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Abstract

Reserving is one of the most important subjects in non-life insurance
mathematics. This project gives a brief overview of stochastic claims
reserving, a field that has seen great development the latest decades.
Attention has been given to introduce reserving in a general framework, in
order to give the reader a background before describing mathematical
reserving methodologies. Further on, we present a first application of
Mack’s chain ladder method and its assumptions. Thereafter, a modern
bootstrap approach is used, with an underlying generalized linear model
(GLM), using real paid claims automobile data.

Key words: Reserving, Chain Ladder, GLM, Bootstrap.

*E-mail: kyrlis@yahoo.com , Supervisor: Ola Hossjer

3


mailto:kyrlis@yahoo.com

Acknowledgments

This work constitutes a 30 ECTS-credit Master's thesis in mathematical
statistics at Stockholm University.

I am greatly indebted to my supervisor, Professor Ola Hossjer, for his
outstanding collaboration, patience and guidance throughout the creation
of this thesis.

I am also grateful to Anders Hedegaard Jessen from Copenhagen
University, Codan forsikring and Niels Rietdorf from Alpha Group
insurance, for providing me the data set and making useful comments.

Last but not least, I would like to warmly thank my family and all my
friends for constantly encouraging me to complete this work.



Contents

1 Introduction
2 Theoretical framework
2.1 Mack s chain ladder method
2.2 Generalized Linear Models and chain ladder

2.3 Bootstrap methodology in stochastic claims reserving
3 Data analysis

3.1 Chain ladder results

3.2 Bootstrap and GLM results
4 Conclusions and discussion
5 References

6 Appendix

11

11

15

17

20

20

24

29

30

32



1 Introduction

1.1 The purpose of non-life insurance

In general, insurance could be defined as a product in which the consumer (insured) is
paying an amount (premium) to a company (insurer) in order to be hedged (covered) for
the risk of an economic or physical loss, under certain conditions that are agreed by both
parties in an insurance contract.

The concept of risk is the key to the existence of the insurance industry through
economic history. A simple definition of risk is: “A state of uncertainty where some of the
possibilities involve a loss, catastrophe, or other undesirable outcome” (Wikipedia). The
results of these outcomes evolve economic consequences, which is exactly what insurance
companies are prepared to cover for. The measurement of risks and their possible
consequences to the insured and the insurer is one among many tasks an actuary is
settled to fulfill.

As is well known, insurance companies are usually divided into life and non-life (general
or property/casualty). Life insurance companies sell life assurance, annuities and
pensions products while non-life insurance companies sell a wide variety of insurance
contracts that are not related to life loss. Nevertheless, the majority of non-life insurance
companies sell products which are related to health and sickness issues. As specified by
solvency rules, the primary types of non-life insurance products are (Claims reserving
manual, 1997):

e Accident & Health

e Motor Vehicle

e Aircraft

e Shipping

e Goods in Transit

e Property Damage

e General Liability

e Pecuniary Loss

e Non-proportional Treaty Reinsurance

e Proportional Treaty Reinsurance

There are different types of risks to be covered even within each category, so for
economical purposes they should be subdivided into different groups of risk. Furthermore
the group division has minor differences among different countries.



1.2 Loss reserving in general

An insurance company’s financial condition is highly dependent on which reserving
philosophy it adapts, as well as to which extent the value of the reserve is the best
estimate of the business experts. The key to understand a reserving procedure in general
is to understand why insurance companies have to hold reserves for the future in the
first place. The basic reasons why reserves must exist are the following:

(i) Although premiums have been paid from the insured, the cover
corresponding to part of these premiums that has not been settled.
(ii) There may always be claims that have been or have not been reported,

even though the accidents for these claims have occurred in the past.
(ili)  Various expenses such as taxes have not yet been paid.

One of actuary’s responsibilities (apart from product pricing and business statistics ) is
to create best estimates of the reserves needed in order to fulfill some requirements such
as solvency rules, company profitability, business administration (accounting to
shareholders and to Inland Revenue), budgeting, claim management and control, tax
rules, ratemaking, reinsurance, etc.

1.2.1 Types of Reserves

As maybe expected reserves are not only of one kind. We have to specify the categories
of reserves before continuing. Briefly, the basic categories of reserves (Pantzopoulou,
2003) in a non-life insurance company are:

1. Reserves with respect to unexpired or unearned exposure:
e Unearned premium reserve
e Deferred acquisition costs
e Additional unexpired risk reserve

II. Contingent reserves:
e (Catastrophe reserves

e (Claims equalization reserves

III.  Reserves with respect to earned exposure:
e Notified outstanding claims
e Incurred but not reported claims (IBNR)
e Incurred but not enough reported (IBNER)

Note that the last two types fall to the same category, i.e. “incurred but not settled”
(IBNS).



1.2.2 Reserving methodology in general

In a more general sense, reserving methodology should follow the following steps,
regardless of the purpose of reserving (Claims Reserving Manual, 1997):

Construct a model of the claim process, setting out the assumptions made.
Fit the model, using past observations.

Test the fit of the model and the assumptions, rejecting or adjusting it.
Use the model to make predictions about future statistics of interest.
Apply professional judgment and experience to choose values.

Cup =

Unfortunately, in the real world the scientific methods used are often very different
because the data given by insurance companies is very complex to analyze. In that
matter, one must be very careful before proceeding to the fifth step. Furthermore, the
availability of data is often limited.

1.3 Claims reserving

It is really important to understand how non-life insurance works, both financially and in
a time-perspective (usually a year). An insurance company is receiving premiums from
the policyholders through a predetermined period.

During this period, when a claim has occurred, the insurer is obligated either to pay for
the claim, or to reserve the claim.

The usual problem for claims is that not all of them are reported in time

(IBNR or IBNER). This fact causes a problem for insurance companies: If a claim is not
reported, how do we know how much should be paid to the insured?

Other issues that can arise during the insurance period is the measurement of the
unknown claims costs and how known claims cover the reserves.

Claims reserving is the actuarial process in which we want to estimate the claims
amount of an insurance company’s liabilities. The purpose of this procedure is to provide
the insurance company with the right income statements for the balance sheets, as well
as to estimate future income and expenses, if possible.

Before we start introducing all the mathematical tools, it is necessary to give a picture of
the claims process in time.

1.3.1 Claims time-line

A typical claims reserving procedure is as follows:

accident reporting claims claims claims
date date payments closing reopening  payments closing

LA L
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Usually it takes several years to settle a claim. We have to take into consideration that
various delays can come up. A reporting delay means for example, there is long waiting
time from the accident date to the reporting date. Delays between the reporting date and
the payments are also common, because of court decisions, the severity of the claim, the
recovery of the process, etc.

Reopening means that a claim has developed unexpectedly, and has to be reanalyzed
furthermore before the final payments are made.

To provide an understandable image of claims modeling, we should first make some very
important assumptions. The purpose of these assumptions is to give a realistic model of
observed data, so that estimates and predictions are as close to the real world as
possible. We can briefly give our considerations:

e All data must be adjusted for inflation. It is very important to have the proper
price level both on premiums and claims amounts. Since our models are
developed through time, inflation rates must be given throughout the process. We
omit implementing inflation in our models. The reason is that it has no highly
significant effect in our estimations (Naziropoulou, 2005). Moreover, inflation
forecasts will not be applied in this paper.

e Only a small and conservative bias will be allowed, if the methods are going to be

used in pricing a portfolio.
e All policies are assumed to start at the same accident year, which is not true in
an insurance contract process.

1.3.2 Claims data presentation

The most widely used method to describe claims data is the run-off triangle. We are
given data over observed claims paid per year, usually counted in thousands of a given
currency. Before describing data, we have to define the rows” and columns” time-
perspective:

e Accident year (rows): the year the claims occurred, i.e. the year the accident(s)
occurred, leading to the corresponding claims.

e Development year (columns): the year (or number of years) until a payment from
the claims is actually settled, after the event has occurred.

e Calendar year: the actual year payments are made (diagonals, not shown
schematically).

Let (;; denote the accumulated total claims amount of accident year 4, 1<% <n which

are paid or incurred up to development year j, 1 <7< n.

The following table is the basic representation of the accumulated claims amount data.
Note that the same figure applies for incremental claims Y, =C,,;,—C, ;.



Accident Development year (j)

year (i) 1 2 c j n-j n-1 n
1 Cy, Cp, - Clj Cl.mj Cioa Ci
2 C‘ZAl CZ:Z AR C?j C?.mj C‘_).n—l C2,n

Coun | Ca

1 Ci, G
n-1 Cn—lAl Cn—lﬂ Cn—l,... st * Cn-l,n-l Cn-l,n
n Cua C.. C.3 ... c Con1 C.n

Figure 1 Run-off triangle

All the values from the upper left corner down to the upper right and lower left the
triangle are known to us. Our objective is to estimate the grey shaded values of the lower
right triangle, in order to calculate outstanding claims reserves. The formed grey area
represents future claim payments which will be estimated in order to calculate the claims
reserves for each calendar year.

There exist many methods estimating the future payments and reserves. Some of these
are the Bornheutter-Ferguson method, the Separation method, the Cape Cod method
and the Naive Loss Ratio method. Methods from time series could also be applied.
Another very popular tool for estimating outstanding claims reserves is the Chain ladder
method. Finally, due to the evolution of computers the last decades, bootstrap models
have been the most commonly used methods in practice.

1.4 Aim of this paper

The aim of this paper is to give a slight overview of stochastic claims reserving, using
some of the methods that have been used in the past, and give an introduction to the
latest models that are used both in theory and in practice.

The field of claims reserving in non-life insurance is quite large with numerous models
and methods, and a complete overview would be beyond the scope of a thesis. This is the
reason why this paper is limited to merely a few methods. A very good attempt of
overviewing claims reserving is however the work performed by Pantzopoulou, 2003.
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2 Theoretical framework

2.1 Mack s Chain ladder method

2.1.1 Basic Assumptions

The chain ladder method is the most important model in non-life insurance claims
reserving. The properties of this model are simple, and the estimates are derived in a
very intuitive and natural way. It requires very few distributional assumptions
whatsoever. Nevertheless, we have to make some rather basic assumptions that
characterize this method.

Our goal is to estimate the claims amount (), ; for 1+ 5 > n+ 1 where the values
C, ; are known for ¢+ j <n+1 . The final ultimate (total estimated amount) claims

amount chain ladder estimate is given by:

A A

21 Cp=Cppii fprrmifos » 25i<n
where
n—j
. Cz’,j+1
_ =1 ) —
(22) f=fL—— for 1<j<n-1
CZ}J'
i=1

are the estimated development factors’.

The outstanding claims reserve of accident year i is:

(2.3) R, = ézn —Cirie

As we see f] only depends on development year j. Although the individual development

factors of each development year differ from each other, the ultimate claims estimate will

. to C.

"
use the same f; for all accident years i . Therefore, every increase from C' ,
J ] ,J+1

will be considered stochastic having erpected increase from ) ; to C,; = fj conditionally

on (C; ;. This fact leads us to the first basic assumption:

(AS 1) E(Gi,j+1 |C’[:,17”'7C7:,j):C7:,j.f; ) ZSZS’H, 9 JSJSH—J,

1 Also called "age to age” factors

11



where C’Z.’ Lyeens Cz.’j are all previously known values. This basic assumption states that

., C

Cijiy isa random variable whose conditional expectation given Ci - i only

2

depends on C, ; multiplied byfj, which can be seen as a proportionality factor.

Estimated age to age factors fj are explained as sums of known claims up to j+1

development years, normalized by sums of claims of the corresponding accident years, up
to j development years. The fact that the individual age to age factors differ for each
development year can be explained by rewriting the first assumption by:

(ASl/) E(Ci,j+1 /CZ,] |Ci,17"'70i7j) - f] 9 ZSZS’H, ,JSJS’I’L—Z .

This implies that the conditional expectation of (' P /C; ; given C;; s equal to i

and the individual factors are uncorrelated for sequential development years.

(AS2)  The vectors (C, ,,C, ,,...,C,; ) and (C};,C,,,...,C}, ) are independent for

2,M

different accident years 7 # k.

The assumption above is necessary for the unbiasedness of fj, as well for showing that

accident years do not affect the chain ladder estimate, as long as there are no large
changes of known claims for each calendar year and/or greater fluctuations in inflation.

We can prove that all fj for one time-step are unbiased using the elementary

property E(X) = E(E(X |Y)) . We have:
B(Cy 0 / Cy) = BUB(C, 0y [ Cy | CipyonsCy)
=(E(C, 11 Cipyos Cy) ) C)
= B(Cy - f [ Cy) = BJ,) =

The third assumption underlying the chain-ladder method is based on basic inference
principle that we should choose the estimator with the smallest variance, among several
estimators. Since accident claims are independent for different accident years, the
conditional variance of C;;, ; given past claims will depend on some averaged weighted
variance o, for every single development year. Hence:

(AS3) Var(C, ., |Gy, Ci)=Cyy 07, 1<i<n | 1<j<n—1

i VRS == = ,
where o) represents the conditional variance of C;,, given units of C; ; .The variance
.onod
of fj = sz- (Oi, I / Ci, j) is minimal when the weights w; are inversely proportional
i=1

to Var(C, ;. / Cij | Cipyes O )

12



Since:

(AS37)  Var(Cy,,, /Ci;|CippesCiy) =0/ Ci; | 1<i<n , 1<j<n—1

n—j n—j
and w; = 1 the optimal weights are defined as: w, =C;, / ZCMH which are
i=1

i=1
derived from the Lagrange minimization method. These weights yield the estimate (2.2)
of the development factors.

2.1.2 The variability of the ultimate claims and reserves

The purpose of this method is to estimate the ultimate claims C;, , and thereafter to find
an estimate of the final reserves R, for all accident years. The ultimate claims
estimator’s expectation is, with the assumptions made, equal to E(C, ).

We would like to have a statistically efficient estimator; i.e. the mean square error (mse)

A

of C

., must be as small as possible, always conditional on previously known values. In

A

addition, we need the mse of (), for constructing confidence intervals. The mse is

defined as:

mse(éi,n) = E|(C;,, - én)g | G- Cinipal s =2,0m.

i i,

For the ultimate reserve we have:

C.

7,,1"'01',,77,—7',+1] =

mse(}%) = E[(R - R; )2 | C?',,Z"'Ci,n—iH] = E[(évn - C?I,n+1—7', - 0717 + Ci,n+1—7',)2

A

E[(C;

A

- Oi,n)g Ci,]"'ci,n—iH] = mse(ci,n) <

N

A

(2.4) s.d. (}A?Z) = \/mse(lf{i) = \/mse(é,;yn) =5.d.(C;,,)

A

since C,, and R, are unbiased (Mack, 1993).

N

A stated above, the chain ladder estimates require few distributional assumptions. This
means that the standard deviation is given by:

13



(2) (A () =00 S (G Ly ]

2,1 2 n—j
j=n+1-i f] G]ﬁ,j
Ckzi
k=1

In order to estimate s.e(C,, )= s.d.(éi’n)g we replace in (2.5) C,; by C,; when i+j>n+1,
f; by its the estimator (2.2) , and ¢ by an estimator

. 2
T C. . .

A2 i,j+1 .

67 =—NC, | 2L f |, 1<j<n-2
P (O f’} !

%7

(2.6)

Note that development years in (2.6) run until n-2 years because we cannot estimate o,_,°
from the observation between years n-1 and n. If the claims development is not finished

in n-2, we have to extrapolate the series of 6',‘? for k=n-1 by using:

A2 . A2 s (A2 A2
Op—1 = II]lIl(O'n_g /Gn—SﬂmlII(O-n—370-n—2))
These complicated formulas are derived from the basic assumptions of the chain ladder.

The proof of (2.5) is very long and difficult, and it is omitted from this paper, for details
see Mack (1993).

We have now established estimates of R, and s.e.(. R, ), but in order to build confidence
intervals® we can always assume a distribution for R,. If we have enough data (which is
usually not the case) the interval can be given by the standard normal or lognormal
distribution, due to the central limit theorem. The lognormal distribution is used because
claims amount data is often not symmetrical around its mean, like in the normal case.

Therefore we assume:

R, € LogN(y;,0,°)

. . . 2 .
with unknown mean and variance. (Note that the variance ; here is not the same

variance as in (2.6)).
Hence, the following relations hold:

2 We can build confidence intervals using other methods, i.e. using Tjebyshev’s inequality.

14



E(R,) = exp(y; +0,° / 2)
Var(R,) = exp(21; + 0, ) (exp(o;”) - 1) <

o7 =In(1+Var(R,) /| E(R,)?)
t =m(E(R)) -0 /2

Using the above relations we can first estimate the reserves E‘( R) = Ii and the

variances Var( R) and then use them to calculate the estimates of mean and variance of

1;and 0. Now the confidence intervals are:

(2.7) R, -exp(£A-6, -6 /2),

where A is the percentile of the chosen confidence level (2@(1)-1), and @ is the

cumulative distribution function of a standard normal distribution.

2.2 Generalized Linear Models & chain ladder

2.2.1 Basic model

One disadvantage of the chain-ladder estimates is that it does not provide a whole
predictive distribution of the outstanding claims. That is, because of the absence of a
specific distribution that could possibly capture more of the variability of the claims
estimates. Moreover, the mean square error is computed completely empirically based on
given data. An often used approach is to employ generalized linear models (GLM). For
full analysis of GLM see McGullagh and Nelder, (1989).

The GLM theory allows for a random variable Y, ‘s stochastic component to have
parameters from a larger family of distributions, instead of assuming the normal
distribution as in the classical linear model. Thus, the density function of Y;; can be
expressed in the form of an exponential dispersion family as:

(y;; - 0y —b(6;))
a(e)

v, (303, 0) = exp{ -y, (0)}

where g;; is the canonical parameter, ¢ is the dispersion parameter and b(d;) , a(p),
c(yy, ¢ ) are functions of 6 , ¢ and y,;. We also define a link function g that relates
the expected value of Y;; to a linear combination of the explanatory variables used in the
regression models. The link function is defined by requiring that

%:g(mu) where mij:E(Yij)'

15



Note that the GLM assumption requires that the incremental claim amounts are
independent. We can now assume some distributions of the variable Y; . The most
commonly used distributions for claims amounts are overdispersed Poisson, gamma or
lognormal. By assigning a distribution to the claims data we can test whether a model
fits data to a satisfying level. When we assume a logarithmic link function
g(m;)=log(m,;;) and a Poisson or gamma distribution for the incremental claims Yj; we

have the following structure:

)

and

log(mij) =Ny
My =c+o;+p
o, =B =0

where p=1 for Poisson and p=2 for gamma. This model gives a total of 2n-1 regression
variables ¢, a,,...,a,, , fs,...,B, .- Note that the last equality is set to zero to avoid

overparametrization.

2.2.2 ML-equations and parameter estimation

To get the maximum-likelihood estimations of the regression parameters ¢, a, and f; we

first define the log-likelihood function of the joint density of ¥ = {Y;’j; 2<i+j<n+1}

as:

(2.8) f({y@j}S{@y}S(ﬂ) = log {Hﬁ(y,,ﬁ,,,co)} = @ Z (yijeij - b(‘%)) + Z C(?Jyzp(ﬁ)

where the parameters 8 are functions of 7,; depending on the chosen probability model.
The dispersion parameter a(p), does not influence the maximum likelihood values. Using

=b(0;) and taking the first

the relations in section 2.2.1 with g(m,ij) =M, m i

i

derivative with respect to f; , we have:

n+1-j 69 n+l-j 89 n+l-j 60 a - -
% — Z ﬂ Y o Z (yz N b,(elj))_zj — (ylj _ b,(gzj)) Ui ﬂ%
a'Bj i=1 ael] aﬂj i=1 aﬂj i=1 amzj 8712] 5,6’]

Then, we know that Ty = b (6@1) < amy‘ /697;/ = b”(em) , and

16



v(my;) = bﬂ(@j) = a0, [ omy =1/ vo(my)

where U(mu) = mf/’ is the variance function.

amzj /6’77;j =1/ly (m”)]
on; | oB; =1

Furthermore we have:

And finally, using all the above relations we get the ML-equations by:

S WM,
i U(mz‘j)g’(mij)

Analogously an additional set of n ML-equations is obtained by differentiating with
respect to ¢, ay,..,a, .

2.3 Bootstrap methodology in stochastic claims reserving

A natural way of quantifying uncertainty when having too little data is using the
bootstrap. A simple definition of bootstrap is: “a computer-intensive, general purpose
approach to statistical inference, falling within a broader class of resampling methods”
(Wikipedia). Furthermore as we shall see that the lognormal confidence intervals in (2.7)
are of very high uncertainty, since they assume a lognormal distribution of the reserves.

The idea of bootstrap is to create “false” data to make inference and compare with the
actual real data (Efron & Tibshirani, 1995). In stochastic claims reserving we can in this
way compare the true outstanding claims reserves and the reserves estimator, and most
importantly approximate the variance of the prediction error, and the predictive
distribution of the reserves (Bjorkwall, et al., 2008). Some of the first papers using
bootstrap in claims reserving are by England & Verall, (1999) and by Pinheiro,(2003)

2.3.1 Non-parametric bootstrap with GLM

In order to begin resampling the data, we have to use the GLM model introduced in
section 2.2.1.

As described in (Bjorkwall et al, 2008), the proper way to resample the triangles is to
resample the residuals with replacement, and not to pick and replace from the original
data. The reason is that the original data is ordered in accident and development years,
while the residuals are standardized. The most commonly used residual is the (unscaled)
Pearson residual defined (using the same notation as in section 2.2.1,):

17



P = Yi—My o<ivj<n+i
i
—

ij

(2.9)

A

where 1, = C+a; + f§; is the maximum likelihood estimate of m,; .
The residual is chosen not to be corrected for degrees of freedom as there is no
significant difference using such residuals, when the number of accident years is fairly
large (Pinheiro, 2003). Note that the residuals are assumed to be approximately
independent and identically distributed. We therefore estimate the dispersion parameter,

which is needed to evaluate the variance, as:

. 1 P2
(2.10) v= (n(n+1)/2)—(2n-1) 2.)

where (n(n+1)/2) is number of observations and (2n-1) is the number of parameters.
The bootstrap procedure then starts when we draw B samples 7;.;’* from the residuals in

(2.9) with replacement, building B new residual triangles. Then, we calculate B
bootstrap triangles of claims amounts using:

(2.11) Y, =my +r\mi | 2<i+j<n+1

We then develop the resampled upper triangle using the chain ladder method, getting
resampled forecasts of outstanding claims. This yields upper triangle outstanding claims

}A?:,i = 2,...,n for each accident year i and R" for the total outstanding claim.

We then resample future values Y, by resampling from (2.9) and repeating the
bootstrap procedure for the lower triangle. In this way we get the resampled true
outstanding claims in the bootstrap procedure and unstandardized prediction errors.

>k Ak

pe, =R - R

for each accident year i and similarly R for the resampled total outstanding claim and

prediction errors:

% A %

pe*zR -R

18



The reason we use unstandardized prediction errors is that that they are defined in all
cases. It is shown (Bjorkwall, et al.,2008) that standardized prediction errors often give

negative values, giving imaginary numbers.

Finally, the predictive distribution of the outstanding claims is obtained from the B

resampled E: = }A?z + pe;k for accident year i and similarly the B resampled

R =R + pe for the total claim.

19



3 Data analysis

Our dataset consists of 55 observations of third party liability (TPL) automobile data of

paid claims amounts.
3.1 Chain Ladder results

We can begin our data analysis by first looking at the data itself:

A ccident Development year
year 1 2 3 4 5 6 7 8 9 10
1 451,288 339,519 333,371 144,988 93,243 45,511 25,217 20,406 31,482 1,729
2 448,627 512,882 168,467 130,674 56,044 33,397 56,071 26,522 14,346
3 693,574 497,737 202,272 120,753 125,046 37,154 27,608 17,864
4 652,043 546,406 244,474 200,896 106,802 106,753 63,688
5 566,082 503,970 217,838 145,181 165,519 91,313
6 606,606 562,543 227,374 153,551 132,743
7 536,976 472,525 154,205 150,564
8 554,833 590,880 300,964
9 537,238 701,111
10 684,944

Table 3.1, Incremental claims amounts

At a first glance, the increments in table 3.1 seem to have reasonable size and are not
negative. Nevertheless, we can be critical about some possible outliers (marked in the
triangle). In accident year 1, development year 10, the amount is 1729 which is a very
small increment that will surely influence our estimations. Some data points in
development year 2 are also considerable, i.e. we see that the amounts are larger than in
accident year 1, which is usually not the case in this kind of data. If we add each
development year progressively we get the cumulated data:

Acc. Development year
year 1 2 3 4 5 6 7 8 9 10
1 451,288 790,807 1,124,178 1,269,166 1,362,409 1,407,920 1,433,137 1,453,543 1,485,025 1,486,754
2 448,627 961,509 1,129,976 1,260,650 1,316,694 1,350,091 1,406,162 1,432,684 1,447,030
3 693,574 1,191,311 1,393,583 1,514,336 1,639,382 1,676,536 1,704,144 1,722,008
4 652,043 1,198,449 1,442,923 1,643,819 1,750,621 1,857,374 1,921,062
5 566,082 1,070,052 1,287,890 1,433,071 1,598,590 1,689,903
6 606,606 1,169,149 1,396,523 1,550,074 1,682,817
7 536,976 1,009,501 1,163,706 1,314,270
8 554,833 1,145,713 1,446,677
9 537,238 1,238,349

10 684,944
Table 3.2: Claims amounts C,; cumulated
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To get an even clearer picture of how the amounts are increasing we look at the
following diagram, only for accident years 1-5 (this is because the lines intersect, and we
cannot observe clearly):

2500000

2000000 e

1500000 /’W —®— Acc. Year 1

== Acc. Year 2
Acc. Year 3

1000000 ———
== Acc. Year 4
== Acc. Year 5
500000
0

All accident years are following a trend, (looks like exponential trend). From this trend
and from the chain ladder formulas, we first calculate the age to age factors of each

data point as fz = —5*1 4nd then we use formula (2.2) which is needed to progress

i,J
the triangle later on, getting the following table:

Accident Development year
year 1 2 3 4 5 6 7 8 9 10
1 1.75233 1.42156 1.12897 1.07347 1.0334 1.01791 1.01424 1.02166 1.00116 -
2 2.14323 1.17521 1.11564 1.04446 1.02536 1.04153 1.01886 1.01001
3 1.71764 1.16979 1.08665 1.08257 1.02266 1.01647 1.01048
4 1.83799 1.20399 1.13923 1.06497 1.06098 1.03429
5 1.89028 1.20358 1.11273 1.1155 1.05712
6 1.92736 1.19448 1.10995 1.08564
7 1.87997 1.15275 1.12938
8 2.06497 1.26269
9 2.30503
10 -
Chain

Ladder 1.93666 1.2166 1.11709 1.07835 1.04097 1.02743 1.01426 1.01588 1.00116
Table 3.3 Development factors of each data point €& Chain ladder development factors
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In table 3.3 we see that there are three factors exceeding 2, giving a somewhat
unexpectedly large increase. This can be considered unusual but it is absolutely rational:
Most of the development factors in the beginning of claims development (years 1 to 3)
are much higher than 1,and then drop to values close to 1, which means that most of the
expenses of unsettled claims are reported or known to the insurer the first years. This
does not have to be a rule of thumb, but it can be one of many reasons.

The following table shows known (cumulated) and predicted values (2.1) of future
accumulated claims using the same age to age factors for each accident year as explained
in chapter 2. Then, the corresponding variability between accident years (which is
needed to obtain the standard errors between development years) was calculated using
formula 2.6, and extrapolating for the last two development years:

Accident Development year

year 1 2 3 4 5 6 7 8 9
1 451288 790807 1124178 1269166 1362409 1407920 1433137 1453543 1485025
2 448627 961509 1129976 1260650 1316694 1350091 1406162 1432684 1447030
3 693574 1191311 1393583 1514336 1639382 1676536 1704144 1722008 1749278
4 652043 1198449 1442923 1643819 1750621 1857374 1921062 1948970 1979834
5 566082 1070052 1287890 1433071 1598590 1689903 1736459 1761686 1789584
6 606606 1169149 1396523 1550074 & 1682817 1749973 1798184 1824307 1853197
7 536976 1009501 1163706 1314270 1416478 1473005 1513586 1535574 1559892
8 554833 1145713 1446677 1616673 1742398 1811932 1861850 1888898 1918811
9 537238 1238349 1514508 1692475 1824095 1896889 1949147 1977464 2008779
10 684944 1333266 1630593 1822200 1963909 2042282 2098546 2129033 2162749

Variance

(2.6) 17680 5622 347 643 413 171 18 49 18
Table 3.4  Cumulative claims, predicted cumulative claims C,; and variances from (2, 6)

Now we can calculate the claims ultimate and the outstanding claims reserves by (2.3),
and using formula (2.5), we calculate the standard error of the estimations. We can also
calculate an estimate of the coefficient of variation for each accident year:

i Cim R, s.e (Ri) s.e (Ri)/Ri
1 1,486,754 - - -
2 1,448,715 1,685 8,790 521.7%
3 1,751,387 29,379 19,305 65.7%
4 1,981,700 60,638 22,835 37.7%
) 1,791,061 101,158 31,188 30.8%
6 1,856,619 173,802 47,011 27.0%
7 1,563,619 249,349 56,684 22.7%
8 1,922,669 475,992 71,230 15.0%
9 2,002,268 763,919 146,344 19.2%
10 2,144,804 1,459,860 252,247 17.3%
Total 17,949,593 3,315,779 354,818 10.7%

Table 3.5 Chain ladder estimates
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Most of the values in the last column are between 10-70 %, which is a rather pleasant
fact, and shows that the variations of the reserves are not too large. We see that the
standard error in accident year 2 is very large (nearly 5 times larger) compared to the
reserve estimate. This result comes along with the fact discussed in table 3.1. The claims
amount in accident year 1, development year 10 was very small, and affected the
variability of the estimate. Therefore this estimate cannot be trusted in any way due to
its uncertainty.

Now we can proceed building confidence intervals as discussed in chapter 2. The
lognormal approach gives the following confidence intervals, using a 95% confidence

level:
i Ci,10 Ri lower limit upper limit
1 1,486,754 - - -
2 1,448,715 1,685 9 11,402
3 1,751,387 29,379 7,588 79,444
4 1,981,700 60,638 27,795 115,859
5 1,791,061 101,158 53,552 174,496
6 1,856,619 173,802 99,663 282,431
7 1,563,619 249,349 156,600 377,519
8 1,922,669 475,992 351,653 630,183
9 2,002,268 763,919 517,155 1,088,483
10 2,144,804 1,459,860 1,027,834 2,013,368
Total 3,315,779 2,674,758 4,063,889

Table 3.6 Reserve estimates using lognormal confidence intervals

We clearly see that the intervals are of high uncertainty, especially in the first accident
years. Even the intervals through accident years 3-10 are very large (almost double and
half amounts). This is due to the high confidence level, but mostly the large intervals are
a result of the lack of data (only 55 observations) in this case. Note also that the lower
limit for accident year 2 is equal to 9 which is extremely low.

The conclusion is that we cannot trust these confidence intervals for making business
decisions. If we lower the confidence level to 80% we get much narrower intervals, but
then arises the usual problem of using such high risk level for a business line. This is not
appropriate and we have to use another safer approach for the variability of the chain-
ladder estimates, as well for the confidence intervals of the reserves.
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3.2 Bootstrap and GLM results

We execute the bootstrap process with B=10000 and having p=1 for overdispersed
Poisson and p=2 for gamma. Reserves were estimated using GLM (or just taking the
usual chain ladder estimates in the overdispersed Poisson case). The upper limits are
picked from the bootstrap density of the predictive distributions of outstanding claims,
using 95% and 99.5% percentiles. We also compute quantile-quantile plots for the fitted
residuals in both cases. Note that the overall percentile is not the sum of the accident

year percentiles of the reserves.

Furthermore we calculated in table 3.9 the coefficient of variation (CV) of the reserves

estimates, i.e.: CV(}NZ:) = JVQT(R:)/E (RZ*)

Acc. Year Resevre 95% 99,5%
7 estimate percentile percentile

1 0 0 0

2 1,685 9,520 16,556

3 29,379 60,462 89,025

4 60,638 105,103 134,303

) 101,158 156,979 194,423

6 173,802 244,812 290,676

7 249,349 334,844 392,811

8 475,992 600,056 682,064

9 763,919 932,079 1,039,896

10 1,459,860 1,754,934 1,916,761
Total 3,315,779 3,798,645 4,022,859

Table 3.7: Reserves and bootstrap percentiles estimates when p=1
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Figure 2: Densities of RJ*O (left) and R (right) using non-parametric bootstrap samples with

unstandardized prediction errors and p=1.
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Figure 3: QQ-plot of standardized residuals vs. quantiles of standard normal distribution when
p=1.
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Acc. Year Resevre

7 estimate
0
1,571
24,722
67,535
113,886
170,718
240,019
486,253
761,674
1,492,799
3,359,178

S © 00~ O Uk WwN =

—

Total

Table 3.8: Reserves estimates and bootstrap percentiles estimates when p=2
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Figure 4: Densities of RJ*O (left) and R* (right) using non-parametric bootstrap samples with

95%
percentile
0
2,460
37,201
92,210
151,246
222,775
311,892
632,025
1,002,114
2,110,779
4,089,321

80

99,5%
percentile
0
2,959
43,889
105,522
171,270
250,853
353,585
703,942
1,121,986
2,411,014
4,436,611

unstandardized prediction errors and p=2.
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Figure 5: QQ-plot of simulated standardized residuals vs. quantiles of standard normal
distribution when p=2.

i p=1 p=2
2 317.6% 37.2%
3 64.8% 29.7%
4 43.6% 22.9%
5 32.2% 20.3%
6 24.5% 19.0%
7 20.0% 19.4%
8 15.6% 20.0%
9 13.4% 20.9%

10 13.1% 26.8%
Total 8.5% 13.4%

Table 3.9 CVin % for bootstrap reserve estimates
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3.2.1 Comments on results

When we compare the estimated reserves in tables 3.7 and 3.8 for Poisson and gamma
respectively, we see that the values are quite close, in particular the total reserve which
is the most important number. For some accident years the reserves are lower when p=2,
and in other accident years the opposite is true. Therefore there is no clear conclusion in
this comparison. Analogous results can we see in Bjorkwall et al. (2008).

Regarding the percentiles we can clearly see that when p=2, in the first accident years,
the amounts are closer to the reserve estimates compared to the p=1 case. The
percentiles for accident years 2-4 do not exceed the reserves as much in table 3.7 as in
3.8. At the last 3 accident years and in the total reserves we see that when p=2 the
percentiles are higher. This can be explained by the different form of the variance
functions v(m) when p differs. When p=2, larger variability is allowed for cells with
large m,; . Such cells are more frequently represented in the lower triangle for later
accident years, which leads to higher quantiles.

The claim amount increment Y, ,, is relatively very low compared to the rest of the data
which is surely a reason for the results of the first accident years.

The density charts in figures 2 and 4 show that the distribution of the bootstrapped
reserves estimates are slightly skewed, having somewhat heavy left tails. The basic
reason for the skewness is that the prediction errors are not standardized, see Bjorkwall
et al. (2008).

When we plot the residual distributions in figures 3 and 5 against a standard normal
distribution we see that we don’t get a perfectly linear relationship, and many values are
outlined.

The coefficient of variation in table 3.9 shows a rather expected result: in accident year
2, where we have only one claim amount in the last development year, CV is nearly 10
times larger when p=1, compared to p=2. This happens due to, as explain above, when

cells have low m,, , the variance function for p=1 is comparatively larger than for p=2.

(N
In this sense we can consider that perhaps the model with p=2 fits the given data better

than in the p=1 case.
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4 Conclusions & discussion

The aim of this work is to overview the reserving concept in non-life insurance and to

compare some of the models already used by many, with the latest research articles in
the field.

The main problem with reserving techniques in practice is that they do not follow
underlying models, but actuaries use internal methods of reserving. Both Mack’s chain
ladder method and the bootstrap method require few model assumptions so that the
results can mimic reality as well as possible. Furthermore, Mack’s lognormal assumption
for the confidence intervals is very strong, and its consequences could be analyzed
further, both theoretically and in practice.

When we use non-parametric bootstrap we define unstandardized prediction errors, and
as stated in Bjorkwall et al. (2008), resampling from unstandardized quantities is often
not as accurate as standardized quantities, despite that standardized quantities can
produce imaginary prediction errors, due to negative denominators. A suggested research
in Bjorkwall et al. (2008) is to use a “double bootstrap” for real and simulated data sets.

Regarding the residuals a future study could be to investigate their distribution for
different choices of p in the GLM model. The QQ-plots presented is just an indication of
which distribution the residuals follow, and as said above the standard normal case could
be a good choice.

Furthermore, as well known, the numerical results and the different methods are always
dependent on what kind of data we have. As stated previously, some data points need to
be investigated in more detail, before making strong assumptions and suggesting various
models.

Finally, our data set consisted of only 55 observations, which is relatively small.
Insurance groups often divide data into quarter year or even in months, which can
probably give even better results.
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6 Appendix

(a)

-34.116
-20.613
179.534
24.118
-7.793
17.784
53.257
-75.515
-127.791
0

-0.085
0.001
0.442

-0.061

-0.112
0.019
0.093

-0.130

-0.168

-157.755
120.826
-36.119
-60.222
-43.414

9.643
7.035
20.789
132.041

-0.260
0.231
0.114

-0.153

-0.149
0.017
0.035

-0.003
0.168

Standardized Pearson residuals when p=1

300.727
-58.113
-66.770
-40.742
-45.097
-42.782
120.732

85.529

38.700
8.518
-85.393
62.966
-31.745
-24.765
34.515

-14.925
-127.441
28.575
-65.623
138.494
29.947

-41.267
-87.945
-109.325
122.268
96.189

-67.602
95.945
-83.224
54.759

Standardized Pearson residuals when p=2

0.621
-0.098
0.009
-0.155
-0.180
-0.083
-0.247
0.133

0.072
0.064
-0.084
0.056
-0.169
-0.058
0.119

-0.063
-0.380
0.289
-0.237
0.287
0.105
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-0.148
-0.312
-0.286
0.421
0.324

-0.372
0.538
-0.294
0.128

-1.027 54.289
45.893 -54.998
-40.794

-0.099 0.332
0.289 -0.332
-0.190

0

0



(b)

GLM parameters for p=1, 2

Parameter p=1 p=2
c 13.005 13.036
a2 -0.026  -0.096
a3 0.164 -0.026
a4 0.287 0.341
ad 0.186 0.256
a6 0.222 0.188
a7 0.050 -0.004
a8 0.257 0.256
a9 0.298 0.269
alO 0.366 0.328
B2 0.065 0.073
B3 -0.803  -0.802
34 -1.222  -1.221
B5 1513 -1.527
B6 2.086  -2.150
BT -2.447  -2.436
38 -3.074  -3.008
39 -2.953  -2.965
310 -5.550  -5.580
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