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Abstract
In this paper we aim to �nd a fundamental connection between Credit

Default Swaps (CDS) and Equities, concentrating on the banking sec-
tor. To this end, we introduce factor model especially the Fama French
three factor model. Moreover, we have also tried to �nd an explanatory
distribution for the CDS spread. Here we introduce the Normal Inverse
Gaussian (NIG) distribution.

The fundamental di�erence between the Fama French framework and
the theories of traditional corporate valuation made the results di�cult to
interpret. While both theories agree that smaller companies are riskier,
they do not agree on the riskiness of growth and value stocks. However,
we could still see that the risk taken when investing in risky credit stocks
could be explained by the Fama French factors, i.e. "value" and "size".

As an attempt to �nd an explanatory distribution for the CDS spread,
we applied the "Chi-square goodness-of-�t-test". While the NIG distribu-
tion captured more of the heavy skewness and kurtosis compared to the
Normal distribution, it could still not be �tted to the CDS spread.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-
mail: michelorun@gmail.com Mentor: Ola Hössjer
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1 Introduction
The goal of this paper is to analyze credit default swap and to see how the credit
derivative market interacts with the stock market. The credit derivative market
has grown rapidly over the last few years. Credit Default Swaps (CDS) are the
most common credit derivative products. In 2007, notional amount for credit
default swaps were USD 45 trillion, compared to USD 630 billion in 2001.1

Figure 1: Outstanding CDS, notional amount in billion

A credit default swap is a legally enforced bilateral contract between two
counterparts, under which one counterpart agrees to transfer the credit exposure
for the compensation of periodical payments from the other counterpart. CDS's
are traded over-the-counter (OTC) and are the most commonly traded credit
derivative products. The main reason for this is that CDS gives investors the
potential to manage credit risk in much the same way as market risk.

Furthermore, in this paper we will use CDS's as the representative of the
credit derivative market. We will also focus on the banking sector, DJ Stoxx
Banks index, as many banks actually have a CDS listening. Moreover, as an
attempt to �nd a relationship between the credit derivative market and the
stock market we will try to answer these questions:

• Is there a fundamental link between the movements in the stock price and
the CDS spread?

• Can we �nd an explanatory distribution of the CDS spread?

In the �rst section of this paper we will give an introduction to credit default
swaps. We will explain what the purpose of a credit default swap is and give
some examples. Here, we will also introduce the concept of the CDS spread and
discuss its link to the CDS contract.

In the second section, we will introduce some theories and models. We
will start by discussing factor model as well as going into some general pricing
theories. Here, we will implement the arbitrage pricing theory (APT), using
the Fama French three factor model (FFT), to see how the CDS spread and the
stock movements are linked together. The FFT factor model was created by
Eugene F. Fama and Kenneth R. French (1992). They believed that there were

1www.isda.org ISDA market survey
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two other sources of risk that can describe the behavior of the market, aside
from the market factor in the CAPM model. They discovered that "Size" and
"Value" also had a link to the share price movements.

Furthermore, we will also introduce the normal inverse gaussian (NIG) distri-
bution in this section. The NIG distribution belong to the family of hyperbolic
distributions which was introduced by Barndor�-Nielsen (1977). One of the
main reasons why this distribution is frequently used in �nance and risk model-
ing, is because it allows one to take the third and fourth moment into account,
i.e. skewness and kurtosis, as well as the mean and variance. First of all, we
will go into some detailed mathematical and statistical properties. Secondly, we
will discuss some bene�ts and drawbacks that the NIG distribution brings.

In the fourth and last section, we will go over how we intend to �nd a
connection between the credit market and the stock market and explain the
results. First of all, by using factor models and implementing the FFT factor
model we will investigate if we can establish a fundamental link between share
price movements and the movements in CDS spread. Secondly, we will try to
implement the NIG distribution. The idea here is to investigate if the NIG
distribution can be better �tted to the changes in CDS spread than the normal
distribution. Furthermore, as the normal distribution is known to underestimate
the tails of a stock's distribution we will test if the NIG distribution can be better
�tted here as well.

4



2 Credit Default Swaps (CDS)
A credit default swap provides insurance against default, or in more general
terms a credit event, by a particular company on a �xed income instrument.
In this way the credit risk, or default risk, is transferred from the instrument
owner to a third party.

For example, suppose that we own bonds issued by a company, the reference en-
tity, for a notional amount of SEK 10 million. We are now exposed to credit risk,
being the risk that the reference entity will default. This risk can be transferred
to a third party in the form of a CDS contract. However, in compensation we
would have to pay a risk premium, which is quoted in terms of a CDS spread.
Now, suppose that a �ve-year CDS contract with a notional amount of SEK
10 million for a speci�c reference entity is traded at 200 basis points (what is
known as the spread). This means that the CDS buyer, who in our example is
the bond holder, will have to pay a �xed annual fee of SEK 200 000 to the CDS
seller. This fee is often divided into quarterly payments. Now, in the case of a
credit event the CDS buyer gets the right to sell the bonds with the notional
amount of SEK 10 million to the CDS seller.

The CDS buyer is said to have a long position and the CDS seller a short
position. The de�nition of a credit event varies a lot because credit default
swaps are traded over-the-counter (OTC). This can of course also e�ect the risk
premium when the contract is signed. The �ve-year CDS contract is the most
liquid, which basically means that you have insurance over a �ve-year period.
There are a few standard CDS maturities. However, the most traded are the
�ve-year CDS contracts, which is why we have used the �ve-year CDS spread
in this analysis.

2.1 CDS spread
The CDS spread is supposed to re�ect instantaneous market perception of a
company's credit worthiness. Roughly speaking, a spread of 200 basis points
accounts for a default risk of 200/10000 or 2% on a yearly basis. Companies
with high a CDS spreads require a greater compensation fee (risk premium) and
are therefore more risky in terms of a CDS contract. Furthermore, a rise in the
CDS spread should re�ect that the market is challenging a company's credit
worthiness.

The graph below illustrates the 5-year CDS spread for three European banks
and the iTraxx. The iTraxx is one of the largest CDS indices and consists of
the 125 most liquid 5-year CDS spreads in Europe. The recent turmoil in the
credit market, the subprime crisis, has caused the CDS spread to increase. So,
it seems that both Fortis bank and Deutsche bank were more exposed to the
subprime crisis than Nordea. A rise in CDS spread should re�ect that the com-
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pany's credit worthiness is challenged by the market.

Figure 2: CDS spread development for three European banks and the iTraxx.

To get a better feeling of how a CDS contract and the underlying CDS spread
are related we give another example. Let us assume that we enter a CDS con-
tract with a notional amount of N and let the CDS spread at time t0 = 0 be c0

for a speci�c reference entity. Let T be the time of maturity for the contract and
tk < T be a time in the future before maturity of the spread ck. Let us assume
further that we enter the contract with a long position, i.e. buying insurance.

At time t = t0:
We enter a T -year CDS contract with a long position for the notional amount
of N and CDS spread c0. We now have to pay a risk premium of N · c0 to the
CDS seller on an annual basis for the next T -years.

At time t = tk < T :
The spread is now ck. If we enter a CDS contract now, then we would have to
pay N · ck on an annual basis. Theoretically, if ck > c0 then we can make a
pro�t of N · ck − N · c0 = N · (ck − c0) on an annual basis by having a short
position in a CDS contract with the new spread.

Assuming that it is possible to go short and long at any time without any
transaction cost then this can be realized. There are of course other restrictions
that have to be taken into account. The contracts will have di�erent delivery
dates and if the long position is closed to maturity we would not experience
this pro�t for a long time. Also, if the reference entity would default after the
long position has matured, we would still have the obligation of compensating
the CDS buyer and make a loss. However, in order not to complicate things we
de�ne the return of a CDS contract in this analysis as

R(tk, tk+1) =
N · (ck+1 − ck)

N · ck
=

ck+1 − ck

ck
=

ck+1

ck
− 1.
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2.2 CDS Market vs. Stock Market
One of the main purposes of this study is to take a closer look at how the CDS
market interacts with the stock market. We obtain the �rst link between the
two markets by simple looking at the correlation, as you can see in the �gures
below.

Figure 3: iTraxx (x-axis) vs. DJ Stoxx 600 with -60% correlation and iTraxx
vs. DJ Stoxx banks with -57% correlation. The DJ Stoxx 600 index is an equity
index which contains 600 of the largest European stocks. Furthermore, the DJ
Stoxx Banks index are composed by the bank stocks in the DJ Stoxx 600.

We see that the CDS spread has a tendency of increasing as the stock prices fall
and vice versa. More importantly, there seems to be information embedded in
the stock price as well as in the CDS spread concerning each other. However, as
an increasing CDS spread re�ects that a company's credit worthiness is wors-
ening, a fall in the stock does not necessarily re�ect the same thing. Moreover,
while the share price should re�ect the value of the company there is no absolute
link between a company's fundamentals and its CDS spread.

Nevertheless, it is relatively easy to understand why there should be negative
correlation between the stock market and the CDS market. Deteriorating credit
conditions for a company will challenge its credit worthiness. This should have a
direct impact on both the CDS spread and the stock price, although not always
in the expected way.

Credit risk is a major source of risk for most banks, which is why many banks
are not only trading CDS but also hedged against in CDS contracts. Therefore,
in this paper we will focus our analysis of the banking sector. We also choose
this sector because many banks actually have a CDS spread listed in the market.
Focusing on a sector like this makes it also easier to compare the results between
companies because they are roughly exposed to the same underlying risk factors.
We performed the analysis on the DJ Stoxx Banks index, which contains the
largest European banks.
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3 Theory and Models
3.1 Factor Models
A factor model assumes a linear relationship between an assets rate of return
and basic sources of randomness, termed factors, that in�uence the assets. The
factors that are used to explain randomness can be external factors or factors
that are more linked to the assets. The Capital Asset Pricing model (CAPM)
can be used as a factor model. It is one of the simplest factor models and has
only one risk factor, the market factor.

Single-factor models are the simplest of factor models and they illustrates
the concept quite well. Suppose that there are n assets with rates of return ri,
i = 1, . . . , n. Assume further that there exists a single factor f which explains
the rate of return ri of all assets. We can then assume that the rate of return
and the factor are related by following regression line:

ri = αi + βif + εi i = 1, . . . , n

Here αi is the intercept of the regression line and βi is called factor loading and
represents the slope, which measures the factor sensitivity.

The εi's are the error terms and without any loss of generality it can be
assumed that the error terms have zero mean, E[εi] = 0. Other assumptions are
that the error terms are uncorrelated with the factor and with the error terms
of other assets, i.e Cov(f, εi) = 0 and E[εiεj ] = 0 ∀ i 6= j. These assumptions
may of course not actually be true, but we will assume that they are in this
analysis. It is also assumed that the variance of the error terms are known, and
they are denoted by σ2

εi
.

To complicate things, assume that we hold a portfolio of m assets, m < n.
We de�ne the weights in the portfolio for the j:th asset as wj ,

∑m
j=1 wj = 1.

If the rate of return follows a single-factor model, then the portfolio's rate of
return r is explained by the following equation:

r =
m∑

j=1

wj (αj + βjf + εj)

=
m∑

j=1

wjαj

︸ ︷︷ ︸
a

+
m∑

j=1

wjβj

︸ ︷︷ ︸
b

f +
m∑

j=1

wjεj

︸ ︷︷ ︸
e

= a + bf + e

Under the assumptions that E[εi] = 0, Cov(f, εi) = 0 and E[εiεj ] = 0 ∀ i 6= j
we have that:

E[e] = E[
m∑

j=1

wjεj ] =
m∑

j=1

wjE[εj ] = 0

Cov(f, e) = Cov(f,

m∑

j=1

wjεj) =
m∑

j=1

wjCov(f, εj) = 0

σ2
e = E




m∑

j=1

w2
j ε2j


 =

m∑

j=1

w2
j σ2

εj
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If a portfolio is equally-weighted, i.e wj = 1/m ∀ j, and the σ2
εi

= s2 are the
same for all assets, then we can easily see the e�ects of diversi�cation.

σ2
e =

m∑

j=1

w2
j σ2

εj
=

1
m

s2

Hence, as m →∞ we see that σ2
e → 0. Therefore, in a well diversi�ed portfolio

the error term in the factor model will be small. The overall variance, volatility,
of the portfolio is

σ2
r = b2σ2

f + σ2
e .

If a portfolio is well-diversi�ed the σ2
e will essentially be small. However, because

b is an average of the assets βj the b2σ2
f term remains more or less constant.

Even though the σ2
e goes to zero the portfolio variance does not. This is why a

factor model carries two sources of risks: the risk caused by εi which is said to
be diversi�able because it is essentially zero in a well-diversi�ed portfolio; and
the βif term which is said to be the non-diversi�able or systematic, since it is
present even in a well diversi�ed portfolio.

One can proceed and extend the model to more than one factor. Assume
now that we have a k-factor model explaining the rate of return for all assets as

ri = αi + β1if1 + . . . + βkifk + εi i = 1, . . . , n.

Again, the αi's are the intercepts of the regression lines and βti's, t = 1, . . . , k,
are the factor loadings. The factors f1, . . . , fk and εi are random variables. We
have the same assumptions as before, i.e the expected value of the error term is
zero and uncorrelated with the factors and with the error terms of other assets.
However, it is not assumed that the factors are uncorrelated with each other.
So the rate of return for a portfolio with m assets, m < n, can be de�ned as:

r =
m∑

j=1

wjαj +
m∑

j=1

wjβ1jf1 + . . . +
m∑

j=1

wjβkjfk +
m∑

j=1

wjεj

= a + b1f1 + . . . bkfk + e

= a + btF+ εi

with variance

σ2
r = btCfb+ σ2

e

σ2
e = E




m∑

j=1

w2
j ε2j


 =

m∑

j=1

w2
j σ2

εj

of the total return and error term, and with bt= [b1, . . . , bk], Ft= [f1, . . . , fk]
and Cf= Cov(F), which is the covariance matrix of the factors. The portfolio
volatility has the same structure as before with the diversi�able, σ2

e , and the
non-diversi�able, btCfb, risks.
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3.1.1 CAPM factor model
The CAPM factor model is a special case of a single-factor model. It assumes
that there is only one factor that can explain the rate of return, the market rM .
CAPM also assumes that there exists a risk free rate rf , which in the short run
is constant. The CAPM factor model is expressed in terms of excess return, i.e
ri − rf and rM − rf .

ri − rf = αi + βi(rM − rf ) + εi i = 1, . . . , n

The expected value of the error term is zero, E[εi] = 0. Taking the expected
value of the equations gives the CAPM identity except for the present of αi.2 To
understand the connection between the CAPM theory and the model described
above, we use a result from linear regressions. It states that the best linear
predictor of a random variable Y (= ri) given another random variable X (=
rM ) is given by the following regression line3:

Ŷ = µy +
σxy

σ2
x

(X − µx) = µy − µx
σxy

σ2
x︸ ︷︷ ︸

intercept

+
σxy

σ2
x︸︷︷︸

slope

X

Moreover, if rf is constant then βi = σrirM

σ2
M

, which is exactly equal to the
βi in the CAPM identity. So the βi coe�cient basically measures the market
exposure. However, the CAPM identity does not have an αi.

From the CAPM point of view, αi, can be regarded as a measure of the
amount that an asset i is mispriced. A stock with a positive αi is performing
better then it should, and a stock with negative αi is performing worse than it
should. To this extent we can use the CAPM factor model to see if an asset
or a portfolio is underperforming by comparing their αi, if we assume that the
market is the only factor that can explain an assets rate of return. The αi is
referred to as the risk adjusted excess return.

3.1.2 Arbitrage Pricing Theory (APT)
To interpret multi-factor models, we would have to resolve to a di�erent asset
pricing theory called the Arbitrage Pricing Theory (APT). APT is an extension
of the CAPM theory with fever underling assumptions. The only assumption is
that investors prefer greater to lesser returns. However, it is also assumed that
the universe of assets is large and for APT to work exactly we must have an
in�nite number of assets, which di�er from each other in a non-trivial way.

To see the connection between CAPM and APT, let us assume that there
exists only one underling factor. To be more general we call this factor f and
so we have, in absence of error term,

ri = ai + bif i = 1, . . . , n.

Di�erent assets have di�erent ai and bi. So, the rate of return of a portfolio
with two asset, i and j, having weights w and 1− w, can be written as

r = wai + (1− w)aj + [wbi + (1− w)bj ]f.

2The Capital Assets Pricing Model tells us that if the market is e�cient, the expected
return E[ri] of any asset satis�es: E[ri] − rf = βi(E[rM ] − rf ), where βi =

σrirm

σ2
rM

. See
Luenberger, D G. (1998), Investment Science, Chapter 7

3See Gut, Allan (1995): An Intermediate Course in Probability, Theorem 5.2 page 52.
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We can hedge against the factor risk by selecting w = bj/(bj−bi). The portfolio's
rate of return is then risk free and must be equal to the risk free rate if there
are no arbitrage opportunities, i.e.

r = wai + (1− w)aj =
aibj

bj − bi
+

ajbi

bi − bj
= rf .

This can be rearranged to
ai − rf

bi
=

aj − rf

bj
= c,

where c is a constant. This is a general relation and must hold for all assets if
there are no arbitrage opportunities. Continuing, this shows that ai and bi are
not independent, ai = rf + bic. Furthermore, we can now get the expected rate
of return of asset i as

E[ri] = ai + biE[f ] = rf + bic + biE[f ] = rf + bi(E[f ] + c) = rf + biF.

Both rf and F are constants and once they are known the expected return of
an asset is completely determined by bi. If the factor f is chosen to be the rate
of return of the market, F = E[rM ]− rf , and bi = βi then the APT is identical
to CAPM.

E[ri]− rf = βi(E[rM ]− rf )

However, instead of just having one market factor, like the CAPM theory, APT
allows us to use several factors. Now, suppose that there are n assets whose
rate of return are governed by k < n factors according to the equations

ri = ai +
k∑

j=1

bijfj i = 1, . . . , n.

Then there are constants F1, . . . , Fk such that

E[ri] = rf +
k∑

j=1

bijFj i = 1, . . . , n,

if we believe that the rate of return for an asset can be described by a multi-factor
model.4 Then, from an APT point of view, the intercept, α, in a multi-factor
model can be regarded as a measure of the amount that an asset is mispriced.
Basically, by using a factor model and comparing the α's of di�erent assets or
portfolios, we can see if an asset is underperforming or performing better than
it should.

The problem with APT is that the theory itself does not tell us what these
factors are. So, as a complement to the CAPM factor model, we will use the
Fama French three factor model, described below, to measure α.

3.1.3 Fama French three Factor Model (FFT)
The Fama French three factor model was created by Eugene F. Fama and Ken-
neth R. French (1992) based on APT. They observed that there were two classes

4Proof : See Luenberger, D G. (1998), Investment Science, Page 209
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of stocks that had a tendency of performing better than the market as a whole:
stock with small market capitalization (small caps, opposites are called large
caps) and stock with a high Book-to-Price ratio (value stocks, opposites are
called growth stocks).

ri − rf = α + βM (rM − rf ) + βSSMB + βV HML + εi i = 1, . . . , n

The model by Fama and French suggests that an assets rate of return is ex-
plained by the sensitivity of three factor. First of all, the excess return on a
market portfolio (market risk). Secondly, the return on a portfolio of small caps
vs. the return on a portfolio with large caps (SMB). Last, the return of a portfo-
lio of stock with high Book-to-Price ratio vs. the stocks with low Book-to-Price
ratio (HML).

The SMB factor, Small Minus Big market capitalization, captures the size
e�ect. Fama and French discovered that small caps outperforms large caps. A
high exposure to this factor, i.e. a high βS , implies that the portfolio is relying
more on stocks with small market capitalization to generate return.

The HML factor, High Minus Low Book-to-Price ratio (Book value/Share
Price), tells us something about value and growth.

• Growth stocks are generally fast-growing companies that have demon-
strated above-average growth. Growth investors believe that the growth
rates of these companies will allow them to outperform the stock market
over time. Furthermore, what characterizes these stocks are that they tend
to be more expensive relative to their current earnings. These stocks are
therefore considered to be more risky because their book value seems to be
relatively low compared to their stock price. Stock with low Book-to-Price
ratio are called growth stocks.

• Value stocks are the opposites. Investing in value stocks is usually con-
sidered to be the more conservative and less risky investment strategy.
This is because they tend to be cheap, or undervalued, relative to their
earnings. Stocks with high a Book-to-Price ratio are called value stocks.

Moreover, a high exposure to this factor, i.e. a high βV , suggest that the
portfolio is relying more on value stocks to generate return.

However, value stocks are considered to be more risky under the FFT frame-
work. Fama and French believed that higher return is reward for taking a high
risk. The explanation for this lies in the e�cient market assumptions. If the
market is e�cient, which is one of the underlying assumption in both CAPM
and APT, then there can only be one reason to why the stock price looks cheap
- it is more risky.

3.2 Normal Inverse Gaussian (NIG)
The Normal Inverse Gaussian distribution (NIG) belongs to the family of hyper-
bolic distributions and is a special case of the generalized hyperbolic distribu-
tion, introduced by Barndor�-Nielsen (1977). The NIG distribution is a mixture
of the Inverse Gaussian distribution and the Normal distribution, which we will
show below, and is often used in �nance for risk modeling, since it also allows
us to model kurtosis.

12



3.2.1 Properties
The density function is

fx(α, β, δ, µ) =
αδK1

(
α
√

δ2 + (x− µ)2
)

π
√

δ2 + (x− µ)2
eδλ+β(x−µ)

for all x ∈ <, where λ =
√

α2 − β2, α > |β| ≥ 0, δ > 0 and Kυ denotes a
modi�ed Bessel function of the third kind. The α parameter is related to the
kurtosis and β to the skewness whereas δ and µ describe the scale and the
location respectively.

3.2.2 Moment generating function
The Bessel function in the density function makes it hard to obtain the moments
by integrating the density function. Luckily, the moment generating function
can easily be computed as

ΨX(t) = E[etX ] =
∫ ∞

−∞
etxfx(α, β, δ, µ)dx

=
∫ ∞

−∞
etx

αδK1

(
α
√

δ2 + (x− µ)2
)

π
√

δ2 + (x− µ)2︸ ︷︷ ︸
T (x)

eδλ+β(x−µ)dx

= etµ

∫ ∞

−∞
T (x)etx+δλ+β(x−µ)−tµdx

= eδ
√

α2−β2+tµ

∫ ∞

−∞
T (x)e(t+β)(x−µ)dx

= eδ
√

α2−β2+tµ−δ
√

α2−(t+β)2
∫ ∞

−∞
T (x)e(t+β)(x−µ)+δ

√
α2−(t+β)2dx

= e
δ
(√

α2−β2−
√

α2−(t+β)2
)
+tµ

∫ ∞

−∞
fx(α, t + β, δ, µ)dx

= e
δ
(√

α2−β2−
√

α2−(t+β)2
)
+tµ

.

The moment generating function can only exist if α > |β+t|. We can now derive
the �rst four moments; mean, variance, skewness and kurtosis. However, to
avoid heavy computations one can instead use the cumulant generating function.

3.2.3 Cumulant generating function
The cumulant generating function CX(t) is de�ned as the logarithm of the
moment generating function. This eliminates the exponential which makes it
easier to di�erentiate, since

CX(t) = log(ΨX((t)) = δ
(√

α2 − β2 −
√

α2 − (t + β)2
)

+ tµ α > |β + t|.
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We will not go into any details about the cumulant generating function and
instead just show how the moments are calculated. Di�erentiating CX(t) we
�nd that,

C ′X(t) = µ +
δ(t + β)√

α2 − (t− β)2
⇒ κ1 = C ′X(0) = µ +

δβ√
α2 − β2

C ′′X(t) =
δα2

(√
α2 − (t + β)2

)3 ⇒ κ2 = C ′′X(0) =
δα2

(√
α2 − β2

)3

C
(3)
X (t) =

3δα2(t + β)(√
α2 − (t + β)2

)5 ⇒ κ3 = C
(3)
X (0) =

3δα2β(√
α2 − β2

)5

C
(4)
X (t) =

3δα2(α2 + 4(t + β)2)(√
α2 − (t + β)2

)7 ⇒ κ4 = C
(4)
X (0) =

3δα2(α2 + 4β2)(√
α2 − β2

)7

where κn is called the n:th cumulant. We can now calculate the �rst four
moments of the NIG distribution by using these cumulants:

E[X] = κ1 = µ + δ
β

λ

V [X] = κ2 = δ
α2

λ3

S[X] =
κ3

κ
3/2
2

=
3β

α
√

δλ

K[X] =
κ4

κ2
2

=
3
δλ

(1 + 4
β2

α2
)

The kurtosis de�ned above, K[X], is according to de�nition the excess kurtosis.
A normally distributed random variable has a kurtosis of three and an excess
kurtosis of zero. This is also important to take into account when program-
ming. For instance, Matlab uses the kurtosis whereas Excel employs the excess
kurtosis.

3.2.4 A Mixture Characterization
A random variable X follows a Normal Inverse Gaussian distribution with pa-
rameters α, β, δ and µ if

X|Y = y ∼N(µ + βy, y)

Y ∼IG(δ2, λ2)

where λ =
√

α2 − β2 and IG is short for the Inverse Gaussian distribution, also
know as the Wald distribution.

This can be proved as follows: Let Y follow an IG distribution with param-
eters δ2 and λ2, where λ =

√
α2 − β2. Then, the moment generating function

of Y is:

ΨY (t) = e
δ
(√

α2−β2−
√

α2−β2−2t
)
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Since X|Y = y ∼ N(µ + βy, y), we obtain by using the moment generating
function that:

ΨX(t) = E[etX ] = E[E[etX |Y ]] = E[eµt+βY t+ Y t2
2 ] = eµtΨY (βt +

t2

2
) =

= e
δ
(√

α2−β2−
√

α2−(t+β)2
)
+tµ

.

Since ΨX(·) uniquely characterizes the distribution of X it follows that X ∼
NIG(α, β, δ, µ).

Another useful property is that if X1 ∼ NIG(α, β, δ1, µ1) and X2 ∼ NIG(α, β, δ2, µ2)
are independent then X1+X2 ∼ NIG(α, β, δ1+δ2, µ1+µ2). This can be veri�ed
using moment generating functions as

ΨX1+X2(t) = E[et(X1+X2)] = E[etX1 ]E[etX2 ] = e
(δ1+δ2)

(√
α2−β2−

√
α2−(t+β)2

)
+t(µ1+µ2)

⇒ X1 + X2 ∼ NIG(α, β, δ1 + δ2, µ1 + µ2)

and again using that ΨX1+X2(·) uniquely characterizes the distribution of X1 +
X2.

3.2.5 Skewness and Kurtosis
Why the NIG distribution is so useful is because, as mentioned before, we are
allowed to take the third and fourth moments into account, the skewness and

Figure 4: Kurtosis

kurtosis.
Figure 4 illustrates the e�ects of the kurtosis. The striped lines demonstrates

the NIG distribution and the stroked line the Normal distribution. We can see
that the tails become heavier and the peak higher as the kurtosis increases.

The skewness measures the asymmetry of the distribution. A positive skew-
ness means that the right tail is longer and so the distribution's mass is shifted
to the left, and the reverse is true for negative skewness. Figure 5 below illus-
trates a negative and a positive skewness for the NIG distribution compared to
a Normal distribution which is completely symmetric.
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Figure 5: Skewness

It is a know fact that the normal distribution can underestimate the tails of a
stock's distribution.5 So kurtosis, together with skewness, can hopefully give
new insights when we try to capture the distribution of a stock, as well as CDS
spread. However, there is one problem with using the NIG distribution. The
ML-estimates of the NIG parameters do not have a closed form and so we will
estimate them using a slightly more primitive method.

3.2.6 Estimating the parameters
We will use a di�erent approach to estimate the parameters of the NIG distribu-
tion. One can obtain the estimates for the NIG distribution simply by solving
for α, β, δ and µ and use the moment estimates of the mean, variance, skewness
and kurtosis. We illustrate below how we can solve the parameters with three
simple steps:

Step (1);
S[X]2V [X] =

9β2

λ4
⇒ 9β2

S[X]2V [X]
= (α2 − β2)2

when S[X] > 0 ⇔ β > 0 and S[X] < 0 ⇔ β < 0, which gives us

9β2

S[X]2V [X]
= (α2−β2)2 ⇒ 3β

S[X]
√

V [X]
= α2−β2 ⇒ α2 = β2 +

3β

S[X]
√

V [X]

Step (2);

K[X]
S[X]2

=
α2

3β2
+

4
3
⇒

[
α2 = β2 +

3β

S[X]
√

V [X]

]
⇒ β =

3S[X]√
V [X](3K[X]− 5S[X]2)

Step (3); combining the last two displayed equations with the previously ob-
5See Höglund, T: Mathematical asset management, Chapter 2
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tained expressions for E[X], V [X], S[X] and K[X], we obtain the �nal result

α =
3
√

3K − 4S2

√
V (3K − 5S2)

β =
3S√

V (3K − 5S2)

µ = E − 3S
√

V

3K − 4S2

δ =
3
√

V (3K − 5S2)
3K − 4S2

for all K < 5S2/3 where E = E[X], V = V [X], S = S[X] and K = K[X]. The
parameters can now be estimated by replacing E, V , S and K with their sample
estimate, which we have listed in the Appendix A.3. The ML-estimates can be
obtain by using the so-called EM (Expectation Maximization)-algorithm. But
unfortunately, these estimates does not have a closed form.6

3.2.7 Simulating a NIG random variable
We use the Rydberg-Monte Carlo method to simulate a NIG random variable
which is based on the fact that if Y ∼ IG(δ2, λ2) and X|Y = y ∼ N(µ + βy, y)
then X ∼ NIG(α, β, µ, δ), where λ =

√
α2 − β2 and α > |β| > 0, δ > 0 as found

in subsection 4.1.3. So, assume that Y :s outcome is y then we can simulate X
as a N(µ + βy, y) random variable.

X|Y = y ∼ N(µ + βy︸ ︷︷ ︸
µ̂

, y︸︷︷︸
σ̂2

) = Zσ̂ + µ̂ = µ + βy + Z
√

y,

which gives X = µ + βY + Z
√

Y , where Z ∼ N(0, 1) and Y ∼ IG(δ2, λ2).

Most program packages can simulate a Normal random variable but we must still
�nd a way to simulate an Inverse Gaussian random variable, Y ∼ IG(δ2, λ2).
This can be done with the following algorithm:

V = N(0, 1)2 ∼ χ2
1,

W = ξ +
ξ2V

2δ2
− ξ

2δ2

√
4ξδ2V + ξ2V 2, ξ =

δ

λ
,

Y = W · 1{U≤ ξ
ξ+W } +

ξ2

W
· 1{U> ξ

ξ+W },

where U ∼ Uniform(0, 1). We omit the proof that this algoritm indeed gen-
erates Y ∼ IG(δ2, λ2), but refer the reader to Michael, Schucany and Haas
(1976).

6See Dempster,Laird,Rubin (1977), Maximum likelihood from incomplete data via the EM
alogritm, Series B, 39(1):1-38
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4 Empirical results
4.1 Data
The data used in this study are provided by the quantitative research team at
Fortis. The time period that is covered in this analysis is between January 2
2006 to July 29 2007.

Our CDS data consist of the 5-year CDS spread quotes for the banks in the
DJ Stoxx banks index, see Appendix A.1. The spreads are the daily closing
quotes and denominated in Euros. Furthermore, the stock price data are also
quoted in Euros.

We used The DJ Stoxx 600 index as an approximation of the market, which
is the parental index of the DJ Stoxx banks index. Furthermore, the FFT factors
were also calculated with DJ Stoxx 600, see Appendix A.2 for more information.

4.2 Method
4.2.1 The idea behind the test
As an attempt to �nd a connection between the credit market and the stock
market in terms of performance and risk, we divided the benchmark (DJ Stoxx
Banks index) into three classes. The CDS spread was used to determine the
classes; stocks with High, Mid and Low CDS spread. Moreover, this was done
by ranking the stocks based on their CDS spread and then grouping them into
the three groups. However, since the CDS spread varies over time, we updated
the rankings daily, after which we calculate the equal-weighted return of the
three portfolios.

The purpose of using the CAPM and FFT models is not only to measure
the performance of the three portfolios in terms of excess return. We also
use them to get a more fundamental explanation to why the three portfolios
are performing the way they are. Moreover, this is where the SMB and HML
factors in the FFT model come into to use.

4.2.2 Fitting the NIG distribution
We will use two methods to test how well the NIG distribution can be �tted to
CDS spread and stock returns.

QQ-plots can be used to see if a sample �ts a speci�c distribution. The Q
stand for "quantiles" and so a QQ-plot is a scatter plot between the sample
quantiles and the distribution's quantiles which is expected to �t the sample,
in our case the NIG and the Normal distribution. By creating quantiles, typ-
ically as k/(n + 1) where n is the sample size and k = 1, . . . , n, one plots the
order statistics from the sample on the vertical axis and the quantiles of the
comparison distribution on the horizontal axis. If the hypothesized distribution
is correct, we approximately get a straight line.

These plots are very useful but they do not gives us a statistical measure
like a p-value. For this one can use a "Chi-square goodness-of-�t-test". A Chi-
square test basically measures the distance between the number of observed, Oi,
and the expected values, Ei, which depends on the hypothesized distribution.
In our case we have to estimate parameters of the hypothesized distribution, so
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Ei has to be replaced by an estimate Êi. If

T =
m∑

i=1

(Oi − Êi)2

Êi

is large, we reject the hypothesized distribution, using the fact that T ∼ χ2
m−p−1

when the distribution is indeed correct, where p is the number of parameters in
the distribution and m the number of bins. The number of bins can of course
di�er a lot depending on the data but the rule of thumb is that each bin should at
least have 5 observations. However, one of the requirements in performing this
test is that we need the ML-estimates to calculate the expected values.7 This
can easily be done for the Normal distribution but not for the NIG distribution,
as mention before. So we will ignore this detail and believe that it will not have
a large impact on the results.

4.3 Result
We �rst investigate how the three portfolios performed, see �gure 6. The stocks
with a high CDS spread performs better than those with low a CDS spread.
This suggests that the companies which are supposed to be more risky from
the credit markets point of view tend to perform better on the stock market.
However, this might be driven by some underlying characteristics and so we
turn to the factor models.

Figure 6: Indexed development of the three portfolios (Portf. 1 = High CDS
spread, Portf. 2 = Mid CDS spread, Portf. 3 = Low CDS spread), with 2006
as starting year.

The parameters of the CAPM and FFT factor models are estimated using
multiple linear regression, see the table below and Appendix A.4. We explained
in the previous section that the intercept α of the factor models is a way of mea-
suring the performance of an asset or portfolio after accounting for systematic
risk. As we can see in the table below, both the CAPM and the FFT factor

7See Rao, R (1973): Linear Statistical Inference and Its Applications (Second Edition),
pages 391-393
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models suggest that stocks with a high CDS spread give a greater return (the α
in the table is annualized). However, the α's are not signi�cantly di�erent from
zero, see Appendix A.4. We saw from the graph that the stocks with high CDS
spread perform better. However, it seems that this is explained by the exposure
to the risk factors. Furthermore, by studying the factor loadings, the β:s, in
the FFT factor model we see that the portfolio with high CDS spread hold two
important properties.

CAPM: FFT:
Annual α βM R2 Annual α βM βS βV R2

Portf. 1 2.41% 1.01 82.0% 2.12% 1.01 -0.18 0.24 82.7%
Portf. 2 -2.20% 1.00 84.1% -2.57% 1.02 -0.45 0.31 86.5%
Portf. 3 -4.84% 1.00 82.4% -5.47% 1.02 -0.63 0.55 87.8%

First of all, the portfolio with high CDS spread, portf. 1, has the smallest
βS . As the banks in the DJ Stoxx index contains the largest banks in Europe,
we see that represented in the high CDS spread portfolio are the smallest banks
in the index. Secondly, companies with a high CDS spread should also have a
more pressured credit pro�le. Looking at the βV , we see that the portfolio with
high CDS spread is dominated by growth stock, which according to the de�-
nition have a low Book-to-Price value. Stock with a small book value relative
to their share price should be considered to be more risky, which we discovered
seems to be re�ected in their CDS spread.

All in all, smaller companies are in general more risky. Investing in new
and small growing companies is a risky business and is clearly re�ected by their
CDS spreads. Furthermore, as mentioned before, it is also know that small caps
performed better than large caps. This can explain why the stocks with a high
CDS spread are more exposed to the SMB factor.

However, the value vs. growth factor under the FFT framework implies that
value stocks are more risky because they generally perform better. Furthermore,
Fama and French believed that higher risk is rewarded in a higher return, which
is also suggested by the CDS spread. But as we mentioned before, this depends
in whether or not one believes in the e�cient market theory. Moreover, the βV

factor suggested that the companies with a high CDS spread are growth stocks,
which are often overvalued and expensive and thus more risky in the view of
traditional investors. While this does not agree with the FFT framework, it
does make some sense to see that the stocks with high CDS spread are less
exposed to the HML factor.
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4.3.1 NIG vs. Normal distribution
The next step was to see if we could �t the NIG distribution to a real asset.
This can be done by randomly picking and using its historical data to com-
pute method of moments estimates of parameters, draw QQ-plots and perform
goodness-of-�t tests, as described above. Furthermore, in this section will not
only see if it can be �tted to stock returns but also to the changes in the CDS
spread (CDS return). We have used the stock price and the CDS spread of
Nordea, which is a Swedish bank listed in the Swedish stock exchange OMX.

First of all, we try to �t the NIG distribution to daily stock returns, see �gure
7. If the reader is familiar with QQ-plots then one can immediately see from
the normal plot that the Nordea stock has a high kurtosis. This is also a general
phenomenon and widely documented property amongst stocks. However, the
�tted NIG distribution does not seem to miss this. The NIG distribution seems
to �t perfectly while the normal distribution clearly underestimates the tail of
the stock distribution.

Figure 7: QQ-plot: Using stock return of the Nordea share.

Furthermore, this is also the conclusion from the Chi-square test. The Nor-
mal distribution can be rejected at a 1.0% signi�cance level, while the NIG
distribution is not be rejected.

Chi-square Bins Parameters d.f p-value
Normal 26.6 13 2 10 0.30%
NIG 9.9 13 4 8 27.2%

Furthermore, we also performed the same analysis on Nordea's CDS spread.
Here, we have used the notation explained in section 1 to calculate the changes
in CDS spread. However, the result does not look that promising for CDS
spread, see �gure 8. We can see that the CDS spread has a high kurtosis by
looking at the normal plot. Furthermore, NIG distribution seems to �t better
then the Normal distribution but not good enough.
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Figure 8: QQ-plot: Using the CDS spread of Nordea.

The chi-square test con�rms the result. Both distributions are rejected at a
1.0% signi�cant level even though NIG distribution �ts marginally better. So,
even though the NIG distribution can be �tted to stocks return it can not be
�tted to the changes in CDS spread.

Chi-square Bins Parameters d.f p-value
Normal 382.4 8 2 5 1.88e-78%
NIG 234.8 8 4 3 1.30e-48%
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5 Conclusion
In this thesis, we have tried to �nd a connection between the fundamentals of
the stock market and the credit market. Our main focus has been to investigate
whether returns on stocks with di�erent CDS spreads can be connected to its
fundamental pro�le, "size" and "value". Furthermore, we have used the Fama
French three factor model to �nd an explanation as to why the stocks with
various CDS spreads are performing the way they are. Moreover, we have also
tried to �nd an explanatory distribution for the movements in CDS spreads.
Here, we focused on the NIG distribution as well as the Normal distribution.

The fundamental di�erences between the Fama French framework and the
theories of traditional corporate valuation make the result di�cult to interpret.
While both of these theories assume that smaller companies are riskier, they
do not agree on the riskiness of growth and value stocks. The FFT framework
assumes that the market is e�cient. This basically suggests that stocks that
are delivering abnormal returns are doing so because they are more risky. Fur-
thermore, as Fama and French discovered that value stocks perform better than
growth stocks, this suggests that value stock are more risky. However, this does
not agree with traditional corporate valuation, which �nds growth stocks to be
more risky because they are relatively expensive compared to their earnings.

Furthermore, as we performed the test on the bank sector we saw that stock
with high CDS spreads perform better than stocks with low CDS spreads. While
stocks with high CDS spreads are more risky, we see that these stocks consisted
of predominantly the smaller banks and banks which �tted in to the growth stock
criterium. Interesting enough, after accounting for the Fama French factors we
could not draw the conclusion that the stocks with high CDS spreads actually
deliver greater return, as the α's were not signi�cant. This basically suggests
that the risk taken when investing in stocks with high CDS spreads is explained
by the risk factors in the FFT model, i.e size and value.

Furthermore, as an attempt to �nd an explanatory distribution for the CDS
spread, we applied the "Chi-Square goodness-of-�t-test". This revealed that
while the NIG distribution is applicable for stocks, it could not be �tted to
CDS spreads. So, the NIG distribution could explain more but has still failed
to capture the heavy skewness and kurtosis of the CDS spread.
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A APPENDIX
A.1 DJ Stoxx Banks index

Name CDS spread Name CDS spread
ABN amro Dexia
Alliance & Leicester Deutsche Postbank NA
Allied Irish Banks DnB Nor
Alpha Bank EFG Eurobank Ergasias
Anglo Irish Bank Emporiki Bank of Greece NA
Banca Antonveneta Erste Bank Der Oesterreichi
Banca Carige NA Fortis
Banca Lombarda e Piemontese Glitnir banki NA
Banca Monte Dei Paschi HBOS
Banca Naz Lavoro HSBC
Banca Popolare Italiana Intesa Sanpaolo
Banca Popolare Milano Jyske Bank
Banco Comercial Portugues Kaupthing Bank
Banco de Valencia NA KBC Ancora NA
Banco Espirito Santo KBC Groupe
Banco Pastor Landsbanki island
Banco Popolare NA Lloyds TSB
Banco Popular Espanol Mediobanca
Banco Portugues De Inv. NA National Bank of Greece NA
Banco Sabadell Natixis
Banco Santander Nordea
Bank of Greece NA Northern Rock
Bank of Ireland NA Pohjola Bank NA
Bank of Piraeus Rai�eisen International Bank
Bankinter NA Royal Bank Of Scotland
Barclays SEB
Bayerische Hypo and Vereinsbank San Paolo Imi
BBVA Societe Generale
BNP Paribas Standard Chartered
Bradford & Bingley Swedbank
Capitalia NA Handelsbanken
Commerzbank Sydbank NA
Credit Agricole UBI Banca NA
Credit Suisse UBS
Danske bank Unicredit
Depfa bank Valiant NA
Deutsche bank

*NA= not available

A.2 Fama French Three Factor Model
To calculate the three factor in the Fama French three factor model we have
used the DJ Stoxx 600 index. As the market factor we used the equal weighted
DJ Stoxx 600. The SMB and HML factors are calculated as follows:
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The universe, DJ Stoxx 600, is �rst divided into two groups based on the stocks
market capitalization (Size). We then divided the stocks in the two groups into
three subgroups based on their Book-to-Price ratio. This was done on a daily
basis after which the total return in each subgroup was calculated.

Small Big
Value Small Value Big Value
Neutral Small Neutral Big Neutral
Growth Small Growth Big Growth

We then used the following formulas to obtain the SMB and HML factors:

SMB =
1
3
(S.V alue + S.Neutral + S.Growth)− 1

3
(B.V alue + B.Neutral + B.Growth)

HML =
1
2
(S.V alue + B.V alue)− 1

2
(S.Growth + B.Growth)

A.3 Moment estimates
For an independent sample X1, . . . , Xn from the NIG distribution, the moment
estimates that are used in excel are de�ned as follows,

Ê =
1
n

n∑

i=1

Xi

V̂ =
1

n− 1

n∑

i=1

(Xi − Ê)2

Ŝ =
n

(n− 1)(n− 2)

n∑

i=1

(
Xi − Ê√

V̂
)3

K̂ =
n(n + 1)

(n− 1)(n− 2)(n− 3)

n∑

i=1

(
Xi − Ê√

V̂
)4 − 3(n− 1)2

(n− 2)(n− 3)
.
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A.4 Regression tables
A.4.1 Portfolio 1

CAPM regression

Regression Statistics
Multiple R 91.0%
R Square 82.1%
Adjusted R Square 82.0%
Standard Error 0.4%
Observations 389

ANOVA
d.f. SS MS F Signi�cance F

Regression 1 0.027 0.027 1772.94 1.44e-146
Residual 387 0.006 1.52e-5
Total 388 0.033

Coe�cients Standard Error t-stat P-Value Lower 95% Upper 95%
Alpha 9.5e-3% 0.02% 0.48 63.1% -0.03% 0.05%
Market 1.01 2.4% 42.1 1.44e-144% 0.97 1.06

FFT regression
Regression Statistics
Multiple R 91.0%
R Square 82.7%
Adjusted R Square 82.6%
Standard Error 0.4%
Observations 389

ANOVA
d.f. SS MS F Signi�cance F

Regression 3 0.027 0.009 615.321 1.87e-146
Residual 385 0.005 1.47e-5
Total 388 0.032

Coe�cients Standard Error t-stat P-Value Lower 95% Upper 95%
Alpha 0.01% 0.02% 0.43 66.8% -0.03% 0.05%
SMB -0.18 8.43% -2.14 3.3% -0.35 -0.01
HML 0.24 9.44% 2.57 1.1% 0.06 0.43
Market 1.01 2.61% 38.85 0.0% 0.96 1.06

26



A.4.2 Portfolio 2
CAPM regression

Regression Statistics
Multiple R 91.7%
R Square 84.1%
Adjusted R Square 84.1%
Standard Error 0.4%
Observations 389

ANOVA
d.f. SS MS F Signi�cance F

Regression 1 0.026 0.026 2050.70 9.69e-157
Residual 387 0.005 1.29e-5
Total 388 0.031

Coe�cients Standard Error t-stat P-Value Lower 95% Upper 95%
Alpha -8.9e-3% 0.02% -0.49 62.7% -0.03% 0.03%
Market 1.00 2.2% 45.28 9.69e-155% 0.96 1.05

FFT regression
Regression Statistics
Multiple R 93.0%
R Square 86.5%
Adjusted R Square 86.4%
Standard Error 0.3%
Observations 389

ANOVA
d.f. SS MS F Signi�cance F

Regression 3 0.027 0.009 821.761 6.3e-167
Residual 385 0.004 1.103e-5
Total 388 0.031

Coe�cients Standard Error t-stat P-Value Lower 95% Upper 95%
Alpha 0.01% 0.02% -0.62 53.8% -0.04% 0.02%
SMB -0.45 7.29% -6.13 0.0% -0.59 -0.30
HML 0.31 8.16% 3.81 0.0% 0.15 0.47
Market 1.02 2.25% 45.23 0.0% 0.97 1.06
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A.4.3 Portfolio 3
CAPM regression

Regression Statistics
Multiple R 90.8%
R Square 82.4%
Adjusted R Square 82.4%
Standard Error 0.3%
Observations 389

ANOVA
d.f. SS MS F Signi�cance F

Regression 1 0.026 0.026 1812.20 4.40e-148
Residual 387 0.006 1.46e-5
Total 388 0.032

Coe�cients Standard Error t-stat P-Value Lower 95% Upper 95%
Alpha 1.9e-2% 1.9e-2% -1.02 30.9% -0.06% 0.02%
Market 1.00 2.4% 42.57 4.40e-148% 0.96 1.05

FFT regression
Regression Statistics
Multiple R 93.7%
R Square 87.9%
Adjusted R Square 87.8%
Standard Error 0.3%
Observations 389

ANOVA
d.f. SS MS F Signi�cance F

Regression 3 0.028 0.009 615.321 6.44e-176
Residual 385 0.004 1.01e-5
Total 388 0.032

Coe�cients Standard Error t-stat P-Value Lower 95% Upper 95%
Alpha 0.00% 0.02% -1.39 16.6% -0.05% 9.4e-3%
SMB -0.63 6.98% -9.08 5.60e-16% -0.77 -0.50
HML 0.55 7.82% 7.04 9.13e-10% 0.40 0.70
Market 1.02 2.16% 47.20 3.62e-160% 0.98 1.06
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