymp-
totically.

4A random variable R has a Rayleigh distribution if R =
√

G2
1 + G2

2 where G1 and G2

are independent standard Gaussian random variables.
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2.2.2 Reception Probabilities, Forwarding and Decision Active
Nodes

Let the reception probability Pji denote the probability that a message
sent from node j is received by node i (without any forwarding by other
nodes). We require that all networks considered are connected, in the
sense that all nodes can communicate with each other at least indirectly
through other nodes. We will make the rather strong assumption that the
entire reception probability matrix P = (Pji) is commonly known by all
nodes. In application, this can be achieved to a good certainty by estimation
through test communication during a certain predetermined time period, but
the speci�cs on how to achieve this will be left for further research.

However, as we have some knowledge of the acoustic communication
to be used for our network model, we will here present a plausible model
which satis�es the above assumption. Since we have assumed that the an-
gular distribution of sent messages is isotropic, it is reasonable to model
the reception probabilities as some function h of the Euclidean distance
dji =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 between the two nodes,

Pji = h(dji).

We let h(0) = 1, so that Pii = 1, which simply indicates that i knows the
contents of its own messages. For d > 0, we will use the two parameter step
function

h(d) = P1{d≤dmax}, d > 0, (9)

so that sent messages are received by other nodes in a sphere of radius dmax

around the sending node, each with probability P , and are never received by
those outside the sphere.

We may decide which simple messages to be forwarded by means of a
binary N ×N routing matrix R = (Rji) and the following routing rules:

R1 A necessary condition for i to forward a message originally from j is
Rji = 1.

R2 Rii = 0, i.e. i does not forward any of its own messages.

R3 No SMs are forwarded more than once.
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Figure 4: The network structure in Example 3. Lines are drawn between
nodes within communication range.

R4 No SMs older than w − 2 time blocks are forwarded, where w is the
number of time blocks of the time window on which each detector node
operates.

We further allow for the possibility that only a subset A ⊆ {1, . . . , N} of
decision active nodes perform classi�cation. The role of the remaining
nodes is then simply to provide those in A with observations. In general,
there is a trade-o� between the size of A and the number of 1 entries in R.
When A consists of one single node the network may be seen as a special
case of a decentralized network with a fusion center.

Example 3 (Five nodes on a line) The topology with N = 5 nodes is
shown in Figure 4. If (9) holds with dmax = 100, it follows that the reception
probability matrix P = (Pji) has the form

P =




1 P 0 0 0

P 1 P 0 0

0 P 1 P 0

0 0 P 1 P

0 0 0 P 1




.

Here all simple messages have to be forwarded through a line of intermedi-
ate nodes in order to reach from one end of the network to the other. By
symmetry, three di�erent con�gurations are credible if every decision active
node is to have a chance to receive SMs from all nodes. If all nodes are
decision active, all nodes except the edge nodes (i.e. 1 and 5) should forward
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everything they receive.

A = {1, 2, 3, 4, 5}, R =




0 1 1 1 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0




This next con�guration serves as a middle ground between communication
reduction and performance.

A = {2, 3, 4}, R =




0 1 1 0 0

0 0 1 0 0

0 0 0 0 0

0 0 1 0 0

0 0 1 1 0




Finally, this con�guration � similar to networks with a Fusion Center �
keeps communication at a minimum.

A = {3}, R =




0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0




2

Example 4 (Asymmetric network with �ve nodes) The topology of N =

5 nodes is shown in Figure 5. If (9) holds with dmax = 100, it follows that
P = (Pji) has the form

P =




1 P P P 0

P 1 P P 0

P P 1 P 0

P P P 1 P

0 0 0 P 1




. (10)

In this case node 5 only communicates with 1,2 and 3 through 4. If 5 ∈ A,
then 4 has to forward messages from 1,2,3 and 5, whereas 5 /∈ A only requires
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Figure 5: The network structure in Example 4. Lines are drawn between
nodes within communication range.

that 4 forwards messages from 5. This gives two possibilities,

A = {1, 2, 3, 4, 5}, R =




0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0




and

A = {1, 2, 3, 4}, R =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0




.

2

2.2.3 Sending and Reception Times

Suppose vsend bits per time unit is the maximal sending capacity for the
whole send spectrum. This sending speed will strongly depend on the data
quantization alphabet used, and we can thus suspect a negative dependence
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between vsend and P since a smaller alphabet requires less communication at
a cost of increased communication vulnerability.

We have assumed that observation sampling as well as the sending and
reception of messages can proceed simultaneously. In practice, this would
mean that the available spectral bandwidth for sending messages is divided
into N equally wide frequency bands, so that each node sends over a separate
band. Then each node is able to send at a maximal speed of vsend/N bits per
time unit. We assume that each node starts sending its (possible) message at
the beginning of each new time block. If node i starts sending nki SMs after
the end of the kth time block (i.e. during time block k + 1), and each SM
consists of b bits, the whole message will be sent during the time interval5
{kr + 1, . . . , kr + T send

ki }, where

T send
ki = dnkibN/vsende (11)

is the time duration of sending the message and dxe the smallest integer
larger or equal to x. The nki SMs consist of i's own SM from time block k,
provided Aki/σ̂ki is large enough (cf. (8)), and all SMs that i has received
during time block k and is to forward according to (R1)-(R4). Hence

nki ≤ 1 + (N − 1)(w − 2),

although, depending on the form of P and R, nki may be much lower than
this upper bound.

The number of bits of a SM can be expanded as6

b = b1 + b2 + b3 + b4 = log2(N) + log2(K) + 2c + log2(2), (12)

where ba is the number of bits required for sending part MPa of the SM, K

is the number of time blocks before the time block counter is reset to 0 and c

is the number of bits used to transmit each time block's estimated amplitude
and standard deviation (7) in the quantization used. We will assume that c is

5A natural generalization is {kr+δ+1, . . . , kr+δ+T send
ki }, where δ represents the time

delay before all information to be sent has been computed and composed into a message.
6To be precise, a SM from a node j /∈ A only consists of b = b1 + b2 + b3 bits, since

part MP4 of the SM need not be included.
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large enough that no loss of precision takes place when an observation is sent
to other nodes. Hence, in most cases, the third term of (12) is dominating.

The time for a message sent from i to reach j is

T rec
ij = dij/vwater,

where vwater is the speed of sound in water. Thus, the total transmission
time from when i starts sending its message at time kr + 1 until it is com-
pletely received by j is T trans

k,ij = T send
ki + T rec

ij .

2.3 Classi�cation
In this section, we shall lay the rules for how the nodes update their current
hypothesis classi�cation. We will assume that no node performs a classi�-
cation other than when they have just created a new observation (thus a
maximum of one classi�cation is performed during each time block), then
taking into account its new observation and the observations contained in
any messages which may have arrived during the last time block. We may
wish to impose further restrictions on when a classi�cation is to be performed,
which will be discussed below.

If a classi�cation is to take place after the end of time block k by a
decision active node i ∈ A, the node tests H0 versus H1 = H1(lr) based on
all observations created by i itself and received from other nodes over a time
window of length w = w1 +w2 time blocks. The time window contains time
blocks

TW(k) := {k − w + 1, . . . , l, . . . , k} (13)

where l = k−w2, the block which the hypothesis test is to be performed upon.
The resulting classi�er is Hm̂ki

. Note that since classi�cation is based solely
on observations created during the time window, any observations older than
w time blocks may be discarded.

There are a number of plausible choices of (w1, w2). A natural choice
is w2 = 0 (i.e. l = k), which means that the node will try to classify the
existence of the target at the current time. However, a potential risk with
this approach is that the node for obvious reasons may have access to few
observations from other nodes created at or shortly before the latest time

27



block, thus weakening detection stability. For other choices of l (i.e. w2 > 0)
the node will generally have access to more relevant observations, but will
not try to detect a target passing the network at a certain time until w2 time
blocks later, thus weakening detection speed.

Now, if communication was instant and perfect, all nodes would at the
current time block k have access to SMs from the entire time window (13),
with indices belong to the block-node matrix

BN k = {(q, j); k − w + 1 ≤ q ≤ k, 1 ≤ j ≤ N}.

However, at time block k, node i only has access to SMs corresponding to
the subset

BN ki = {(q, j); k − w + 1 ≤ q ≤ k,

j = i or i has received SMqj by time kr} (14)

of BN k, and of course, this limits detector performance. In view of (14), we
notice that SMs older than w− 2 time blocks should not be forwarded, since
they are too old to be part of detection when they reach other nodes. This
justi�es the fourth routing rule (R4) of the previous section.

In our the Bayesian framework, we let Pm denote the prior probability of
Hm and f(θ) the prior density of θ on Θ1 given H1. A prior of θ under H0

is not necessary, since then θ is not identi�able (cf. (1)�(3)). We assume

[θ|θ ∈ Θ1]
d
= [X|Xu′ > 0], (15)

where X ∈ Np(µ,Σ) has a p-dimensional multivariate Gaussian distribution,
d
= means equality in distribution and u′ is the transpose of u. Equivalently,
we may rewrite (15) as

f(θ) = Φ
(

µu′

|Σ1/2u|

)−1

(2π)−p/2 det(Σ)−1/21{θu′≥0}

· exp
(
−0.5(θ − µ)Σ−1(θ − µ)′

)
,

(16)

where Φ(x) =
∫ x
−∞ exp(y2/2)dy/

√
2π is the standard Gaussian cumulative

distribution function and det(Σ) is the determinant of Σ.
Note that f does not depend on time, as it is de�ned given H1 = H1(lr)

(i.e. given τ = lr). In words, f gives the distribution of the parameter vector
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given that the target is present at the network during time block l, and
thus holds the a priori most likely parameter values in mean vector µ with
uncertainty according to covariance matrix Σ.

Example 5 (Example 1, contd.) We put µ = 0 and

Σ = Σ.

The prior uncertainty of signal strength after the change point is determined
by Σ.

2

Example 6 (Example 2, contd.) We put

µ = (0, 0, 0, µ4, µ5, µ6, 0),

Σ = BD(Σ1:3,Σ4:6, Σ7),

where BD means block diagonal. In this case (0, 0, 0) is a reference position
of the network, where the target is most likely positioned at time τ = lr,
with prior covariance matrix Σ1:3. The a priori most likely velocity vector is
(µ4, µ5, µ6), with covariance matrix Σ4:6. The prior parameters (µ4, µ5, µ6),
Σ1:3 and Σ4:6 might all depend on knowledge of the geometry of the network
and the surrounding area. Finally, Σ7 re�ects prior uncertainty of signal
strength.

2

Let
Lki(θ) = Pθ (BN ki, {Aqj; (q, j) ∈ BN ki}|τ = lr)

=
∏

(q,j)∈BN ki
P (Aqj known, Aqj|τ = lr)

· ∏
(q,j)∈BN k\BN ki

P (Aqj unknown|τ = lr)

(17)

denote the likelihood function of node i's data (observations � i.e. estimated
amplitudes and noise variances � from itself and other nodes) during the
time window TW(k). In (17), we used the fact that Aqj for di�erent time
blocks and sensors are independent, which is a consequence of that all error
terms εtj are independent. In fact, the likelihood also depends on all noise
variances σ2

qj for time blocks within the time window. However, we will
replace each σ2

qj by its estimate σ̂2
qj and regard the latter as the true values.

Therefore, we drop dependence on noise variances in the notation.
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Let Cmn be the (�xed) cost of selecting Hn when Hm is true, and set
πm = Pm(Cm,1−m − Cmm). By Bayes' rule, the cost-weighted a posteriori
probabilities of H0 and H1 are (Hippenstiel, 2002, Chap. 4.2)

Pki0 = π0Lki(0)/
(
π0Lki(0) + π1

∫
Θ1

f(θ)Lki(θ)dθ
)

= 1/
(
1 +

∫
Θ1

Λki(θ)dθ
) (18)

and Pki1 = 1 − Pki0, where 0 = (0, . . . , 0) is a parameter vector with zero
components and Λki(θ) = π1f(θ)Lki(θ)/(π0Lki(0)) can be regarded as a joint
likelihood ratio, taking the decision costs, the prior and likelihood from data
into account7. This gives the Bayes' detector

m̂ki = arg max
m=0,1

Pikm, (19)

which can equivalently be formulated as the decision rule
∫

Θ1

Λki(θ)dθ
H1

>
<
H0

1 (20)

or ∫

Θ1

f(θ)Lki(θ)/Lki(0)dθ
H1

>
<
H0

π0

π1

=
P0(C01 − C00)

P1(C10 − C11)
.

We may adjust the tolerance level π0/π1 (i.e. the classi�cation costs) in
order to achieve a certain network performance. A higher tolerance level
decreases the probability of false alarms but also the probability to detect a
target. Notice in particular that when C00 = C11 = 0 and C01 = C10 = 1,
this reduces to a maximum a posteriori (MAP) detector (Hippenstiel, 2002,
Chap. 4.3).

In order to give a more explicit expression of the likelihood (17), we notice
that when (q, j) ∈ BN ki,

P (Aqj known, Aqj|τ = lr)

= P (Aqj known|τ = lr) · P (Aqj|Aqj known, τ = lr)

= Qqlj(θ){j 6=i}Pqk,ji · Lqlj(θ)/Qqlj(θ){j 6=i}

= Pqk,jiLqlj(θ),

(21)

7In view of (1)�(3), the likelihood Lki(θ) is constant over Θ0. Hence we may choose
an arbitrary θ ∈ Θ0 instead of 0 in (18).
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where
Lqlj(θ) = Pθ(Aqj|τ = lr),

Qqlj(θ) = Pθ(SMqj sent|τ = lr)

and

Pqk,ji =





1, j = i,

P (SMqj received by i by time kr|SMqj sent), j 6= i.

When (q, j) ∈ BN k \ BN ki, we have that

P (Aqj unknown|τ = lr) = 1−Qqlj(θ)Pqk,ji. (22)

In principle, the transmission probabilities Pqk,ji may depend on θ, since
more SMs are sent when the target signals si(t− τ ; θ) grow strong, and this
may delay reception of these messages. However, if we assume that send
times of SMs (11) are negligible, we have that

Pqk,ji = Pk−q,ji (23)

is independent of θ, since the routing and reception probability matrices R

and P do not depend on time. In Appendix A-3 we give an outline for Monte
Carlo estimation of Ps,ji under these assumptions.

Inserting (21)-(23) into (17), we get

Lki(θ) =
∏

(q,j)∈BNki
Lqlj(θ)Pk−q,ji

· ∏
(q,j)∈BNk\BNki

(1−Qqlj(θ)Pk−q,ji)

∝ ∏
(q,j)∈BNki

Lqlj(θ)

· ∏
(q,j)∈BNk\BNki

(1−Qqlj(θ)Pk−q,ji).

(24)

In the last step of (24) we dropped the product of all terms Pk−q,ji, (q, j) ∈
BN ki, as these are independent of θ and hence do not in�uence the Bayes'
detector (19), since any multiplicative constant of Lki(·) cancels in the de�-
nition of the a posteriori probabilities (18).

Notice that the likelihood (24) adjusts for missing data (Little and Rubin,
2002), which may result from either unsent SMs or SMs that are sent but
not received by i. This is quite necessary for detection whenever the nodes
receive di�erent target signals, such as in Example 2 � a consequence of this
adjustment is facilitated detection of targets which pass by just a few nodes.
Let us look at an example.
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1 2

3

Figure 6: Target moving past a three node network, with a high received
signal only at node 1.

Example 7 (Example 2, contd.) Consider the moving target situation
given in Figure 6, where a target moves past a network of three nodes accord-
ing to a given �xed θ̆, and let us focus on the performance of node 3. The
target moves close to node 1 but far from node 2, so Lql1(θ̆) can be expected
to become large if SMq1 is received by 3, whereas (1−Qql2(θ̆)Pk−q,23) becomes
large if SMq2 is not received by 3. On the contrary, (1−Qql1(θ̆)Pk−q,13) be-
comes small if SMq1 is not received by 3, as we would expect node 1 to send
a message if there is a target in its vicinity. Hence, the overall likelihood
Lki(θ̆) would for this θ̆ tend to get the largest when node 3 has received
observations from node 1 but not from node 2.

2

Assuming that each σ̂qj is the true value of σqj, in Appendix A-2 we derive
the formulas

Lqlj(θ)/Lqlj(0) = exp(−s2
q−l,j(θ)/(2σ̂2

qj))
∞∑

n=0

(Aqjsq−l,j(θ)/(2σ̂2
qj))

2n(n!)−2

(25)
and

Qqlj(θ) = exp(−s2
q−l,j(θ)/(2σ̂2

uj))

· ∑∞
n=0 2−n(sq−l,j(θ)/σ̂uj)

2n(n!)−1Γinc(λ2/2, n + 1)
(26)

where Γinc(x, a) =
∫∞
x ya−1 exp(−y)dy/(a − 1)! is the (regularized) upper
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incomplete gamma function. Notice that σ̂qj is unknown to i at time kr when
(q, j) /∈ BN ki. Hence we replace σ̂qj by σ̂uj in (26), where u = u(q, k, j, i) is
the time block closest to q from which i has received a SM from j by time
kr. The choice of λ in (8) guarantees that σ̂uj is well de�ned with probability
one8.

Summarizing, in order to compute m̂ki, we must evaluate the integral
∫
Θ1

Λki(θ)dθ and insert into (18). Formulas (16) and (24) imply that

Λki(θ) = 1{θu′≥0}(π1/π0)Φ
(
µu′/|Σ1/2u|

)−1

· (2π)−p/2 det(Σ)−1/2 exp
(
−0.5(θ − µ)Σ−1(θ − µ)′

)

· ∏
(q,j)∈BNki

Lqlj(θ)/Lqlj(0)

· ∏
(q,j)∈BNk\BN ki

(1−Qqlj(θ)Pk−q,ji) / (1− exp(−λ2/2)Pk−q,ji) ,

(27)
and the last two rows on the right-hand side are obtained from (25), (26)
and the Monte Carlo estimate of Ps,ji outlined in Appendix A-3.

The integral ∫
Θ1

Λki(θ)dθ may be approximated by various numerical
methods, and in Appendix A-4 we describe one such method based on a
quadratic approximation of Λki. For the moving target example, this method
is very similar to the maximum likelihood (ML) estimation of target trajec-
tories proposed by Choi et al. (2008), although that model was based on a
Neyman-Pearson (rather than a Bayesian) formulation.

A word of warning should however be raised about the quadratic ap-
proximation method, as it involves creating a maximum a posteriori (MAP)
estimate of the parameter vector and therefore su�ers from the same kind of
problems as the ML estimate of the mentioned work (Choi et al., 2008, p.
1274f) � if a node has too few observations available, Λki may lack a unique
maximum. To see this, consider the moving target example with N = 1.
Since the node only has access to its own observations and these observations
only measure incoming signal strength, the node will be unable to determine
from which direction a possible target passes, and also whether its observa-
tions correspond to a remote and loud target, or a close and quiet target.

8According to (8), the time between two sent SMs has a geometric distribution with
success probability exp(−λ2/2) and expected value exp(λ2/2) under H0. Under H1, the
expected value is smaller. Hence, λ should not be too large, to guarantee that σ̂uj does
not di�er substantially from σ̂qj .
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Hopefully, the prior distribution f will dominate and thus serve to remedy
these problems, but even for large networks the same class of problems may
arise given little communication. For this reason, when using this method
one may wish to take one or more of the following steps to increase the ob-
servations available at each node at the time of classi�cation: [1] decrease λ,
[2] increase w2, and/or [3] have the nodes only do a new classi�cation after
they have received new observations from others.

2.4 Alarms
In this section, we give the rules for how and when the network may set o�
the alarm. The idea is that this will happen whenever one of the decision
active nodes realizes that a su�ciently large portion of decision active nodes
have reached consensus in rejecting the null hypothesis.

In more detail, each decision active node i ∈ A keeps track of the most
recent hypothesis classi�cation of all decision active nodes (including i itself)
which it has received through incoming messages. Let Nalarm

ki be the number
of j ∈ A from which the latest classi�er m̂qj sent to i at the end of time
block k is 1 (i.e. H1). In case i has not received any SM from j within the
time window TW(k), i assumes that j's current classi�er is 0 (i.e. H0). Let

P cons
ki = Nalarm

ki /|A|

be the fraction of decision active nodes that, by time block k, have reported a
classi�er H1 to i. Notice that P cons

ki quanti�es the amount of consensus among
the decision active nodes, with a large degree of consensus when P cons

ki is close
to 0 or 1.

Assume we observe the network during the time interval

t ∈ T = {1, . . . , tmax},

for some tmax = kmaxr ≤ ∞. The time of alarm, talarm ∈ T ∪{∞}, is the �rst
time point at which some decision active node sets o� the alarm. We have

talarm = kalarmr,
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where

kalarm = min{k;TW(k) ⊂ {1, . . . , kmax} and P cons
ki ≥ α for at least one i},

(28)
where 0 < α ≤ 1 is a prespeci�ed number and min ∅ = ∞. In words, an alarm
is sent when some node notices that a fraction α or more of all decision active
nodes have detected a target. The larger α is, the larger is the requirement
for setting o� the alarm.

The reader should notice that the consensus requirement presented here
is an ad hoc requirement, as each decision active node actually creates its
classi�cation using observations from all nodes in the network � which means
that given enough communication we should expect every classifying node
to reach the same classi�cation. However, we have chosen to include this
possibility to require a rough consensus before the alarm is set o�, as there are
a number of practical concerns for which this may be convenient. In practice,
there is always the possibility of corrupted messages (i.e. messages which are
received but misinterpreted rather than completely lost) and numerous other
local errors which may produce faulty classi�cations at only one or a small
number of nodes. Even though our model does not take these into account
speci�cally, it may be of interest to study the drop in detector performance
(most notably detection speed) for various values of α if it will indeed be
used for increased robustness.

If α = 1/|A|, that is the alarm is set o� immediately as a node rejects H0,
part MP4 of the message protocol may be dropped since consensus checks
are unimportant under this scheme.

2.5 Performance Measures
In this section we will look at some statistics of interest which measure the
performance of a given network. Since the time blocks is generally a more
interesting time scale than the time points, we will for convenience look at
the time block rather than the time point in which alarms are set o�. This is
reasonable since a maximum of one classi�cation is performed at each time
block for each node.

For target models where a target shows up at the network and then
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disappears again if not detected, such as in the moving target case (Example
2), detection performance is our chief interest. For a given target vector
θ ∈ Θ1 and time τ , we de�ne the probability of detection

PD(θ) = Pθ(k
alarm ≤ kmax|τ)

and the probability of false alarm

PFA = PH0(k
alarm ≤ kmax)

which lets us create the receiver operating characteristic (ROC) curve
in which PD(θ) is plotted as a function of PFA as the tolerance π0/π1 is
varied (Hippenstiel, 2002, Chap. 4.10). Notice that PD(θ) and PFA are both
increasing functions of kmax. This is to some extent inconvenient, since the
choice of kmax may seem arbitrary. In general, it quanti�es the maximum
possible acceptable delay for detection of the target and is often related to
w. For instance, in Example 2, both kmax and w could be related to the time
it typically takes for the target to pass the network.

The reader may note that the above de�nition for the probability of de-
tection di�ers from the traditional,

PD = PH1(τ)(k
alarm ≤ kmax) =

∫

Θ1

PD(θ)f(θ)dθ,

in which the target vector is assumed to be drawn according to the prior
distribution f . With this formulation, when C00 = C11 = 0 the average
cost of misclassi�cation equals

C = π0PFA + π1(1− PD).

Complementary performance criteria, used when a target shows up at
the network and stays there inde�nitely such as in the change point case
(Example 1), are the average maximum delays

D1 = E
{
min(kalarm, kmax)|H1(τ)

}
, 1 ≤ τ ≤ kmaxr,

D0 = E
{
min(kalarm, kmax)|H0

} (29)

which measures detection speed and the time between false alarms respec-
tively. It is reasonable to make τ small and kmax very large in (29), e.g.
taking the limit kmax →∞.
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For constant noise variance (σ2
qj = σ2) we can also de�ne the target

signal-to-noise ratio (TSNR). For instance,

TSNR = θ2/σ2 = 20 log10(θ/σ) dB

in Example 1 and

TSNR = θ2
7/σ

2 = 20 log10(θ7/σ) dB

in Example 2, with the TSNR given in unitless and decibel scale respectively.
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3 Simulation Results
Due to time constraints, a small number of simulations has been performed
in order to present indicative results. In all of these, we have used the
common parameters from Table 1 unless specifying otherwise. We use the
network architecture from Example 3 with all nodes decision active, but
with the simplifying assumption that transmission times are negligible (i.e.
all messages sent during a time block have arrived at the receiving nodes at
the end of the time block). We assume constant noise variance and thus set
σ2

qj = σ2 = 1. The network is to detect a moving target (Example 2) � here
assumed to be a large watercraft � and because of prior knowledge of the
surrounding area the nodes' have been con�gured to expect targets moving
in from the �north� (i.e. along the y-axis) through the middle of the network
at a speed of around 5 meters per second (1 second = 1 time block). We place
the Cartesian coordinate system so that the origin (0,0,0) is at the middle
node (node 3) and specify µ accordingly with prior uncertainty according
to the covariance matrix Σ. Since a target with such a high speed can be
expected to have passed the system in less than 30 seconds we put w = 30,
and since a fast-moving target needs to be detected quickly we set w2 = 0.9

After a �burn-in� period to achieve stationarity, the network starts to
actively detect a possible target and keeps doing so for 120 time blocks per
simulation iteration. The transmission probability matrix P s is estimated ac-
cording to the Monte Carlo method described in Appendix A-3 with 100,000

iterations, and further we use the approximation method described in Ap-
pendix A-4 during the classi�cation phase. Because this network has shown
symptoms of the problems associated with MAP estimation discussed at the
very end of Section 2.3, we impose the restriction that no classi�cation is to
be carried out unless a node has received at least one new observation from
another node during the last time block.

We perform a number of simulations under the null hypothesis (no target)
9The reader should be aware that the choices of parameter values corresponding to

node and network con�gurations are in no way found to be optimal, but are speci�ed
according to intuition. Further extensive simulation studies are needed to �nd good (but
likely sub-optimal) con�gurations.
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Figure 7: Trajectory of the target used in the simulations relative to the
detector nodes, in the x-y-plane.

and the alternative hypothesis (target), and when we simulate under the
alternative we use the same target trajectory, which corresponds to a target
traveling through the network at a speed of 5 meters per second roughly
�south-east� in the x-y-plane. See Figure 7.

For all of these simulations we will present only ROC plots, which are
produced by varying the tolerance level π0/π1 from 0 to 400 in small steps for
the same simulated data. For each of these tolerance levels the probability of
detection (PD(θ)) and that of false alarm (PFA) is estimated from simulation
data, and the resulting points in the PFA × PD(θ)-plane are plotted.

3.1 Simulation 1: Target Signal-to-Noise Ratio
Let us start with a simulation where the performance of the detector model
is studied for varying degrees of the target signal-to-noise ratio. We vary the

TSNR = 20 log10(θ7/σ) dB

according to TSNR = {10, 12, 14, 16} dB, which for σ = 1 produces target
signal strengths θ7 = {3.162, 3.981, 5.012, 6.310}. Further we allow each node
to set o� the alarm individually (α = 1/N = 0.2). For comparison, we also
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Network topology: No. of nodes N 5

Node positions x




−200 0 0
−100 0 0

0 0 0
100 0 0
200 0 0




Observations sampling: Frequency ω π/24
Phase φ π/2
Noise variance σ2 1
Sampling rate r 10000
Assumed target size δ 20

Communication: Communication range dmax 100
Reception probability P 0.9
Send threshold λ

√
−2 log(0.1) ≈ 2.15

Decision active nodes A {1, 2, 3, 4, 5}
Consensus threshold α 0.2

Routing matrix R




0 1 1 1 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0




Prior: A priori mean µ (0, 0, 0, 0,−5, 0, 0)
A priori covariance

Σ1:3




2002 0 0
0 2002 0
0 0 52




Σ4:6




52 0 0
0 52 0
0 0 1




Σ7 102

Time parameters: Time window w1 30
w2 0

Simulation length kmax 120
Target: True target vector θ (−70, 0, 0, 3,−4, 0, θ7)

Reference time τ 70r

Table 1: Common simulation parameters
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Figure 8: ROC curves for various target signal-to-noise ratios (TSNRs), for
the network and the centralized detector.

check the performance of the corresponding detector which without delay has
access to all observations from all nodes at all times, and which performs a
new classi�cation at the end of every time block (but in every other respect
functions as a regular node). Somewhat inaccurately we choose to call this
the centralized detector of a particular setting.10 For each of the four
TSNR levels we perform 200 simulations under the alternative hypothesis,
and in addition we perform 800 simulations under the null hypothesis. From
these PD(θ) and PFA is estimated as the fraction of alarms. The resulting
ROC curves are shown in Figure 8.

As expected, target detection becomes easier with increasing TSNR. How-
ever, neither of the curves are satisfactory (except maybe the one correspond-
ing to the highest TSNR) since they all show that in order to get a network
with an acceptable detection probability PD(θ), we must accept a very high
false alarm rate PFA; recall that we have simulated only during 120 seconds,
so even a seemingly low false alarm rate of e.g. PFA = 0.01 corresponds to
an expected time between false alarms of 120/0.01 = 12000 seconds, or 3.33

10Inaccurate because this detector actually operates on the aggregated observations and
not the underlying raw observation samples, and so might perform slightly worse than the
true centralized detector.
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Figure 9: ROC curves for networks operating with consensus level α.

hours. Whether this high false alarm rate stems from something speci�c to
the model, from the instability issues mentioned or some as of now unknown
error source remains to be determined.

Further, it also seems that the network consistently performs better than
the centralized detector which has access to all observations. While it is
currently unknown what causes this rather unintuitive behavior, a plausible
theory is that it is simply an e�ect of that the centralized detector performs
a classi�cation after every time block as opposed to the individual network
nodes which only classify after reception of messages from other nodes, as
mentioned at the beginning of this chapter. Thus, the centralized detector
can be expected to have a higher rate of false alarms as an e�ect of classi�-
cations made on weak premises.

3.2 Simulation 2: Consensus
For the same data as above, we look only on the case TSNR = 14 dB and
instead vary the consensus limit α = {0.2, 0.4, 0.6, 0.8, 1.0} in order to see if
any clear di�erence can be discerned. The result is found in Figure 9.

At �rst glance, little to no gain seems to be achieved by requiring the
nodes to wait for network consensus. Most likely, the reason is that the
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Figure 10: ROC curves for networks with (A,R) settings.

increased robustness of networks with α > 0.2 (as compared to the networks
with α = 0.2) lets us decrease the tolerance level π0/π1 in order to achieve
the same false alarm rate, which however does not increase the detection
probability above the original level. However, the reader should also notice
that the �gure shows an increased detection probability in some of the curves
for the very lowest values of PFA. If this result can be shown to hold in more
extensive simulation studies, the ad hoc consensus method should be seriously
considered since it as mentioned before also can be expected to bring more
robustness into the detector network when not all model assumptions hold.

3.3 Simulation 3: Decision Active Nodes
Yet again for the same data as in Simulation 1 and the case TSNR = 14

dB, we compare detection performance between the three proposed pairs of
settings for decision active nodes and the routing matrix (A,R) in Example
3. The results are shown in Figure 10.

Somewhat surprisingly, the plot shows that the setting with the fewest
number of decision active nodes has the best performance. Then again, the
target passes the network between nodes 2 and 3, and the fact that the
network performs best when nodes which we know to be far from the target
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Figure 11: ROC curves for networks using c bits as quantization levels.

are exempt from making classi�cations is rather intuitive. Nevertheless this,
as well as the results of Simulation 1, does show that the network model may
su�er from problems associated with mass signi�cance. That is, there may
be a positive correlation between the number of classi�cations performed,
i.e. the number of decision active nodes, and the rate of false alarms. Then
again, we have only looked at the results of one network structure and one
target setting, so it is too early to make strong conclusions.

3.4 Simulation 4: Data Quantization
As mentioned in Section 2.2.3, each Aqj and σ̂qj is quantized to c bits as
they are sent in a SM. We have so far assumed that the loss of precision
during quantization is negligible, so an important issue is to �nd under what
circumstances this assumption holds. For this reason, we have performed a
number of simulations in which the amplitude and noise standard deviation
is quantized to c = {4, 8, 16, 32} bits according to the uniform quantization
method described in Appendix A-6, with Amax = 100 and σ̂max = 10. For
each of the quantization levels, 200 iterations are simulated under H1, again
with TSNR = 14 dB, and 200 iterations are simulated under H0. The re-
sulting ROC curves are compared to the corresponding curve of Simulation
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1 (which uses the unquantized observations), and are plotted in Figure 11.
While the curve corresponding to c = 4 bits seems to perform signi�cantly

worse (at least for low false alarm rates), it seems that for this network
structure as little as 8 bits may be enough to achieve the same performance
as the in�nite precision case. Then again the curve corresponding to c = 16

bits might serve as warning that in order to have good detection performance
while having a low false alarm rate, a higher quantization may be needed.
Once again, the conclusion which must be drawn is that further studies are
needed in order to ascertain these �nds.
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4 Concluding Remarks
We have presented an model for a wireless underwater detector network to
be used for sequential detection problems. The model utilizes the classic
Bayes' detector framework applied for a decentralized detection network with
a message-passing algorithm which censors for low observation signal-to-noise
ratios. Nevertheless, this is a �rst model in this project, and it does present
us with a number of problems which will have to be addressed in further
research.

A general problem with the classi�cation method used in our model is that
maximum a posteriori methods (as well as related likelihood-based methods)
is non-robust, in the sense that performance may be impaired if not all as-
sumptions hold which the model rests upon. This problem becomes strikingly
clear for our model, because a failure in a single node (e.g. breakdowns in
the communication equipment, corrupted observations, etc.) is likely to af-
fect the performance of the entire network via the message-passing scheme
used. Steps will need to be taken to make the model more robust.

Another problem stems from the computationally intense classi�cation
phase. Because of the relative component inexpense we have so far assumed
that the nodes have unlimited computational capacity, but one quickly real-
izes that this assumption may fail to hold. Each node may be required to
produce as much as one approximation of a multidimensional integral per
second, which may be di�cult even for the fastest of microprocessors. As
discussed above the rather simple approximation method proposed in Ap-
pendix A-4 comes with a number of problems which makes it unstable, so
in order to use our model one needs to either �nd a better approximation
method, or come up with a simpli�ed classi�cation scheme.

Further, we should address the model assumed for observation sampling:
a deterministic signal with one center frequency corrupted by external white
noise. This may prove to be an oversimpli�ed model for sampled sound, and
one should try modeling the target signal by means of a stochastic process
involving a whole spectrum of frequencies. Furthermore, the error terms are
likely to be correlated for high sampling rates, in particular when other noise
sources are present within the network.
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Further research is also needed for the moving target detection problem,
as it (as has been noted) can currently only handle one target at each time.
The �eld of research known as multiple target tracking might serve as a
guideline (see e.g. Stone et al., 1999). Whether constant target velocity and
direction is a good enough approximation of the actual target trajectory may
be determined for each application. If not, it may be further parametrized,
but this is outside the scope of this thesis.

In order to reduce disturbance sources we may consider to perform Sim-
ulations 2�4 (among other possible simulations) using the same target sig-
nal at all nodes (resulting in identical distribution of Aqj and σ̂qj for all
j = 1, . . . , N). Further, since the most important portions of the ROC curves
are those which correspond to low false alarm rates, extensive simulations are
required to get clear estimates of these.

An interesting energy savings paradigm to explore besides sensor censor-
ing is the proposal to have a number of the nodes go into sleeping mode at
times when little activity is to be expected. In this mode the node may turn
o� functions vital to detection either for a prespeci�ed period of time or until
a wake-up call is received from some other active node. A brief outline is
given by Chamberland and Veeravalli (2007, p. 24), and Appadwedula et al.
(2005) study the performance of a Neyman-Pearson model utilizing censoring
and sleeping for a simple decentralized detection problem.

It should be stressed that for good performance it is necessary to �nd good
con�guration settings for the detector network and its nodes. Since the model
is complex this will likely need to be done through extensive simulations. A
number of additional performance measures needs to be de�ned, in order to
quantify the model's communication requirements, etc.

Finally, and perhaps most important, the greater promise of a self-con�guring
fully decentralized detector network should be mentioned. If it became possi-
ble to create a scalable architecture in which new nodes, with little to no pre-
con�guration, could be easily and quickly deployed into an existing network
and there establish themselves as new network nodes without outside help,
the reduction of deployment costs would be tremendous. The achievement
of something to this e�ect will likely require extensive research combining a
multitude of academic disciplines.
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Appendices

A-1 Distribution of Feature Vector
We will only give the proof when k = 1 as the proof for the general case
is analogous. For simplicity of notation we write Ya = Ya1i, s = s1−l,i(θ),
εt = εti and σ = σ1i. According to (4) we have

Y1 = (2/r) {s [cos(φ)
∑r

t=1 cos2(ωt)− sin(φ)
∑r

t=1 sin(ωt) cos(ωt)]

+
∑r

t=1 εt cos(ωt)} ,

(A.1)
and from (5), we get

(2/r)
∑r

t=1 εt cos(ωt) ∈ N(0, σ2(2/r)
∑r

t=1 cos2(ωt)). (A.2)

Further, relying on the assumption that G ∝ r and treating the above sums
as Riemann sums, we get

(2/r)
∑r

t=1 cos2(ωt) = (2/r)
∫ r
0 cos2(ωt)dt + O(r−2)

= 1 + O(r−1),

(2/r)
∑r

t=1 sin(ωt) cos(ωt) = O(r−1).

(A.3)

This and the Lindeberg-Feller Central Limit Theorem imply that Y1
d−→

N (s cos(φ), σ2) as r → ∞, and it can be similarly shown that Y2
d−→

N (−s sin(φ), σ2) as r →∞. Asymptotic bivariate normality of Y follows in
a similar manner using the Cramér-Wold device, i.e. showing that all linear
combinations of Y1 and Y2 are asymptotically normal. To see asymptotic
independence of Y1 and Y2, notice that

Cov(Y1, Y2) = E(Y1Y2)− E(Y1)E(Y2) = σ2(2/r)
r∑

t=1

sin(ωt) cos(ωt) = O(r−1).

(A.4)
We have thus shown that (6) holds when r is large.

A-2 Distribution of Estimated Amplitudes
Let

f(x; m) =
xm/2−1 exp(−x/2)

2m/2(m/2− 1)!
, x > 0,
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be the density of a χ2(m)-distributed random variable with m degrees of free-
dom. A noncentral χ2(m, η)-distributed random variable with m degrees of
freedom and noncentrality parameter η has density (Abramowitz and Stegun,
1972, p. 942)

f(x; m, η) =
∞∑

n=0

exp(−η/2)(η/2)n

n!
f(x; m + 2n), x > 0. (A.5)

It follows from (6) that σ−2A2∈̃χ2(2, s2/σ2), where, for simplicity of notation,
we treat the asymptotic (non-approximate) case and write A = Aqj, s =

sq−l,j(θ) and σ2 = σ2
qj. Hence fA(x; s, σ2), the density of A, has a Rice

distribution
fA(x; s, σ2) =

2x

σ2
f(x2/σ2; 2, s2/σ2)

and the likelihood ratio

fA(x; s, σ2)/fA(x; 0, σ2) = f(x2/σ2; 2, s2/σ2)/f(x2/σ2; 2, 0)

=
∑∞

n=0 exp(−s2/(2σ2))(s2/(2σ2))n(n!)−1f(x2/σ2; 2 + 2n)/f(x2/σ2; 2)

= exp(−s2/(2σ2))
∑∞

n=0(xs/(2σ2))2n(n!)−2

implies (25), since

Lqlj(θ)/Lqlj(0) = fA(Aqj; sq−l,j(θ), σ̂2
qj)/fA(Aqj; 0, σ̂

2
qj).

Introduce the distribution functions F (x; m) =
∫ x
0 f(y; m)dy, F (x; m, η) =

∫ x
0 f(y; m, η)dy and FA(x; s, σ2) =

∫ x
0 fA(y; s, σ2)dy. Then, integrating (A.5),

we �nd that

1− FA(xσ; s, σ2) = 1− F (x2; 2, s2/σ2)

= exp(−s2/(2σ2))
∑∞

n=0(s
2/(2σ2))n(n!)−1(1− F (x2; 2 + 2n)).

The last equation implies (26), noticing that

Qqlj(θ) = 1− FA(λσ̂uj; sq−l,j(θ), σ̂2
uj).

A-3 Approximation of Transmission Probabilities
In this appendix, we derive an approximation for Ps,ji assuming negligible
send times. These probabilities are needed for computing Λki(θ) in (27).

49



Let us start by introducing Iqk = (Iqk,ji)
N
j,i=1, where

Iqk,ji =





1, j = i,

1{SMqj received by i during blocks (q, k]|SMqj sent}, j 6= i.

We assume that T send
ki ¿ T rec

ij for all k, i and j, so that the delays due to
�nite send rate are negligible in comparison to delays due to the speed of
sound in water. Under this assumption we notice that the distribution of
Iqk,ji is stationary in the sense that Iqk,ji

d
= Iq+c,k+c,ji for all integers c. Thus,

without loss of generality we put c = −q and use the identity

E(I0,k−q) = P k−q (A.6)

in order to compute P s = (Ps,ji)
N
j,i=1 for s = 0, . . . , w − 1.

We introduce the reception indicator matrices Iq = (Iq,ji)
N
j,i=1, where

Iq,ji =





0, j = i,

1{SMqj received (without routing) by i at some time > qr|SMqj sent}, j 6= i,

and notice that all Iq,ji are independent, with

P (Iq,ji = 1) =





0, j = i,

Pji, j 6= i.
(A.7)

We also need the N ×N delay matrices Dv = (Dv,ji), de�ned by

Dv,ji = 1{(v−1)r<T rec
ji ≤vr}

for v = 0, 1, 2, . . .. Notice in particular that D0 is the identity matrix of
order N .

Having generated all matrices I0, . . . , Iw−1 from (A.7), we put I00 = D0

and then recursively compute

I0s = min

(
1N×N , I0,s−1 + I0 ·Ds +

s−1∑

ν=1

((I0ν − I0,ν−1) ·R) (Iν ·Ds−ν)

)

(A.8)
for s = 1, . . . , w − 1, where 1N×N is an N × N -matrix with 1 entries and
min(A, B) refers to elementwise minimum of matrices A and B.
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It remains to estimate P s by Monte Carlo from (A.6) by repeatedly gen-
erating {I0s}w−1

s=0 according to (A.7) and then using (A.8). After generating
K matrices I

(a)
0s we get

P̂ s = K−1
K∑

a=1

I
(a)
0s . (A.9)

When no routing occurs (R = 0N×N), (A.8) simpli�es to the explicit
expression

I0s = D0 + I0 ·
s∑

ν=1

Dν ,

in which case
Ps,ji = Pji1{T rec

ji ≤sr}.

A-4 Approximation of A Posteriori Integral
In this section we present an approximation of ∫

Θ1
Λki(θ)dθ to insert into

(18), with Λki as in (27). We use the quadratic approximation

Λki(θ) ≈ Λki(θ̂ki) exp
(
−0.5(θ − θ̂ki)Jki(θ − θ̂ki)

′) ,

of (27), where
θ̂ki = arg max

θ∈Rp
Λki(θ)

and the p× p matrix
Jki = −(log Λki)

′′(θ̂ki)

gives the curvature of − log Λki at θ̂ki. For formulas, see Appendix A-5.
Changing variables ξ = (θ − θ̂ki)J

1/2
ki , we get

∫
Θ1

Λki(θ)dθ ≈ Λki(θ̂ki)
∫
Θ1

exp
(
−0.5(θ − θ̂ki)Jki(θ − θ̂ki)

′
)
dθ

= |Jki|−1/2Λki(θ̂ki)
∫
Ξ1

exp (−0.5ξξ′) dξ

= (2π)p/2|Jki|−1/2Λki(θ̂ki)Φ
(

ˆθki·u
|uJ−1/2

ki |

)
,

where
Ξ1 = (Θ1 − θ̂ki)J

1/2
ki

= {(θ − θ̂ki)J
1/2
ki ; θu′ > 0}

= {ξ; (ξJ
−1/2
ki + θ̂ki)u

′ > 0}
= {ξ; ξv′ > −θ̂kiu

′/|uJ
−1/2
ki |}

and v = uJ
−1/2
ki /|uJ

−1/2
ki | is a unit vector in Rp.
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A-5 Derivatives
For completeness, we here give the derivatives of log Λki to be used in the
quadratic approximation of ∫

Θ1
Λki(θ)dθ. We write

M(θ) = −0.5(θ − µ)Σ−1(θ − µ)′,

LR(θ) = Lqlj(θ)/Lqlj(0),

Q(θ) = Qqlj(θ) and
P = Pk−q,ji.

Then, according to (27), we have

log Λki(θ) = constant + M(θ)

+
∑

(q,j)∈BN ki
log LR(θ)

+
∑

(q,j)∈BN k\BN ki
log (1−Q(θ)P ) .

(A.10)

We put s(θ) = sq−l,j(θ) and further

Da(f) = ∂f
∂θa

, D2
ab(f) = ∂2f

∂θa∂θb
,

sa = Da(s), and sab = D2
ab(s)

and see that
Da(log Λki(θ)) = Da(M)

+
∑

(q,j)∈BN ki
Da(log LR)

+
∑

(q,j)∈BN k\BNki
Da(log (1−QP )),

D2
ab(log Λki(θ)) = D2

ab(M)

+
∑

(q,j)∈BN ki
D2

ab(log LR)

+
∑

(q,j)∈BN k\BNki
D2

ab(log (1−QP )).

(A.11)

We get
Da(M) = −∑p

b=1(θb − µb)Σ
−1
ab ,

D2
ab(M) = Σ−1

ab

where we have used that Σ−1 is a symmetric matrix. Further, letting A =

Aqj, σ̂ = σ̂qj and E = exp(−s2/(2σ̂2)), from (25) we get

Da(log LR) = Da(LR)/LR,

D2
ab(log LR) = (Dab(LR)LR−Da(LR)Db(LR))/LR2,

Da(LR) = EsaS
LR
1 ,

D2
ab(LR) = E((−σ̂−2ssasb + sab)S

LR
1 + sasbS

LR
2 ),
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where

SLR
1 = −σ̂−2s +

∑∞
n=1 ΩLR

n s2n−1(−σ̂−2s2 + 2n),

SLR
2 = −σ̂−2 +

∑∞
n=1 ΩLR

n s2n−2 (−σ̂−2(2n + 1)s2 + 2n(2n− 1)) ,

ΩLR
n = (A/(2σ̂2))2n(n!)−2.

Further, to keep notation simple we rede�ne σ̂ = σ̂uj and E = exp(−s2/(2σ̂2)),
and get, from (26),

Da(log (1−QP )) = −PDa(Q)/(1− PQ),

D2
ab(log (1−QP )) = −P (D2

ab(Q)(1− PQ) + PDa(Q)Db(Q))/(1− PQ)2

Da(Q) = EsaS
Q
1 ,

D2
ab(Q) = E((−σ̂−2ssasb + sab)S

Q
1 + sasbS

Q
2 ),

where

SQ
1 = −σ̂−2ΩQ

0 s +
∑∞

n=1 ΩQ
n s2n−1(−σ̂−2s2 + 2n),

SQ
2 = −σ̂−2ΩQ

0 +
∑∞

n=1 ΩQ
n s2n−2(−σ̂−2(2n + 1)s2 + 2n(2n− 1)),

ΩQ
n = 2−nσ̂−2n(n!)−1Γinc(λ2/2, n + 1).

A-6 Uniform Quantization
In a uniform quantization of variable x to c bits on the interval [0, xmax), in
which the variable is expected to lie, we divide this interval into 2c steps of
length S = xmax/2c. The quantized variable is set to

xq :=





1
2
S if x < 0,

(n + 1
2
)S if nS ≤ x < (n + 1)S,

n = 0, . . . , 2c − 1,

(2c − 1
2
)S if xmax ≤ x,

and we see that, for x ∈ [0, xmax),

n =
⌊
x

S

⌋
.

Thus, the above simpli�es to

xq :=





1
2
S if x < 0,(⌊

x
S

⌋
+ 1

2

)
S if 0 ≤ x < xmax,

(2c − 1
2
)S if xmax ≤ x.
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