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Abstract

The aim of this project is to apply and develop methods for statis-
tical analysis of spatial point patterns. Spatial point pattern analysis
is widely used within biological fields of inferential statistics. This
text is constructed upon applications and developement of such anal-
ysis on distribution of neurons. Unknown distributions in statistics
are in principle investigated using non-parametric tools. Two such
tools within the spatial point patterns’ field are Ripley’s K-function
and Voronoi Tessellation. These methods have widely been used to
study the 2-dimensional distribution of biological phenomena in the
past decades. Confocal microscopy has now given the possibility of
acquiring data for expanding these studies to 3-dimensional domains
and thus attaining more information. An authentic study in this case
requires development of consistent tools. The tool chosen to develop
here is Ripley’s K-function and its edge correction term for operations
in 3-dimensional domains. The operability of this function along with
its corresponding function in 2D, and Voronoi tessellation is confirmed
by different types of simulations. These methods are later used to in-
vestigate the distribution of neurons in samples obtained from a mouse
brain.
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1 Introduction

In the present paper we have used statistical methods to analyze the 3-
dimensional distribution of neurons. The distribution of neurons can be
described as a spatial point pattern, a multi-dimensional stochastic process.
In some brain diseases the normal organization of neurons appears to be
changed. This reorganization of neurons can many times be subtle, and
thus improved statistical methods are necessary to adequately analyze the
3D distribution of neurons.

To analyze the distribution of neurons we have used non-parametric meth-
ods such as Ripley’s K-function and analysis of Voronoi tessellation. Much
of our focus has been to develop a K-function for 3-dimensional observa-
tions. With the technological advancement of confocal microscopy, large
amounts of 3D data sets can now be obtained. This demands a revision of
earlier methods used to analyze cell distributions. The particular challenge
in this case has been the correction of 3-dimensional edge effects in Ripley’s
K-function, which is later described in details.

The samples in this case are taken from the layer 5 in neocortex of a mouse
brain. The neocortex is layered from 1 to 6 and is the largest portion of the
cerebral cortex, the thin layer of gray matter on the surface of the cerebral
hemisphere that develops from the telencephalon and folds into gyri. The
cerebral cortex reaches its highest development in man and is responsible
for intellectual faculties and higher mental functions.
The samples are 50-100 µm thick. Since the analyzed neurons have a cell
diameter of 15-20 µm the process of edge correction is sensitive to false geo-
metrical assumptions. One other challenge here is the non-stationary nature
of a few of our samples.

Our goal here is the following:

• To perform a qualitative investigation of our obtained samples using
the mathematical tools mentioned above,

• Introducing Ripley’s K-function to analysis of point patterns in 3-
dimensional domains,

• Comparing Ripley’s K-function and Voronoi tessellation’s operability
in 2D,

• Using simulations of different types of Poisson process to monitor the
differences between different point patterns.

The entire computational process has been implemented in MatLab from
the very first step to the last one.
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The following section illustrates the theoretical background of the methods
used to investigate the spatial point patterns present among the neurons.
The results obtained by simulation are clarified in Section 3. Section 4 rep-
resents the results acquired using the mentioned methods and finally in the
Discussion section we put our statistical inferences into words and discuss
possibilities of further improvements.

2 Theoretical Design

A spatial point pattern can be easily seen as the expansion of a one-dimensional
stochastic point process to higher dimensions. A very intuitive example of
such expansion is the following of a Poisson process; a one-dimensional Pois-
son process with intensity λ demonstrates the frequency of points occurring
along a line or an axis. Likewise would a spatial Poisson process in 2D
demonstrate the frequency of occurring points on a plane where the points
are spread across the area of the plane domain. Note that we hereafter use
the term event when we refer to the point positions in the point process.

The distribution of different sorts of spatial point processes is usually clas-
sified in three main classes (Diggle 2003):

• Aggregation (clustering)

• Regularity

• Complete spatial randomness (CSR)

Note that this classification is more of a way of illustrating the major dif-
ferences between different distributions and not a definitive one.

Aggregation is a state of randomness where there is a significant cluster-
ing trend. As a biological phenomenon, this usually occurs where parent
events produce offsprings in a neighbouring domain of their own. Whether
it is the spread of a certain plant or the reproduction of a bacteria.

Regularity corresponds to a state of randomness where the events are lo-
cated in a more or less uniform manner. In such state there are observable
distances between most of the events. This behaviour could best be de-
scribed in terms of biological phenomena (trees) competing for nutrition.

CSR corresponds to a state of randomness that could be described by a
homogenous Poisson process where the number of events in any domain D
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with area |A| or volume |V | follows a Poisson distribution with mean λ|A|,
λ|V | and when given a number of events they’re independent and identically
distributed according to a uniform distribution (Diggle 2003).

Figure 1: The three main types of spatial point patterns

2.1 Poisson Process

The Homogenous Poisson Process
The homogenous Poisson process is at the very structural core of spa-
tial point patterns’ theory. The properties of the homogenous Poisson
process are identical with those of CSR and it is therefore a tool of
great strength in spatial point pattern analysis. Diggle (2003) states
the following postulates for the homogenous Poisson process (in 2D):

• For some λ > 0, and any finite planar region A, N(A) follows a
Poisson distribution with mean λ|A|.

• Given N(A) = n, the n events in A form an independent random
sample from the uniform distribution on A.

• For any two disjoint regions A and B, the random variables N(A)
and N(B) are independent.

Poisson Cluster Process
Introduced by Neyman and Scott (1958), the Poisson cluster process
is used for modelling spatially clustered point processes. The first step
in the construction of a Poisson cluster process is to generate a number
of so called parent events using a homogenous Poisson process with an
intensity parameter ρ. There are then a random number of so called
offspring put into the neighbourhood of each parent. The number of
offspring for every parent is an independent and identically distributed

6



outcome of a random variable S. The distances at which offspring lie
from their corresponding parent, are then independent and identically
distributed with a random variable D. The distance directions, too,
are indepedent and identically distributed.
In order to conduct a simulation, we therefor use a random Pois-
son process to generate the number of offspring per parent (that is
S ∼ Po(·)), and determine their Euclidean distance according to the
random variable D ∼ exp(·). The directions are based on outcomes
of random variables ϕ ∼ U(−π, π) and φ ∼ U(−π

2 , π
2 ) so that the 3D

parent-to-offspring Euclidean distances follow the set:

x = D sinϕ cos φ

y = D sinϕ sinφ

z = D cos ϕ.

Naturally, the clustering pattern would depend on the number of par-
ents and their offsprings in general and the distance varible D in par-
ticular. Also the total intensity λc would be the result of the mean
number of parent events and the mean number of offsprings. That is:

λc = ρ · E[S] (1)

Simple Poisson Inhibition Process
The simple Poisson inhibition process (hereafter referred to as Poisson
Inhibition process) is a process corresponding to the properties of a
regularly distributed spatial point process. This process can be first
structured as a simple Poisson process with intensity τ which is then
made ’regular’ by eliminating all pairs of events lying within a distance
δ or less from each other. The value of δ is essential to the outcome
of the inhibition process and the magnitude of regularity. A low value
of δ would generate a process with only slight differences from a ho-
mogenous Poisson process and a high value of δ would demonstrate
high regularity and hence less events (see 7.2). The intesity of events
λi in Poisson inhibition process is (Diggle, 2003):

λi = τ exp(−πτδ2) (2)

that is the initial intensity τ times the probability that an arbitrary
event survives, exp(−πτδ2).
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2.2 Stationarity

One significant assumption before entering the field of non-parametric meth-
ods (Ripley’s K-function and Voronoi Tessellation) is the property of sta-
tionarity, which is simply invariance to translation and rotation. Non-
stationarity in our case is a state of spatial distribution where the events are
scattered in a certain stream throughout the sample. Rather than covering
the entire sample randomly, the distribution of events leaves ’empty spaces’
in the sample.
The greater deviation from this assumptions, the more biased the conclu-
sions will be.

In practice, it is usually impossible to obtain samples that display total
stationarity. In order to reach maximum stationarity without eliminating
any observations and due to absence of non-stationarity in one dimension of
our samples, we choose to apply the following rotation matrices in 2D (see
7.3 for rotation matrices in 3D):

Rcw(θ) =
(

cos θ sin θ
sin θ − cos θ

)
and Rccw(θ) =

(
cos θ − sin θ
sin θ cos θ

)

where Rcw is the clockwise and Rccw the counter-clockwise rotation. θ is the
angle obtained by length of the diagonal stream constituted by the events,
and the longest edge of the initial sample domain1.

Figure 2: How the matrices operate in 2D

1This interpretation is not a conclusive one as there are other versions of these rotation
matrices. The ones mentioned above are, however, the ones used in the computational
procedure of this project and have been proven to be correct. See the corresponding post
in References for further reading.
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2.3 Ripley’s K-function

Ripley’s K-function is an intuitive approach for detecting deviations from
general assumptions inside or within samples. It has a non-parametric na-
ture and is therefore a natural first step in investigating spatial point pat-
terns due to its independence of initial assumptions regarding the properties
of the point pattern. K-function, regardless of dimensional parameters, can
simply be stated as

K(t) =
E[#Cells within a distance t of an arbitrary cell ]

The total cell intensity

The intensity of events in a domain is usually denoted as λ and is estimated
by the ratio n

|A| in 2D and n
|V | in 3D where n is the number of events in a

sample domain of area |A| or volume |V |.
Throughout the text, we choose to plug in the estimations instead of using
the notation λ as a distinguishing characteristic between the fomulae in 2D
and 3D.

The way in which Ripley’s K-function operates can be described as screen-
ing the number of events in a surrounding circle/sphere of radius t where an
arbitrary event i resembles its center. Now if the intensity of observed events
in this neighbourhood is more than the unit overall intensity (clustering),
K(t) will increase faster than the expected rate under CSR, λ|A| in 2D or
λ|V | in 3D. Vice versa, a weaker presence of events would cause K(t) to
increase slower than the expected rate under CSR (regularity). In a hypo-
thetical state of complete spatial randomness (CSR), K(t) would increase
with the exact same rate as λ|A| or λ|V |.
How this property is used is described in details below.

2.3.1 Ripley’s K-function in 2D

The following is Ripley’s K-function for an arbitrary event i (Ripley 1976):

K̂i(t) = |A| ·
∑n

j 6=iei(t)
−1I[D(i, j) ≤ t]

n
(3)

where A is the area of the domain of interest, n is the number of cells in
the sample, ei(t) is the edge correction term for a circle of radius t with cell
(event) i as its center. I[·] is the indicator function and D(i, j) represents
the Euclidean distance from cell i to cell j and hence a matrix of n rows and
n columns where the diagonal is neglected simply because it represents the

9



distance from cell i to itself, that is 0.
The general K̂(t) for an entire sample is:

K̂(t) =
∑n

i K̂i(t)
n

. (4)

Consistently, an unbiased expected value for the K-function under CSR is:

E[K̂(t)] = πt2. (5)

Furthermore, a natural way of detecting K-function’s deviations from its
expected value under CSR would be to create the function K̂(t)− πt2.
We also choose to use the expression K̂(t)/πt2 to monitor the magnitude of
deviation in a more apparent way.
The stronger the hypothesis of complete randomness is in the sample studied
by the K-function, the less departure we shall expect from its expected
value. Finally to create a single K-function for different samples in a group,
assuming homogenous samples, we assemble K̂group(t) =

P bK(t)
# samples in a group .

2.3.2 Edge Correction in 2D

The edge correction term ei(t) is used to adjust the value of K(t) when a
circle of radius t in 2D expands beyond the boundaries of the sample do-
main. Not taking this into account would result in an underestimation of
event intensity for large values of t (tmax = shortest edge

2 ).
The edge correction approach we’ve preferred to use here is Ward & Fer-
randino’s global correction from 1999 (Marcon and Puech 2003). This for-
mula was chosen after a close investigation of results obtained by Ripley’s
and Besag’s element-wise correction algorithms. The aim is to achieve the
most apparant convergence towards the corresponding expected values.

e(t) = 1− 4
3π

(
t

L
+

t

W

)
+

(
11
3π

− 1
) (

t2

LW

)
where L and W are the rectangular dimensions of the sampling domain.
Another strength in Ward & Ferrandino’s correction is its global nature and
hence swift and computationally cheap evaluation. Using the global term
e(t) instead of the element-wise ei(t) would simplify Ki(t) into:

K̂i(t) = |A| ·
∑n

j 6=iI[D(i, j) ≤ t]
n · e(t)

.

10



2.3.3 Ripley’s K-function in 3D

An extension of K-function from 2D to 3D is easily obtained by assum-
ing 3-dimensional measures instead of those in 2D. That is replacing the
area parameter A by volume V and redefining the distance matrix D for
3-dimensional inter-event distances.

K̂(t) = |V | ·
∑n

i=1

∑
j 6=iei(t)

−1I[D(i, j) ≤ t]
n2

. (6)

Likewise the expected value under CSR is

E[K̂(t)] =
4πt3

3
. (7)

The function K̂group(t) follows the same pattern as above.

2.3.4 Edge Correction in 3D

The edge correction term in 3D monitors the proportion of spherical vol-
umes outside the sample boundaries. The challenge upon us here is of a
complete different nature than the corresponding one in 2D. Considering
the shape of our samples in 3D and their nearly negligible thickness, it is
obvious that a function operating as Ripley’s K, demands paramount care-
fulness regarding its correction component. That is, the demand to evaluate
these corrections at already small values of t and taking into account the
geometrical characteristics in 3D.

In order to calculate the K-function in 3D we need to observe the num-
ber of cells within a sphere of radius t with an arbitrary cell i as its center.
It is easy to imagine that these expanding spheres will start to grow beyond
the boundaries of the sample domain at a very early stage due to the slim
thickness of our samples. The correction term in such case represents the
proportion of volume inside the sample domain boundaries.
Our first step is to study the volume proportions of spheres exceeding merely
one boundary and thus cut by one single plane.

There are several analytical formulas for calculating the semi-spheres or
so called ’caps’ illustrated in Figure 3. The equation used here is

V =
(πh)(3r2 + h2)

6
(8)
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Figure 3: Caps and wedges

where h is the height of the spherical cap and r is its base.
We should also keep in mind the possibility of spheres intercepting two par-
allel planes for large values of t.

To confine the correction component solely to spheres cut by a single plane
is however far from sufficient. This limitation would demand an exten-
sive truncation of observations in order to evaluate Ripley’s K-function in
a mathematically consistent way. Thus would a second step be to evaluate
the volume proportions of spheres intercepting two perpendicular planes.

Here we are once again interested in calculating the volume of semi-spheres
lying outside the sample domain. This is as mentioned above calculated in
a simple manner. As it appears in Figure 3 above there are intersections
between every pair of semi-spheres. This means that without taking the in-
tersection into account, we’ll have an overestimation of the proportion lying
outside the domain if we simply add the volumes of the semi-spheres. We
are thus interested in calculating the volume of this intersection (wedge).
These wedges lack a general symmetry2 and we therefore need to employ
methods of integration to evaluate their volumes.

There are then events in the corners of the sample domain where their spher-
ical neighbourhood is cut by three planes. To evaluate their corresponding
volume proportions seems to be the natural step in the construction of our
edge correction term. This is, however, computationally expensive and time
demanding. As a measure of precaution we choose to truncate the events
in the corners of the domain to firstly observe their population in regard

2The ’base’ and the ’height’ of the wedge are dependent on the position of the event.
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to the total number of events, and secondly their effect on K(t) based on
simulations. We find out that these corner events compose, in average, 5%
of the total event population (where tmax = shortest edge

2 ) and their absence
has no visible effect on the outcome of K(t).
As a result, we introduce the following as our edge correction term in 3D:

ei(t) = 1− ci(t)− wi(t)
4πt3/3

= 1− {ci
x(t) + ci

y(t) + ci
z(t)} − {wi

xy(t) + wi
xz(t) + wi

yz(t)}
4πt3/3

.

Where ci
d(t) is the outside-of-sample volume of the sphere with radius t

intercepted by plane d and wi
d1d2 is the volume of the wedge caused by the

intersection of two semi-spheres defined on planes d1 and d2.

To simplify this we introduce the following notations for an event i with
coordinates (xi, yi, zi):

dxl = |xi − xl|
dxu = |xi − xu|
dyl = |yi − yl|
dyu = |yi − yu|
dzl = |zi − zl|
dzu = |zi − zu|

where xl, for instance, represents the lower domain boundary along the x-
axis and xu its corresponding upper boundary. Then

ci
x(t) = ci

xl(t) + ci
xu(t)

=
π(t− dxl) · (3(t2 − dxl

2) + (t− dxl)2)
6

+
π(t− dxu) · (3(t2 − dxu

2) + (t− dxu)2)
6

Each wi
··(t) is then constituted as it follows:
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wi
xy(t) = wi

xlyl(t) + wi
xlyu(t) + wi

xuyl(t) + wi
xuyu(t)

wi
xz(t) = wi

xlzl(t) + wi
xlzu(t) + wi

xuzl(t) + wi
xuzu(t)

wi
yz(t) = wi

ylzl(t) + wi
ylzu(t) + wi

yuzl(t) + wi
yuzu(t).

The term wi
xy(t) can further be dissected into:

wi
xy(t) = wi

xlyl(t) + wi
xlyu(t) + wi

xuyl(t) + wi
xuyu(t)

=
∫ √

t2−dyl
2

dxl

∫ +
√

t2−(dxl
2+dyl

2)

−
√

t2−(dxl
2+dyl

2)
(
√

t2 − (u2 + v2)− dyl)dudv

+
∫ √

t2−dyu
2

dxl

∫ +
√

t2−(dxl
2+dyu

2)

−
√

t2−(dxl
2+dyu

2)
(
√

t2 − (u2 + v2)− dyu)dudv

+
∫ √

t2−dyl
2

dxu

∫ +
√

t2−(dxu
2+dyl

2)

−
√

t2−(dxu
2+dyl

2)
(
√

t2 − (u2 + v2)− dyl)dudv

+
∫ √

t2−dyu
2

dxu

∫ +
√

t2−(dxu
2+dyu

2)

−
√

t2−(dxu
2+dyu

2)
(
√

t2 − (u2 + v2)− dyu)dudv

For example, the volume of the wedge illustrated in Figure 3 is

Vwedge =
∫ √

t2−b2

a

∫ +
√

t2−(a2+b2)

−
√

t2−(a2+b2)
(
√

t2 − (u2 + v2)− b)dudv.

Further dissection of wi
xz(t) and wi

yz(t) follows the same pattern as above.

Thus each ei(t) could contain up to 12 integral expressions (wedge volumes)
and 6 analytical expressions (semi-sphere volumes), for each value of t.
Due to the immense amount of calculations and its local (element-wise) na-
ture, the edge correction procedure in 3D is much more time demanding
than the corresponding (global) one in 2D. More of this is discussed in 5.2.
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Figure 4: Realization of Voronoi tessellation on CSR

2.4 Voronoi Tessellation

Named after Georgy Voronoi, a Voronoi tessellation (also called a Voronoi
decomposition or a Dirichlet tessellation) is a decomposition of a region pre-
scribed by distances to a set of events in the region (see Duyckaerts et al.
2001). The region in this case is the 2-dimensional version of our sampling
domain, which is obtained by eliminating the thickness dimension. Such
decompositions result in sets of polygons associated with the events so that
every arbitrary point inside any polygon lies closest to the associated event
than any other neighbouring event.

A property that the Voronoi tessellation shares with Ripley’s K-function
is its non-parametric nature and as mentioned above it is a natural choice
when we are dealing with samples without any knowledge of their paramet-
ric family.

A big difference, however, is the way in which we draw inferences from
the tessellation. The resulting polygons are as expected variable in the size
of their areas and this depends naturally on the intensity of other events in
their neighbourhood. Thus calculating the polygon areas and the deviation
among them would be an intuitive way to characterise the existing point
pattern. The expression below has been used to evaluate the polygon areas:

15



Apolygon =
1
2

n−1∑
i=0

(risi+1 − ri+1si)

Where (ri, si) represent the coordinates for the ith vertex in an arbitrary
polygon with n vertices numbered clockwise and where (r0, s0) = (rn, sn).

Now to draw inferences from these areas we’ll deploy the cofficient of vari-
ation. An approach that has been applied frequently in the majority of
articles dealing with Voronoi tessellaton as of the writing moment.

The coefficient of variation (CV) is a normalised measure of dispersion that
is obtained by creating a ratio with the standard deviaton as the numerator
and the mean as the denominator (hence the normalisation).

With a clustering trend as the most plausible one, the CV tends to be high
in comparison to the CV in a state of CSR. Correspondingly the CV tends
to be in comparison to CSR lower with a regular pattern as the underlying
factor (see Results 3.2 for more details).
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Figure 5: Simulation of a homogenous Poisson process (CSR). Dimensions
x = 1500µm, y = 250µm, z = 50µm

3 Simulations

We have executed three major types of simulations. The simulations of ho-
mogenous Poisson process, Poisson cluster process and Poisson inhibition
process. The practical and computational approach in creating these simu-
lations is consistent with the corresponding descriptions given earlier.
Common parameters for all simulations are the dimensional lengths of the
domain, which on average follows the same size as the real samples. The
Poisson process is later on simulated by generating 500 events in the 3-
dimensional domain. The Poisson cluster process is designed to take in
more variability in form of parent and offspring intensity, and the clustering
intensity determined by the random parent-to-offspring Euclidean distances.
The Poisson inhibition process is variable in number of events to be initially
generated, τ , and the least permissible distance variable, δ. The latter one
has a great effect on the outcome of the simulations and needs extra care-
fulness in choice of a suitable value. This is discussed in 5.4 and illustrated
in 7.2 and 7.4.
A few samples of these simulations in 3D with different input parameters
are given in Figures 5-7. An illustration of simulations in 2D is represented
in Figure 1.

The parameters associated with the Poisson cluster process and the Poisson
inhibition process are chosen to reach an intensity equivalent to the intensity
in CSR according to (1) and (2).
In the following figures ρ, γ and ε are associated with the number of par-
ents, offspring and the distance parameter respectively (where S ∼ Po(γ)
and D ∼ exp(ε)).

In order to conduct Ripley’s K-function and Voronoi tessellation in 2D,
the ’thickness dimension’ represented by z has been eliminated. The follow-
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ing simulation results are used as a background for our interpretation of the
mouse brain samples.

Figure 6: Simulation of a Poisson cluster process with ρ = 50, γ = 10,
ε = 100. Dimensions x = 1500µm, y = 250µm, z = 50µm

Figure 7: Simulations a Poisson inhibition process with 1000 initial events
and δ = 0.0148. Dimensions x = 1500µm, y = 250µm, z = 50µm
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3.1 Ripley’s K-function

3.1.1 CSR

Figure 8: K(t) − πt2 and K(t)/πt2 in 2D for 50 simulations of CSR with
500 events in each simulation
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Figure 9: K(t)− 4πt3

3 and K(t)/4πt3

3 in 3D for 50 simulations of CSR with
500 events in each simulation
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3.1.2 Poisson Cluster Process

Figure 10: K(t) − πt2 and K(t)/πt2 in 2D for 50 simulations of Poisson
cluster process with ρ = 50, γ = 10, ε = 100

Figure 11: K(t) − πt2 and K(t)/πt2 in 2D for 50 simulations of Poisson
cluster process with ρ = 20, γ = 25, ε = 175
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Figure 12: K(t) − 4πt3

3 and K(t)/4πt3

3 in 3D for 25 simulations of Poisson
cluster process with ρ = 50, γ = 10, ε = 100

Figure 13: K(t) − 4πt3

3 and K(t)/4πt3

3 in 3D for 25 simulations of Poisson
cluster process with ρ = 20, γ = 25, ε = 175
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3.1.3 Poisson Inhibition Process

Figure 14: K(t)−πt2 and K(t)/πt2 for 50 simulations of Poisson inhibition
process with 1000 initial events and δ = 0.0148

Figure 15: K(t)−πt2 and K(t)/πt2 for 50 simulations of Poisson inhibition
process with 585 initial events and δ = 0.0093
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Figure 16: K(t) − 4πt3

3 and K(t)/4πt3

3 in 3D for 25 simulations of Poisson
inhibition process with 1000 initial events and δ = 0.0148

Figure 17: K(t) − 4πt3

3 and K(t)/4πt3

3 in 3D for 25 simulations of Poisson
inhibition process with 585 initial events and δ = 0.0093
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3.1.4 Comments

Figure 8 representing K(t)−πt2 and K(t)/πt2 under CSR in 2D and Figure
9 representing K(t)− 4πt3

3 and K(t)/4πt3

3 under CSR in 3D, share the same
appearance as the plots to the left have a uniform spread towards positive
and negative values as t grows, as expected under CSR. The plots to the
right demonstrate solid convergence towards 1, also as expected under CSR.
Figures 10-13 representing K(t)−πt2, K(t)/πt2, K(t)− 4πt3

3 and K(t)/4πt3

3
for two different sets of Poisson cluster process, illustrate as expected in-
creasing functions of K(t) − πt2 and K(t) − 4πt3

3 . The plots to the right
illustrate convergence towards 1 as t grows. There is, however, more unifor-
mity in the cluster process with parameters ρ = 20, γ = 25, ε = 175.
Finally Figures 14-17, representing simulations of Poisson inhibition process,
are very much like their corresponding figures under CSR. This is due to
the small values of δ which make the regularity almost non-existent. This
occurence is discussed in 5.4. To see how larger values of δ would monitor
regularity, see 7.4.

3.2 Voronoi Tessellation

An apparent result here is the high value of CV for the inhibition processes.
According to the majority of works done earlier to investigate the relation-
ship between CV and the underlying point pattern, the expected CV value
when there is significant regularity is less than 0.33. That is, under the
hypothesis of CSR, the CV value is expected to lie in the interval (0.33 ,
0.64) with a probability of 0.99 (see Duyckaerts et al.). Why the CV value
is higher in this case is believed to be related to the value of δ and hence λi

and the geometrical characteristics of our simulations i 3D. More of this is
brought up in 5.4 and 7.2.

Type Parameters CV Ratio
CSR 500 events 0.6336 0.7732

Cluster ρ = 50, γ = 10, ε = 100 0.7310 0.5222
Cluster ρ = 20, γ = 25, ε = 175 0.8292 0.6728

Inhibition 1000 initial events and δ = 0.0148 0.6109 0.8370
Inhibition 585 initial events and δ = 0.0093 0.6213 0.7744

CV-values and ratio of remaining events after elimination from Voronoi
Tessellation
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Figure 18: One of our samples in ’glt’ before test of stationarity

4 Results

The data in this investigation consists of 11 samples of a mouse brain. The
samples are sets of 3-dimensional position coordinates that are imported
directly into the computer program for analysis. Here we employ the non-
parametric methods mentioned earlier in the text. The procedure of analysis
went as follows:

There were 5 samples of ′etv′ and 6 samples of ′glt′ consisting of three
columns representing the positions of the neural cells in the brain tissues.
The samples were imported to a program in MatLab and tested for station-
arity by simply scattering each cell’s coordinates in a plot.

Those samples that showed somewhat great deviation from assumptions
of stationarity were then rotated in order to reach minimum area/volume
value. This was done by using clockwise and anticlockwise rotation matri-
ces in 2D due to absence of non-stationarity in one of the dimensions. All
samples were then observed again to avoid loss of data.
The programs written to evaluate Ripley’s K-function in 2D and 3D follow
the same outline described earlier in the theoretical section. The graphs
obtained by these programs are shown below.
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4.1 Ripley’s K-function

Figure 19:
I) Groupwise K(t)− πt2 in 2D
II) Groupwise K(t)/πt2 in 2D

III) Groupwise K(t)− 4πt3

3 in 3D

IV) Groupwise K(t)/4πt3

3 in 3D
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Figure 20: Ripley’s K-function in 2D and 3D for ’etv’

Figure 21: Ripley’s K-function in 2D and 3D for ’glt’
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4.2 Voronoi Tessellation

Using the voronoin command in MatLab we were able to obtain the loca-
tions of vertices for each Voronoi cell with an event as its center. Since an
average 25% of these Voronoi cells are bulit on vertices located beyond the
boundaries of the sample domains, they create irrationally big areas. These
Voronoi cells are neglected in order to minimize the biased variation in the
CV.

CV Ratio
’etv’ 0.8556 0.7345
’glt’ 0.9239 0.7674

Figure 22: Voronoi tessellation on a sample in group ’etv’
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5 Discussion

5.1 Aim

Our aim has partially been to perform a computational investigation of
spatial point patterns in 3-dimensional domains and hence developing a K-
function operating in 3D. Based on our simulations in MatLab, this function
and its edge correction term appear to work without any flaws despite the
slight truncation of corner events. Also the results from programs written
to evaluate its corresponding 2D function, Voronoi tessellation in 2D and
simulations of manipulated Poisson processes match our expectations.

5.2 Ripley’s K and Edge Correcton in 3D

A lot of resources throughout the project has been devoted to creation of a
compatible edge correction term for analysis in 3D. As mentioned in 2.3.4
the evaluation of this term is of a time-demanding nature due to its local
property and the involvement of integrals that require numerical methods
in order to be solved. This is, however, despite our slight truncation of cor-
ner events. One might suspect that taking these observations into account
and thus introducing a corresponding edge correction term for spheres cut
by three planes, would reduce the time efficiecy of Ripley’s K in 3D sub-
stantially. A suitable proposal would therefore be to create a global edge
correction term for observations in 3D due to the extreme efficiency of global
terms as we’ve observed in Ward & Ferrandino’s edge correction term in 2D.

5.3 Extension of Voronoi Tessellation to 3D

Another possibility of development is extending Voronoi tessellation to 3D
domains. Locating the vertices of the resulting polyhedrons is somewhat
more demanding than the corresponding procedure in 2D but nontheless
possible. The real problem, however, is the evaluation of polyhedron vol-
umes due to the great variability in the number of vertices and thus their
shapes.

5.4 Simulations

In order to maintain consistency when conducting simulations of the Poisson
cluster process and Poisson inhibition process, we chose to use parameters
that would result in an intensity, λc or λi, equivalent to the one in CSR with
500 events. This choice in the case of the Poisson inhibition process leads
to very small values of δ, which result in an almost non-existent regularity.
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This weak presence of regularity is also reflected in the CV-values obtained
by Voronoi tessellation in 3.2. Choosing larger values of δ would cause λi

to swiftly converge towards zero (see (2) and 7.2) and lead to simulations
with considerably less events. Although such simulations would illustrate
more regularity (7.4), they would result in inconsistent values of λi.

5.5 Sensitivity to Stationarity

We recommend the following as plausible possibilities of improvement re-
garding non-stationary samples:

• Usage of methods invariant to stationarity. The theoretical structures
of Ripley’s K-function and Voronoi tessellation are both sensitive to
non-stationarity. As it has been mentioned earlier ’empty spaces’ in
the sample lead these methods to false conclusions regarding the ex-
isting point pattern.

• Resampling. Despite the mentioned flaw in Ripley’s K-function and
Voronoi tessellation, their non-parametric property is a desirable qual-
ity. Resampling or simply cutting samples to make them stationary is
another possible approach. Yet there is the disadvantage of informa-
tion loss when samples are reduced.

• Evolution of methods. A reconstruction or insertion of new parame-
ters in the present methods to create immunity against stationarity.

5.6 The Mouse Brain Samples

Regarding our mouse brain samples, we choose to state our inferences with
some doubt. This is due to the non-stationary nature of the samples. A
property that nevertheless seems to remain after our adjustments of the po-
sition coordinates using rotation matrices.
The two groups, ′etv′ and ′glt′, of mouse brain samples seem to demon-
strate a clear clustering trend. Analysis of Ripley’s K-function in 2D shows
a stronger presence of this trend in ′glt′ for all values of t. This constant
presence is violated in 3D for a small interval between t = 12 and t = 19.
This deviation can very possibly be a result of the expansion of analysis to
one more dimension and hence taking more information into account. The
results from Voronoi tessellation, too, point towards a stronger presence of
clustering in ′glt′.
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7 Appendix

7.1 Implementational Structure in MatLab

The programmes written to execute the work in this paper are ordered by
Karolinska Institute and shall be made public on behalf of the associated
parts.

Figure 23: The computational structure
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7.2 Poisson Inhibition Process Intensity, λi

Figure 24: λi for τ = 1000, τ = 800, τ = 600, τ = 400 and δ =
0.005, . . . , 0.02 according to λi = τ exp(−πτδ2).

7.3 Rotation Matrices in 3D

The following are the clockwise rotation matrices in 3D about the x, y and
z axes.

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ



Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1
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7.4 Alternative Simulations of Poisson Inhibition Process

These simulations illustrate the decreasing trend of K(t)−πt2 in the interval
(0, δ).

Figure 25: K(t) − πt2 and K(t)/πt2 in 2D for 50 simulations of Poisson
inhibition process with 700 initial events and δ = 20

Figure 26: K(t) − πt2 and K(t)/πt2 in 2D for 50 simulations of Poisson
inhibition process with 500 initial events and δ = 27
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