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AbstratThis thesis implements a model for estimating the time dynamis of mutualfunds' alphas and betas. Funds are often managed aording to an ativetrading strategy and shifted aross seurities, and that gives rise to timevariation in their beta. By estimating beta using non-overlapping-windowOLS one detets autoorrelation in the beta series for most funds. Capturingthis time variation in the beta will result in more aurate estimate of a fund'salpha, whih serves as a measure of a portfolio manager's �managerial talent�.Previous attempts to estimate funds' alphas and betas have used OLS on aversion of CAPM, whih does not allow for time dynamis in alpha and beta.This projet implements and tests an alternative model, where alpha and betaare estimated via an Extended Kalman �lter. The Kalman model is based onan assumption that assets are realloated aording to an unobservable fatorand it allows for hanges in the parameters over time. It onsists of a systemof equations where the unobservable fator follows an AR(1) proess, and bythat yields the aspet of time dynamis in the parameters. Testing the twomodels on a fund universe of approximately one hundred funds shows thatthe Kalman model an be more suessful in apturing the time variationthan the OLS model, but that the OLS model on a large sale seems topossess better alpha predition ability despite its stati nature. This is dueto the omplexity of estimating the EKF model. However, when we examinefunds individually and ompare the two models when the EKF model hasonverged, it is shown that the EKF model an be superior in apturing thetime dynamis of alpha and beta.
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Chapter 1

Introduction

In the past few decades the mutual fund industry has rapidly grown and
become object of quite extensive research in the academic and financial com-
munity. One issue of prime interest is how to measure portfolio managers’
performance, which is determined relative to the over-all market. It has been
heavily debated whether or not abnormal risk adjusted returns, α, exists and
previous research have used different models in order to detect alpha. How-
ever, those models have one feature in common; they all model funds’ alpha
and beta as constant parameters. That is a great limitation in the analysis
since funds’ betas seem to exhibit autocorrelation. Therefore, estimates of
alpha and beta from a static model will be biased. The gain of obtaining ac-
curate estimates of beta is that it results in a more accurate estimate of alpha;
miss estimated beta will induce miss estimated alphas, see [9]. This thesis
studies and implements an alternative model, where we let alpha and beta
vary with time, and our aim is to obtain more accurate parameter estimates.

1.1 Origin of time dynamics

Since funds are managed according to an active trading strategy and shifted
across securities, funds’ betas will generally not be constant. For example, a
fund heavily invested in stocks at the beginning of a year might have a beta
of one. If however money is moved to e.g. bonds later in the year, the fund’s
beta will drop.

This time dependence can be captured by estimating beta using Ordi-
nary Least Squares (OLS) with non-overlapping windows. Examining the
obtained series of beta estimates reveals that some mutual fund returns have
indications of β autocorrelation. The experiment is illustrated in Figure 1.1.
By taking the LPC estimate of each fund the autocorrelation is heavily re-
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Figure 1.1: Average autocorrelation of ten funds’ beta before and after fil-
tering

duced. One way to capture this time dependence is to use an AR(1) model,
and we want to take advantage of that when examining fund manager’s per-
formance. Since most models that evaluate portfolio returns do not allow for
dynamic parameters we need to find a model that does take into account the
time dependence in the parameters.

1.2 Two models

Time Dynamic model

The model, used to estimate time varying alphas and betas for mutual fund
returns, is based on an assumption that portfolio managers must possess pri-
vate information in order to produce alpha. Portfolios are then shifted across
securities due to this information, which is modelled as an unobservable fac-
tor. That factor is assumed to follow an autoregressive process of order one,
since the value of the information will decline with time. Both a fund’s alpha
and beta are influenced by this unobservable private information, and it leads
to a model consisting of a system of equations. The system is of so-called
state space form and is estimated via an Extended Kalman Filter, EKF.

Attempts to detect alpha by using this model have been made by Ma-
maysky, Spiegel and Zhang in Estimating the Dynamics of Mutual Fund Al-
phas and Betas, 2004 and Improved Forecasting of Mutual Fund Alphas and
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Betas, 2005. This thesis will implement the EKF model used by the authors
of [9] and it will be tested and compared to a static model.

Static model

The static model is a version of CAPM, that allows for the parameter α:

rt − rf = α + β(rM
t − rf ) + ǫt. (1.1)

The model in (1.1) is estimated via rolling window regression, which allows
for some time variation in its parameter. However, the trade-off between
parameter accuracy and time dependence is not obvious. However, we will
in this thesis use a window length of four years.

1.3 Objective

By detecting autocorrelation in funds’ beta we have reason to believe that
the dynamic model will produce more accurate estimates of alpha and beta
than a model based on OLS. This thesis aims at examining and illustrating
the differences in alpha and beta estimates between the two models. We also
want to be able to say something regarding the two models’ performance in
predicting alpha and beta.

In chapter two we will derive the time dynamic model used in this thesis,
the EKF model. Chapter three contains a description of the Kalman filter
and gives a theoretical background of how to estimate the Kalman model.
In chapter four we describe the system parameter identification problem as-
sociated with the model calibration, and examine the two models’ alpha and
beta prediction ability on one fund. Chapter five treats an out-of-sample
test, where each model’s ability to predict alpha and beta is tested on a large
sample of funds. Conclusions are found in chapter six.



Chapter 2

Model description

As discussed earlier, a model that captures time variation in funds’ betas is
highly preferable since poorly estimated betas result in a systematic bias in
the alpha estimates. In this chapter we will derive a model, which is used in
[9] and [10] that does allow for time dynamics in a fund’s alpha and beta.

2.1 Background

A portfolio manager’s performance needs to be compared to the overall mar-
ket returns. According to CAPM an asset’s rate of return can be modelled
as

rt − rf = β(rM
t − rf ) (2.1)

where rt = log(St+1

St
) is the asset’s return and St the its price at time t,

rM
t is the market return and β the funds beta:

β =
Cov

(

r, rM
)

σ2
M

= ρr,rM

σ

σM

(2.2)

where σ and σM is the fund and the market volatility respectively.
A fund’s beta measures to what degree the fund covariates with the over

all market. For example, if an asset has a beta of 1.2 it is theoretically 20%
more volatile than the market, whereas a beta of less than 1 means that the

7



CHAPTER 2. MODEL DESCRIPTION 8

asset will be less volatile than the market. A beta value of 1 means that the
asset will move with the market. CAPM describes the relationship between
risk and expected return and is used in the pricing of risky securities. It states
that the expected rate of return of an asset equals its beta times the rate
of return of the overall market. This holds under a number of assumptions,
of which one is that all investors have the same expectations about security
returns, also referred to as assumption of perfect information [8]. Thus, in
order to generate any positive risk-adjusted returns, portfolio managers must
possess some private information that he or she uses to forecast returns. The
financial measure of such abnormal returns is α, and a model that would
better describe asset i’s return under the assumption of existing alpha would
be

ri,t − rf = αi + βi(r
M
t − rf ) + ǫi,t (2.3)

The returns of a portfolio consisting of n assets I = {i1, i2, . . . , in} can
be written as:

rP,t =
∑

i∈I

wiri,t (2.4)

where wi,t is the fraction of the portfolio invested in asset i and

∑

i∈I

= 1. (2.5)

We now assume that (2.3) accurately describes the return of an individual
stock [9]. Then a portfolio’s time t returns are described by:

rP,t − rf,t =
∑

i∈I

wi,t

(

αi,t + βi,t(r
M
t − rf,t) + ǫi,t

)

+ kt

= αP,t + βP,t(r
M
t − rf,t) + ǫP,t, (2.6)

where

αP,t =
∑

i∈I

wi,tαi,t + kt, (2.7)

βP,t =
∑

i∈I

wi,tβi,t, (2.8)

ǫP,t =
∑

i∈I

wi,tǫi,t, (2.9)

and where kt corresponds to the transaction costs and is assumed to be
proportional to the funds under management. Note that if the CAPM holds
for each investment period, then αP,t = 0 due to the assumption of perfect
information.
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One assumption under (2.3) is that all single assets’ stocks have constant
betas, and we see from Equation 2.6 that portfolio’s returns are modelled
with a linear model. However, the time t + 1 portfolio weights will have
changed from the time t weights, so even if the portfolio returns are linear
in rt, due to the weight changes, the model will be governed by time vary-
ing coefficients. Thus, a linear model with constant coefficients will be miss
specified. Another limitation of the above model is that in order to estimate
the parameters of (2.6) one needs information regarding the portfolio’s un-
derlying assets and their composition. In most cases when evaluating fund
managers’ performance, one has no access to such information. We need a
model that takes into account the aspect of time dependence and that does
not require inaccessible information.

2.2 Deriving time dynamic model

According to the assumptions in the previous section, a fund manager will
only produce positive abnormal risk adjusted returns, α, as a result of having
some private information which is used in the investment decisions. This
amount of information is assumed only to occur occasionally and the value of
it to decrease with time. The authors of [9] model this amount of information
as a variable x, which is assumed to follow an autoregressive process of order
one:

xt = axt−1 + ηt, (2.10)

where ηt ∼ N(0, σ2
η). The parameter a is a measure of how the value of the

information lasts over the next investment period, and in order to obtain
causality in the autoregressive process we must let a ∈ [0, 1), see [2].

For non-zero x, it is assumed to influence the fund’s present holding and
future expected stock return according to the following equations:

wi,t = w̄i + lixt, (2.11)

αi,t = ᾱixt. (2.12)

Here w̄i represents a steady state fraction of the strategy invested in a given
security and li is a stock’s loading of x that allows for the weight to deviate
from its steady state value. An asset’s alpha is assumed to be influenced by x

via ᾱi, which measures to what degree a stock’s expected return is predictable
by x. Note that there is no constant term in Equation 2.12, which is a result
of the fact that α does not exist without superior information.

Using (2.7) and (2.8) with the formulation of the signal’s impact on single
assets’ weights and alphas in (2.11) and (2.12), some algebra yields:
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rP,t − rf =
∑

i∈I

(w̄i + lixt)
(

ᾱixt + βi(r
M
i,t − rf ) + ηi,t

)

+ kt

= kt + cxt + ex2

t + (d + xt)(r
M
i,t − rf,t) + ǫP,t (2.13)

where

c =
∑

i∈I

w̄iᾱi (2.14)

e =
∑

i∈I

ᾱili (2.15)

ǫP,t =
∑

i∈I

(w̄i + lixt)ǫi,t (2.16)

This model clearly shows how a fund’s alpha is allowed to systematically
depend on a fund’s trading strategy x, and the dependence comes via pa-
rameter e and c. A more detailed description of each parameter’s economic
interpretation is found in [9]. The authors state that parameter c measures
to what degree a fund’s strategy is related to the instantaneous alphas of
individual stocks, and that since x takes both positive and negative values, a
non-zero value of c does not indicate either over- or underperformance. The
quadratic term e however, does indicate just that; to what degree a fund
systematically goes long (short) in positive (negative) alpha stocks, and it
can be thought of as the covariance between a fund’s security weights and
the underlying alphas.

2.3 Time Dynamic model

The final model forms a system of equations and it will be used in this thesis
for predicting alphas and betas of mutual funds:

xt = axt−1 + ηt

rt − rf = k + cxt + ex2

t + (d + xt)(r
M
t − rf ) + ǫt (2.17)

where ηt ∼ N(0, σ2
η) and ǫt ∼ N(0, σ2

ǫ ) and where c, e and ǫt are as in (2.14) -
(2.16).

The time variation of the model comes via the variable x in the way it
follows an auto regressive process. Note that nowhere in this model do we
need any information about a fund’s composition of securities. The only two
sources of information that this model is based on are historical returns of
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the fund and a relevant index. Still it allows for changes in alpha and beta
due to time.

We see from Equation 2.17 that given xt−1 we can make predictions of
the time t alpha and beta:

αP,t ≡ kt + cx̃t + ex̃2

t (2.18)

βP,t ≡ d + x̃t (2.19)

and where

x̃t = axt−1. (2.20)

In order to make the predictions, we need to estimate the variable x up to
time t−1. The next chapter treats the most common algorithm for estimating
x, the Kalman filter.



Chapter 3

Theoretical background

In the previous chapter we derived a model that takes into account the fact
that alphas and betas of mutual funds vary with time. The model relies on
the assumption that the time dependence originates from the unobservable
variable x according to the following model:

xt = axt−1 + ηt,

rP,t − rf = k + cxt + ex2

t + (d + xt)(r
M
t − rf ) + ǫt, (3.1)

where ηt ∼ N(0, σ2
η) and ǫt ∼ N(0, σ2

ǫ ).
As discussed in the previous chapter, in order to make predictions of αt

and βt at time t−1, xt−1 is required, and a method for estimating x is needed.
We will here present such a method and discuss how it can be applied to our
model.

3.1 State space model and Kalman filter

The model in (3.1) consists of a system of equations of so-called state space
form that in recent years has become a powerful tool in handling time se-
ries. Once a model has been put in state space form, a Kalman filter can
be applied to obtain an estimate of the state, x. Techniques of state space
representations and the associated Kalman recursions were originally devel-
oped in connection with the control of linear systems [3]. The next sections
give a theoretical background to the state space representation and treat the
algorithm for state estimation.

3.1.1 Linear Control Systems and State Space Form

In mathematical systems and control theory one refers a linear control system
Σ to a ”black box” that produces noisy output y as a result of an input signal

12
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u. The internal shape of the box, also referred to as the state of the system,

is unobservable and that is what we want to obtain a proper description of
[6].

The state space form provides a description of the control system Σ via
two equations; the state- and measurement equation

xt = At−1xt−1 + Bt−1ut−1 + Ct−1vt−1,

yt = Dtxt + Etut + Ftwt. (3.2)

In (3.2), x constitutes the state of the system, y the measurements, ut deter-
ministic input signal and vt and wt uncorrelated white noise processes. The
problem one faces is how to make optimal estimates of the state, x, given the
input and output signals, u and y. We want to make least squares optimal
estimates of the state x in the sense that it should be chosen to minimize the
prediction error. As will be shown in the next section, that is just what the
Kalman filter provides.

A state space model can be set up in several ways. The system 3.2 is a
discrete time variant model, since the parameters At−1,Bt−1,Ct−1,Dt,Et and
Ft are all dependent of time. The system can also be modelled in continuous
time and as a time invariant system type. The model derived in the previous
chapter, and the one that will be used in this thesis, is assumed to be a
discrete time invariant system. That means that the matrices A,B,C,D,E
and F in (3.2) are independent of time; they have no time subscripts.

3.1.2 The Kalman filter

State Space models can be estimated by a number of algorithms, but the most
common one is the Kalman filter. It has been widely used within different
fields of engineering where the state of a system is of prime interest, e.g.,
tracking problems and positioning systems.

The true state x, that corresponds to the unobservable internal shape of
the box, is assumed to be a Markov process, and the measurements y are the
observed states of the hidden Markov model. The Kalman filter is a recursive
estimator, in the sense that it only needs the state estimate from previous
step, xt−1, and the current measurement yt in order to estimate the current
state xt. For further reading on the probabilistic origins of the filter see [11]
and [4].
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The Kalman filter gives an optimal estimate of the state in the sense that
it for each step minimizes variance of the prediction error:

E[xt − x̂t]
2. (3.3)

The filter consists of two phases; a prediction and an update phase. The
prediction phase provides an a priori estimate of the state from previous
step’s state estimate via the Projection Theorem, see [6]. The a priori es-
timate is then updated with information about the current measurement
via the Kalman gain in the update phase. The refinement of the estimate
will hopefully deliver a more accurate current state estimate, which can be
thought of as an a posteriori estimate of the state.

Filter dynamics

We define x̃t to be the a priori estimate of the state at time t, given the
knowledge of the time t− 1 process, and define x̂t|t be the a posteriori state
estimate at time t given the measurement yt. We can then write expressions
for the a priori - and a posteriori estimate errors as

ẽt ≡ xt − x̃t

et ≡ xt − x̂t|t

We then let the a priori estimate error covariance be

P̃t = E
[

ẽtẽ
T
t

]

(3.4)

and the a posteriori estimate error covariance

Pt = E
[

ete
T
t

]

(3.5)

In the derivation of the Kalman equations, the goal is to write the a posteriori
state estimate x̂t|t as a linear combination of the a priori state estimate x̃t

and a weighted difference between the measurement yt and measurement
prediction ỹ = Dx̃t:

x̂t|t = x̃t + Kt(yt − ỹt) (3.6)

Here yt− ỹt is called the measurement innovation. K is the so-called Kalman
gain, which is chosen to minimize Pt. One form of the resulting K that
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minimizes Pt is given by

Kt = P̃tD
T (DP̃tD

T + R)−1

=
P̃tD

T

DP̃tDT + R
, (3.7)

where R is the measurement error covariance, R = FF ′. Looking at the
expression of the Kalman gain in (3.7) we see that as R approaches zero, the
Kalman gain weighs the innovations in (3.6) more heavily. One can think of
the weighing by K as the following: when measurement error covariance R

approaches zero, the actual measurement yt is trusted more and more, while
the predicted measurement ỹt is trusted less and less. On the other hand, as
the a priori estimate error covariance P̃t approaches zero, the Kalman gain
weighs the innovations less heavily implying that the actual measurement yt

is trusted less and less while the predicted measurement ỹt is trusted more
and more.

A complete derivation of the Kalman filter and the properties of its com-
ponents is found in [6] where the following theorem with proof is stated:

Theorem 1 Given a linear stochastic system 3.2 with non-deterministic out-
put process y, the linear least squares estimate x̂t of the state xt, given the
observations y0, y1, . . . , yt−1is generated by the Kalman filter.

3.2 The Extended Kalman filter

The theorem above states that the Kalman filter produces least-squares-
optimal estimates of the states, given a linear system. However, the model
in Equation 3.1 is governed by a non-linear measurement equation and the
standard Kalman filter cannot be applied. We need a method that manages
to estimate the state despite the non-linearity in the observation equation.
The solution to the problem of how to estimate the state of a non-linear
system is the Extended Kalman filter, also referred to as the EKF.

3.2.1 Non-linear state space model

The EKF estimate gives an approximation of the optimal estimate and the
non-linearities of the systems dynamics are approximated in a linearization
around the last estimate. The standard Kalman filter is thereafter applied
to obtain an estimate of the state.
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The state space form now becomes

xt = f(xt−1, ut−1, vt−1)

yt = g(xt, ut, wt)

In our case, with our dynamic model 3.1, the system will look like

xt = f(xt−1, ut−1, vt−1) = xt−1 + vt (3.8)

yt = g(xt, ut, wt) = cxt + ex2

t + (d + xt)ut + wt (3.9)

The idea behind the extended Kalman filter is to linearize the system around
the current state estimate via a first order Taylor expansion and then apply
the standard Kalman filter to the resulting linear system. However, that
will not result in a least-squares optimal state estimate. Also, as a result
of the non-linearity convergence of the EKF is not guaranteed. However,
among all recursive identification algorithms, the extended Kalman filter is
no doubt the best-known and most widely used example [7]. A more detailed
description and background of the EKF as well as the algorithm can be found
in Appendix A. In short one can say that, like the Kalman filter, the EKF
consists of a prediction and a measurement update phase, but the algorithm
is based on the following consecutive steps:

1. Consider the last filtered state estimate x̂t−1|t−1,

2. Linearise xt = f(xt−1, ut−1, vt−1) around x̂t−1|t−1,

3. Apply the prediction step of the Kalman filter to the linearized system
dynamics obtained. This yields x̃t and P̃t,

4. Linearize yt = h(xt, ut, wt) around x̃t,

5. Apply the update cycle of the Kalman filter to the linearized observa-
tion dynamics. That yields x̂t|t and Pt.

For further details see [12].

3.2.2 EKF on dynamic model

The EKF is applied to our dynamic model in Equation 3.1 in order to obtain
an estimate of the state x. This is done using returns of the fund and its
benchmark up to time t − 1. Having the estimate of xt−1 we can make
predictions of time t alpha and beta:

α̂t = k + cx̃t + ex̃2

t

β̂t = d + x̃t
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where x̃t = axt−1.
We complete this chapter by stating that the EKF seems promising to

use for state estimation given our model in Equation 3.1. In order to use
the EKF for our purpose we need to know the system parameters θ =
{a, ση, c, d, e, σǫ, k}. The next chapter will treat the problem of identifying
θ.



Chapter 4

Model calibration

In the previous chapters we derived our dynamic model in state space rep-
resentation, and described how an extended Kalman filter can be applied in
order to estimate the state of the system. This chapter will describe how
to implement the model and how it performs in predicting funds’ alpha and
beta.

4.1 System parameter estimation

As we saw in the previous chapter, given a set of model parameters θ =
{a, ση, c, d, e, σǫ, k} the extended Kalman filter, also called EKF, will produce
least-squares estimates of x. However, θ is in this case not known and needs to
be estimated. We do that via a prediction error optimisation, and thereafter
apply the EKF on the resulting model to obtain a state estimate.

To determine a set of parameters that produces as good estimates of the
state as possible, we aim at minimizing the prediction error of the model w.r.t
θ. The prediction error is formulated to constitute the discrepancy between
step t return of the fund and the Kalman predicted step t return of the fund:

PEt(θ) = rt − r̃t = rt − (k + cx̃t + ex̃2

t + (d + x̃t)r
M
t ) (4.1)

Remember from previous chapter, the projection theorem gives

x̃t = axt−1 (4.2)

Before starting the implementation of the optimisation routine we need
to study our model and system’s behaviour. We need to learn what we can
expect to detect from return series and to obtain information regarding sys-
tem parameters. This is done via simulations and the information obtained
is used in the optimisation procedure in order to succeed with the parameter
estimation.

18
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4.2 Simulation

One way to learn about the behaviour of our system is to simulate returns
series from different systems, and then observe how the Kalman filter per-
forms when applied to them. Whether or not the filter manages to adapt its
output to different input signals will reveal information that can be used in
the optimisation.

The reason for simulating returns is that we want to be able to rule
out unrealistic parameter values, and learn about the influence of different
parameter settings in the state estimate. We also want to learn how and
if the system parameters are mutually related and how that influences the
filtering. This is examined via two simulations; one where we let the real x

to be a deterministic process that follows a sinus curve, and one where the
real state is governed by an AR(1)-process.

4.2.1 Deterministic state process

Earlier we discussed the existence of autocorrelation in a funds beta, and saw
that it exists for some funds. According to the EKF model, that is a result
of autocorrelation in the state x. One can think of the autocorrelation in
the state as inertia in the information process which is captured in a model
where x is assumed to follow a sinus curve. By modelling x this way we let
it equal zero on average, and it illustrates how the value of the information
decreases with time. All this is in line with our expectation; alpha-generating
information is assumed to only occur occasionally and to decrease with time.
Another aspect of modelling real state as a deterministic curve is that it gives
an opinion of the size of parameters a and b, which serves as a measure of
the inertia in the state process and the state noise.

The return series are simulated out of the following system:

xt = 0.2 sin

(

t

17

)

(4.3)

rt = k + cxt + ex2

t + (d + xt)r
M
t + ǫt (4.4)

Modelling x this way allows for changes in the market beta by letting it
deviate from its long run beta with 0.2 in absolute value.

The EKF is applied to the simulated return series and a state estimate
is obtained. The estimated state is then compared to the real state in order
to examine what parameter settings that make the estimated x capture the
sinus behaviour.
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Parameter influence in state estimate

Examining our system using the sinus model gives us some understanding
of what set of parameters to use in the optimisation. Parameter d which
corresponds to the steady state beta is set to calculated market beta:

β =
cov(r, rM)

σ2
M

Thereafter we test how the filter captures a sinus behaviour for different
relationships between the two noise variances, σ2

η and σ2
ǫ .

One way to get an opinion of the size of ση is to examine what amount
of noise a sinus shaped state corresponds to. If we fix the autocorrelation
parameter a to e.g. 0.85 we can measure the amount of noise by taking the
standard deviation of the series:

ηt = {xs − 0.85xs−1, 1 ≤ s ≤ t} (4.5)

. Repeating this for different values of a yields the following figure: We
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Figure 4.1: State noise as a function of system parameter a.

see that when a = 0.85 the sinus shaped state generates an amount of noise,
corresponding to ση, of 0.17 on yearly basis, and that the noise is a decreasing
function of parameter a, when a ∈ [0.1, 1). This gives us an idea of what size
of ση to expect. Also, when testing the filter’s ability to capture the sinus
behaviour of the estimated state, we conclude that the EKF performs best
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when ση is considerably larger than σǫ. The fact that the ratio ση

σǫ
> 1 reveals

that we should trust our observations more than the predictions. Remember
from Chapter 3, the so-called Kalman Gain gives a measure of how to weigh
the innovations yk − Ax̃t in the updating of the a priori estimate in the
measurement update phase. If the observation noise is reduced, the Kalman
gain increases implying that the measurements should be trusted more than
the predictions [6].

Measuring the autocorrelation in state

To get an idea of the autocorrelation in the state, the prediction error is min-
imized w.r.t. a. By that we obtain an idea of its value, if we believed in the
sinus model. The optimisation routine fminbnd in Matlab’s Optimisation
toolbox estimates a ∈ (0.87, 0.97). Also, when testing other values of param-
eter a, we observe that as it approaches 1 the system becomes unstable and
produces abnormally large state in absolute value. That would be a result
of the resulting non-causality in the autoregressive process.

c and e influence

We also want to examine how different values of c and e influence the sinus
behaviour of state estimate. When we simulate returns with small values of
e and c, the EKF fails in detecting the sinus shaped state. It is not until
we let |c| ≈ 0.3 we seem to detect state. For values less than 0.3, the EKF
produces a state estimate around zero with only some noise. It turns out
that in order to obtain the sinus shaped pattern in estimated x we need
quite large values of e and c in absolute value. However, it is not likely that
they will be infinitely large; a phenomena that occurs when letting c and/or
e become too large in absolute value is that the estimated state becomes the
reflection of the real state, see Figure 4.3. It shows that the filter fails picking
up positive/negative values of the state. According to the sinus model, ideal
values would be |c| < 2 and |e| < 3. Figure 4.2 shows the resulting state
estimates for a specific θ.

Allowing for a constant k

Simulations shows that having rather large values of e and allowing for con-
stant parameter k diminishes the reflections of the real state described above.
The correlation between parameter e and k seems to be negative. A possible
explanation to that is that since e always contributes to the system with
positive x via the square term, the system needs to be compensated. That is
what the constant k does. The Figure 4.3 above illustrates the state estimate
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Figure 4.2: θ = {0.96, 0.29,−1.88, 0.85, 2.24, 0.09,−0.0479}

when we let k = −0.01 and e = 20, and we see the reflections clearly. In
Figure 4.4 however we have set k = −0.3 which compensates for the under
estimation of the state due to the large positive value of e.

4.2.2 AR(1) state process

The same analysis is made by simulating data out of the real system, where
x constitutes the autoregressive process:

xt = axt−1 + ηt (4.6)

rt = k + cxt + ex2

t + (d + xt)r
M
t + ǫt

where ηt ∼ N(0, σ2
η and ǫt ∼ N(0, σ2

ǫ ).
We get similar results as in the sinus case, and it is illustrated in Fig-

ure 4.5. The simulations also reveal that rather large values of c and e seem
to capture fluctuations in the state even if the system from time to time
struggles with estimating the right sign of the real state. The constant k

seem to play an important role here as well.

4.3 Non-linear-least-square optimisation

We implement the parameter estimation procedure by optimising the predic-
tion error with respect to θ. The optimisation toolbox in Matlab contains
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Figure 4.3: θ = {0.96, 0.29,−1.88, 0.85, 20, 0.09,−0.0479}

the function lsqnonlin, which uses the Gauss Newton algorithm or the Lev-
enberg Marquardt method if specified in the search for local minimum. The
function to be minimized is the sum of squares of the prediction error.

min
θ

f(θ) = min
θ

1

2
||Fs(θ)||

2

In our case

Fs(θ) = PEs(θ), 0 ≤ s ≤ t (4.7)

where PEs(θ) is as in Equation 4.1
The knowledge of the system obtained via simulations is used in the

optimisation set up when choosing starting values and parameter boundaries.
When that is done we want to assure that starting values converge to the
same and right optimum. To determine which is right and to get an opinion of
global and local optima we examine the prediction error surfaces for different
sets of parameters. Figures 4.6 - 4.8 shows the prediction error surface for
Fidelity Funds - Australia Fund A Inc.

The optimisation is very time-consuming since the Kalman filtering is ex-
ecuted recursively. Also, since we use weekly data, an alternative formulation
of the function of the prediction error is used in the lsqnonlin function. It is
composed by the prediction errors obtained by sampling from all weekdays
of a week.

PEs(θ) =
∑

i

PEi,s(θ), 0 ≤ s ≤ t
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Figure 4.4: θ = {0.96, 0.29,−1.88, 0.85, 20, 0.09,−0.30}

for all weekdays i, Monday to Friday. This is used in (4.7).
The prediction vector thereby become five times as large and thus further

slows down the computations. One way to gain efficiency in the procedure is
to narrow down the dimension of the parameter space over which we optimise.
For example, fixing σǫ to 0.04, which seems reasonable, still produces rather
stable optima. Also, according to the sinus model, the autocorrelation in
state would correspond to a value of a ∈ [0.87, 0.97], and fixing parameter a

to some value is also an option. We could exclude parameter k for a faster
optimisation procedure. However, with the analysis of the sinus model in
mind we decide to include it, since it appears to be an important component
for stabilizing our state estimate.

4.4 Result on a single fund

Testing for different parameter settings, start values and boundaries resulted
in a final parameter estimation of a fund universe consisting of approximately
one hundred funds from the Morningstar database. The EKF model was
estimated during a four-year training period starting in January 2000 and
ending in December 2003. We here display the result of a single fund and
examine its state estimate and alpha prediction ability.
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Figure 4.5: EKF state and real state

4.4.1 EKF model

Data used to test the fund’s alpha and beta prediction ability is the weekly
returns of Länsförsäkringar’s fund Globalfonden and the S&P Global 1200
Total Composite Return Index over the period January 2004 to April 2007.
This period is referred to as the out-of-sample period, since the predictions of
alpha and beta are independent of data that was used for system parameter
identification in the training period.

The estimated model for this particular fund is the following:

xt = 0.93xt−1 + ηt

rt − rf = −0.048 − 1.88xt + 2.24x2

t + (0.85 + xt)(r
M
t − rf ) + ǫt (4.8)

ση = 0.29 and σǫ = 0.09

Applying the extended Kalman filter to this model produces a state estimate
at each point in time which is shown in Figure 4.10. We see from Figure 4.10
that on average state equals zero, but fluctuates with amplitude around 0.1.
The resulting time dynamic beta, here referred to as the EKF beta, is shown
in Figure 4.11 and illustrates how it varies around its long run beta.

4.4.2 Rolling window regression

We would like to compare the time dynamic beta to a beta produced by a
model that does not allow for any time dynamics in its parameters. We do
that by estimating the fund’s alpha and beta via rolling window regression,



CHAPTER 4. MODEL CALIBRATION 26

0.2
0.4

0.6

−1

0

1
0.1

0.2

0.3

0.4

0.5

b

Prediction Error of b anc c

c

P
E

0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

startv
optim

Figure 4.6: min PE w.r.t b and c

here referred to as the OLS model. We thereafter compare its results to the
EKF model.

Using a rolling window regression instead of regular linear regression al-
lows for some time dynamics in the parameters; a shorter window length
is preferred in order to capture the time dependence. However, to obtain
accurate parameter estimates the window should not be too short and the
trade-off between window length and accuracy is not at all obvious. For our
purpose we will use a window length of four years, even if the authors of [9]
use five years.

The OLS time t predictions of alpha and beta are obtained from a re-
gression, based on t − 208 to t − 1 fund and index returns, on the following
model.

rt − rf = α + β(rM
t − rf ) + ǫt (4.9)

Repeating the regression at each point in time in the out-of-sample period
will result in a series of OLS predicted alpha and beta. Figure 4.11 displays
the beta estimate obtained from a rolling window regression with a window
length of four years. We call this beta estimate OLS-beta, and we see how
this model fails in picking up any time dynamics in the fund’s beta. What
remains to do is to determine which model, the EKF or the OLS, is preferable
to the other in predicting alpha.
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Figure 4.7: min PE w.r.t.c and e

4.4.3 Dynamic vs. static model

We se a distinct difference between the EKF estimated beta and the OLS
beta. Both estimates have an average around 0.85, but the OLS estimated
beta does not deviate from its average value nearly as much as the EKF beta.

As Figure 4.11 shows, the period starts with an EKF beta around 0.93,
e.g. the expected return of the fund at this point, according to the EKF
model, would be 0.93 of the index return. The OLS model however estimates
it to be 0.844. The OLS model predicts a constant beta over the whole out-
of-sample period, whereas the EKF beta decreases down to 0.78 during the
first 20 week period and goes up to 0.96 in the following 30 week period,
indicating how the fund covariates with the index.

In this particular example the OLS beta is more or less constant through
out the whole out-of-sample period. However, this is not the case for all
funds. Some funds do actually show some time dynamics in their OLS beta,
and alpha as well, but in comparison to the EKF beta it picks up these
changes much later than the EKF beta. The EKF model is quicker to adapt
itself to changing conditions.

As discussed earlier, the gain of accurately estimating funds’ betas is
that it results in better estimated alphas. What remains to examine is which
model’s predicted alpha best agrees with the actual realized alpha.
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Figure 4.8: min PE w.r.t. b and e

Predicting alpha

The prediction of a fund’s beta over the next investment period will also
generate a signal of a funds upcoming alpha. We here illustrate the differences
between the OLS and EKF models’ alpha signal by comparing it to the
realized alpha. That would reveal which of the OLS and EKF estimated
beta that better describes a funds beta. Figure 4.12 illustrates the EKF and
OLS predicted alpha compared to the realized alpha. The realized returns
are composed by the average of time t + 1 and time t realized alpha.

α2,t =
αt+1 + αt

2
(4.10)

α̂EKF
t = −0.04 − 1.88x̃t + 2.2412x̃2

t (4.11)

where x̃t = 0.93xt−1

We see from Figure 4.12 that the two models predict alpha very differ-
ently. Acting on the signal from the EKF model results in more accurately
estimated alpha than the corresponding for the OLS model in the way it fol-
lows the variations in realized alpha. In periods where the fund on average
produces positive alpha, the EKF alpha manages to indicate just that. Even
if the EKF predicted alpha is somewhat delayed, it picks up the variations in
the realized alpha to a much greater extent than the does OLS model, which
instead predicts alpha to constantly be below zero. This serves as evidence
that the time dynamic model can be preferable to the static one, and that



CHAPTER 4. MODEL CALIBRATION 29

0 50 100 150
140

150

160

170

180

190

200

210

220

230

240

Weeks in out−of−sample period

F
un

d 
an

d 
in

de
x

Out−of−sample data

S&P 1200 Index
Länsförsäkringar Globalfond

Figure 4.9: Länsförsäkringar’s Globalfonden & S&P Global 1200 Jan 2004 -
April 2007

capturing the time dynamics of beta yields more accurate alpha predictions.
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Chapter 5

Out-of-sample test

In the previous chapter we examined both the EKF and OLS model applied
to a single fund and concluded that the EKF model can perform better
in predicting alpha than the OLS model in the way it captures the time
dynamics of beta. In this chapter we will test and compare the two models
on a larger sample of funds. This is done with an out-of-sample test in order
to try to illustrate the differences alpha and beta prediction ability on a large
scale between the two models.

5.1 Out-of-sample period and fund universe

We will perform the out-of-sample test on a fund universe consisting of ap-
proximately 100 equity funds from Morningstar’s database. The whole back
testing period uses 7 years of data, beginning in January 2000 and ending
in April 2007. The EKF model is identified for each fund using the first
four years of data, and each model’s alpha and beta prediction ability is
then tested on the remaining three-year out-of-sample period, January 2004
- April 2007.

This test will handle investment periods of length one week. One could
be interested in the two or three step prediction ability or perform the test
on monthly basis. However, the out-of-sample test will be outlined in a way
that illustrates how the alpha signal lasts over time.

5.2 Fund ranking

Having the approximately 100 funds at hand we determine which model that
best describes the time dynamics of alpha and beta via a ranking procedure.
Using data up to and including time t−1, we calculate the time t predictions

32
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of alpha, α̂t, and rank the funds into deciles thereafter. The tenth decile
represents the funds that at time t− 1 had the 10 per cent highest predicted
alphas, etc. We thereafter compare the deciles’ predicted alpha to their
realized alpha.

The realized alpha is composed in different ways in order to capture dif-
ferent aspects of the two models’ accuracies. Firstly we want to capture how
the alpha signal lasts over time and we do that by comparing predicted alpha
to a moving average of the future realized alphas of order one to three. For
example, when setting moving average order q = 2, we will compare the time
t predicted alpha to the average of time t and time t+1 realized alpha. This
gives us some understanding of how the alpha signal lasts over more than
one investment period

αq,t =
αt+q−1 + αt+q−2 + · · · + αt

q
. (5.1)

Secondly, we use three different definitions of realized alpha to compare the
predictions with. One is independent of both the OLS- and EKF beta esti-
mates, the other two use the EKF and the OLS beta respectively.

α1

t := rt − rM
t ,

α
βEKF

t := rt − βEKF rM
t ,

α
βOLS

t := rt − βOLSrM
t . (5.2)

Carrying out the ranking procedure described above in each time-step
throughout the whole three-year out-of-sample period will result in a time
series of realized alpha for each decile i:

α
i =

{

αi
s, 0 ≤ s ≤ t

}

,

where αi
s = {αj} , j ∈ I i

s,

where I i
s = {all funds that at time s are ranked to decile i}.

To illustrate how the differently ranked funds have performed on average,
the geometric mean of each decile’s alpha series α

i is calculated. Naturally
one expects the relation to be positive, that the low-alpha ranked funds will
also produce low alpha and the corresponding for the highly ranked funds.

5.3 Results of out-of-sample test

Figures 5.1 and 5.2 display the results from the out-of-sample test. The bars
represent the geometric mean of the realized alpha, α

i, i = {1, 2, . . . , 10}
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Figure 5.1: EKF average alpha, decile 1 to 10

over the three-year out-of-sample period. A complete table of the geometric
mean for the differently defined realized alpha and moving average orders q

are found in appendix B, and the results for Figure 5.1 and 5.2 are found
in Tables1 5.3 and 5.4. The alpha predictions for each model are found in
Figure 5.3. This shows that the EKF model predicts higher alpha than the
OLS for the top and ninth decile ranked funds.

Figure 5.1 displays the results from the EKF ranking and Figure 5.2 shows
the corresponding for funds sorted on OLS alpha predictions. Row one to
three in the figure compares the predicted alpha to the realized alpha in
(5.2) and the columns one to three is the comparison to the moving average
of realized alpha, q = 1, . . . , 3.

5.3.1 Differences in alpha prediction ability generally

The Figures 5.1 and 5.2 reveal that levels of average realized alpha calculated
with EKF beta are higher for the top and the lower EKF deciles than the
corresponding for the OLS model. They also show that α

10 of both models
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Figure 5.2: OLS average alpha, decile 1 to 10

decreases with time, which is in line with our expectation; alpha generat-
ing information will decline with time, which makes the alpha signal decay.
However, the figures show that the EKF alpha signal seems to decrease faster
with time than the corresponding for OLS.

Another interesting feature Figures 5.1 and 5.2 show is that the levels of
average alphas are higher for realized alpha calculated using the EKF beta.
Looking at the top row of Figures 5.1 and 5.2, which shows the average
alpha calculated with β = 1 that is independent of both the EKF and OLS
estimates, we see that the levels of average alpha are actually higher for the
OLS model than the EKF. It seems that, when applied on a large sample of
funds, the OLS model exhibits better prediction ability than the EKF model.

The variation around the geometric mean is very large, so even if the level
of average alpha is higher for the tenth EKF decile than the OLS, we cannot
say that is a statistically significant difference. The standard deviations of the
deciles’ can be found in Table 5.1. Note that the extreme deciles, α

1 and α
10

have the greatest variation around its geometric mean. This could indicate
that top ranked funds’ predictions are somewhat unreliable, especially for
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Figure 5.3: OLS and EKF predicted alpha

the EKF model.

Table 5.1: Standar deviation of α
i, i = 1, 2, . . . , 10.

Model 1 2 3 4 5 6 7 8 9 10

EKF 13.89 11.48 10.63 8.78 8.32 7.94 7.58 7.09 7.53 12.46
OLS 13.14 11.68 10.03 9.55 9.30 8.66 7.61 7.14 8.07 9.85

5.4 Improved ranking

We noticed in the previous section that the geometric mean of α
10
EKF de-

creases faster than the corresponding OLS as we look at investment periods
of more than one step ahead. We also saw, by examining the top row of the
figures, that the OLS model seem to perform better in predicting alpha on
average than the EKF model. There might be several reasons for that. One
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Table 5.2: Geometric mean and standard deviation of whole-sample-

alpha All funds’ differently defined realized alphas in the three-year out-of-
sample period

Differently defined alphas
α1 αβEKF αβOLS

ᾱ -0.022 0.0296 0.0218
σ 0.753 0.711 0.686

Table 5.3: Geometric mean of EKF α
i
. Average alpha in per cent gen-

erated by EKF alpha signals in the out-of-sample period. Columns represent
decile i=1,. . . ,10, and rows use realized alphas as defined in (5.2). Moving
average order q = 1.

α 1 2 3 4 5 6 7 8 9 10
α1 -5.05 -2.45 -1.27 -1.29 -1.34 -0.84 -0.07 -1.74 -2.58 0.64

αβEKF -3.45 2.77 3.19 2.27 1.42 3.69 2.89 3.63 3.47 11.74
αβOLS -3.17 1.65 2.46 1.67 1.23 3.33 2.15 2.80 3.25 8.43

explanation could be that the system parameters θ obtained in the optimisa-
tion are miss specified for some funds. For non-linear models, convergence of
the parameter search algorithm is not guaranteed, and that can cause miss
specified system parameters, which in turn produce unreliable predictions
of alpha. This is one drawback of the EKF model. Also, the EKF model is
much more computationally demanding and because of the occasionally non-
convergence, some funds need to be treated individually. The OLS model,
on the other hand, is much more rewarding to directly apply on large sample
of funds in the aspect of convergence.

The authors of [10] take note of these facts and present an improvement
of the ranking in order to reduce the impact of miss specified system param-

Table 5.4: Geometric mean of OLS α
i Average alpha in per cent gener-

ated by OLS alpha signals in the out-of-sample period. Columns represent
decile i = 1, . . . , 10, and rows use realized alphas as defined in (5.2). Moving
average order q = 1.

α 1 2 3 4 5 6 7 8 9 10
α1 -5.44 -0.14 -3.06 -1.63 -3.23 -3.07 1.60 0.04 -2.31 2.28

αβEKF -4.47 2.15 -0.31 3.33 1.78 2.34 3.19 4.70 4.89 10.46
αβOLS -4.07 1.38 -1.34 2.61 0.53 1.33 2.73 4.37 4.02 9.43
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eters. The formulation of the restriction takes into account a fund’s previous
prediction ability and rules unrealistic estimates according to the following
scheme:

• If time t− 1 Kalman predicted alpha and time t− 1 realized alpha had
the same sign, the fund is included in the ranking at time t, otherwise
it is ignored.

• If Kalman time t−1 predicted alpha and beta lie within specific bounds:

−0.4 ≤ α̂ ≤ 0.4, (5.3)

0 ≤ β̂ ≤ 2, (5.4)

they will be including in the ranking, otherwise ignored.

In that way one can avoid ranking a fund highly as a result of highly
predicted but miss specified alpha. Checking for previous prediction ability
and prediction bounds in the EKF ranking results that can be found in
Figure 5.4 and Table 5.5.

Table 5.5: Geometric mean of EKF α
i
in per cent with restriction.

Average alphas in Figure 5.4 for decile i=1,. . . ,10 and q=2

α 1 2 3 4 5 6 7 8 9 10
α1 -5.87 -0.35 -0.94 -2.45 2.38 -1.60 4.93 -0.61 0.13 6.03

αβEKF -5.97 2.70 -0.32 -1.21 2.09 1.04 7.86 4.28 4.86 11.19
αβOLS -5.07 1.75 -0.20 -1.61 1.95 0.24 6.73 3.46 4.07 8.77

Table 5.6: Geometric mean of OLS α
i
in per cent with restriction.

Average alphas in Figure 5.4 for decile i=1,. . . ,10 and q=2

α 1 2 3 4 5 6 7 8 9 10
α1 -5.87 -3.67 -2.26 3.80 -2.01 -3.05 -0.78 -1.75 1.29 8.00

αβEKF -4.13 -2.18 4.33 0.10 0.25 0.32 3.03 2.23 5.71 13.66
αβOLS -3.80 -2.44 3.59 -0.74 -0.32 -0.14 2.71 1.26 5.44 13.45

The results show that the top Kalman decile’s average alpha does not
decrease as rapidly as without the restriction, and the levels of average alpha
are still higher for realized alpha calculated with βEKF . Putting the same
restriction on the ranking of OLS sorted funds does too improve its alpha
prediction ability, see Figure 5.5.
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Figure 5.4: EKF average alpha with restriction. Decile i = 1, . . . , 10.

The restriction rules out several funds at each step in time and the α
i,

i = 1, . . . , 10 now become half as long. Without the restriction, the alpha
series has approximately 1,100 observations, whereas using the restriction
shortens the alpha series to approximately 600 observations.

We conclude from the out-of-sample test that the OLS model exhibits
better alpha prediction ability than the EKF model, when applied on a large
sample of funds. Due to the non-linearity of the EKF model, the search
algorithm might diverge and cause miss specified system parameters. That
will in turn produce abnormal and unreliable alpha predictions for some
funds. However, as we saw in the single fund case in previous chapter, the
EKF model can still perform much better than the OLS. Therefore, when
examining funds performance individually at a deeper level, the EKF is to
prefer to the OLS, since we can fine-tune the model calibration procedure by
hand.
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Figure 5.5: OLS average alpha with restriction. Decile i = 1, . . . , 10.
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Conclusions

The discovery of autocorrelation in funds’ betas arises the question of whether
a static model, as the CAPM, really is suitable for estimating funds’ beta.
It is reasonable to expect that beta estimates from an OLS regression will
be biased, and miss estimated betas will induce miss estimated alphas. The
authors of [9] and [10] actually find that sorting on funds’ α and β estimates
from such a model in fact sorts the funds on estimation error. Thus, a model
that allows for time changes in its parameter is required in order to obtain
accurate estimates of funds’ alphas and betas.

The time dynamic model that we use in this thesis for the purpose of
estimating time varying alpha and betas is the so-called EKF model. It
consists of a system of non-linear equations and is estimated via an Extended
Kalman filter, EKF. The properties of the time dynamic model gives us
reason to believe that the EKF model will produce more accurately estimated
alphas and betas for funds.

We see from the single fund case in chapter four that the EKF estimated
alphas pick up the time variation in the realized alphas to a much greater
extent than the model based on OLS.

An out-of-sample test on a large sample of funds shows that the EKF
model can generate higher alphas on average for tenth decile ranked funds
over one investment period. However, the alpha signal generated by the EKF
model seem to decay faster than the corresponding for the OLS. The OLS
model, when applied to a large set of funds, ranks funds well and in some
cases even better than the EKF model, despite its disability to adapt to
changing conditions. The reasons for that have to do with the non-linearity
of the system of which the EKF model is based. The non-linear system is
first locally linearized via a first order Taylor expansion around the current
estimate, and a standard Kalman filter is then applied to the resulting linear
system in the prediction and the update phase of the algorithm. Due to
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these approximations the EKF will not be an optimal filter in least squares,
and because of the non-linearity, convergence in the parameter search algo-
rithm is not guaranteed. This can cause misidentified system parameters in
the system identification routine, which could result in unreliable estimates
of alpha and beta. By that, the EKF model loses some of its predictive
power for some funds. In the single fund cases however, when the algorithm
seem to have converged, we can see that the EKF is preferable to the OLS
model. Putting a restriction on the ranking, designed to filter out misiden-
tified system parameters and unreliable predictions, improves the results in
the out-of-sample test for both models.

There is some room left for improvements of the EKF model. For exam-
ple, we could consider a time variant system of equations in our state space
representation. This means that for each point in time we want to make a
prediction, we re-identify our system. We can then take advantage of pre-
viously identified parameters and use them as start values in the upcoming
optimisation. Also, we can formulate the function of the prediction error in
different ways in the optimisation routine.

Since the OLS model performed well in the out-of-sample period, it can
be meaningful to improve the OLS model too. We could try different window
lengths, and use a weighted OLS that weighs observations in the past less
heavily than recent observations.

We conclude by stating that both models perform well in predicting al-
phas and betas, but in different ways. On a large scale, the OLS model is
preferable to the EKF since convergence of the parameter search algorithm
can not be assured. However, for single funds, when the system identification
has succeeded, the EKF model performs better than the OLS in predicting
time dynamic alphas and betas.
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Appendix A

The EKF equations

We here give a description of the derivation of the EKF equations. Some of
the steps are based on the derivation of the standard Kalman filter, which
can be found in [6].

Consider our process having state vector x ∈ R
n that is governed by the

non-linear stochastic difference equation:

xt = f(xt−1, vt) (A.1)

The measurement y ∈ R
r is of the form

yt = h(xt, ut, wt) (A.2)

We have that

f : R
n → R

n (A.3)

h : R
n → R

r (A.4)

where vt ∈ R
n and wt ∈ R

r and vt ∼ N(0, Q) and wt ∼ N(0, R) represent
the state and measurement noise processes. Also we have E [vtwt]

2 = 0.
Due to the non-linearity in the state and measurement equation we can

approximate xt and yt with the following:

x̃t = f(x̂t−1|t−1, 0) (A.5)

ỹt = h(x̃t, ut, 0) (A.6)

where x̂t−1|t−1 is the a posteriori estimate from time step t − 1.
Now, consider the last filtered estimate of the state x̂t−1|t−1 We want to

linearize xt around this last estimate x̂t−1|t−1 as follows:

xt
∼= f(x̂t−1|t−1, 0) + A(xt−1 − x̂t−1|t−1) + V vt (A.7)

yt
∼= h(x̃t, ut, 0) + H(xt − x̃t) + Wwt (A.8)
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where

A =
∂f

∂x
(x̂t−1|t−1, 0) (A.9)

V =
∂f

∂v
(x̂t−1|t−1, 0) (A.10)

H =
∂h

∂x
(x̃t, ut, 0) (A.11)

W =
∂h

∂w
(x̃t, ut, 0) (A.12)

Now we define a notation for the prediction error:

ẽxt
≡ xt − x̃t (A.13)

and the measurement residual

ẽyt
≡ yt − ỹt (A.14)

Remember, one does not have access to xt in Equation A.13 since it is the
actual state which we want to estimate. However, we do have access to yt

which we use to estimate xt. We can now write equations for error processes
as

ẽxt
∼=

∂f

∂x
(x̂t−1|t−1, 0)(xt−1 − x̂t−1|t−1) + ηt (A.15)

ẽyt
∼=

∂h

∂x
(x̃t, ut, 0)ẽxt

+ ǫt (A.16)

where ǫt and ηt represent new independent random variables with zero mean
and covariance matrices V QV T and WRW T , where V and W are as in
Equation A.10 and A.12.

Note that Equations A.15 and A.16 are linear and they closely resemble
the difference and measurement equation in a standard discrete Kalman filter.
For a detailed description of the standard Kalman filter see [6]. We can
thereby use the actual measurement residual ẽyt

in Equation A.14 to estimate
the prediction error ẽxt

given by Equation A.15.
Let the prediction error obtained from the standard Kalman filter be êt.

If we use it in Equation A.13 we get an a posteriori state estimate x̂t|t:

x̂t|t = x̃t + êt (A.17)

The random variable A.15 is approximately (see footnote in [1]):

ẽxt
∼ N(0, E

[

ẽxt
ẽT

xt

]

(A.18)
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By letting the predicted value of êt be zero, the Kalman filter equation used
to estimate êt is

êt = Ktẽyt
(A.19)

By subsituting Equation A.19 back into Equation A.17 and using Equa-
tion A.14 we get an expression of the a posteriori estimate of the time t

state:

x̂t|t = x̃t + Ktẽyt
(A.20)

= x̃t + Kt(yt − ỹt) (A.21)

Equation A.21 is now used for the measurement update in the extended
Kalman filter, with x̃t and ỹt coming from Equations A.5 and A.6, and Kt is
the Kalman gain coming from the standard Kalman filter.

The Algorithm

The extended Kalman filter consist of one prediction phase and one mea-
surement update phase according to the following equations:

Time update equation - Prediction

x̃t = f(x̂t−1|t−1, 0)

P̃t = AP̂t−1A
T + V QV T

The prediction equations project the state and covariance estimates from
the previous time step t − 1 to the current step t.

Measurement update equations

Kt = P̃tH
T
t (HtP̃tH

T
t + WRW T )−1

x̂t|t = x̃t + Kt(yt − h(x̃t, ut, 0)

Pt = (I − KtHt)P̃t

where

A =
∂f

∂x
(x̂t−1|t−1, 0)

V =
∂f

∂v
(x̂t−1|t−1, 0)

H =
∂h

∂x
(x̃t, ut, 0)

W =
∂h

∂w
(x̃t, ut, 0)
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Out-of-sample test

We here display the results from the out-of-sample test.

Table B.1: Geometric mean of EKF and OLS αi, q=1. Average alpha
generated by EKF and OLS alpha signals in the out-of-sample period. Rows
represent decile i=1,. . . ,10, and columns use realized alphas as defined in
Equations 5.2.

Decile EKF model OLS model

i α1 αβEKF αβOLS α1 αβEKF αβOLS

1 -0.0483 -0.0317 -0.0303 -0.0544 -0.0447 -0.0407
2 -0.0245 0.0277 0.0165 -0.0014 0.0215 0.0138
3 -0.0127 0.0319 0.0246 -0.0306 -0.0031 -0.0134
4 -0.0129 0.0227 0.0167 -0.0163 0.0333 0.0261
5 -0.0134 0.0142 0.0123 -0.0323 0.0178 0.0053
6 -0.0084 0.0369 0.0333 -0.0307 0.0234 0.0133
7 -0.0070 0.0289 0.0215 -0.0160 0.0319 0.0273
8 -0.0174 0.0363 0.0280 0.0004 0.0470 0.0437
9 -0.0258 0.0347 0.0325 -0.0231 0.0489 0.0402
10 0.0064 0.1174 0.0843 0.0228 0.1046 0.0943
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Table B.2: Geometric mean of EKF and OLS αi, q=2. Average alpha
generated by EKF and OLS alpha signals in the out-of-sample period. Rows
represent decile i=1,. . . ,10, and columns use realized alphas as defined in
Equations 5.2.

Decile EKF model OLS model

i α1 αβEKF αβOLS α1 αβEKF αβOLS

1 -0.0533 -0.0310 -0.0329 -0.0524 -0.0432 -0.0419
2 -0.0438 0.0056 -0.0013 -0.0229 0.0030 -0.0085
3 -0.0162 0.0224 0.0118 -0.0380 -0.0136 -0.0181
4 -0.0164 0.0166 0.0124 -0.0230 0.0228 0.0136
5 0.0246 0.0469 0.0443 -0.0316 0.0120 0.0026
6 -0.0244 0.0177 0.0121 -0.0357 0.0169 0.0079
7 -0.0190 0.0270 0.0187 -0.0045 0.0377 0.0313
8 -0.0239 0.0223 0.0171 -0.0121 0.0340 0.0294
9 -0.0095 0.0379 0.0379 -0.0161 0.0428 0.0385
10 0.0012 0.0921 0.0596 0.0283 0.1055 0.0958

Table B.3: Geometric mean of EKF and OLS αi, q = 3. Average alpha
generated by EKF and OLS alpha signals in the out-of-sample period. Rows
represent decile i=1,. . . ,10, and columns use realized alphas as defined in
Equations 5.2.

Decile EKF model OLS model

i α1 αβEKF αβOLS α1 αβEKF αβOLS

1 -0.0508 -0.0340 -0.0325 -0.0486 -0.0417 -0.0367
2 -0.0597 -0.0105 -0.0169 -0.0375 -0.0102 -0.0214
3 -0.0096 0.0320 0.0275 -0.0157 0.0056 -0.0012
4 -0.0034 0.0310 0.0246 -0.0291 0.0164 0.0093
5 -0.0046 0.0245 0.0224 -0.0218 0.0202 0.0115
6 -0.0124 0.0177 0.0159 -0.0323 0.0149 0.0045
7 -0.0278 0.0181 0.0107 -0.0149 0.0295 0.0239
8 -0.0102 0.0358 0.0278 -0.0157 0.0257 0.0202
9 -0.0266 0.0333 0.0248 -0.0051 0.0574 0.0536
10 0.0073 0.0795 0.0487 0.0177 0.0862 0.0783
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Table B.4: Geometric mean of EKF αi, ranking restricted and q=2.

Average alpha generated by EKF alpha signals in the out-of-sample period,
when checking previous prediction ability. Rows represent decile i=1,. . . ,10,
and columns use realized alphas as defined in Equations 5.2.

Decile EKF model OLS model

i α1 αβEKF αβOLS α1 αβEKF αβOLS

1 -0.1109 -0.0874 -0.0860 -0.0524 -0.0432 -0.0419
2 -0.0459 -0.0024 -0.0085 -0.0229 0.0030 -0.0085
3 -0.0332 -0.0005 -0.0091 -0.0380 -0.0136 -0.0181
4 -0.0415 -0.0117 -0.0130 -0.0230 0.0228 0.0136
5 0.0279 0.0328 0.0322 -0.0316 0.0120 0.0026
6 -0.0438 -0.0061 -0.0132 -0.0357 0.0169 0.0079
7 0.0231 0.0753 0.0674 -0.0045 0.0377 0.0313
8 -0.0264 0.0464 0.0387 -0.0121 0.0340 0.0294
9 -0.0154 0.0534 0.0507 -0.0161 0.0428 0.0385
10 0.0176 0.1108 0.0772 0.0283 0.1055 0.0958

Table B.5: Geometric mean of EKF αi, ranking restricted and q=3.

Average alpha generated by EKF alpha signals in the out-of-sample period,
when checking previous prediction ability. Rows represent decile i=1,. . . ,10,
and columns use realized alphas as defined in Equations 5.2.

Decile EKF model OLS model

i α1 αβEKF αβOLS α1 αβEKF αβOLS

1 -0.0944 -0.0806 -0.0762 -0.0486 -0.0417 -0.0367
2 -0.0705 -0.0338 -0.0377 -0.0375 -0.0102 -0.0214
3 -0.0076 0.0321 0.0278 -0.0157 0.0056 -0.0012
4 0.0000 0.0322 0.0248 -0.0291 0.0164 0.0093
5 -0.0196 0.0116 0.0083 -0.0218 0.0202 0.0115
6 -0.0115 0.0164 0.0148 -0.0323 0.0149 0.0045
7 -0.0200 0.0349 0.0274 -0.0149 0.0295 0.0239
8 -0.0017 0.0550 0.0482 -0.0157 0.0257 0.0202
9 -0.0263 0.0443 0.0359 -0.0051 0.0574 0.0536
10 0.0093 0.0984 0.0697 0.0177 0.0862 0.0783
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Table B.6: Geometric mean of EKF αi, ranking restricted and q=4.

Average alpha generated by EKF alpha signals in the out-of-sample period,
when checking previous prediction ability. Rows represent decile i=1,. . . ,10,
and columns use realized alphas as defined in Equations 5.2.

Decile EKF model OLS model

i α1 αβEKF αβOLS α1 αβEKF αβOLS

1 -0.0892 -0.0824 -0.0786 -0.0424 -0.0349 -0.0320
2 -0.0851 -0.0321 -0.0411 -0.0283 -0.0053 -0.0160
3 -0.0170 0.0113 0.0086 -0.0082 0.0187 0.0099
4 -0.0674 -0.0153 -0.0201 -0.0250 0.0098 0.0085
5 0.0101 0.0366 0.0342 -0.0186 0.0217 0.0078
6 -0.0215 0.0143 0.0116 -0.0308 0.0128 0.0059
7 0.0113 0.0500 0.0455 0.0052 0.0394 0.0358
8 0.0100 0.0281 0.0244 -0.0066 0.0336 0.0270
9 0.0272 0.0659 0.0602 -0.0297 0.0269 0.0242
10 0.0123 0.1020 0.0814 0.0295 0.0888 0.0819




