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1 Introduction

How should you price catastrophe cover in life reinsurance? In this paper we
will present the current pricing model by Strickler (1960) and then introduce
a new model. For the reader who is unfamiliar with reinsurance we start with
a brief overview of the subject and then present the concept of catastrophe
cover in more detail.

1.1 Reinsurance

Insurance companies sell risk protection, i.e. for a premium they take over the
�nancial risk of unknown events that might happen to their clients. Some
risks are so large that an insurance company does not want the carry the
whole risk for itself. A part of the risk can then be ceded, i.e. passed on, to
another insurance company who is willing to share the risk for a premium.
The part of the risk that is kept is called the retention. The insurance com-
pany ceding the risk is called the cedent or direct company and the company
that takes over the risk is called the reinsurer. For this purpose there are
specialized reinsurance companies, often recognized by having `Re' in their
name.

Traditionally the three main purposes with reinsurance are:

1. To protect the cedent from catastropic events:
For example the huge claim that can be the result of a storm.

2. To even out the business results over the years:
Minimizing the e�ects of the random variation in claim experience.

3. To gain capacity for writing new business:
In every sold policy there is a potential claim, so every policy in force
will be treated as a debt on the balance sheet, thus requiring an asset
to balance. Writing new business can be costly, with commissions to
brokers and work by underwriters taking much of the �rst premium.
Expanding the business will therefore demand a lot of capital and by
ceding away a part of the risk the demand for capital on the balance
sheet is lessened to the same extent.

Modern life reinsurance companies will also provide life companies with ser-
vices like medical underwriting/risk evaluation, product development and
�nancing of new business.

There are two main forms or principles for reinsurance business, proportional
and non-proportional. The following rely to a large extent on A practical
guide to reassurance and Heidenfors (1989).
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1.2 Proportional reinsurance

The principle of proportional reinsurance is that the reinsurer takes a pro-
portion of the risk premium and then is liable to pay the same proportion of
all claims arising from the risk in question. Proportional reinsurance is typ-
ical for life reinsurance, but less common on the non-life side. The di�erent
proportional reinsurance types are as follows.

1.2.1 Facultative reinsurance

Facultative means optional, i.e. the ceding company chooses to reinsure a
particular (large) risk. The reinsurer is not obliged to o�er terms and if it
does, there is no obligation for the direct company to accept them. This can
be contrasted with treaty arrangements where there are obligations assumed
by both the ceding company and the reinsurer.

1.2.2 Automatic treaty reinsurance

A treaty is a binding agreement between a ceding company and a reinsurer
for the automatic reinsurance of a de�ned category of business. This is
advantageous to the ceding company in that it streamlines the processing of
new business, provides security of reinsurance cover, and reduces reinsurance
costs. The streamlining of new business processing is important on simple
cost grounds as the less work that is required to administer reinsurance the
lower the costs and the more competitive the cedent can set its premiums. A
further element of competitiveness can be obtained by the cedent having the
ability to accept many cases above its own retention (insurance companies
have their own retention, the maximal sum of risk per contract they are
allowed to keep for themselves) without the need to refer to the reinsurer.

1.2.3 Quota share

The simplest treaty form of proportional reinsurance is called a quota share
(QS) arrangement. Under this method, the ceding company retains a �xed
proportion of every policy and the rest goes to the reinsurer. The split may
be for example 70/30 where the cedent retains 70% of the business and the
reinsurer takes 30%. Quota share reinsurance is the most straightforward
for administration purposes. Usually the ceding company will have a �xed
overall maximum retention and will need to reassure all of the excess above
this limit i.e. a surplus reassurance arrangement will sit above the quota
share treaty.
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1.2.4 Surplus

For individual life business, most treaties are constructed to provide surplus
reinsurance. This means that the ceding company retains fully all policies
which fall below its retention level and reinsures those amounts which exceed
this limit. In this manner the reinsured proportion for di�erent policies under
the same treaty can vary between 0-99%. For example, under a treaty with
retention 10 000 three di�erent policies with sum of risk 5 000, 20 000 and
40 000 will be reinsured to 0%, 50% and 75% respectivley.

1.3 Non-proportional reinsurance

While proportional reinsurance focus on the policies, non-proportional rein-
surance is focused on claim amounts. Non-proportional reinsurance o�ers,
as we will see, a cost e�ective protection against large claims.

1.3.1 Excess of loss

With an excess of loss (XL) contract the reinsurer will cover claim costs
exceeding an excess point, and up to a certain limit. If a claim exceeds also
this limit, the excess spills over, back to the cedent. (Unlimited cover is not
an attractive prospect.) The XL contract can cover a whole portfolio or only
an individual risk.

For example, a cover might be 400 000 excess of 100 000 (henceforth denoted
in units of thousands, as 400 xs 100). Under this contract a claim of x on
the cedent will result in the payment of min(max(x − 100, 0), 400) by the
reinsurer.

For large covers, it is common to divide the cover in di�erent layers, so that
diferent reinsurers can take di�erent layers. A cedent who wants a cover of
4500 excess of 500 might have trouble �nding a reinsurer willing to take such
a large exposure. By dividing the cover into three layers, 1st 500 xs 500, 2nd

1500 xs 1000 and 3rd 2500 xs 2500 the problem may be solved by writing
contracts with three di�erent reinsurers, and the total cover will still be 4500
xs 500.

Consider for example a cedent with a policy that might result in a claim of
200, but the cedent wants to limit its maximum liability to 100. This can
be accomplished with a 50% QS but that will mean giving away 50% of the
premium and splitting an possible smaller claim as well. A 100 xs 100 XL
contract will give the desired protection, and maybe cost only 10% of the
premium.
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Note the conceptual di�erence between life and non-life insurance; a life
policy has a predetermined, limited risksum, while in non-life, the claim
distribution is often open-ended, i.e. there is no known limit to the possible
claim size. So if in the above example the policy is a life policy, paying 200
in the event of the insured's death, the XL contract would not have been
cheaper than the QS, since a claim always would cost 200.

The price of an XL contract is a matter of negotiation between cedent and
reinsurer. Depending on what type of business is covered, enough data for
dependable statistics can be hard to get, so the actuary can have a hard time
�nding an actuarially motivated price. A good stomach feeling, as well a
sense for the reinsuranse market, is advised.

1.3.2 Stop-loss

This type of reinsurance, also sometimes called aggregate excess of loss, is
to provide a protection against random �uctuations in aggregated claims
experience over a time period, which would cause a loss to be reported.

Under a stop loss protection, it is necessary to de�ne an expected level of
claims. This means a predicted �gure based on assumptions about the nature
of the risks being carried by the direct company or based on its past claims
experience. The next �gure to be decided is the priority level. This is the
proportion of the expected claims which will be paid by the ceding company.
Claims above the priority level will be paid by the reinsurer up to an agreed
limit.

In some cases, the ceding company will continue to participate in claims
above the priority level. This is favored by reinsurers as it gives the ceding
company a continuing �nancial interest in a good claim administration. Note
that a stop loss cover nearly always relates to amounts of claims in total and
not to numbers of claims. For this reason, there will be a limit on the amount
of any one claim which can be taken into account in the stop loss calculation.
For protection above that amount, the ceding company must turn to other
reinsurance i.e. XL cover.

Stop-loss is uncommon in practice within the life reinsurance business.

1.4 Catastrophe cover

Since catastrophe cover is the main topic of this article it will get a more
detailed presentation.
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1.4.1 Motivation

A basic assumption in life insurance is that lives are independent. That is
also often the case, but by considering events like aircraft accidents, buses
plunging into rivers, �oods and earthquakes, it is easy to see that there are
exceptions to this rule. Such catastrophic events claiming many lives can have
a severe impact on a life company. To protect itself from the consequenses
of a catastrophe, the life company can buy a catastrophe excess of loss cover
(Cat XL) for its portfolio.

One example of a catastrophe, in 1989 when a Norwegian charter aircraft
from Partnair disapeared over Skagerack, an accident that claimed 55 lives.
All passengers were from the same company, and the life company that had
the group life policy as well collective pension plan faced a claim of 36MNOK
(4MEUR). The total (life) claim amount was 47MNOK. Thanks to catastro-
phe covers the Norwegian life companies received 35MNOK from the rein-
surers.

1.4.2 The Cat XL contract

The catastrophe excess of loss cover provides the ceding company with pro-
tection against the consequences of a catastrophic event. To be more precise:

IfM or more persons insured by the ceding company lose their lives as a result
of a single event and if the corresponding aggregate net retention (the part
that is not ceded under another reinsurance contract) payable by the ceding
company exceeds the amount S, the excess will be paid by the reinsurer,
with the understanding that the maximum amount payable by the reinsurer
in respect of each such event does not exceed a speci�ed amount L, i.e. we
have a L xs S XL contract.

The de�nition of a claim arising from an event clearly needs careful wording.
Usually there is an `hours clause' which states that claims are deemed to arise
from the same event only if they occur within a period of 72 hours of the
event taking place. In the case of a storm or an earthquake, where it may be
di�cult to de�ne the exact time of occurrence of the event, the life company
is usually allowed to choose its own starting point for the agreed time limit, so
long as it bears a reasonable comparison with the actual occurrences. Often
the time period will be longer for natural occurrences than for accidents.

How many deaths constitute a catastrophe? The lives of a couple living and
traveling together, insured by same company, are not independent. Given
that there is a car accident or �re, there is a relatively high risk that they both
get killed. This situation is so common that it is something a life company
has to expect. However, more than two lives lost in a single event is often
considered to be catastrophic so M is typically chosen between 3 and 5. The
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retention S in a Cat XL contract is by the same argument often chosen to
be at least twice the retention the cedent has in its individual life surplus
contract. In this way the reinsurer starts to pay after a minimum of two
`full' claims. The choice of M and S ultimately depends on the cedent's
attitude to risk. Observe that for a life company with a high retention for
the individual life cover, the loss of four or �ve insured lives, with small sum
insureds, in a single accident might not result in a total claim amount that
exceeds twice the own retention, and therefore will not trigger a M = 3,
S = 2 Cat XL contract for example.
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2 Strickler's model

2.1 Overwiew

The �rst paper that addressed the issue of pricing catastrophe life reinsurance
was an article by Strickler (1960). His results, with some minor changes and
additions, are still used today. We therefore present his article.

2.2 The model

Consider a Cat XL contract as de�ned above. The reinsurer's liability will
depend on two factors, (a) the frequency distribution of events causing the
loss of M or more lives and (b) the distribution of retained sums at risk in
in the portfolio of the ceding company.

2.2.1 Distribution of sum at risk

Turning to (b), in practice it is often not possible to get the exact distribution
from the cedent, but the average sum at risk is known. Let Z denote the sum
at risk of one single catastrophe, expressed as a percentage of the average sum
at risk. Let further wn be the probability density function of Z conditional
on the event n lives are lost. Strickler states that the exponential distribution
with mean one,

w1(z) = e−z z > 0

is a good approximation when n = 1.

The function wn is obtained by means of convolution, reiterated (n − 1)
times of w1. This yields a gamma distribution Γ(n, 1) for Z, in other words
wn satis�es the equation

wn(z) =
∫ z

0
w(n−1)(ξ)w1(1)(z − ξ) dz = e−z

zn−1

(n− 1)!
(1)

2.2.2 Frequency of large accidents

Turning to the frequency distribution of catastrophic events, the �rst problem
is to �nd data. Strickler found that the Statistical Bulletin of the Metropoli-
tan Life Insurance Company in New York had supplied summaries of the
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accidents in the US which had claimed �ve or more lives for the period 1946-
1950.

The annual number of deaths for each million of population resulting from
accidents claiming n or more lives could then be approximated by the grad-
uating function

A(n) = 8 · 1001/n · n−1/3 (2)

A(1) shows the normal rate of accident mortality, i.e. 800 per annum per
million population or 0.08%, a value slightly in excess of the actual accident
rate experienced during the period of observation. Similarly A(5) = 11.75
somewhat exceeds the observed value of 8.8. According to the 'Statistical
Bulletin', accidents claiming 5 to 10 lives probably occur more frequently
than is shown in the statistics; a certain margin was, therefore justi�ed.
Finally, it will be noted that the graduating function A(n) slightly overstates
the number of lives lost as a result of big catastrophes for the observed period.

Strickler notes that the conditions in Western Europe probably are similar,
so that the results may be used there as well. There is no motivation for the
explicit choice of A(n), it is just a functions whose curve �ts the data.

2.2.3 The basis for calculation

Next we obtain the function

H(n) =
A(n)− A(n+ 1)

n

which indicates the annual number of accidents, per million lives insured,
claiming exactly n victims.

The use of the function H(n) as a basis for the calculation of the premium
would involve certain di�culties. With increasing values of n, this function
tends to zero so slowly that formula (4) which is used in the calculation of
the standard deviation would not converge at all. In order to overcome this
di�culty Strickler's solution is to equate H(n) to zero for su�ciently large
values of n. Looking at historical data, and remembering that we are only
concerned with insured lives, Strickler thinks it is a su�ciently conservative
assumption to put H(n) = 0 when n >1500.

Let further

h(n) =
H(n)∑∞
i=0H(i)

h(n) is equal to the probability of a single accident, if and when it occurs,
claiming exactly n victims. It will be the basis of all succeeding calculations.
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2.2.4 Strickler's calculations

Since the reinsurer covers only accidents claimingM or more lives, the uncon-
ditional probability density function w of Z is a mixture of all wn according
to

w(z) =
∞∑

n=M

h(n)wn(z)

2.2.5 Expected value

If the reinsurer assumes full liability for claims in excess of the limit z = S ,
the net reinsurance premium for one accident takes the form of

ΠM,S = E [(Z − S)+] =
∫ ∞
S

(z−S)w(z) dz =
∞∑

n=M

h(n)
∫ ∞
S

wn(z)(z − S) dz

where x+ = max(0, x)

Using (1) we obtain

ΠM,S = e−S
∞∑

n=M

h(n)

 Sn

(n− 1)!
+ (n− S)

n−1∑
j=0

Sj

j!

. (3)

The quantity S, i.e. the retention of the ceding company in the event of a
catastrophe, is expressed as a multiple of the average amount at risk retained.
The following rates of net premium per accident are obtained for various
values of M and S:

S = 0 S = 5 S = 10 S = 20

M = 1 1.0505 .0164 .0042 .0025
M = 2 .0825 .0099 .0042 .0025
M = 3 .0329 .0087 .0042 .0025
M = 4 .0200 .0080 .0042 .0025
M = 5 .0145 .0074 .0041 .0025
M = 6 .0116 .0069 .0041 .0025

Table 1: Net reinsurance premium

When M is constant the net reinsurance premium rapidly decreases with
increasing S; when S remains constant the premium decreases slowly with
increasing M ; for large values of S, this decrease becomes almost impercep-
tible.
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2.2.6 Standard deviation

The standard deviation of the reinsurance claims can be calculated on similar
lines:

σ2
M,S = Var ((Z − S)+) =

∫ ∞
S

(z − S)2w(z) dz − Π2
M,S.

The evaluation of this formula leads to the following equation:

σ2
M,S + Π2

M,S = e−S
∞∑

n=M

h(n)

(z − S)
Sn+1

n!
+ [n+ (n− S)2]

n∑
j=0

Sj

j!

. (4)

We thus obtain the following values for σ:

S = 0 S = 5 S = 10 S = 20

M = 1 1.3493 .8199 .7737 .7323
M = 2 .9907 .8121 .7737 .7323
M = 3 .9157 .8104 .7736 .7323
M = 4 .8874 .8092 .7736 .7323
M = 5 .8719 .8081 .7736 .7323
M = 6 .8617 .8070 .7735 .7323

Table 2: Standard deviation σ of reinsurance claims

Apart from the case where M = 1 and S = 0 i.e. where the entire acci-
dent risk is reinsured, the standard deviation is a very large multiple of the
net premium; the proportion of the standard deviation to the net premium
increases as S increases.

2.2.7 Pricing principles

The values shown in Tables 1 and 2 represent net premiums and standard
deviations for a portfolio in which exactly one single or multiple accident
is expected to occur per annum. Such a portfolio includes 106∑∞

1
H(n)

= 1314

lives. When the portfolio includes N lives, the net premium of table 1 must
be multiplied by N

1314
and the standard deviation of table 2 by

√
N

1314
. If, as

is usual and appropriate in such cases, the gross premium is determined as
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the net premium plus a speci�ed proportion α of the standard deviation of
net premium, for a portfolio of N lives, it will be calculated as

ΠM,S ·
N

1314
+ α · σM,S ·

√
N

1314
. (5)

The gross premium calculated in accordance with formula (5) is expressed
as a multiple of the average sum at risk and must therefore be transformed
to an expression in terms of monetary units. If R is the total sum at risk of
a portfolio we obtain, by multiplication with the average sum at risk R

N
, the

gross reassurance premium

PM,S = R

ΠM,S

1314
+ α · σM,S

√
1

1314 ·N


The magnitude of α will depend on the reinsurer's total volume of business
under catastrophe reinsurance agreements and also on the degree of safety
which he considers necessary.

For α = 0.5 and a portfolio of N = 10 000 and N = 100 000 we obtain
in Table 3 presented annual gross rates of reinsurance premium per million
units of sum at risk R retained by the cedent.

S = 0 S = 5 S = 10 S = 20

N = 10 000 M = 1 986 126 110 103
M = 2 199 120 110 103
M = 3 151 118 110 103
M = 4 138 118 110 103
M = 5 131 118 110 103
M = 6 128 117 110 103

N = 100 000 M = 1 858 48 37 34
M = 2 106 43 37 34
M = 3 65 42 37 34
M = 4 54 41 37 34
M = 5 49 41 37 34
M = 6 46 40 37 34

Table 3: Annual gross rates of reinsurance premium

When M=1 and S=0 the accident risk of the whole portfolio will be rein-
sured. If the net premium is A(1) = 0.08% the gross reinsurance premium
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includes a safety margin of barely(0.0986−0.08)/0.08 ≈ 25% (forN = 10 000)
or as little as (0.0858− 0.08)/0.08 ≈ 7%(N = 100 000) of the net premium.
However, the safety margin, expressed as a percentage of the net premium,
rapidly increases as M and S increase. When S equals 20 or more, the gross
premium decreases very slowly with increasing S; for example, when S = 50
the gross premium is only 10% less than the gross premium for S = 20.

The fact that, for S ≥ 20, the reinsurance premium hardly decreases with
increasing S, suggests that the reinsurance premium must decrease substan-
tially when the risk assumed by the reinsurer is limited.

2.2.8 Pricing with limited cover

As stated above, a reinsurer is not willing to assume unlimited responsibility
for a claim but only up to an amount L. Hence the net premium will be
reduced to

ΠM,S,L = E [min((Z − S)+, L)] = ΠM,S − ΠM,L+S.

The standard deviation of the reinsurance claims is then calculated to

σ2
M,S,L = Var (min((Z − S)+, L))

=
∫ L

S
(z − S − ΠM,S,L)2w(z) dz + Π2

M,S,L ·
∫ S

0
w(z) dz +

+(L− ΠM,S,L)2 ·
∫ ∞
L+S

w(z) dz

Transformation of this expression leads to

σ2
M,S,L+Π2

M,S,L =
∫ ∞
S

(z−S)2w(z) dz−
∫ ∞
L+S

(z−L)2w(z) dz−2L ·ΠM,L (6)

The two integrals will be equivalent in accordance with formula (4) and ΠM,L

is determined by equation (3).

In Table 4 rates of gross reassurance premiums per million sum at risk are
given for M = 3, S = 5 and various values of L, using α = 0.5 as previously.

2.3 Additions to Strickler

Several authors have dealt with Strickler's theory. Next we present some of
the suggested modi�cations.
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2.3.1 Modi�cation of the claim distribution

Erik Alm suggested a generalization of the distribution for individual claims
to a general exponential distribution with expected value a, setting

w1(z) =
1

a
· e−

z
a z > 0.

Repeated convolution of w1 n − 1 times gives the density function of a
Γ(n, a)-distribution, i.e.

wn(x) =
zn−1

an(n− 1)!
· e−

z
a z > 0

2.3.2 Modi�ed parameters

Function 2, A(n) is derived from American data from the 1950s. Things
might have changed since that time, so it would by nice to be able to update
the parameters with new data at hand. Morten Harbitz pointed out that the
general form of A(n) should be

A(n) = a · 100
1
n · n−b, a, b ∈ <

and based on newer data (FT business report 1988/89, World loss report) he
estimated for Europe a = 2.75, b = 1/7 and for USA/Canada a = 2, b = 1/6.
He pointed out that it was di�cult to get a good �t of A(n) at both ends of
the data. See Harbitz (1992???)

2.4 Conclusion - Strickler's model

Strickler's model is elegant in certain ways, and it is easy to use. It provides
a simple price list. But there are some �aws in the model as well.

Gross premium for:
L N = 10 000 N = 100 000
10 21 9
20 34 14
50 50 20
∞ 118 42

Table 4: Gross premiums with limit L
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From a probabilistic point of view, Strickler's approach is somewhat back-
wards, starting with the ad-hoc A(n) function and from that de�ning prob-
abilities h(n). There is no obvious way to adjust A(n) to new data, we can
not use our statistical standard methods like the ML-method.

Setting 1500 as the maximum of insured lives that can be lost in a single event
is of course a real drawback.If there is something we know about catastrophes
in general, it is that there is no upper limit for how severe they can be.

Assuming a constant (deterministic) rate of accidents i.e. one accident per
1314 insured lives and year is simply not realistic.

We have to remember that Strickler's article was written in 1960, long before
the computing power of today. Some simpli�cations are always necessary
in a model. But with the recent development in computers, as well as in
statistical theory, today we should be able to do better. And in the next
chapter we try to build a more realistic model!
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3 A new model for life Cat XL pricing

3.1 The approach

Let us approach the problem of determining the price of a Cat XL in the
following manner: We will deal with the problem by breaking it down into
four parts and then model each part separately:

1. The number of catastrophes that happens during the contract period
denoted K.

2. The number Xk of deaths from the k:th catastrophe.

3. The number Yk of claims resulting from the Xk deaths.

4. The cost Zk of the Yk claims from the k:th catastrophe.

1. and 2. address all catastrophes that actually happens, 3. and 4. the eventual
costs they will in�ict on a Cat XL contract. We can express the total cost
due to catastrophes during the contract period as

C =
K∑
k=1

Zk (7)

Our goal is to calculate the expected value and variance of C, the total claim
on the Cat XL contract during its duration, and hence it's price. Next we
will specify how to model each part.

3.2 Catastrophe rate

It is not an especially bold statement to say that the number of catastrophes
during a time period is stochastic. (As opposed to Strickler's assumption of
a deterministic catastrophe rate.) To be more precise, we make the following
assumptions:

1. The number of catastrophes in disjoint time intervals are independent.

2. Only one catastrophe occurs at a time.

3. The probability of a catastrophe occurring at a speci�c moment in time
is zero.
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This implies, see Johansson (2005, Chapter 4.1), that the number of catastro-
phes claiming at least m lives is a Poisson process with intensity λm per year
and that Km, the number of catastrophes claiming at least m lives during
one year is

Km ∼ Po(λm). (8)

We know that some areas of the world are more prone to catastrophes than
others. There are a number of reasons for this, the geography can have
a in�uence in many ways, the local climate determines the occurrences of
storms and �oods, earthquakes happen in seismic active regions, mountains
are a danger for aircrafts etc. The catastrophe intensity should therefore
vary between di�erent places. A geographical partition of the world into
regions with possibly di�erent λm:s is therefore advised when doing statistical
analysis of catastrophe intensities.

In life insurance people are insured, not property, and people move around.
When collecting catastrophe statistics, we try to record the origin of the
people who lost their lives rather than just where the catastrophe occurred.

The �rst assumption may be questioned, since it is known that the condi-
tions giving phenomenas like storms/typhoons/cyclones vary in a way that
makes storms cluster together and not be independent of each other. One
great rainfall might saturate the earth, greatly increasing the risk of a land-
slide during subsequent rains. So in regions were catastrophes caused by the
weather are common, you might �nd an overdispersion, i.e. a greater variance
than what is expected from the Poisson distribution. A way to model this is
to use a mixed Poisson model, in which the intensity λ is seen as a random
variable instead of a constant. See for example Johansson (2005, Chapter
4.2) for more on mixed Poisson models.

3.3 Number of deaths

What is the distribution of Xk, the number of deaths in the k:th catastrophe?

First, let X denote the number of dead in an arbitrary accident. Let Pm(n) =
P (X = n|X ≥ m) and Fm(n) = P (X ≤ n|X ≥ m). In accordance with
Strickler's notation we have P1(n) = h(n). Our main interest here are `catas-
trophes', accidents were several persons have died i.e. we are really interested
in the tail of the P1 distribution. When studying outcomes that exceed a cer-
tain threshold it is suitable to use the peaks over thresholds (POT) model,
see Rootzén & Tajvidi (1995). Given a threshold m (thus only studying
catastrophes claiming at least m lives), we assume

1. X1, X2 . . . XK are independent, identically distributed (i.i.d) ∼ X.

21



2. X̃ ∼ GPD(m− 1
2
, σm, ξm) i.e. X̃ has a Generalized Pareto Distribution

(GPD).

3. X = round(X̃), where round(x) is the integer closest to x. This is since
X ∈ N and X̃ ∈ <. We say that X has a Discrete Generalized Pareto
Distribution (DGPD), X ∼ DGPD(m,σm, ξm) .

Recall that the generalized Pareto distribution has a CDF

G(m− 1
2
,σ,ξ)(x) = 1− [1 + ξ(x−m+

1

2
)/σ]−1/ξ

were m ∈ <, x ≥ m− 1
2
and σ > 0.

If X̃ ∼ GPD(m− 1
2
, σ, ξ) then

E[X̃] = m− 1

2
+

σ

1− ξ
(ξ < 1)

V ar(X̃) =
σ2

(1− ξ)2(1− 2ξ)
(ξ < 1/2)

If ξ ≥ 1/2 the variance does not exist, and if ξ ≥ 1 the same holds for the
expected value.

With X only taking integer values we have

E[X] ≈ E[X̃]

V ar(X) ≈ V ar(X̃).

3.4 Number of claims

What is the number of claims that will hit a life o�ce given a catastrophe?
We model like this: Let Y be the number of claims resulting from a catas-
trophe with a death toll of X. We want to �nd the properties of the random
variable Y . It is clear that 0 ≤ Y ≤ X. The more policies sold, the likelier
a claim. Let

q =
Nr of sold policies

Size of total population

Then we assume E[Y |X] = q ·X i.e. that the expected number of claims is
proportional to the market penetration.
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In life insurance the standard assumption is that lives are independent, the
distribution of Y would then be Y |X ∼ Bin(X, q). This holds as a �rst
approximation, but as discussed above, the independence assumptions is
highly questionable in the case of a catastrophe (or epidemic for that mat-
ter). (Think for example of miners working in a mine that collapses). For
catastrophes we would like to take the possible dependence into account. Re-
call that Strickler assumes that when hit, all lost lives in the catastrophe will
result in a claim. This assumption is not satisfying either since it obviously
is wrong. Both approaches are however compatible with E[Y |X] = q ·X.

Y should have a character in between the two extremes, independence and
total dependence, either no policyholder is hit, but given that one is, it will be
likely that there are more than one. For very large catastrophes the number
of claims should be close to the expected value i.e.

Y/X
a.s.→ q as X →∞

A distribution that would re�ect the above mentioned properties is the
Beta-binomial :

Y |X ∼ Bin(X, p),
p|X ∼ Beta(d(X)q, d(X)(1− q)), 0 < d(X) <∞

This implies: E[p] = q so E[Y |X] = q ·X as it should.

The beta distribution and the function d(X) adds the desired �exibility. We
can think of it like this: For every catastrophe a p ∈ [0; 1] is drawn from a
beta distribution with mean q. This p is the probability that a life in this
catastrophe was insured, and hence Y the total number of insured lives lost
is Bin(X,p).

How does d(X) a�ect the distribution? The limits for d(X) gives:

lim d(X)→∞ ⇒ Y |X ∼ Bin(X, q)
lim d(X)→ 0 ⇒ P (Y = 0|X) = 1− q, P (Y = X|X) = q

They correspond to the two extremes, independence and total dependence.
The trick here is to choose d(X) in a way so that d(X) → ∞ as X → ∞
and that d(X) is small for small X. A candidate would be d(X) = θ ·
log(X) , θ ∈ <+. By doing so, we get a certain degree of dependence for
smaller catastrophes (think e.g of tra�c accidents) and independence for the
really large catastrophes.

We notice that the variance

Var(Y |X) = q(1− q) (X +X(X − 1)/(d(X) + 1)) ,
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is a decreasing function of d(X),with Var(Y |X) = Xq(1 − q) for complete
independence (d(X) =∞) and Var(Y |X) = X2q(1− q) for complete depen-
dence (d(X) = 0).

Remember that the Cat XL contract states that at least M insured lives
have to die in order to be a valid claim. Let Y ′k ∼ Beta bin(X, q, d(X)) be
the number of insured lives lost in the k:th catastrophe, then

Yk,=

{
Y ′k , if Y ′k ≥M
0, if Y ′k < M

It could be noted that the beta distribution is known to be used in non-life
catastrophe modeling in a similar manner, were the percentage of damage
done to a building due to a natural peril (storm, �ood, earthquake) is modeled
as being beta distributed. See Woo (1999).

3.5 Distribution of claims

What is the size of a claim? Di�erent policyholders can have di�erent in-
sured amounts and depending of type of policy and the time it has been in
force the sum at risk varies. Strickler's assumption, that the distribution
P (Z ≤ z|Y = 1) = 1− e−z of a single claim Z is exponential with expected
value 1, is a good approximation, assuming that Z is expressed as a multiple
of the average sum at risk. It also provides a gamma distribution Γ(m, 1) for
the total cost Z|Y = m of m claims, cf. (1).

Alternatively, since in most cases risks over a certain retention R are already
reinsured (so that there is an upper limit to the sum at risk), a truncated
exponential may be used giving the CDF

P (Z ≤ z|Y = 1) =

{
1− e−z, z < R

1, z ≥ R

Here R is expressed as a multipel of the average sum at risk.

In the case where the Cat XL covers a group life policy where all sum assureds
are the same, there is no randomness and Z|Y = m = m.

With the modern IT-technology, it is in fact often possible to get hold of all
the individual risk sums. In that case, where you have the exact distribution,
you can in fact numerically compute the distribution, but for large collectives
the computations can be time consuming and for simplicity a approximated
distribution may be used.
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Whatever method we choose, we have to consider S and L, the retention
and maximal liability of the Cat XL contract. If Z ′k =

∑Yk
i=1 Zki is the actual

claim amount from the Yk insured lives lost in catastrophe k we set

Zk =


0, if Z ′Yk

< S
Z ′k − S, if S ≤ Z ′Yk

< L+ S
L, if L+ S ≤ Z ′Yk

3.6 Total annual claim

Now we are ready to address the question, what is the total annual cost C?
Recall (7) that

C =
K∑
k=1

Zk

As we have seen, C will depend on the contract parameters M ,S and L as
well as model parameters λM , σM , ξM , q, θ and the choice of claim distribution
function.

Thus, for a given set of parameters, we can run simulations to compute the
properties of C, expected value and variance. Knowing the expected value
and variance of C we can set the price of the Cat XL contract.
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4 Data

To be able to set the correct technical price on an insurance a theoretical
model is not enough, one also need statistical data in order to estimate
the parameters of the model. For many types of insurances the insurance
company can rely on its own claim experience for the estimates. But since
catastrophic events are, almost by de�nition, rare, even for a reinsurer with
a large Cat XL portfolio the use of claim experience as the only source for
pricing the contracts would be unsatisfactory. Ideally you would know about
all accidents all over the world claiming at least three lives, but that is not
possible since such a database does not exist. However, there are some data
collected by various agents that can come to good use, as will be seen below.

Two sets of data were compiled for the article. An international set containing
the catastrophes during the period 1984�2004 claiming at least 20 lives, and
a Swedish one containing accidents during the period 1970�2004 claiming at
least four lives.

4.1 International data

Swiss RE's yearly publication `sigma, Natural catastrophes and man-made
disasters in xxxx' lists catastrophic events from all over the world that have
`at least 20 dead or missing'. Complete data sets was available from the years
1983�91, 1994�99 and 2002�04. Only data from those years was compiled.
Some well known catastrophes (and a lot of unknown) such as 9/11 (2001)
are therefore missing. Data was sorted after continent and region, as well as
the cause of the disaster. Only events that �t the standard Cat XL contracts
72 hour rule were taken into account. Long lasting `conditions' such as heat
waves, cold spells and �oods were therefore sometimes excluded, even if they
took many lives. Acts of war and military accidents are not accounted for
since they are excluded from the insurance contracts. In total there were
3055 observations.

4.1.1 Classi�cation

There are two main types of catastrophes, natural, like storms, earthquakes
and landslides, and man-made, like tra�c accidents, collapsing buildings
and acts of terror. The man-made are divided into seven groups, see Table 5
below. Geographically the world is divided into 16 regions. A comprehensive
list of which countries that belong to which region is found in the appendix.
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Abbreviation Cause
AV Aviation
BU Buildings collapsing
FI Fire and chemicals
MI Mining accidents
NC Natural catastrophes
OT Other
TR Tra�c and railway
WA Water, ships and ferrys

Region
SAM South America
NAM North America
CAR The Caribbean
CAM Central America
WEU Western Europe
EEU Eastern Europe
SUN Former republics of the Soviet Union
SAS The Indian sub-continent
SEA South East Asia
MIE The Middle East
FAE The Far East
CAS Central Asia
OCE Oceania
NAF North Africa
MAF Sub-Saharan Africa
SAF Southern Africa

Table 5: Abbreviations

4.1.2 Descriptive statistics of data

Here we present a summary of the data. First, in Tables 6-7, some facts
about the size of the catastrophes, sorted after type and region together with
the observed number for each type.

We also present, in Table 8, the incidence rate for catastrophes, in absolute
numbers as well as adjusted for the number of inhabitants in each region.
Annual population �gures are from the U.S. Census Bureau (2002). For rea-
sons explained bellow, it is informative to present the �gures for two periods
of time, the �rst containing the years 1983�91 and the second containing the
years 1994�99 and 2002�04.
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Type Nr of Obs Mean Median Max Cause of worst disaster
AV 266 72 46 520 Japan Airlines, Japan, -85
BU 82 44 30 577 Dept Store collapses, South Korea -95
FI 192 89 37 3 000 Chemical factory, India, -84
MI 160 47 35 200 Gold mine, Peru, -89
NC 884 890 52 220 000 Tsunami, South East Asia, -04
OT 147 74 39 1 426 Stampede in Mecca, Saudi Arabia, -90
TR 827 40 30 645 Gas explosion hit train, Soviet, -89
WA 511 85 42 4 300 Ferry sinks, Indonesia, -87

Table 6: Total number of catastrophes, sorted after type

Region Obs Mean Median Max Cause of worst disaster
SAM 302 307 36 50 000 Landslides, Venezuela, -99
NAM 105 64 35 805 Heatwave, USA, -95
CAR 53 141 40 3 344 Flood, Haiti, -04
CAM 99 115 33 5 000 Earthquake, Mexico, -85
WEU 132 67 35 852 Ferry, Sweden, Estonia, -94
EEU 59 44 31 183 Aircraft, Poland, -87
SUN 122 516 40 55 000 Gas explosion hit train, Soviet, -89
SAS 748 390 40 138 868 Tropical storm, Bangladesh, -91
SEA 315 873 41 220 000 Tsunami, Indonesia, Sri Lanka. . . , -04
MIE 172 726 40 41 000 Earthquake, Iran, -03
FAE 94 169 39 6 425 Earthquake, Japan, -95
CAS 381 78 38 1 000 Earthquake, China, -88
OCE 16 186 36 2 183 Earthquake,Papua�New Guinea, -98
NAF 83 108 38 2 266 Earthquake, Algeria, -03
MAF 315 87 41 1 863 Ferry, Gambia, -02
SAF 59 43 29 176 Fire, South Africa, -86

Table 7: Total number of catastrophes, sorted after region
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Average nr Per 100 million
Region per year inhabitants

83�91 94�04 83�91 94�04
SAM 18,9 14,8 6,8 4,5
NAM 6,3 5,3 2,3 1,8
CAR 2,1 3,7 5,7 8,8
CAM 6,1 4,9 5,7 3,7
WEU 8,9 5,9 2,4 1,5
EEU 5,0 1,7 4,2 1,4
SUN 3,4 10,1 1,2 3,5
SAS 40,6 41,3 3,9 3,2
SEA 18,4 16,6 4,3 3,2
MIE 6,6 12,6 3,4 4,9
FAE 7,4 3,0 3,9 1,5
CAS 17,1 26,4 1,5 2,1
OCE 1,0 0,8 3,9 2,6
NAF 2,6 6,6 2,3 4,6
MAF 12,7 22,3 2,9 3,8
SAF 2,9 3,7 7,5 8,2

Table 8: Annual incidence rates λ20 of catastrophes for various regions
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Victims Frequency P̂4(n)
4 88 0,47
5 42 0,22
6 21 0,11
7 7 0,037
8 8 0,042
9 6 0,032
10 1 0,005
11 3 0,016
12 0 0
13 1 0,005
14 1 0,005
15 3 0,016
16 1 0,005
17 0 0
18 0 0
19 0 0
20≤ 6 0,032
Total 189 1

Table 9: Swedish accidents

4.1.3 Comments on data

Natural catastrophes are responsible for the worst catastrophes, and earth-
quakes can have the most devastating consequences. (The earthquake that
caused the tsunami 2004 measures as one of the three largest on the Richter
scale over the past century.) Naturally, they mainly appear in seismological
active regions of the world.

The trend in the western world is that of fewer catastrophes. The explanation
for this is probably technological advances, where safety has been a prioritized
issue. For example, better monitoring of railway tra�c, and safer vehicles.

4.2 Swedish data

The Swedish Rescue Services Agency, SRSA, (Räddningsverket) keeps a
record over Swedish accidents claiming at least four lives. Data from 1970�
2004, a total of 189 observations, was used. The frequencies and empirical
probability P̂4(n) are displayed in Table 9.

30



Victims Type Cause Year
20 FI Hotel �re in Borås. 1978
20 AV A SAS plane collides in the fog at Lineata

Airport, Italy.
2001

22 AV Aircraft crashes due to ice on it's wings. 1977
63 FI Fire at a discotheque in Gothenburg. 1998
501 WA The ferry Estonia sinks in bad weather. 1994
543 NC Swedish tourists in Thailand hit by the

tsunami
2004

Table 10: Sweden's worst catastrophes

Period # ≥ 4 Per 100 million # ≥ 20 Per 100 million
1970�79 6,1 74,35 0,2 2,42
1980�89 6,6 78,67 0 0
1990�99 3,8 43,42 0,2 2,26
2000�04 4,8 53,68 0,4 4,46
1970�89 6,35 76,51 0,1 1,21
1990�2004 4,13 46,84 0,27 3,00
1970�2004 5,4 63,79 0,17 1,97
1983�91, 1994�99,
2002�04

4,77 55,13 0,18 1,87

Table 11: Annual Swedish incidence rates λ4 and λ20, for various periods of
time.
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The incidence in Sweden for catastrophes seems to be in line with the one in
western Europe (WEU).

4.3 Sources of error

There are numerous sources of error in the data. The most important are:

• Uncertainty in the actual number of dead. For larger catastrophes and
in less developed countries it is often not possible to get the exact death
toll, rather the �gures are an estimation.

• Incurred but not reported, (IBNR). Especially for smaller accidents in
remote areas, there is a chance that it never will come to the attention
of those who are collecting the data. Thanks to the IT revolution,
things get public to an extent never experienced before, so the data
quality is probably better for the late -90s than for the -80s.

• Some regimes are not willing to report accidents and when it is apparent
to the outer world that a catastrophe has occurred they report �gures
that is below the actual ones. This can be seen in the lack of reported
catastrophes from the Soviet Union (where the reported number has
risen signi�cantly after 1991), China and North Korea. O�cial data
has been used in this article, but it is worth mentioning that for several
of the catastrophes there are independent reports talking about �gures
twice as high as the o�cial ones, for instance in Turkey and Iran.
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5 Fitting the model to data

5.1 Cat intensity

According to the model presented in Section 3, the number of catastrophes
per year of a given region has a Poisson distribution, equation (8):

Km ∼ Po(λm)

and the number of catastrophes in di�erent years are independent. Since
E(K) = V ar(K) = λ if (8) holds, we can check the validity of the Pois-
son assumption for each region by comparing the sample mean and sample
variance of the yearly number of accidents during the periods 1983�1991 and
1994�2004 respectively, as shown in Table 12.

Region 1983�91 1994�2004
mean var var/mean mean var var/mean

SAM 18,9 48,9 2,59 14,8 17,2 1,16
NAM 6,3 10,3 1,62 5,3 8,0 1,5
CAR 2,1 2,9 1,36 3,7 4,5 1,23
CAM 6,1 10,1 1,65 4,9 5,6 1,15
WEU 8,9 9,4 1,05 5,9 13,9 2,35
EEU 5,0 12,8 2,55 1,7 1,0 0,6
SUN 3,4 6,5 1,9 10,1 9,9 0,98
SAS 40,6 314,0 7,74 41,3 161,5 3,91
SEA 18,4 150,8 8,17 16,6 35 2,12
MIE 6,6 15,8 2,41 12,6 33,5 2,67
FAE 7,4 4,3 0,57 3,0 3,3 1,08
CAS 17,1 93,4 5,46 26,4 25,3 0,96
OCE 1,0 0,5 0,5 0,8 0,7 0,89
NAF 2,6 2,3 0,89 6,6 3,5 0,54
MAF 12,7 54,8 4,32 22,3 90,3 4,04
SAF 2,9 3,4 1,16 3,7 8,3 2,25

Table 12: Catastrophe intensities λ̂20 and V ar(λ̂20).

Looking in the table we see that generally, the variance is closer to the mean
during the period 1994�2004 than 1983�1991. The reason is probably that,
as discussed in Section 4.3, the data is more complete for later years. For
the most regions, the mean and the variance are fairly close to each other,
in accordance with the Poisson assumption. But for some regions such as
SEA and SAS the variance is more than twice the mean, indicating an over
dispersion. As discussed in Section 3.2 over dispersion is likely to occur

33



due to weather phenomena, which both SEA and especially SAS are prone
to. For MAF, the middle part of Africa, were the variance is four times the
mean the cause is probably a combination of generally poor data and weather
phenomenas.

5.2 Cat size

Is the GPD a good model for the number of lost lives in a catastrophe?
The available data was used to estimate the parameters of the GPD with
the maximum likelihood (ML) method. This was done for all regions. The
estimated parameters are displayed in Table 13.

Region σ̂20 (std err σ̂20) ξ̂20 (std err ξ̂20)
SAM 15,5 (1,7) 0,83 (0,10)
NAM 17,2 (3,1) 0,68 (0,17)
CAR 18,4 (4,8) 0,98 (0,26)
CAM 13,2 (2,6) 0,98 (0,20)
WEU 14,8 (2,6) 0,84 (0,17)
EEU 13,6 (3,1) 0,63 (0,21)
SUN 20,2 (3,3) 0,79 (0,15)
SAS 20,2 (1,4) 1,00 (0,07)
SEA 19,8 (2,4) 1,15 (0,12)
MIE 18,3 (2,9) 1,38 (0,18)
FAE 17,9 (3,9) 1,12 (0,22)
CAS 20,6 (2,0) 0,76 (0,09)
OCE 17,1 (8,0) 1,13 (0,49)
NAF 15,7 (3,4) 1,02 (0,22)
MAF 25,6 (2,7) 0,66 (0,10)
SAF 10,0 (2,2) 0,61 (0,20)

Table 13: Estimated parameters for theDGPD(20, σ20, ξ20) model. Standard
errors are in parenthesis.

Which inferences can be drawn? Remember that if ξ ≥ 1/2 the variance
does not exist. Since ξ̂ > 1/2 for all regions this indicates a heavy tail for
the distribution, i.e. large catastrophes are to be expected. For some regions,
were ξ̂ > 1, not even the expected value exists! Is a catastrophe claiming
an in�nite number of lives to be expected? Think of the scale, compared
to 20, 200 000 is nearly in�nite. The conclusion is that large catastrophes
have happened in the past and that major catastrophes, claiming tens of
thousands of lives, are to be expected in the future.
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We now have the estimates, but is the GPD really a good choice? We plot the
empirical probabilities (represented by bars) together with the �tted GPD
(marked as circles and connected with lines for clarity). It can be hard to see
if the �t is good, especially in the tail of the distribution. Therefore we also
use quantile - quantile plots (QQ-plots) who can be very helpful to evaluate if
a distribution describes a data set in satisfying way. Figure 1�4 show plots of
various regions. The dashes of the QQ-plots mark a 95% con�dence interval.
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Figure 1: Empirical probabilities, �tted GPD and QQ-plot, WEU

5.2.1 Conclusion GPD

Indeed, judging from the plots, the GDP seems like a plausible distribution
for modeling the size of catastrophes. This should not come as surprise,
accidents claiming 20 or more lives belongs to the tail of the distribution of
lives lost given a fatal accident and the GPD is the distribution for tails, see
Hult & Lindskog (2004) What might be a greater surprise is the fact that
the tail is so heavy that no variance exists and that for some regions there is
no expected value.

The insecurity in data for the exact death toll are for some regions clearly
visible, looking at SAS and MAF we see large spikes representing 100, 150,
200. . . dead.
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Figure 2: Empirical probabilities, �tted GPD and QQ-plot, SAS
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Figure 3: Empirical probabilities, �tted GPD and QQ-plot, MAF
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Figure 4: Empirical probabilities, �tted GPD and QQ-plot, SAF

5.3 Distribution of insured lives

Unfortunately, there is no available data for the distribution of insured lives
in catastrophes. Hence, it is not possible for us to make inference about d(X).
In particular, we cannot estimate the parameter θ. What we can do is to let
θ vary between two extremes, having either a binomially distributed number
of insureds from the company of interest in each catastrophe (θ = ∞), or
all/no claims with probabilities q and 1 − q respectively (θ = 0). Then we
can assess which θ-value seems plausible to use.

5.4 Inference from Swedish data

We do the same analysis for the Swedish data. Remember that the dataset
consists of accidents claiming four of more lives. First we analyze the catas-
trophe intensity, the result is found in Table 14. We �nd that the mean and
the variance are close to each other, the data shows no sign of over dispersion.
Also, we note that the number of accidents have decreased from 1990 and
onward compared to the -70s and -80s. Technological development toward
better safety is probably the cause.

Turning our attention to �tting a GPD to the cat size we should ask ourselves
if it is possible. For the international data set we had catastrophes claiming
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Year mean var var/mean
1970�1979 6,1 7,7 1,26
1980�1989 6,6 9,4 1,42
1990�1999 3,8 4,2 1,10
2000�2004 4,8 1,7 0,35
1990�2004 4,1 3,4 0,82

Table 14: Swedish catastrophe intensities λ̂4 and Var(λ̂4).

20 or more lives, which certainly belong to the tail of the distribution. The
question is if four dead can be considered to belong to the tail as well. The
only way to �nd out is to run the parameter estimation and inspect the re-
sults. Doing so, σ4 and ξ4 are found to be 1.37(0.16) respectively 0.66(0.010).
Looking at the corresponding plots we �nd that the �t indeed is good, even
if the tail seems to be a bit underestimated judging from the QQ-plot. It is
then worth to remember that the two largest catastrophes, Estonia and the
tsunami, are extreme in the modern Swedish history. They would have been
the largest catastrophes even if we had data from the whole 20th century. In
light of this fact, we conclude that the GPD gives a good �t for the Swedish
data.
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Figure 5: Empirical probabilities, �tted GPD and QQ-plot SWE, at least
four dead.
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5.5 Extrapolating parameter estimates

We have estimates λ̂20, σ̂20 and ξ̂20 for all regions but in order to do the
pricing we would like to have estimates of λ4, σ4 and ξ4. Is it possible to get
such estimates without having data for accidents with at least four dead?
Consider �rst the following proposition:

Proposition: Letm and u ≥ m be integers andX ∼ DGPD(m,σ, ξ). Recall
from Section 3.3 that X = round(X̃), where X̃ ∼ GPD(m − 1

2
, σ, ξ). Hence

X|X ≥ u ∼ DGPD(u, σu, ξ) were σu = σ + ξ(u−m)

Proof: Let x be an integer ≥ u. Then

P (X ≥ x|X ≥ u) =
P (X̃ > x− 1

2
)

P (X̃ > u− 1
2
)

=
[1 + ξ(x− 1

2
−m+ 1

2
)/σ]−1/ξ

[1 + ξ(u− 1
2
−m+ 1

2
)/σ]−1/ξ

=

[
1 + ξ(x−m)/σ

1 + ξ(u−m)/σ

]−1/ξ

=

[
1 + ξ(u−m)/σ

1 + ξ(u−m)/σ
+

ξ(x− u)/σ

1 + ξ(u−m)/σ

]−1/ξ

=

[
1 +

ξ(x− 1
2
− u+ 1

2
)

σ + ξ(u−m)

]−1/ξ

⇒ P (X̃|X̃ ≥ u− 1

2
) ∼ GPD(u− 1

2
, σ + ξ(u−m), ξ)

⇒ P (X|X ≥ u) ∼ DGPD(u, σ + ξ(u−m), ξ)
2

This means that we have a simple relation between the threshold u and the
other parameters. We will use the fact that this relation holds not only for
an increasing threshold, but for a decreasing threshold as well, so that for a
threshold u ≤ m, σu = σm − ξm(m − u) and ξu = ξm, given that σu > 0. If
σu ≤ 0 then the DGPD does not exist.

Con�dence intervals for σu can be obtained by the following means: Let V
be the 2× 2 covariance matrix for σ̂m and ξ̂. Then

Var(σ̂u) = Var(σ̂m − ξ̂(m− u)) = a ∗ V ∗ a′, (9)
where a = (1,−(m−u)) and a′ is the transpose of a. Assuming that σ̂u is an
approximately normally distributed estimator we get a con�dence interval
for σu through (9) and quantiles from the normal distribution.
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We are now ready to calculate σ̂4 and ξ̂4 for every region. We must however
be careful, it is not certain that a GPD with threshold u = 4 will �t the actual
data ranging from 4 and up, but the Swedish data suggest that DGPD can
be successfully �tted with such a low threshold.

To calculate λ̂u �rst note that given σu, ξu we can calculate 1 − Fu(m) =
P (X > m|X ≥ u), the proportion of catastrophes claiming more than m
lives. Assuming λm is known, we get

λu = λm/(1− Fu(m))

by means of well known results on thinning of Poisson processes.

5.5.1 Estimates of σ4

We calculate estimates of σ4 according to the formula σ̂4 = σ̂20− ξ̂20(20− 4).

Region σ̂4 Con�dence interval
SAM 2,22 ( -3,32; 7,76)
NAM 6,32 ( -3,67; 16,31)
CAR 2,72 (-12,02; 17,46)
CAM -2,48 (-12,29; 7,33)
WEU 1,36 ( -8,09; 10,81)
EEU 3,52 ( -7,49; 14,53)
SUN 7,56 ( -2,23; 17,35)
SAS 4,22 ( -0,17; 8,57)
SEA 1,44 ( -5,94; 8,74)
MIE -3,78 (-13,21; 5,65)
FAE -0,02 (-12,54; 12,50)
CAS 8,44 ( 2,37; 14,51)
OCE -0,98 (-26,89; 24,93)
NAF -0,62 (-12,35; 11,11)
MAF 15,04 ( 7,63; 22,45)
SAF 0,24 ( -9,04; 9,52)

Table 15: Estimates of σ4 together with 95% con�dence intervals for various
regions.

As we see in Table 15 σ̂4 < 0 for some regions, but all con�dence intervals
includes positive numbers. In fact the con�dence intervals are very wide,
which is a problem if we want to do an accurate calculation of C.
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A way to pick a σ̂4 from the wide con�dence interval is to use our knowledge
of the proportion of catastrophes larger than 20. From the Swedish data
1−F4(20) = 3.2% and if we belive that this proportion holds in other regions,
we choose σ̂4 so that 1− F4(20) is close to 3.2%.
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6 Pricing

Finally, let us see some pricing of a Cat XL contract!

6.1 The pricing principle of a Cat XL contract

The pure premium of a usual insurance policy is E[C], the expected cost of
claims. In theory, according to the law of large numbers, by having a large
portfolio of contracts the variance of the total cost of claims, and hence the
risk, is small. This ensures that the total claim experience for the portfolio
is close to the expected value. The pure premium (in practice also loaded for
admin. expenses and pro�t) is therefore the price P of the insurance policy.

In non-proportional reinsurance it is often not possible to acquire a portfolio
with a large number of independent contracts so the reinsurance portfolio
will be subject to larger �uctuations, i.e. there is a lot of risk involved. The
reinsurer wants to get paid for this risk and therefore adds a percentage of
the standard deviation to the price. This gives the pricing formula

P = E[C] + α ∗ SD(C), where typically α ∈ [0.1; 0.5]

6.2 The rating factors and properties of C

As we have seen there are many factors that a�ect the price P of a Cat XL
contract. In this model the parameters are: the catastrophe rate λ, the size of
catastrophes determined by (σ, ξ), the market penetration q, the dependence
parameter θ, the contract parametersM,S and L, and the extent α to which
we take the standard deviation of the claim cost C into account. This gives
a price P = P (λ, σ, ξ, q, θ,M, S, L, α)

Remember that we also have an assumption of the claim distribution, expo-
nential, truncated exponential or deterministic in the group insurance case.

We will now investigate how each parameter a�ects the price P . What really
interests us is how the claim cost C depends on the parameters, to make
things clear, we present the e�ect which the parameters have on E[C] and
SD(C).

As a starting point we use the following Cat XL contract: A Swedish in-
surance company that insures it's portfolio of 900 000 policies, Sweden's
population being approximately 9 million people this yields q = 0.1. The
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other parameter values are according to our previous �ndings λ = 4.13, (ta-
ble 11), σ = 1.37, ξ = 0.66 (Section 5.4). We assume that θ = 0.1 and that
the distribution of insured sums is such that they are all the same. Finally,
we set M = 3, S = 5, L = 100 which is a realistic choice for a Cat XL
contract. For this contract we �nd E[C] = 0.93 and SD(C) = 5.29 and with
α = 0.2 we get P = 1.99.

6.2.1 λ

How does C depend on λ? According to equation (7) we have

C =
K∑
k=1

Zk.

Let E[Z] = µ, V ar(Z) = κ2. Then (7) and (8) imply

E[C] = µ · E[K] = µ · λ

Thus E[C] is linear in λ. What about V ar(C)? Using a well known formula
for the variance we �nd

V ar(C) = V ar(E[C|K]) + E[V ar(C|K)]

= V ar(µK) + E[κ2K]

= µ2λ+ κ2λ

= (µ2 + κ2)λ

so that V ar(C) is linear in λ as well.

Indeed, Figure 6 show that E[C] and V ar(C) are linear in λ, just as predicted
by theory.

6.2.2 σ and ξ

For a GPD a higher σ means a �atter curve, and hence a higher expected
value of X, cf. Figures 3 and 4. They have the same ξ-value but MAF has
σ = 25.6 compared to SAF having σ = 10.0.

ξ determines the weight of the tail of the GPD. Remember that for V ar(X)
to exist it is required that ξ < 1/2 and for E[X] to exist we need ξ < 1.

Thus E[C] is expected to be increasing in σ and ξ. Judging from the plots,
E[C] is more sensitive to changes in ξ than in σ.
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Figure 6: E[C] and V ar(C) as functions of λ, SWE data

6.2.3 q, θ

Recall from Section 3.4 that in this model E[Y |X] = q ·X, hence we expect
E[C] to be linear in q. Figure 9 con�rms this. We also �nd Var(C) to be
linear in q.

In Section 3.4 we also saw that a small θ implies large dependence and a
large θ implies more of independence, but that E[Y ], the number of insured
lives lost, does not depend on θ. So how does the dependency parameter θ
a�ect E[C] and SD(C)?

Consider the following simpli�ed situation: q = 0.1, and a bus crashes,
killing 20 people. If we have total independence of insured lives then Y ∼
Bin(20, 0.1). So with probability P (Y < 4) = 95.7% a a Cat XL contract
will not be triggered! If we have total dependence, in nine out of ten such
crashes there would be no insured lives lost, but in the tenth all twenty will
have been insured, thus triggering a Cat XL contract!

We draw the conclusion that E[C] and SD(C) is decreasing in θ. Computing
E[C] and SD(C) as functions of θ reveals that that is the case, and that going
from θ = 10 to θ = 0.1 triples E[C] and increases SD(C) with a factor of
1.8, thus having a real signi�cant e�ecton the price! See Figure 10.
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Figure 7: E[C] and SD(C) as functions of σ, SWE data

6.2.4 M,S and L

As a threshold M a�ects E[C], but not as much as S witch is the deductible
for each claim. The same holds for SD(C). See Figures 11-12.

We see in Figure 13 that L, the maximal liability, has a real impact on the
price, not so much trough E[C] as trough SD(C).

6.2.5 Claim distribution

How does the choice of claim distribution impact E[C] and SD(C)? With
a constant sum insured we got E[C] = 0.93 and SD(C) = 5.29. With
the exponential we get E[C] = 1.10 and SD(C) = 5.45, while the at Z =
5 truncated exponential yields E[C] = 1.08 and SD(C) = 5.41. Hence,
the e�ect of replacing constant insured sums by the (possibly truncated)
exponential distribution is to increase E[C] by 16�18% but SD(C) by only
2�3%. The e�ect of using the more realistic truncated exponential seems to
be neglible, at least for such a high truncation point as 5. For if Z ∼ exp(1)
then P (Z > 5) = 0.67%.
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Figure 8: E[C] and SD(C) as functions of ξ, SWE data

6.2.6 Prices for some other regions

We also give the price of the above standard contract for some regions. λ4, σ4

and ξ4 were estimated according to the methods in Section 5.5. We give two
prices, one based on σ̂4 and one based on an adjusted σ̂4, were the adjustment
is such that 1− F4(20) ≈ 3.2%. The two ways of calculating the price yields

Region Price original σ Price adjusted σ
WEU 6.1 8.0
EEU 3.6 7.7
NAM 2.6 9.0

Table 16: Price for some regions.

quite di�erent answers. The main reason is the di�erences in λ̂4. Further
studies in accident intensities are needed in order to be able to give prices
with a higher degree of certainty.
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Figure 9: E[C] and Var(C) as functions of q, SWE data

6.3 Real world pricing

There is a saying (Bostrom and Cirkovic 2008, page 177)
in catastrophe reinsurance that �nothing is less than 1 on line�,
meaning that the vagaries of life are such that you should never
price high-level risk at less than a chance of a total loss once in a
hundred years (1%).

Prices of Cat-contracts are often related to the maximal liability of the rein-
surer. They are given as a �rate on line�,P/L, so for example for a contract
with a maximal liability of 100 millions, a rate on line of 2% corresponds to
a premium of P = 2 millions. For our standard contract, assuming α = 0.20
the price is 1.99 and with L = 100 the rate on line is 1.99/100 = 1.99%.

There is always a �xed administrative expense associated with writing a
contract and there is the cost of capital. However unlikely an event might
seem, the reinsurer is at risk and wants to get paid for this. And there is also
always the model risk, the humble actuary knows that there is a risk that
the model used to calculate the price is �awed and thus have underestimated
the risk of a catastrophic event. (Here you come to think of the so called
�statistically impossible� events on the �nancial markets during the autumn
of 2008. Independence can be a dangerous assumption.) Therefore reinsurers
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Figure 10: E[C] and SD(C) as functions of θ, SWE data

are reluctant to sell cover at a rate on line of less than about 1%.
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Figure 11: E[C] and SD(C) as functions of M , SWE data
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Figure 12: E[C] and SD(C) as functions of S, SWE data
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Figure 13: E[C] and SD(C) as functions of L, SWE data
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7 Conclusion

In this paper, we have studied about how to price a catastrophe excess of
loss contract in life reinsurance.

We �rst studied Strickler's old model for pricing. Although Strickler's model
has it's merits, it is in�exible and to some extent unrealistic e.g. the deter-
ministic catastrophe rate. Besides that, there is no statistically motivated
way how to estimate the model parameters. Some more recent modi�cations
of the model have made it more up to date but still not corrected these basic
problems.

To get a mathematically-statistically satisfying way of pricing a Cat XL
contract we were forced to develop a new model as follows: In equation (7)
we expressed the total cost due to catastrophes during a contract period as
C =

∑K
k=1 Zk were K, the number of catastrophes is assumed to be Poisson

distributed and Zk is the cost in�icted on the Cat XL contract by the k:th
catastrophe. To obtain Zk we start with Xk, the number of lost lives in the
k:th catastrophe, assumed to have a generalized Pareto distribution. Then we
turn to Yk, the number of insured lives lost, assumed to follow a beta-binomial
distribution conditional on Xk in order to re�ect the possible dependence
among lost insured lives. Then Zk, the total loss, is the sum of the sums
insured for each of the Yk lost lives minus the retention stated in the Cat
XL contract. The sum insured for each life can have a, possibly truncated,
exponential distribution or be deterministic in case of a group policy. Finally
the price P is calculated as P = E[C] + α · SD(C).

In order to use the model for actual pricing we needed data for parameter
estimation. We found two data sets, one international containing information
about catastrophes, claiming at least 20 lives, from all over the world and a
Swedish data set with data from accidents claiming at least four lives. With
this data we were able to estimate parameters for both catastrophe intensity
and size. Comparing the �tted model with the data, we found the �t to be
good.

By using the estimated parameters together with data concerning the details
of the contract, we could now get the price of a Cat XL contract by running
computer simulations (in a Monte Carlo manner). We also conducted a sen-
sitivity analysis for the price, varying one parameter at a time and observing
how it a�ected E[C] and SD(C).

With the data at hand, we can now quote a price for any Cat XL cover in
Sweden, or a high layer of a Cat XL contract in some other region of the
world. We can quote a price for a low layer as well, but we would feel more
con�dent if we had statistics from accidents claiming less than 20 lives as
well. Even if we, with help from the Swedish data, can make an educated
guess about parameter values for a low layer in other regions, the con�dence
intervals are quite wide.
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Appendix A

Empirical probabilities, �tted GPD and QQ-plots for some regions
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Figure 14: Empirical probabilities, �tted GPD and QQ-plot, NAM
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Figure 15: Empirical probabilities, �tted GPD and QQ-plot, FAE
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Figure 16: Empirical probabilities, �tted GPD and QQ-plot, SEA
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Figure 17: Empirical probabilities, �tted GPD and QQ-plot, MIE

Appendix B: List of countries included in various

regions
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CAM CAS Central Africa Sudan
Belize China (PRC) Chad Tanzania
Costa Rica Mongolia Comoros Togo
El Salvador North Korea Congo Uganda
Guatemala Djibouti Zaire
Honduras EEU Eq. Guinea Zambia
Mexico Albania Ethiopia Zimbabwe
Nicaragua Bulgaria Gabon
Panama Czechoslovakia Gambia MIE

Eastern Germany Ghana Afghanistan
CAR Former Yugoslavia Guinea Bahrain
Antigua Hungary Guinea-Bissau Emirates
Aruba Poland Ivory Coast Iran
Bahamas Roumania Kenya Iraq
Barbados Liberia Israel
Bermuda FAE Madagascar Jordan
Cuba Hong Kong Malawi Kuwait
Dom. Republic Japan Mali Lebanon
Dominica Singapore Mauretania Oman
Grenada South Korea Mauritius Qatar
Guadeloupe Taiwan Mozambique Saudi Arabia
Haiti Niger Syria
Jamaica MAF Nigeria Turkey
Martinique Angola Réunion Yemen North
Netherlands Antilles Benin Rwanda Yemen South
Puerto Rico Botswana Sao Tomé & P.
St Lucia Burkina Senegal
St Vincent & Gr. Burundi Seychelles
Trinidad & Tob. Cameroun Sierra Leone
Virgin Islands Cape Verde Somalia
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NAF SAF SEA Italy
Algeria Lesotho Brunei Luxembourg
Egypt Namibia Burma Malta
Libya South Africa Indonesia Netherlands
Morocco Swaziland Kampuchea Norway
Sahara Laos Portugal
Tunisia SAM Malaysia Spain

Argentine Philippines Sweden
NAM Bangladesh Thailand Switzerland
Canada Bhutan Vietnam (Western) Germany
Greenland Bolivia
USA Brazil SUN

Chile Former republics of
OCE Colombia the Soviet Union
Australia Ecuador
Fiji Guayana WEU
French Polynesia Guayana(Fr) Austria
Guam India Belgium
Kiribati Macao Channel Islands
New Caledonia Maldives Cyprus
New Zealand Nepal Denmark
Papua Pakistan Finland
Solomon Islands Paraguay France
Tonga Peru Great Britain
US Paci�c Island Sri Lanka Greece
Vanuatu Surinam Iceland
Western Samoa Uruguay Ireland

Venezuela Isle of Man

Table 17: Regions - Countries

57



References

A practial Guide to Reassurance, Hannover Life Reassurance (UK) Ltd,
www.hannoverlifere.co.uk .

Alm, E. (1990). Catastrophes can also hit life assurance, First - A Journal
for Skandia International.

Bostrom, N. and Cirkovic, M. (2008). Global Catastrophic Risks, Oxford
University Press.

Harbitz, M. Katastrofereassuranse i livsforsikring, NFT 4/1992.

Heidenfors, G. (1989). Återförsäkring, IFU.

Hult, H. and Lindskog, F. (2004). Mathematical Methods in Risk Manage-
ment, Lecture Notes, Division of Mathematical Statistics, KTH.

Johansson, B. (2005). Matematiska modeller inom sakförsäkring, Kom-
pendium, Matematisk statisitk, Stockholms Universitet.

Rootzén, H. & Tajvidi, N. (1995). Extreme value statistics and windstorm
losses: a case study, Technical report 1995:5, Avd för matematisk statisitk,
Chalmers Tekniska Högskola.

Strickler, P. (1960). Rückversicherung des Kumulrisikos in der Lebensver-
sicherung, XVI International Congress of Actuaries in Brussels, 666-679.

Swiss Re, sigma, Natural catastrophes and man-made disasters, from years
1983-91, 1994-99, 2002-04.

U.S. Census Bureau, International Population Reports WP/02, Global Popu-
lation Pro�le: 2002,U.S. Government Printing O�ce, Washington, DC,2004.

Woo G. (1999). The Matematics of Natural Catastrophes, Imperial College
Press.

58




