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Abstract

This paper investigates a stochastic epidemic model of SIR type;
Susceptible → Infectious → Removed, modified with the addition of
a latency period prior to the infectious period. The periods of latency
and infectiousness are modeled as gamma distributed random vari-
ables. The main purpose is to reveal how the probability for a large
outbreak, and the growth rate of the epidemic, depend on parame-
ters of the latency period and the infectious period. Analysis is based
on the theory of biological branching processes, due to their resem-
blance with the propagation of the epidemic in the early stages. The
main results are that growth rate of the epidemic is increasing with
the coefficient of variation of the latency period and decreasing with
the coefficient of variation of the infectious period. Furthermore is
the probability for a large outbreak independent of the latency period
and decreasing with the coefficient of variation of the infectious pe-
riod. These theoretically derived results are supported by the results
from simulations of the epidemic.
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1 Introduction

This article is an analysis of an SIR, Susceptible → Infectious → Removed,
stochastic epidemic model modified with the addition of a latency period,
where the population is closed and homogenously mixing (see Andersson
and Britton (2000) for more on stochastic epidemic modelling). In an SIR
model, the population is divided into compartments as mentioned above,
which is applicable when concerned with diseases caused by microparasites,
such as viral and bacterial parasites. Microparasites are defined by direct
reproduction within the host at high rates, and by short generation times,
why the life cycle of the individual microparasite need not be taken into
account when studying the host population (Anderson and May, 1991). Some
examples of diseases caused by microparasites are Chicken Pox, Measles and
Rubella.

The aim of the paper is to explain how the probability for a large outbreak,
and the growth rate of the epidemic, depend on the coefficient of variation
of the latency period and the infectious period. The latency period and the
infectious period are modeled as independent gamma distributed random
variables. Furthermore, individuals within the population are assumed to
make contact according to a poisson process at a constant rate during the
infectious period, though some of the results are compared with ones obtained
with this rate modeled as a random variable.

It is concluded that the probability for a large outbreak of the epidemic, and
the growth rate of the epidemic, is decreasing with the coefficient of variation
of the infectious period. The result concerning the outbreak probability is in
accordance with the ones obtained in Asikainen (2006), where the outbreak
probability is compared for different distributions of the infectious period.
We also show that the growth rate of the epidemic is decreasing with the
coefficient of variation of the latency period.

In Section 2, the model is defined and the branching process approximation
of the epidemic is intuitively justified. The quantities corresponding to the
probability for a large outbreak, and the growth rate of the epidemic, are also
identified in the theory of branching processes. Results, based on the calcu-
lations in Section A, are presented in Section 3. These results are supported
by the results from simulations of the epidemic in Section 4, and discussed
in Section 5.
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2 Theoretical framework

2.1 The SIR model

Initially we assume that one individual carrying an infectious disease enters
a population, and that the disease is of SIR type. The name SIR refers to
that an individual who is infected with this disease will go through the chain
of states: Susceptible → Infectious → Removed. By assumption, the whole
population that is monitored is susceptible at first, and when the infectious
individual enters the population some will become infected and others not
(we emphasize the difference between the infectious and infected, where the
first refer to an individual that is ill and able to infect others at the present,
and the second refers to an individual that has become infected sometime
in the past. In the latter case the individual may either still be infectious,
recovered and immune, or latent). Those who become infected will be able to
infect others during their periods of infectiousness, and after that be removed
which corresponds to immunization or death. This leads to that the whole
population is divided into the three classes of the susceptible, the infectious
and the removed.

We assume that each pair of individuals is equally likely to make contact, i.e.
the population is homogeneously mixing. We also assume that no individual
enters or leaves the population, i.e. the population is closed. All imaginable
pairs of individuals make contact according to homogeneous and independent
Poisson processes. The rates of these processes are set to λ

N
, for some rate

λ, when the population size is N. As a consequence, the rate at which one
infectious make contact with susceptible individuals, is independent of the
size of the population and initially equal to λ. This rate will eventually
decrease, since by assumption some part of the susceptible individuals will
get infected.

We will investigate a more general case of the epidemic model described
above, assuming that when infected an individual is at first latent for a
random length of time before being able to infect others. This will define
an epidemic model of SEIR type; Susceptible → Exposed → Infectious →
Removed, described more thoroughly by Ping and Shengqiang (2006). As the
SIR epidemic model is more common, and still captures the main aspects of
our model, we will somewhat incorrectly use that terminology.

The latency period L and the infectious period I are both modeled as gamma
distributed random variables, i.e. L ∼ Γ(KL, BL) and I ∼ Γ(KI , BI), where
KL and KI are integer valued. It follows that L and I can be regarded as
sums of independent exponentially distributed random variables, which will
prove useful when we analyze and simulate the epidemic. The contact rate
λ is deterministic, but in some parts of the text compared with the more
general case with the contact rates, then denoted by Λ, modeled as Pareto
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distributed random variable, i.e. Λ ∼ Pa(m,φ) i.i.d for different contact
processes.

2.2 Branching processes approximation

The propagation of the epidemic can be approximated by a branching pro-
cess in the early stages (Andersson and Britton, 2000), which we exploit in
the analysis. We begin by establishing this fact in a intuitive way as follows.
Consider a large population of size N entered by an infectious individual and
assume that all the properties of our SIR model stated above are fulfilled.
By definition of the SIR model, the individuals are homogeneously mixing
according to independent poisson processes with rates λ

N
. As the population

size N is assumed large compared to λ, the probability for any specific pair to
make contact is small. It hence follows that, as long as only a few individuals
have been infected, the probability for an infectious individual to make con-
tact with an already infected one is negligible. This implies that infectious
individuals will spread the disease almost independently in the initial stages
of the epidemic, which induce the behaviour of a branching process.

If a large outbreak occurs, the total number of infectious individuals in the
population will at first increase, steadily making the ratio between the num-
ber of infected and the total population size larger. As the probability for
an infectious individual to make contact with an already infected grows, our
assumption that infectious individuals spread the disease independently be-
comes less valid, thus the branching process approximation eventually breaks
down. The propagation of the epidemic continues until the last infectious has
recovered.

We identify the branching processes corresponding to our epidemic model in
a treatise by Jagers (1975) (where one finds a more detailed discussion of
biological branching processes) as the Sevast’yanov model, which is defined
as follows. We consider a biological branching process {zt}, the number of
individuals alive at time t, originating from one ancestor. All individuals
including the ancestor are living a random length of time, denoted I. Each
individual gives birth at random points during their lifetime according to a
poisson process, denoted ξ.

For the branching process {zt} to behave like our epidemic, we set the lifetime
equal to the infectious period. Birth will correspond with a contact between
an infectious individual and an susceptible individual, and death with an
infectious individual being removed. It hence follows that births will occur
according to a Poisson process ξ with rate λ. The mean number of births
by an individual in the process {zt} corresponds to the basic reproduction
number R0 = E[Iλ]. We are now able to analyze the behaviour of the
epidemic using the theory of branching processes.
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2.3 Outbreak probability

When an infectious individual enters a population that satisfy the SIR con-
ditions stated in Section 2.1, one of the following events will occur; either the
epidemic terminates with only a few individuals infected, or else a large and
nearly deterministic proportion of the population becomes infected before
the epidemic terminates (Andersson and Britton, 2000). The probability for
a large outbreak to occur is henceforth denoted by π.

We let E denote the event of extinction of a population which reproduce
according to the process {zt}, defined is Section 2.2. Then, recalling the
correspondence between a living individual in the branching process {zt}
and an infectious individual in the our epidemic model stated in Section 2.2,
we have that the probability for extinction of the population P (E)=1-π. The
probability P (E) is determined as the smallest non-negative root of

P (E) = E[P (E)ξ(∞)], (2.1)

stated by Jagers (1975), where ξ(∞) is the total number of children born
by an arbitrary individual. The following argument explains intuitively why
P (E) is the solution to (2.1). We suppose that the number of children born
by the ancestor, which we denote by ξ0(∞), is equal to n. In order for the
branching process {zt} to die out each of these n new branching processes,
starting with the n children, has to die out. These events happens indepen-
dently with probability P (E). As a consequence P (E|ξ0(∞) = n) = P (E)n,
which yields, by replacing n by ξ(∞) and taking the expected value, that
P (E) is a solution to (2.1).

We reformulate (2.1) as

π + E[(1− π)ξ(∞)] = 1, (2.2)

where ξ(∞) accordingly denote the total number of produced infections. It is
assumed that the contact rate λ and the infectious period I are independent
of the latency period L. It hence follows that ξ(∞) is independent of L. As
π is derived from (2.2), all stochasticity in π origins from ξ(∞). Thus, we
conclude that π is independent of L. Conditioning on I yields

p(ξ(∞) = k|I = x) =
(xλ)kexλ

k!
, k = 0, 1, 2, . . . , (2.3)

by definition of a poisson process on a fixed interval. We notice that (2.3) is
symmetrical in the parameters I and λ. As a consequence, π depends on I
and λ only trough their product.

If the population is entered by m infectious individuals instead of 1, each of
the m individuals will independently cause a large outbreak with probability
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π (see Section 2.2). The probability for a large outbreak, which we denote
by πm, is thus calculated numerically as the solution to

πm = 1− (1− π)m, 0 < πm < 1, (2.4)

where π is defined above.

2.4 Epidemic growth rate

If an outbreak of the epidemic described in the previous sections occurs,
then the number of infected will grow at a certain rate. We want analyze
how this rate depends on the stochasticity in the latency period, and the
infectious period, of an infected individual. In Section 2.2, we argued that
the epidemic be approximated by the branching process {zt} in the initial
stage. The event of an outbreak then corresponds to an explosion of {zt},
growing at the exponential rate eα, where α > 0. For this to happen R0 has
to be larger than 1 (Jagers, 1975). Since R0 is the mean number of produced
infections by an infectious individual, R0 ≤ 1 would intuitively suggest that
the number of infectious individual should decrease, or remain constant. The
parameter α, which defines the Malthusian parameter, satisfies

∫ ∞

0
e−αtµ(dt) = 1, (2.5)

stated by Jagers (1975), where µ(dt) = E[ξ([t, t + dt])] and ξ([t, t + dt]) is
the number of infections caused by an infectious individual in [t, t + dt]. An
infectious individual is, by assumption, able to infect others at any point
in time during the infectious period. Thus µ(dt) = µ(t)dt, where µ(t) =
E[ξ([0, t])] is the reproduction function. (As µ(t) is the mean number of
infections caused by an infectious individual up to and including time t, it
follows that R0 = µ(∞)). We conclude that (2.5) equals

∫ ∞

0
e−αtµ′(t)dt = 1. (2.6)

The quantity µ′(t) is interpreted as the mean number of produced infections
during the infinitely short interval (t, t+dt). We recall our basic assumption
of the epidemic; each infected individual is at first latent during L, then
infectious during I where new infections are produced according to a poisson
process at the rate λ. Thus, µ′(t| t ∈ (0, L)) = µ′(t| t ∈ (L + I,∞)) = 0 and
µ′(t| t ∈ (L,L + I)) = λ. We conclude, since L and I are stochastic, that
µ′(t) = λP (L < t < L + I).
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3 Results

3.1 Outbreak probability

To explain how the probability for a large outbreak, π, depend on the coeffi-
cient of variation of the infectious period CVI , where I is a gamma distributed
random variable, we derive the relation

π +
(

1

1 + πR0CVI

)(CVI)−2

= 1, 0 < π < 1, (3.1)

which origins from (2.2) (see Section A.1). It follows from (3.1) that π
is determined by the basic reproduction number R0 = E[I]λ and CVI =√

V ar(I)

E[I]
. We notice that E[I] is a common factor of R0 and CVI . As a

consequence, to display the desired relation between π and CVI with R0 and
the contact rate λ fixed, E[I] must be kept constant. In the remainder of the
text E[I] = 1, thus functioning as the time unit, without loss of generality.
Relation (3.1) is illustrated in Figure 1 with R0 = 2. We see that π is
monotonically decreasing with CVI . This holds in general which is proved in
the end of Section A.1, supporting the result by Asikainen (2006). It hence
follows that the probability for a large outbreak decline with the variability,
in proportion to the mean length, of the infectious period.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

CV
I

π

Figure 1: Probability π of an outbreak as a function of the coefficient of
variation of the infectious period CVI . R0=2 is kept fixed.

If the population is entered by m infectious individuals instead of 1, the
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probability for a large outbreak, denoted πm, is calculated from (2.4) where π
is assumed to be known. Figure 2 display the relation between πm and m with
π = 0.5. We see that πm growths rapidly as a function of m, and is close to 1
when m = 10 despite that π is fairly small. Thus, even when the probability
for a single infectious individual to cause an outbreak is moderate, a small
group of infectious individuals will cause an outbreak almost for certain.

1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

1

m

π
 m

Figure 2: The probability πm of an outbreak when m infectious individuals
enters the population, with π = 0.5.

Next we want to see how π is affected by the assumption that the contact
rate, here denoted by Λ, is stochastic. We have from Section 2.3 that π
depends on I and Λ only trough their product. We are then interested in
how π depends on the coefficient of variation of IΛ, CVIΛ. By independence

of I and Λ, CVIΛ is derived to CVIΛ = CVICVΛ

√
1 + (CVI)−2 + (CVΛ)−2,

CVI > 0 and CVΛ > 0 (see equation (A.21)).

We model Λ as a Pareto distributed random variable, which takes into ac-
count that Λ, by definition, is a positive real number. Thus Λ ∼ Pa(m,φ),
where Λ > m, by definition of the Pareto distribution, for some choices of
φ > 0 and m > 0. The restriction on Λ > m might seem unnatural, and
lacks a biological motivation, although our aim, to explain how π is affected
by the stochasticity in Λ, will be accomplished regardless.

Table 1 shows the relation between π and CVIΛ for a small selection of
values CVIΛ, with R0 = 2. The values on CVΛ = 0 corresponds to that Λ is
deterministic. They are included for the sake of comparison against the case
with Pareto distributed Λ, which is illustrated by ∆π.
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CVI CVΛ CVIΛ π ∆π

1 0 1 0.5000

1 1√
3

√
5
3

0,4619 0,0381

1√
2

0 1√
2

0,6180

1√
2

1√
8

√
11
16

0,5932 0,0248

1√
3

0 1√
3

0,6695

1√
3

1√
15

√
19
45

0,6529 0,0166

1
2

0 1
2

0,6981
1
2

1√
80

√
17
64

0,6941 0,0040

1√
5

0 1√
5

0,7162

1√
5

1√
440

√
223
1100

0,7154 0,0010

Table 1: Probability π as a function of CVIΛ, compared with π a a function
of CVI when E[Λ] = λ = 2.

3.2 The Malthusian parameter

As proposed in Section 2.4, if the disease takes of, the number of infectious
will begin to grow exponentially at the rate eα. One of our main questions
is how α, the Malthusian parameter, depends on the coefficient of variation
of the latency period L and the infectious period I, denoted CVL and CVI

respectively. We have from Section 2.4 that α is the solution to (2.6), which
can be expressed explicitly as

(
R0

α

)
1 + αCV 2

LE[L]



−CV −2

L

1−


1 + αCV 2

I



−CV −2

I

 = 1, (3.2)

(see Section A.3). The mean of the infectious period E[I] is set to 1, thus
functioning as the time unit of the growth. Thus, R0 = E[I]λ = λ. It hence
follows that α, which is determined by (3.2), depends on R0, CVL, E[L] and
CVI , where E[L] is measured relative to E[I].

We begin to investigate α by assigning R0 = 10, E[L] = 1, and CVI =
CVL = 1

3
as default values (with E[I] = E[L] = 1 the coefficients of variation

of I and L simplifies to the respective standard deviations; CVI = Std(I) and
CVL = Std(L)). A few common diseases where E[I] ≈ E[L] are Chicken pox,
Measles and Rubella (Anderson and May, 1991, p.31), why having E[I] =
E[L] might be relevant.
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Figure 3 shows that α, determining the growth rate of the epidemic eα, is a
decreasing function of mean latency period E[L] for that chosen parameter
values. This holds in general which is proved in the end of Section A.3. The
latency period L delays an infected individual in transmitting the disease fur-
ther, thus to contribute to the epidemic growth, which explains the relation
between α and E[L].

0 2 4 6 8 10
0 

2 

4 

6

8

10

E[L]

α

Figure 3: The Malthusian parameter α as a function of the mean length
of the latency period, measured relative the mean length of the infectious
period.

From Figure 4 (left) and Figure 4 (right), we have that α is a increasing func-
tion of CVL, and a decreasing function of CVI , for these particular parameter
values. These relation hold in general, for the chosen distribution of L and
I, which is proved in the end of Section A.3. Thus, a larger variability, in
proportion to the mean, in the length of the latency period results in a faster
epidemic growth, and a larger variability in proportion to the mean, in the
length of the infectious period results in a slower epidemic growth. One way
to get intuitive sense of why we obtain these results is to do the following
simple comparison.

We consider two infectious individuals with a deterministic infectious period,
denoted Ia = 2t, and two infectious individuals with a random infectious
period, denoted Ib, with P (Ib = t) = P (Ib = 3t) = 0, 5. The latency period
of both pairs are set to 0, and all 4 satisfy our conditions of the SIR epidemic
stated in Section 2.1. The first pair represent a population with smaller
variability in the infectious period, and the second pair a population with
larger variability in the infectious period, although the mean infectious of
both pairs is 2t. Thus, we have that CVIb

> CVIa = 0. We set the mean
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0 0.2 0.4 0.6 0.8 1

1.6

2

2.4

2.8

CV
L

α

0 0.2 0.4 0.6 0.8 1

1.5

1.6

1.7

1.8

CV
I

α

Figure 4: The Malthusian parameter α as a function of the coefficient of
variation of the latency period (left), and the coefficient of variation of the
infectious period (right), with R0 = 10 kept constant.

number of infections caused during a period of length t to m. As the means
of the latency periods E[Ia] = E[Ib] = 2t, we would expect, on an average
equally many infections produced by the first pair as the second pair. The
comparison is illustrated in Figure 3.2 (left). We realize that the pair having
a random infectious period is delayed in producing m new infections a period
t, which results in slower epidemic growth. The result concerning the latency
period is perhaps less obvious. We assume the first pair have a deterministic
latency period La = t, and the second pair have a random latency period Lb,
with P (Lb = 0) = P (Lb = 2t) = 0.5, the infectious period of both pairs is
set to 1. If we match one infectious from each pair with one from the other,
Figure 3.2 (right) shows that one infectious from each pair has a head start
of a period t in the production of m new infections. The pair with a random
latency period gets their head start in (0, t), instead of in (t, 2t) like the pair
with a deterministic latency period, which results in a head start for the next
generation infectious in further spread of the disease. Expressed in a more
general fashion, the individuals with a short latency period overcompensate
the ones with a long latency period in transmitting the disease.
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0 t 2t 3t
I

m m

m m

m

m m m

0   t 2t 3t

m

m

m

m

I, L

Figure 5: Comparison of the spread of a disease by a pair of individuals with
deterministic infectious period 2t, and a pair of individuals with stochastic
infectious period P (I = t) = P (I = 2t) = 0, 5 (left), and a similar com-
parison regarding the latency period (right). The mean number of produced
infections during t is m.
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4 Simulations

4.1 Outbreak probability

To gain more confidence in our theoretically derived results we simulate our
epidemic model. We recollect, from Section 2.1, the restriction on the param-
eters KL and KI in the gamma distributions to model the latency period L
and the infectious period I, to be positive integers. It hence follows, as men-
tioned in Section 2.1, that I and L can be regarded as sums of independent
exponentially distributed random variables. Thus one infected individual
passes through each of the KL states during latency and the KI states dur-
ing infectiousness. Due to the property of the exponential random variable
to be memoryless, the propagation of the epidemic is Markovian. Figure 6
shows one realization of the epidemic, i.e. the number of infectious individ-
uals over time, denoted I(t). The size of the population is set to 50000, and
the coefficients of variation and the expected values of L and I are set to
CVL = CVI = 1

3
and E[L] = E[I] = 1. Furthermore is the contact rate

λ = 10.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5
x 10

4

t

I(t)

Figure 6: Number infectious over time from one simulation of the epidemic,
in a population of 100000 individuals.

We compare the probability for a large outbreak, π, derived theoretically
with the frequency of simulation resulting in a large outbreak from M sim-
ulations, denoted π̃. Figure 7 suggests that an outbreak larger than 100,
in a population of 1000, should be considered large. If we let Q denote the
number of the M simulations of the epidemic resulting in a large outbreak,
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0

10

20

30

40

Final size, R
0
=2

0 250 500 750 1000
0

20

40

60

80

100

Final size, R
0
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Figure 7: The final size of 100 simulated epidemics in a population of 1000
individuals, R0 = 2 (left), R0 = 10 (right), and CVI = 1

3
.

Q is binomial distributed with parameters M and π, i.e Q ∼ Bin(M, π).
According to custom, a normal approximation of the Bin(M,π) distribution
is viable if Mπ > 10, and M(1− π) > 10, or equivalently if 10

M
< π < 1− 10

M
.

Thus, we have that π̃ is approximately normal, π̃ ∼ N(π, π(1−π)
M

), when
10
M

< π < 1− 10
M

.

Table 2 display the comparison between π and π̃, for a small selection of sets
of parameter values, from M = 1000 simulations. In the lower half of the
table, the contact rate is modeled as a Pareto distributed random variable,
(as contact rate by default is deterministic, the coefficient of variation of the
contact rate CVΛ = 0 in the upper part of table). We choose the parameters
so that π are safely within ( 10

M
, 1 − 10

M
) = (0.01, 0.99), why the normal ap-

proximation enables us to calculate approximate 95 % confidence intervals.
We see that all the confidence intervals cover their respective values of π in
evidence of the theoretically derived relation between π and the underlying
stochastic quantities.
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CVI CVΛ CVIΛ π̃ 95% CI π

1 0 1 0,485 (0,454 0,516) 0,500
1
2

0 1
2

0,679 (0,650 0,708) 0,698
1
3

0 1
3

0,748 (0,721 0,775) 0,751

1 1√
3

√
5
3

0,446 (0,415 0,477) 0,462

1
2

1√
8

√
13
32

0,674 (0,645 0,703) 0,670

1
3

1√
24

√
17
108

0,745 (0,718 0,772) 0,738

Table 2: Comparison of π derived theoretically and π̃ derived from simula-
tions, (95% confidence interval within parenthesis).
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4.2 The Malthusian parameter

The results concerning the growth rate of the epidemic can be established
more firmly, if supported by the behaviour of the simulated epidemic. We
have from the previous sections that the epidemic grows exponentially in
the initial stage, at the rate eα, where we are interested in the Malthusian
parameter α. An estimate of α can be obtained from a simulation of the
epidemic which results in a large outbreak. As mentioned in Section 2.2 the
branching approximation, which justify the use of eα as a measure of the
growth rate, is valid only in the initial stage of the outbreak. It follows that
the estimate of α, denoted α̃, should be assessed from the the initial part of
the simulation. Thus, with the number of infectious at t denoted I(t), we
have that I(t) ≈ eαt, why α̃ is obtained as

α̃ =
ln I(t

′
)

t′
, (4.1)

at some suitable value of t
′
. Table 3 illustrates how α̃, derived as the mean of

20 estimates from simulations, and the theoretically derived α, varies together
for a small selection of values on the coefficients of variation of the infectious
period and latency period, CVI and CVL. Furthermore R0 = 10, E[L] =
E[I] = 1, and the population size N = 10000. The values of α̃ are calculated
from (4.1) with t

′
= {min(t); I(t) > N × 0.02}, where the branching process

approximation still holds acceptably. Examining table 3 gives that the values
of means of α̃ are fairly close to the values of α, and captures the trend in
α from altering the values of CVI and CVL. The discrepancy ∆α can be
explained partly by the stochastic nature of simulations, and the arbitrariness
in the choice of t

′
, in the assessment of α̃.

CVI CVL α
∑20

i=1 α̃i/20 ∆α

1 1
3

1, 499 1, 220 0, 279

1 1
2

1, 601 1, 331 0, 270
1
3

1
3

1, 682 1, 426 0, 256
1
2

1
2

1, 773 1, 470 0, 303

1 1 2, 162 1, 873 0, 289
1
2

1 2, 464 2, 181 0, 283
1
3

1 2, 529 2, 291 0, 238

Table 3: Comparison between α̃ estimated from simulations and α derived
theoretically.
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5 Discussion

The aim of this paper was to analyze the effect of random properties on a
stochastic epidemic model. The main results were that the probability for
a large outbreak of the epidemic is independent of the latency period, and
decreasing with the coefficient of variation of the infectious period. Also
that the growth rate of the initial phase of the epidemic is increasing with
the coefficient of variation of the latency period and decreasing with the co-
efficient of variation of the infectious period and the expected value of the
latency period. Although these results were derived assuming that both the
infectious period and the latency period were gamma distributed random
variables, one might suspect the they hold for arbitrary distributions, which
is hinted in the end of Section 3. The contact rate between individuals in the
population was assumed constant during the infectious period, when analyz-
ing the growth rate of the epidemic. A more general, and realistic, model
would take into account the stochasticity in the contact rate. Modelling the
contact rate as random would probably not yield different results, but a more
refined model and perhaps a subject of further research. It is mentioned by
Anderson and May (1991) that individual variability, in proportion to the
mean, of the infectious period and latency period, is small for many common
viral and bacterial diseases. This fact together with the difficulties in esti-
mation of the parameters within the model, suggests that the results might
be hard to incorporate in disease control and prediction, but are nonetheless
of theoretical interest.
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A Derivations

A.1 Outbreak probability

To establish an explicit equation from which the probability for a large out-
break, π, can be calculated, we start with

E[(1− π)ξ(∞)] + π = 1, 0 < π < 1, (A.1)

from (2.2), with s is substituted by 1 − π. To solve (A.1), we need the
explicit probability function of ξ(∞). As the infectious period I is gamma
distributed, I ∼ Γ(KI , βI), the probability function of ξ(∞), P (ξ(∞) = k),
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k = 0, 1, 2, . . ., is derived from (2.3) as follows.

P (ξ(∞) = k) =
∫ ∞

0
fI(x)p(ξ(∞) = k | I = x)dx

=
∫ ∞

0

βKI
I

Γ(KI)
xKI−1e−βx (λx)k

k!
e−λxdx

=
∫ ∞

0

(βI + λ)KI+k

Γ(KI + k)
xKI+k−1e−(βI+λ)xdx

(
λk

k!

βKI

Γ(KI)

Γ(KI + k)

(βI + λ)KI+k

)

=

(
KI + k − 1

k

)(
βI

βI + λ

)KI
(

λ

βI + λ

)k

We conclude that ξ(∞) has a negative binomial probability function, ξ(∞) ∼
Nbin

(
KL,

(
βI

βI+λ

))
. The probability generating function E[(1 − π)ξ(∞)] is

then, (Gut, 1995),

E[(1− π)ξ(∞)] =




βI

βI+λ

1− λ
βI+λ

(1− π)




KI

=


 βI

βI + λ− λ(1− π)




KI

=


 1

1 + π (λ)
βI




KI

. (A.2)

It hence follows that (A.1) can be expressed as


 1

1 + π (λ)
βI




KI

+ π = 1, 0 < π < 1, (A.3)

As we want to establish a relation between π and the coefficient of variation
of I, CVI , we rewrite (A.3), defining E[I] = 1 without any restriction and
using that 




E[I] = KI

βI

V ar(I) = KI

β2
I

CVI =

√
V ar(I)

E[I]
= 1√

KI

R0 = λE[I] = λ

by definition of the gamma distribution, as

π +
(

1

1 + πR0CV 2
I

)CV −2
I

= 1, 0 < π < 1. (A.4)
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To be determine how π depends on CVI , we define a function G(π, CVI) =

(π−1)(1+πR0CV 2
I )CV −2

I +1 on the set D = {(π,CVI)| 0 < π < 1, 0 < CVI 6
1}, where G = 0 is relation (A.4) rewritten. If we can show that G′

π 6= 0 on
G = 0, applying the Implicit Function Theorem (Persson and Böiers, 2001)
gives that there exist an implicit function h(·) such that π = h(CVI) and

h′(CVI) = −G′
CVI

G′
π

. (A.5)

We have that

G′
π = (1 + πR0CV 2

I )CV −2
I + (π − 1)(1 + πR0CV 2

I )CV −2
I −1R0

= (1 + πR0CV 2
I )CV −2

I −1(1 + πR0CV 2
I + πR0 −R0), (A.6)

thus G′
π = 0 when

1 + πR0CV 2
I + πR0 −R0 = 0. (A.7)

Simple algebra gives, from rewriting G = 0, that R0 = (1−π)
−CV 2

I −1
πCV 2

I
. Thus

(A.7) can be reformulated as

1+π
(1− π)−CV 2

I − 1

πCV 2
I

CV 2
I +π

(1− π)−CV 2
I − 1

πCV 2
I

− (1− π)−CV 2
I − 1

πCV 2
I

= 0, (A.8)

or, after some algebra, as

π(CV 2
I + 1)− 1 + (1− π)CV 2

I +1

(πCV 2
I )(1− π)CV 2

I

= 0. (A.9)

We the define q = CV 2
I + 1, 1 < q < 2, and A(π) = πq − 1 + (1− π)q, with

A(0) = 0q + (1 − 0)q − 1 = 1 − 1 = 0. As A′
π = q − q(1 − π)q−1 > 0 when

0 < π < 1, and A(0) = 0, A(π) > 0 for 0 < π < 1. As a consequence, (A.9)
does not hold on D. Thus, G′

π 6= 0 on D, and in particular on the curve
G = 0. It hence follows, since G′

π is continuous on G = 0, that G′
π does not

change sign on G = 0. As π = 1 − 1
R0

> 0 when CVI = 1, from rewriting

G(π, 1) = 0, and G′
π(1 − 1

R0
, 1) > 0, we conclude that G′

π > 0 on the curve
G = 0. Furthermore,

G′
CVI

= (π − 1)(1 + πR0CV 2
I )CV −2

I

×
[
− 2CVI ln(1 + πR0CV 2

I )− CV 2
I

(1 + πR0CV 2
I )

]

= (π − 1)(1 + πR0CV 2
I )CV −2

I (−2CV −1
I )

×
[
ln(1 + πR0CV 2

I )− πR0CV 2
I

(1 + πR0CV 2
I )

]

> 0 (A.10)

since π < 1 and, ln(x) − x
1+x

> 0 for x > 0, here x = πR0CV 2
I . We finally

get from (A.5) that h′(CVI) < 0, which is, π is a decreasing function of CVI .
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A.2 Outbreak probability with a stochastic contact rate

Next, we want to derive an expression for the outbreak probability, π, within
a more general model, assuming the contact rate, Λ, is random instead of
being deterministic. We model Λ as a Pareto distributed random variable,
Λ ∼ Pa(m, φ), independent of the infectious period I. As for the simpler
model, we need to express (A.1) explicitly. We start with the probability
generating function E[(1 − π)ξ(∞)] from (A.1), recalling that the number of
produced infections, ξ(∞), is poisson distributed.

E[(1− π)ξ(∞)] =
∞∑

k=0

P (ξ(∞) = k)(1− π)k

=
∞∑

k=0

E[P (ξ(∞) = k|I, Λ)](1− π)k

=
∞∑

k=0

[ ∫ ∞

m

( ∫ ∞

0
fI(x)

(xλ)k

k!
e−λxdx

)
fΛ(λ) dλ

]
(1− π)k

=
∫ ∞

m

[ ∞∑

k=0

( ∫ ∞

0
fI(x)

(xλ)k

k!
e−λxdx

)
(1− π)k

]
fΛ(λ)dλ, (A.11)

where interchangeability of summands an integrals, of integrable functions,
motivates the last equality. We have from (A.2) that (A.11) simplifies to

E[(1− π)ξ(∞)] =
∫ ∞

m


 1

1 + π λ
βI




KI

fΛ(λ)dλ

=
∫ ∞

m

(
1 + λ

π

βI

)−KI φmφ

λφ+1
dλ,

which, by defining 



x = λ π
βI

c = mπ
βI

,

and substitute λ by x, gives

E[(1− π)ξ(∞)] =
∫ ∞

m π
βI

(1 + x)−KI
φmφ

(
xβI

π

)φ+1

βI

π
dx

= φ
(mπ

βI

)φ
∫ ∞

c
(1 + x)−KIx−φ−1 dx. (A.12)

An explicit expression for (A.12) is derived, at first through iterated partial
integration, where KI from the gamma distribution of the latency period is
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KI = 3, 4 . . .. We perform the two first partial integrations as follows.

∫ ∞

c
(1 + x)−KIx−φ−1 dx =

(1 + c)−KI+1

(KI − 1)
c−φ−1

−
∫ ∞

c

(1 + x)−KI+1

(KI − 1)
(φ + 1)x−φ−2dx

=
(1 + c)−KI+1

(KI − 1)
c−φ−1 −

− (1 + c)−KI+2

(KI − 2)(KI − 1)
(φ + 1)c−φ−2 +

+
∫ ∞

c

(1 + x)−KI+2

(KI − 1)(KI − 2)
(φ + 1)(φ + 2)x−φ−3dx. (A.13)

This pattern suggests that the left hand side of (A.13), KI−1 times partially
integrated, satisfy

∫ ∞

c
(1 + x)−KIx−φ−1 dx =

KI∑

i=2

a(i)(−1)KI−i + S(−1)KI−1, 2 6 KI , (A.14)

where

a(i) =
1

(KI − i + 1)

(
KI+φ−i

φ

)
(

KI−1
i−2

) (1 + c)−(i−1)c−(φ+KI−i+1)

and

S =

(
KI + φ− 1

φ

) ∫ ∞

c
(1 + x)−1x−(φ+KI)dx.

It remains to solve S, which is done using partial fraction expansion as fol-
lows.
∫ ∞

c
(1 + x)−1x−(φ+KI)dx =

∫ ∞

c

1

(1 + x)x(φ+KI)
dx

=
∫ ∞

c

Bxφ+KI +
∑φ+KI

i=1 (1 + x)Aix
φ+KI−i

(1 + x)xφ+KI
dx (A.15)

=
∫ ∞

c

(
B

(1 + x)
+

φ+KI∑

i=1

Ai

xi

)
dx,
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where B and A1, A2, . . . , Aφ+KI
are constants satisfying





Aφ+KI
= 1

Aφ+KI
+ Aφ+KI−1 = 0 ⇒ Aφ+KI−1 = −1

Aφ+KI−1 + Aφ+KI−2 = 0 ⇒ Aφ+KI−2 = 1
...

Ak = (−1)φ+KI−k, k ∈ (1, φ + KI)
...

A1 = (−1)φ+KI−1

A1 + B = 0 ⇒ B = (−1)φ+KI .

forced by (A.15). It hence follows that (A.15) can be reformulated as

S =

(
KI + φ− 1

φ

) ∫ ∞

c


(−1)φ+KI

(1 + x)
+

φ+KI∑

i=1

(−1)φ+KI−i

xi


dx

=

(
KI + φ− 1

φ

)
(−1)φ+KI ln (

1 + x

x
) +

φ+KI∑

i=2

(−1)φ+KI−i+1

(i− 1)xi−1



∞

c

. (A.16)

As we change index from i → j, defining j = i − 1, and use the fact that
limt→∞ ln (1+t

t
) = ln (1) = 0, we have from (A.16) that

S =

(
KI + φ− 1

φ

)
(−1)φ+KI+1


 ln

(
1 +

1

c

)
+

φ+KI−1∑

j=1

(−1)j

jcj


, (A.17)

which yields, from (A.14), recalling the definition of c, when 2 6 KI , that

E[(1− π)ξ(∞)] = φ
(mπ

βI

)φ




KI∑

i=2

(mπ
βI

)−(φ+KI−i+1)

(KI − i + 1)

(
KI+φ−i

φ

)
(

KI−1
i−2

)
(
1 +

mπ

βI

)−(i−1)

(−1)KI−i

+ (−1)φ

(
KI + φ− 1

φ

)
 ln

(
1 +

βI

mπ

)
+

φ+KI−1∑

j=1

1

j

(−βI

mπ

)j




. (A.18)

When KI = 1, which implies that the infectious period I is exponentially
distributed, we have that

E[(1− π)ξ(∞)] = φ
(−mπ

βI

)φ

 ln

(
1 +

βI

mπ

)
+

φ∑

j=1

1

j

(−βI

mπ

)j

. (A.19)

The outbreak probability π is then solved numerically from (A.1), with the
explicit expression for E[(1 − π)ξ(∞)] from (A.18) or (A.19), depending on
whether KI is equal to, or larger than 1.
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We want to establish how π depend on the coefficient of variation of the

product of I and Λ, CVIΛ =

√
V ar(IΛ)

E[IΛ]
. From the independence of I and Λ,

it follows that




V ar(IΛ) = V ar(I)V ar(Λ) + V ar(I)E[Λ]2 + E[I]2V ar(Λ)

R0 = E[IΛ] = E[I]E[Λ],

where the first equality is relies on the result stated by Bohrnstedt and Gold-
berger (1969), concerning the variance of a product of two stochastically in-
dependent random variables. As in the previous sections, E[I] is set to 1,
which yields, recalling the expressions for the mean and the variance from
the Pareto distribution and the gamma distribution, that

CVIΛ =

√
R2

0

KIφ(φ−2)
+

R2
0

KI
+

R2
0

φ(φ−2)

R0

=

√√√√1 + φ(φ− 2) + KI

φ(φ− 2)KI

, φ = 3, 4, . . . KI = 1, 2, . . . . (A.20)

When comparing π derived within this model, with π derived within simpler
model, where the contact rate Λ is deterministic, we need to keep R0 fixed.
As a consequence, the parameter m from the Pareto distribution describing
the random Λ, is determined by R0 and φ through m = R0(φ−1)

φ
.

The coefficient of variation of CVIΛ, with unspecified distribution functions
of I and Λ, is derived as follows.

CVIΛ =

√
V ar(IΛ)

E[IΛ]

=

√
V ar(I)V ar(Λ) + V ar(I)E[Λ]2 + E[I]2V ar(Λ)

E[I]E[Λ]

=

√
V ar(I)V ar(Λ)(1 + E[Λ]2

V ar(I)
+ E[I]2

V ar(Λ)
)

E[I]E[Λ]

= CVICVΛ

√
1 + (CVI)−2 + (CVΛ)−2 (A.21)

A.3 The Malthusian parameter.

The Malthusian parameter, α, is the solution to
∫ ∞

0
e−αtµ′(t)dt = 1, (A.22)
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stated in Section 2.4, where we also defined µ′(t), the mean number of pro-
duced infections during (t, t + dt), as µ′(t) = λP (L < t < L + I), when the
contact rate is λ, the infectious period I and the latency period L. We begin
by deriving an explicit expression for µ′(t) as follows.

µ′(t) = λP (L < t < L + I)

= Λ
∫ t

0
(1− FI(t− z))fL(z)dz, (A.23)

where the infectious period I and the latency period L are gamma dis-
tributed, I ∼ Γ(KI , βI) and L ∼ Γ(KL, βL). We use the fact that KI is
a positive integer to rewrite FI(t − y), (when KI is an positive integer, we
have that I has a Erlang distribution function), which yields that (A.23) can
be expressed as, (Ross, 2002),

µ′(t) = λ
∫ t

0


e−βI(t−z)

KI−1∑

j=0

(βI(t− z))j

j!


 βKL

L

Γ(KL)
zKL−1e−βLzdz

= λe−βI t βKL
L

Γ(KL)

KI−1∑

j=0

βj
I

j!

∫ t

0
eβIz(t− z)jzKL−1e−βLzdz (A.24)

= λe−βI t βKL
L

Γ(KL)

KI−1∑

j=0

βj
I

j!
tKL+j

∫ 1

0
eyt(βI−βL)yKL−1(1− y)jdy, (A.25)

where the third equality follows from substitution of z by y
t
. We let Yj be

a beta distributed random variable, Yj ∼ Beta(KL, j + 1), with associated

beta function B(KL, j + 1) = Γ(KL)Γ(j+1)
Γ(KL+j+1)

. Then (A.25) simplifies to

µ′(t) = λ e−βI t βKL
L

Γ(KL)

KI−1∑

j=0

βj
I

j!
tKL+jB(KL, j+ 1)E[eYjt(βI−βL)]. (A.26)

The moment generating function of Yj in (A.26), E[eYjt(βI−βL)], is calculated
as follows.

E[eYjt(βI−βL)] =
∫ 1

0

Γ(KL+j+1)

Γ(KL)Γ(j+1)
yKL−1(1− y)jeYjt(βI−βL)dy

=
∫ 1

0

Γ(KL+j+1)

Γ(KL)Γ(j+1)
yKL−1(1− y)j

∞∑

k=0

(yt(βI − βL))k

k!
dy

=
∞∑

k=0

Γ(KL+k)Γ(KL+j+1)

Γ(KL)Γ(KL+k+j+1)

(t(βI − βL))k

k!
×

×
∫ 1

0

Γ(KL+k+j+1)

Γ(KL + k)Γ(j+1)
yKL+k−1(1− y)jdy

= 1 +
∞∑

k=0

k−1∏

r=0

(
KL + r

KL + j + 1 + r

)
(t(βI − βL))k

k!
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Then we get the final expression for µ′(t) as

µ′(t) = λ e−βI t βKL
L

Γ(KL)

KI−1∑

j=0

βj
I

j!
tKL+jB(KL, j+ 1) +

+λ e−βI t βKL
L

Γ(KL)

KI−1∑

j=0

βj
I

j!
tKL+jB(KL, j+1)

∞∑

k=0

k−1∏

r=0

(
KL + r

KL+j+1+r

)
(t(βI − βL))k

k!

We are now able to rewrite the right side of (A.22), splitting the integral into
two parts, as

∫ ∞

0
e−αµ′(t)dt = λ

βKL
L

Γ(KL)

KI−1∑

j=0

βj
I

j!
B(KL, j + 1)

∫ ∞

0
e−(α+βI)t tKL+jdt +

+λ
βKL

L

Γ(KL)

KI−1∑

j=0

βj
I

j!
B(KL, j + 1)

∞∑

k=1

(
k−1∏

r=0

KL + r

KL + j + 1 + r

)
×

×(βI − βL)k

k!

∫ ∞

0
e−(α+βI)t tKL+j+kdt (A.27)

The two integrals of the right hand side of (A.27) are positive moments of
exponential random variables, which can be expressed using the formula by
Gut (1995). Then, with the beta functions and gamma functions expressed
using factorials, we rewrite (A.27) as

∫ ∞

0
e−αµ′(t)dt = λ

βKL
L

(KL − 1)!

KI−1∑

j=0

βj
I

j!

(KL − 1)!j!

(KL + j)!

(
(KL + j)!

(βI + α)KL+j+1

)
+

+λ
βKL

L

(KL − 1)!

KI−1∑

j=0

βj
I

j!

(KL − 1)!j!

(KL + j)!

∞∑

k=1

(
(KL + k − 1)!(KL + j)!

(KL − 1)!(KL + j + k)!

)
×

×(βI − βL)k

k!

(
(KL + j + k)!

(βI + α)KL+j+k+1

)
. (A.28)

After some regrouping, and by putting together the factorials into a binomial
coefficient, (A.28) simplifies to

∫ ∞

0
e−αµ′(t)dt = λ

βKL
L

(βI + α)KL+1

KI−1∑

j=0

(
βI

βI + α

)j

1 +

∞∑

k=1

(
KL + k − 1

k

)(
βI − βL

βI + α

)k



= λ
βKL

L

(βI + α)KL+1

KI−1∑

j=0

(
βI

βI + α

)j ∞∑

k=0

(
KL + k − 1

k

)(
βI − βL

βI + α

)k

.(A.29)

The geometric sum in (A.29) is simplified using the standard formula, and
the combinatorial sum using the formula stated by Grimaldi (2003), which
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yields

∫ ∞

0
e−αµ′(t)dt = λ

βKL
L

(βI + α)KL+1

1−
(

βI

βI+α

)KI

1−
(

βI

βI+α

) 1
(
1−

(
βI−βL

βI+α

))KL

=
(

λ

α

)(
βL

βL + α

)KL
(
1−

(
βI

βI + α

)KI
)
.

Finally, (A.22) is formulated as




(
λ

)

α





 βL

βL + α




KL

1−


 βI

βI + α




KI

 = 1. (A.30)

We rewrite (A.30) in terms of CVI and CVI , using that





E[I] = KI

βI

V ar(I) = KI

β2
I

E[L] = KL

βL

V ar(L) = KL

β2
L

CVI =

√
V ar(I)

E[I]

CVL =

√
V ar(L)

E[L]

R0 = λE[I],

by definition of the gamma distribution, with E[I] = 1 without any restric-
tion, and 




KI = (CVI)
−2

KL = (CVL)−2

βL = (CVL)−2

E[L]

R0 = λ

(A.31)

as

(
R0

α

)
1 + αCV 2

LE[L]



−CV −2

L

1−


1 + αCV 2

I



−CV −2

I

 = 1, (A.32)

which is stated in (3.2).
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To derive how α depend on CVL, E[L], and CVI , independently, we begin by
defining the function

F (α,CVL, E[L], CVI) =
∫ ∞

0
e−αtµ′(t)dt− 1, (A.33)

on the set Ω = {(α, CVL, E[L], CVI , )| 1 < α, 0 < CVL ≤ 1, 0 < E[L], 0 <
CVI ≤ 1}. When we want the relation between α and CVL, we simply view
the other variables as constant and so on. Then F = 0 can be regarded as a
collection of level curves representing relation (A.22). We begin by deriving
the relation between α and CVL. We have that

F ′
α = −

∫ ∞

0
te−αtµ′(t)dt

< 0. (A.34)

Since F is continuous on Ω, and from (A.34) F ′
α 6= 0 on Ω, it follows from

Implicit Function Theorem (Böiers and Persson, 2001) that there exists an
implicit function f1(·) such that α = f1(CVL), and

f ′1(CVL) = −F ′
CVL

F ′
α

, (A.35)

on Ω and specially on F = 0. Furthermore, we have from using the explicit
expression for relation (A.22), (A.32), that

F ′
CVL

=
(

R0

α

)
1 + αCV 2

LE[L]



−CV −2

L

1−


1 + αCV 2

I



−CV −2

I



×

2CV −3

L ln(1 + αCV 2
LE[L])− CV −2

L α2CVLE[L]

1 + αCV 2
LE[L]




= 2CV −3
L


 ln(1 + αCV 2

LE[L])− αCV 2
LE[L]

1 + αCV 2
LE[L]




> 0. (A.36)

In the second equality we use (A.32), and the inequality follow since function
ln(1 + x) − x

1+x
> 0 when 0 < x, here x = αCV 2

LE[L]. We conclude that
F ′

CVI
> 0 and F ′

α < 0 on the curve F = 0. Thus, from (A.35), it follows
that f ′1(CVL) > 0. As a consequence, α is a increasing function of CVL. The
relation between α and CVI is derived in the same fashion. We have from
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(A.32) that

F ′
CVI

= −
(

R0

α

)
1 + αCV 2

LE[L]



−CV −2

L

1 + αCV 2

I



−CV −2

I

× 2CV −3
I


 ln(1 + αCV 2

I )− CV 2
I α

1 + αCV 2
I




< 0, (A.37)

where the inequality is justified by the fact that ln(1 + x) − x
1+x

> 0 when

0 > x, here x = αCV 2
I . We conclude by the same reasoning as above that

there exists an implicit function f2(·) such that α = f2(CVI), and from
(A.35), using (A.34), that g′(CVI) < 0. Thus, α is a decreasing function of
CVI . Finally we derive the relation between α and E[L] in the same fashion.
We have that

F ′
E[L] = −R0


1 + αCV 2

LE[L]



−CV −2

L

1−


1 + αCV 2

I



−CV −2

I



< 0,

which gives, using (A.34), from (A.35), that there exists a function f3(·) such
that α = f3(E[L]) and f ′3(E[L]) < 0. Thus, α is a decreasing function of
E[L].
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