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Abstract

In option price simulations, simulation-time is of great importance.
Control variates is a variance reduction technique that can reduce
simulation-time. Three approaches to the use of control variates in
Monte Carlo option pricing are presented and evaluated. Employed
methods include ordinary control variate implementation, a replicating
delta hedge and re-simulation. Ordinary control variates uses a highly
correlated random variable with known mean to reduce variance. The
delta hedge tries to replicate the option and is constructed with an ap-
proximative delta formula, which is new to stock markets. The third
method evaluated, called re-simulation, is a new method which use an
earlier simulated option price as control variate. Applying an earlier
option price as control variate results in a more generic method, since
earlier simulated prices often exists. The three models are evaluated
on Asian and Cliquet options, either in the standard Black and Sc-
holes model or in Merton’s jump diffusion model. Presented results
show that the re-simulation method almost always yield a more ef-
ficient simulation procedure compared with the other methods. For
some Cliquet options the simulation speed up over crude Monte Carlo
is remarkable.
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1 Introduction

When pricing options and other financial derivatives, time and accuracy are
of greatest essence. In real time trading, accurate prices and option greeks
are needed updated according to real time prices. For some simple deriva-
tives there exists closed analytical pricing formulas and these questions are
not an object. Some payoff structures can, however, not be evaluated using
closed analytical formulas. This due to the too complex payoffs structures
of many exotic options or that the underlying is a basket of assets. In these
cases prices are determined, for example through the widely used Monte
Carlo method. Though the Monte Carlo method is easy to use, it is time
consuming to simulate a price within reasonable bounds of accuracy for cer-
tain contracts. To reduce computational time, several variance reduction
techniques have been proposed, among others antithetic variates, control
variates and importance sampling. If the variance reduction achieved is not
offset by the additional computational time, a more efficient simulation is
achieved.

This thesis will focus on the method of control variates, one of the most pop-
ular and effective methods used. Three different approaches regarding con-
trol variates are presented. First, ordinary control variates are constructed
for Asian and Cliquet options. Second, a delta hedge is applied as control
variate for an Asian option in a jump diffusion model. For this purpose, a
delta approximation formula for the Asian option in a Merton’s jump diffu-
sion model is derived. Approximation formulas are new to control variates
in stock markets, however, it has been tested in libor markets by Jensen
and Svenstrup [8]. Implementing these two methods is often a question of
finding a reasonable set of control variates, which can be a problem. More-
over, there is even harder, if all possible, to find a general set of control
variates that can contribute with significant variance reduction. This means
that constructing efficient control variates for every contract clearly can be
a burden, especially under real market conditions.

The third method presented, solves this problem. This new method makes
it possible to use the same control variate scheme regardless which contract
being priced. Since the control variate is constructed with an earlier sim-
ulated price, it is well suited in applications were the price is frequently
updated. Results from this new technique turns out to be very good and for
some contracts the decreased simulation-time is remarkable. A Cliquet op-
tion, for example, converges up to 500 times faster with re-simulation than
for crude Monte Carlo.

This thesis will proceed as follows, the fundamental simulation details are
first presented followed by the control variate theory. Implementation of the
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methods to some specific contracts are then described, highlighting some
possible problems with different methods. The thesis sums up with an effi-
ciency ratio comparison between the methods.

2 Preliminaries

In this section a quick recap of the Monte Carlo method is followed by how
simulation of multiple correlated assets is carried out. A jump diffusion
model, which include discontinuous jump’s to the simulation process, is also
presented.

2.1 The Monte Carlo Method

The Monte Carlo method is a numerical method used in various applications,
for example used to determine the expected value of a random variable. The
method builds upon the law of large numbers and thereby large samples
of random numbers. The law of large numbers assure that a sample of
independent, identically distributed (i.i.d.) random variables, converges to
the sample mean as the sample size, n increases. This can be written

Ȳ =
Y1 + · · ·+ Yn

n

p→ E[Y ] as n →∞,

where Yi are i.i.d. with finite mean. The proof and conditions can be found
in Gut [6]. The standard deviation of this estimator is n−1/2σ2 and the
convergence rate can thus be expressed O(n−1/2σ2).

In option pricing, the price is expressed by the discounted expected value of
the option payoff at maturity, under the risk neutral measure. The Monte
Carlo method was introduced to option pricing to evaluate this expected
value, which is a function of random variables. The procedure now is to
evaluate a function of random variables f(Y i) until the sample mean con-
verges. Further the vector’s of random variables Y i are i.i.d. but the random
variables within each vector can be correlated.

As a simple example, let S(T ), the asset price at time T , be a random vari-
able with known distribution. Now let Φ(S(T )) = max(S(T )−K, 0) denote
the payoff of an European call option with strike price K. EQ[Φ(S(T ))],
the expectation under the risk-neutral measure Q, can now be determined
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by drawing independent trials of S(T ) and calculating Φ(S(T )) until the
sample mean converges,

1
n

n∑
i=1

Φ
(
Si(T )

)
p→ EQ

[
max(S(T )−K, 0)

]
as n →∞.

A more comprehensive study on the Monte Carlo method can be found in,
for example Glasserman [5].

2.2 Multiple Asset Dynamics

Contracts in this thesis will mainly include multiple underlying assets. Mul-
tiple assets are modeled with multidimensional Geometric Brownian Motion
(GBM). GBM are defined by the following systems of Stochastic Differential
Equations (SDE’s)

dSi(t)
Si(t)

= µidt + σidXi(t), i = 1, . . . , d, (2.1)

where Xi denotes correlated standard Brownian Motion. The system S =
(S1, . . . , Sd) can now be defined as GBM(µ,Σ) where µ = (µ1, . . . , µd) is
the vector of drift parameters and Σ is the matrix of covariance parameters.
Each element in Σ is given by Σij = σiσjρij where σi is the volatility
parameter of Si and ρij is the correlation between Xi(t) and Xj(t). Further,
since a Brownian Motion BM(0,Σ) can be expressed by AW (t) where W
is a standard BM(0, I) and A, preferably the Cholesky factorization of Σ,
satisfies AA′ = Σ, equation (2.1) is equal to

dSi(t)
Si(t)

= µidt +
d∑

j=1

AijdWj(t), i = 1, . . . , d.

From this representation the solution to the SDE is given by

Si(t) = Si(t) exp
{
(µi −

1
2
σ2

i )dt +
d∑

j=1

AijWj(t)
}
. (2.2)
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To simulate correlated GBM’s now evolves to be a fairly simple task. At
times t0 < t1 < · · · < tn, the vaule of asset i, i = 1, . . . , d, is given by

Si(tk+1) = Si(tk) exp
{
(µi −

1
2
σ2

i )(tk+1 − tk) +
√

tk+1 − tk

d∑
j=1

AijZk+1,j

}
,

where Zk+1,j are i.i.d. N(0, 1) for k = 0, 1 . . . , n− 1 and j = 1, . . . , d.

2.3 Jump Diffusion Dynamics

Asset prices do not usually posses such smooth price paths that results from
simulating in the framework in section 2.2. A more realistic model would
capture the abrupt jumps that occur in price processes upon arrival of news.
Such a model is based on the model above and a counting process delivering
jumps with a certain intensity. The SDE can be specified by

dS(t)
S(t−)

= µdt + σdW (t) + dJ(t), (2.3)

where S(t−) is the asset value just before a potential jump at time t and J
is a process independent of W . The process J has piecewise constant sample
paths and is given by

J(t) =
N(t)∑
j=1

(Yj − 1),

where N(t) is a counting process and Y1, Y2, . . . are random variables. In
Merton’s [14] framework N(t) is a Poisson process with intensity λ and the
jumps, Yj independent of N(t), are log-normally distributed Yj ∼ LN(a, b2).
J is in this case called a compound Poisson process. The solution to (2.3) is
now given by

S(t) = S(0) exp
{
(µ− 1

2
σ2)t + σW (t)

}N(t)∏
j=1

Yj .
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For e−rtS(t) to now fulfill the martingale property under the risk-neutral
measure Q, where r denotes the risk free interest rate, the drift has to be
adjusted. The drift is adjustment by the expected value of the jump diffusion
process. For Z i.i.d. N(a, b2),

E
[
e
∑N(t)

j=1
Zj
]

=
∞∑
i=0

(λt)i

i!
e−λtE

[
e
∑N(t)

j=1
Zj
∣∣∣N(t) = i

]
=

∞∑
i=0

(λt)i

i!
e−λtφ(1)i = e−λt

∞∑
i=0

(λtφ(1))i

i!
= eλt(φ(1)−1), (2.4)

where

φ(θ) = E
[
eθZ

]
= eaθ+ 1

2
b2θ2

, (2.5)

denotes the moment generating function for Z.

The adjusted drift that makes e−rtS(t) a martingale, under the risk-neutral
measure Q, can now be expressed as µ = r−λ(φ(1)−1). A closed analytical
formula exists for European options in this model based on the properties
above. An analytical solution is possible because the distribution of S(t)
conditional of the number of jumps is known and log-normal. This is called
the Merton option pricing formula and has the solution

e−rT EQ
[
max(S(T )−K, 0)

]
=

∞∑
n=0

e−λ′T (λ′T )n

n!
BLS

(
S(0),K, rn, T, σn

)
,

(2.6)

where λ′ = λφ(1), σ2
n = σ2 + b2n/T , rn = r − λ(φ(1) − 1) + n lnφ(1) and

BLS denotes the standard Black and Scholes formula; see Glasserman [5].

3 Variance Reduction Techniques

General for all variance reduction techniques are to increase accuracy in
the estimated variable by a decreased sample standard deviation, instead
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of larger samples. This is far more effective, since a standard deviation
reduction by 10 times is equal to increase the number of simulations by 100
times.

3.1 Control Variates

The control variate technique is popular because of a effective variance re-
duction in a simple theoretical framework. The method, first introduced to
option pricing by Boyle [1], takes advantage of random variables with known
expected value and positively correlated with with the variable under con-
sideration. Let Y be a random variable whose mean is to be determined
through simulation and X a random variable with known mean µX . Now,
for each trial the outcome of Xi is calculated along with the output of Yi.
Further suppose, that the pairs (Xi, Yi), i = 1, . . . , n are i.i.d., the definition
of the control variate estimator ȲCV of E[Y ] is then

ȲCV = Ȳ − X̄ + µX =
1
n

n∑
i=1

(Yi −Xi + µX). (3.1)

Lemma 3.1. The control variate estimator (3.1), is unbiased and consis-
tent.

Proof. The expected value of (3.1) yields the unbiasedness

E[ȲCV ] = E[Ȳ ]− E[X̄] + µX = E
[ 1
n

n∑
i=1

Yi

]
= E[Y ]

and the following limit guarantees consistency

lim
n→∞

1
n

n∑
i=1

YCV (i) = lim
n→∞

1
n

n∑
i=1

(Yi −Xi + µX) = E[Y −X + µX ]
p
= E[Y ],

see Glasserman [5].

The resulting variance for the control variate estimator is
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Var(ȲCV ) =
1
n

Var(Y ) =
1
n

Var(Y −X + µX) =
1
n

(σ2
Y + σ2

X − 2ρXY σXσY ),

indicating that the control variate estimator ȲCV , will have lower variance
than Ȳ , if σ2

X < 2ρXY σXσY .

To fully take advantage of the control variate, a parameter β is introduced
and optimized to minimize the variance of ȲCV . The parameterized control
variate estimator is defined by

ȲCV (β) = Ȳ − β(X̄ − µX),

with resulting variance

Var
(
ȲCV (β)

)
=

1
n

(σ2
Y + β2σ2

X − 2βρXY σXσY ). (3.2)

Minimizing the variance with respect to β yields

β∗ =
σY

σX
ρXY =

Cov(X, Y )
V ar(X)

. (3.3)

The variance reduction is as mentioned highly dependent of the correlation
between the estimated variable and the control variate. Inserting (3.3) in
(3.2) yields the minimum variance as a expression of ρXY , more precisely

Var
(
ȲCV (β∗)

)
= (1− ρ2

XY )
σ2

Y

n
. (3.4)

The importance of high correlation with the control variate for effective vari-
ance reduction can in (3.4) be seen with clarity. Another interesting property
to notice when the β parameter is introduced, is that the correlation equally
well can be negative. This is an effect of using the parameterized version,
without the optimal β∗ the influence of a negatively correlated control vari-
ate would increase the variance.

A problem when minimizing the variance with respect to β is that in practice
Cov(X, Y ) never is known and has to estimated. The sample estimators
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SXX =
1

n− 1

n∑
i=1

(Xi − X̄)2,

SXY =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ),

gives the β∗ estimator as

β̂∗ = SXY S−1
XX .

The strong law of large numbers assure that β̂∗ converges to β∗ with prob-
ability 1. Estimating β∗ can be done by running the simulation procedure
a couple of pilot runs, a small fraction of the total number of simulations,
then estimate β from those. Another alternative is to make use of all of
the simulation runs to estimate β. From the latter method a bias in the
estimation µY arises since β̂∗, X and Y are dependent. The bias results
in some implications, first the variance can not be calculated directly by
(3.4) due to the dependence. Second, a confidence intervals based on the
t-distribution can not directly be used since

ȲCV (β̂∗)− µY

σ(ȲCV (β̂∗))
,

is not t-distributed. Lavenberger [11] proves under an assumption that
(X, Y ) have a multivariate normal distribution that Ȳ (β̂∗) is an unbiased
estimator of E[Y ]. Under the normal assumption the variance of the control
variate estimator is

Var
(
ȲCV (β̂∗)

)
=

n− 2
n− 3

(1− ρ2
XY )

σ2
Y

n
,

which can be used to derive a valid confidence interval. As the sample size
get large though, an asymptotically valid variance and confidence interval
for µY is obtained since β̂∗ converges to the true value. In option pricing
the control variate technique relies on the asymptotic results since option
payoff functions rarely can be assumed to follow a normal distribution.
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To put the ideas into action, a simple control variate is introduced to the
simulation of an European call option. A simple control variate will be the
underlying asset itself. This is a generic control variate, available to all
contracts, but not always that efficient. The payoff function of a European
call option is Φ(S(T )) = max(S(T ) − K, 0) resulting in the option price
C(S(0)) = e−rT EQ[Φ(S(T ))], where S(0) is the asset price at time 0. Fur-
ther the underlying asset has known expected value EQ[S(T )] = S(0)erT ,
which yields the estimation setup

C̄
(
S(0)

)
=

1
n

n∑
i=1

(
Φ(Si(T ))− β̂∗(Si(T )− S(0)erT )

)
.

C̄(S(0)) will now be a unbiased an consistent estimator of C(S(0)) with
lower variance than if C(S(0)) was determined by crude Monte Carlo.

Figure 1: Correlation between underlying
asset and option price.

Figure 1 illustrates the correlation between C(S(0)) and S(T ) for an at the
money call option. The correlation in this example can be seen to be rather
high, resulting in a β = 0.67 and decreases standard deviation almost 3
times. Correlation this high can, however, not be expected between more
complex payoff functions and the underlying asset.
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3.2 Multiple Control Variates

Often several possible control variates can be put together into one control
variate, however, that is not always possible. The existents of several dif-
ferent control variates makes the question of multiple controls interesting.
The previous results are easily extended to the case of multiple control vari-
ates. Letting Z = (Z1, . . . , Zd) be a vector of control variates with known
expected values corresponding to µZ = (µ1, . . . , µd) then

ȲCV (β) = Ȳ − β′(Z − µZ),

is an unbiased and consistent estimator of µY . The proof is just straight for-
ward from the one dimensional case; see lemma 3.1. The optimal parameter
values in the vector β are now given by

β∗ = Σ−1
ZZΣY Z ,

where ΣZZ and ΣY Z corresponds to the covariance matrix of Z and the
vector of covariances between (Y,Z) respectively. Likewise the estimation
of β∗ is given by

β̂∗ = S−1
ZZSY Z ,

where

SZ(j)Z(k) =
1

n− 1

n∑
i=1

(
Z

(j)
i − Z̄(j)

)(
Z

(k)
i − Z̄(k)

)
, j, k = 1, . . . , d

SY Z(j) =
1

n− 1

n∑
i=1

(
Yi − Ȳ

)(
Z

(j)
i − Z̄(j)

)
, j = 1, . . . , d,

are the sample counterpart to ΣZZ and ΣY Z . Further, with the assumption
that (Y, Z) is multivariate normal, Lavenberger [11] derives the variance
with β estimated from the samples to be

Var
(
Ȳcv(β̂∗)

)
=

n− 2
n− d− 2

(1−R2)Var(Ȳ ),
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where

R2 =
Σ′

Y ZΣ−1
ZZΣY Z

σ2
Y

.

R2 is the squared multiple correlation coefficient, a measure of the variance
in Ȳ explained by Z as in regression analysis.

3.3 A Hedge as Control Variate

If a lack of suitable control variates occur, one idea is to replicate the con-
tract with a hedge. Clewlow and Carverhill [3] derives a technique for control
variates with hedges based on the various option greeks. The most signifi-
cant variance reduction is obtained by using the delta hedge, which can be
complemented by the gamma hedge for highly nonlinear option prices. The
delta hedge control variate is formulated in [3] as follows

∆CV =
N−1∑
i=1

∂C(S(ti))
∂S(ti)

(
∆S(ti+1)− EQ

[
∆S(ti+1)

])
er(tN−ti+1), (3.5)

where

∆S(ti+1) = S(ti+1)− S(ti),

EQ
[
∆S(ti+1)

]
= S(ti)(er(ti+1−ti) − 1).

The gamma hedge can correspondingly be represented as, adjusted from
some misprint in [3],

ΓCV =
N−1∑
i=1

∂2C(S(ti))
∂S(ti)2

(
(∆S(ti+1))2 − EQ

[
(∆S(ti+1))2

])
er(tN−ti+1), (3.6)
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where

EQ
[
(∆S(ti+1))2

]
= S2(ti)(e(2r+σ2)(ti+1−ti) − 2er(ti+1−ti) + 1).

In the gamma hedge (3.6) the squared asset price difference must be used
since the underlying asset itself is gamma neutral. In the same manner
the rho and vega hedges could be constructed for models possessing non
constant risk free rate and volatility. The problem with the greeks is that
they are not usually known if the pricing function itself is unknown.

Obtaining hedge parameters can be handled as in the ordinary control vari-
ate case by applying the greeks from some similar option with known ana-
lytical formula. For some options, however, approximation formulas are at
hand which can be used to get a good approximation of the option greeks.1
Approximation can also be applied to simplify the model, if for example the
simulation is carried out in a jump diffusion framework, the greeks could be
calculated as in the standard framework.

Figure 2: Correlation between delta hedge
and option price.

An European call option will again be considered as an example. For a
European call option the delta is known to be N(d1), where N is the normal
distribution function and d1 determined by Black and Scholes formula. A
control variate hedge is thus easily constructed, in this example the option

1This idea proposed by Ola Hammarlid to apply in the stock market. However, later
it was found that a similar idea has been applied to libor market models by Jensen and
Svenstrup [8].
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has 1 year to maturity and the hedge is rebalanced every month. In figure 2
the correlation can be seen to be high, again because of the simple contract
and the fact that delta is known, resulting in a β = 0.9 and 7 times decreased
standard deviation. The negative outcomes of the delta hedge seen in figure 2
arise when the underlying asset decrease much in the period.

The resulting variance reduction will of course be dependent of the number
of rebalancing times for the hedge. In the case when options only depend
upon the terminal value of the underlying asset, the hedge will, most likely,
not serve well as a control variate. There may also be a trade off between
the variance reduction achieved and the simulation-time. This can be used
to analyze the number of rebalancing times to be used. The most natural is
however to use the same number of rebalancing times as time steps simulated
for the underlying asset.

3.4 A New Approach Introduced

In practice market actors will always have access to relevant prices. There-
fore, when a new price is to be simulated, an old price can be recycled as
a control variate. To take advantage of this an idea is to use the latest
simulated option price as a control variate when updating the price.2 This
idea will be presented and examined in comparison with the other methods
presented.

The idea builds upon re-simulation of a past price by replicating trajectories
from the current simulation and simulate new trajectory parts between the
two simulation points. In other words; when a simulation run have been
made from the current time and market conditions, an additional control
variate simulation is made. This simulates trajectories from the past time
and up to current time under the past prevailing market conditions. From
the current time and forward each control variate trajectory will be mirrored
by a trajectory from the current spot in time, adjusted to the right price
level.

This control variate simulation will have expected value equal to the last
price and are likely to be highly correlated with the current price simulation,
since it is the same option beeing priced. The performance of the method will
depend on the time elapsed between the past and current simulation as well
as the changed market conditions and the options sensitivity to the market.
If the time elapsed between simulations is rather short the correlation are
likely to be high.

2This idea was provided by Ola Hammarlid.
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Figure 3: Trajectories simulated from current time and
trajectories simulated up to that time, the dashed lines is
the mirrored trajectories from time t = 0.

Figure 3 will help explain the idea. Two trajectories are simulated from a
current spot in time, t = 0, where the asset price have increased 10% from
a past spot in time, t = −15. From this past spot in time and the asset
price 1, two additional trajectories have been simulated up to current time,
t = 0. From time, t = 0, and forward the new trajectories will be mirrored
to follow the same pattern as the two first trajectories simulated, as the
dashed line demonstrate.

The value used as expected value in this method is not obtained by a closed
analytical formula which so far been the case. The expected value is itself
obtained through Monte Carlo simulation and may thereby include some
uncertainty. However, the law of large numbers assure that the value will
converge to the true expected value with probability 1. Mathematically this
can be expressed as

ȲCV (ti, β) = Ȳ (ti)− β
(
Ȳ (ti−1)− E

[
Ȳ (ti−1)

])
,

where
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∑n
i=1 Yi(ti−1)

n

p
= E

[
Ȳ (ti−1)

]
as n →∞.

Advantages with this method is clearly that it demands little extra knowl-
edge about the contract beeing priced. No similar contract with known
expected value nor any approximation formula must be known. The only
details need to be known are the earlier simulated price and market con-
ditions. With this knowledge, control variates to any option can be con-
structed if a simulation procedure to price the option exists. This results
in the opportunity to construct a general control variate technique for all
kinds of derivatives.

3.4.1 Adjustment for Parameter Changes

The control variate trajectories are constructed with the same trajectories
as used in the simulation, adjusted to the right price level. If, however, any
of the underlying asset parameters change between simulations, additional
adjustments must be done. This must be done so that the price available as
control variate, is simulated under the right circumstances. If, for example,
the volatility parameter change between simulations, an old simulated price
is simulated under an other volatility. Therefore, the new trajectories must
be adjusted with respect to the volatility difference. Most of the parameter
changes can be adjusted in the trajectories with exception for the jump
intensity parameter.

Therefore, to keep full flexibility in the model, an requirement is that two
additional processes W (t) and N(t) as well as the sequence of jumps Y
has to be recorded. Easier implementation can be achieved, by omitting
the following results and simulate without control variates whenever any
simulation parameter changes.

Lemma 3.2. Let parameters denoted by t0 be those used when the control
variate price was simulated and parameters denoted t1 be those used when
the new price is simulated.

Changes in the interest rate parameter for asset Si is adjusted by the follow-
ing factor

αr(t) = exp
{(

r(t0)− r(t1)
)
t
}
.

Volatility changes are adjusted by the following factor
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ασ(t) = exp
{(

σ(t0)− σ(t1)
)
W (t)− 1

2

(
σ2(t0)− σ2(t1)

)
t.
}
,

which in the multiple asset case becomes

αi
σ(t) = exp

{ d∑
i=1

(
Aij(t0)−Aij(t1)

)
W (t)− 1

2

(
σ2

i (t0)− σ2
i (t1)

)
t.
}
,

for i = 1, . . . , d, where A is defined in section 2.2.

Proof. The results will be proved for volatility changes, but are analogous
for interest changes. The volatility adjustment are obtained by solving the
equation

S(t1) exp
{(

r − 1
2
σ(t0)

)
t + σ(t0)W (t)

}
= ασ(t)S(t1) exp

{(
r − 1

2
σ(t1)

)
t + σ(t1)W (t)

}
,

which gives the result.

Lemma 3.3. Changes in the jump parameter Y for asset S can also be
handled. If Y ∼ N(a, b2) is rewritten to a + bZ, where Z ∼ N(0, 1), is the
standardization of Y , the adjustment is given by

α{a,b}(t) = exp
{
λt
(
φt0(1)−φt1(1)

)
+

N(t)∑
j=1

a(t0)−a(t1)+
(
b(t0)− b(t1)

)
Zj

}
,

where φtk(1) is defined in (2.5) with the a and b parameters at time tk.

Proof. The proof is analogous the proof to lemma 3.2.
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Now, a change in the volatility parameter between simulations can be han-
dled by adjust the trajectories by ασ(t), before using them for the control
variate, that is,

SCV (t) = S(t)ασ(t).

4 Control Variate Construction

In this chapter different options of interest are examined for suitable control
variates which then are implemented, if possible, to suit the required needs.
Two options to be taken under consideration is the Asian option and the
Cliquet option, exotic options which are a common component in structured
products, but also used in a range of other situations. Method implementa-
tions described are ordinary control variates and the hedging technique, the
re-simulation method needs no further description.

4.1 The Arithmetic Asian Option

The arithmetic asian option is an exotic option because of that it is path
dependent of the underlying asset during some part or the total lifetime of
the option. More precisely the payoff is determined by the arithmetic average
value of the underlying asset during the period. The average value can either
be sampled continuously or as almost always in reality, at predetermined
time steps. The option is as mentioned common in structured products,
often with a basket of underling assets. An arithmetic Asian call option
with strike price K can accordingly be described by the payoff function

Φ
(
S(t1), . . . , S(tN )

)
= max

(
1
N

N∑
i=1

S(ti)−K, 0

)
, (4.1)

where S(ti) denotes the asset price at time ti, i = 1, . . . , N , satisfying t1 <
· · · < tN . Correspondingly the option price, with time T to maturity, could
be expressed in terms of risk-neutral valuation as

C
(
S(t0)

)
= e−rT EQ

[
Φ
(
S(t1), . . . , S(tN )

)]
, (4.2)
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where the expectation is evaluated under the risk-neutral measure Q and r
denotes the risk free interest rate.

In the pricing formula (4.2) a problem arises since the sum of the log-
normally distributed asset prices are not log-normally distributed. This
is the reason why no analytical formulas for this option can be found, be-
cause standard frameworks relies on log-normal assets. The same prob-
lem arises when the option has a basket of underlying assets, defined by
V (t) =

∑d
j=1 qjSj(t), where qj denotes the quantity of asset Sj . Although

a number of approximation formulas exist, the most accurate prices can be
obtained by simulation.

4.1.1 Control Variate with Geometric Asian

A geometric average option can in contrast to the arithmetic average option
be priced within a closed formula. This can be done, since the geometric
average of log-normally distributed variables

S̄G =
N∏

i=1

S(ti)
1
N , (4.3)

is itself log-normally distributed and the standard Black and Scholes frame-
work can be applied. In an article presented by Kemna and Vorst [9] the
geometric Asian option is first used as a control variate when simulating the
arithmetic Asian. They use a continuous sample of the average value. Here
a discrete sample will be used and the model will be extended to handle
multiple underlying assets as well as discrete dividends.

Analytical formulas for the geometric Asian option can be derived by calcu-
lating the mean and variance of (4.3) and applying the standard Black and
Scholes formula; see Glasserman [5]. This analytical formula can now be
implemented as an control variate for Asian options written on a single un-
derlying asset. To handle the case of multiple underlying assets the multiple
control variate technique can be applied with one control variate correspond-
ing to each underlying asset. Another option is to form a weighted geometric
portfolio of the underlying assets defined by

VG(t) =
d∏

j=1

Sj(t)qj ,
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where qi is the quantity of asset Sj ; see appendix A.1 for details. Now the
geometric time average S̄G, for the geometric portfolio can be determined.
The expected value for this option can then be calculated using the same
formula as for the single underlying case after first forming the input param-
eters for a geometric portfolio; see appendix A.1. Depending on the option
setup, this method will show to be somewhat more efficient as the number
of underlying assets increases. An one dimensional control variate can also
preferred, for example correlations comparisons.

4.1.2 Hedging in the Jump Diffusion Model

When simulating the Asian option in the jump diffusion model, defined in
section 2.3, good variance reduction may be of even greater value. This is
beacuse of a more time consuming simulation process in itself, but also a
higher variance due to the effect of the jumps. In this case the geometric
Asian option, used in the standard model, can not be used as a control
variate. This is because no analytical pricing formula exist for the option
under Merton’s [14] asset dynamics. Instead an approximative delta hedge
can be constructed and implemented as a control variate as in section 3.3.

To obtain a delta approximation formula, first an approximation formula for
the arithmetic Asian option is derived, from which then delta is calculated.
A good existing approximation formula for the Asian option in a standard
framework is proposed by Levy [12]. Levy’s approximation is derived by
moment matching the sum in (4.1) to a log-normal distribution. These
results are extended to include the jump diffusion part, referring to appendix
A.3 for details. The approximation formula with the moment matching
parameters becomes

C
(
S(t0)

)
= e−rT

(
M1N(d1)−KN(d2)

)
, (4.4)

where N denotes the normal distribution function and M1, is given by

M1 =
S(t0)
N

N∑
i=1

erti

and d1 and d2, are given by
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d1 =
µM − lnK + σ2

M

σM
,

d2 = d1 − σM =
µM − lnK

σM
,

where µM and σM denotes moment matched parameters, derived in ap-
pendix A.3. The approximation formula in itself turns out not to be par-
ticularly good, despite the good approximation in the standard model. The
delta will, however, do as a control variate.

Lemma 4.1. An approximative delta formula is given by

∂C
(
S(t0)

)
∂S(t0)

= e−rT
(

∂M1

∂S
N(d1) + KN′(d2)

∂σM

∂S

)
, (4.5)

where

∂σM

∂S
=

1
M2

∂M2
∂S − 2

M1

∂M1
∂S

2σM
,

with the moments, M1 and M2, derived in appendix A.3.

Proof. Differentiating formulation (4.4) with respect to S, where the time
variable is suppressed, yields

∂C

∂S
= e−rT

(
∂M1

∂S
N(d1) + M1N′(d1)

∂d1

∂S
−KN′(d2)

∂d2

∂S

)
, (4.6)

further differentiating the relation d2 = d1 − σM , yields

∂d2

∂S
=

∂d1

∂S
− ∂σM

∂S
. (4.7)

With the relation (4.7), equation (4.6) can be rewritten to
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∂C

∂S
= e−rT

(
∂M1

∂S
N(d1) + KN′(d2)

∂σM

∂S
+
(
M1N′(d1)−KN′(d2)

) ∂d1

∂S

)
.

By the properties of the normal probability density function, N′(d2) can be
rewritten to

N′(d2) =
1√
2π

e−
1
2
d2
2 =

1√
2π

e−
1
2
(d2

1−2σMd1+σ2
M )

= N′(d1)
1
K

eµM+ 1
2
σ2

M = N′(d1)
M1

K
,

which reduces (4.6) to (4.5).

A special case of the formula needs to be derived so it can handle in-period
valuation, which is necessary when hedging at different time-steps.

Lemma 4.2. The in-period delta approximation formula, where asset values
S(t0), . . . , S(tn), 0 ≤ n < N , are known, is given by

∂C
(
S(t)

)
∂S(t)

=
N − n

N
e−rT

(
∂M1

∂S
N(d1) + Kin−periodN′(d2)

∂σM

∂S

)
,

for tn ≤ t < tn+1, where

Kin−period =
N

N − n

(
K − 1

N

n∑
i=1

S(ti)

)
,

with all summations in the moment calculations in appendix A.3 derived
from n + 1 to N and averaged by N − n.

Proof. By rewriting the payoff function with the already known asset values
S(t0), . . . , S(tn), 0 ≤ n < N , as
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max

(
1
N

[
n∑

i=1

S(ti) +
N∑

i=n+1

S(ti)

]
−K, 0

)

= max

(
1
N

N∑
i=n+1

S(ti)−
[
K − 1

N

n∑
i=1

S(ti)

]
, 0

)

=
N − n

N
max

(
1

N − n

N∑
i=n+1

S(ti)−
N

N − n

[
K − 1

N

n∑
i=1

S(ti)

]
, 0

)
,

results in the price function, for tn ≤ t < tn+1,

C
(
S(t)

)
=

N − n

N
e−rT

(
M1N(d1)−Kin−periodN(d2)

)
. (4.8)

Applying the derivation to lemma 4.1 to (4.8) and consider S(t0), . . . , S(tn),
in the strike price as constants gives the result. The proof can also be found
in Dennemark [4].

The delta approximation for a put option can be obtained from the Asian
put-call parity, which can be found in Dennemark [4].

Implementation now proceeds according to formulation (3.5). The resulting
variance reduction turns out to be quite good, but the additional computa-
tional time take away some of the glory. For example, a standard deviation
reduction by 6 times, for a single asset, increases the computational time to
almost the double. Further, the gamma hedge is also implemented, but the
additional variance reduction is minimal to the cost of many extra calcula-
tions why these results are omitted.

Underlying baskets are handled in the same manner as in the geometric
Asian case, by a geometric portfolio. In the jump diffusion model, the ex-
pected value of VG(t) is derived in appendix A.2. Further, the drift and
moment matching formula have to be adjusted, which is described in ap-
pendix A.3, resulting in that the jump parameters must be specified for each
asset.
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4.2 The Cliquet Option

In the last decade, the so called Cliquet option has contributed to somewhat
safer investment opportunities in the derivatives market. A global floor level
makes the losses bounded at a predetermined level, while at the same time
gains in intervals of the options lifetime is capitalized. These properties are
usually desirable for options included in structurded products. The payoff in
each interval, called reset period, is determined by the rate of return

Rn =
S(tn)

S(tn−1)
− 1,

which then are truncated with a cap, C, and a floor, F , according to

R∗
n = max(min(Rn, C), F ) F < C. (4.9)

Most generally the Cliquet option is now determined by summing the trun-
cated returns over the reset periods and truncate with a global cap, Cg, and
global floor, Fg. Accordingly the price function is given by

C
(
S(0)

)
= e−rT EQ

[
B ·max

(
min

(
N∑

i=1

R∗
i , Fg

)
, Cg

)]
, (4.10)

where B is a nominal amount. Further, the following limit relation is to
be satisfied, NF < Fg < Cg < NC, where N is the number of reset times.
Each payoff in (4.9) can be determined analytically and is actually a bull
call spread. The problem for a closed formula arises in the outer option
structure in (4.10). Since each return level can be determined analytically,
these will first be tried as control variates. Another alternative is to use the
similar start forward option which also is a spread option.

4.2.1 Control Variates with Bull Call Spreads

The analytical solution to the truncated rate of return can be determined
by rewriting the expression (4.9), easiest by drawing a figure, to
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R∗
n = max(min(Rn, C), F ) = F + max(Rn − F, 0)−max(Rn − C, 0)

= F + max
(

S(tn)
S(tn−1)

− (1 + F ), 0
)
−max

(
S(tn)

S(tn−1)
− (1 + C), 0

)
.

This is just a sum of constant and two call options payoffs. The spread
S(tn)/S(tn−1) is given by

S(tn)
S(tn−1)

= exp
{(

r − 1
2
σ2
)
(tn − tn−1) + σ

(
W (tn)−W (tn−1)

)}
,

indicating that the spread option can be calculated with standard dynamics
and initial price 1. If Black and Scholes formula is applied the price has to
be adjusted by the discount factor, that is max(Rn−F, 0) = er(tn−tn−1)C(1),
where C denotes the Black and Scholes call option price. R∗

n are then
calculated at every reset point and implemented as multiple control variates
or summed together to one control variate.

The additional calculation needed to implement this control variate are, for a
single asset, few. Since the truncated returns, max(min(Rn, C), F )), already
have been determined in the ordinary simulation procedure, they do not have
to be recalculated. For a basket of underlying assets the geometric portfolio,
derived in appendix A.1, is again employed and these calculations have to be
performed. Since the control variate is constructed with ordinary European
options, no complications except switching to the Merton option pricing
formula (2.6) will appear when introducing the jump diffusion model 2.3.
When baskets appear, though, the geometric portfolio will not be used, due
to some parameter estimation problems. Instead multiple control variates
is applied with the bull call spreads of each underlying asset.

4.3 Discrete Dividends

In the simulation process, underlying assets are adjusted for discrete div-
idends after the raw trajectories have been simulated. Discrete dividends
yields a much more accurate model of reality than using a continuous divi-
dend yield. Unfortunately, discrete dividends are not easy implemented to
analytical formulas, if at all possible.

To handle discrete dividends in the control variate setup they are adjusted in
the strike price for, for example an European option. This is done, by adding
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the sum of dividends paid out during the lifetime of the option, inflated by
the discount factor, to the strike price. Then the raw trajectories (without
dividend adjustment) can be used for the control variates. For the Asian
option this procedure becomes, adding the mean of the cumulative sum
of dividends inflated by the discount factor to the strike price. Dividend
adjustment for the Asian option can accordingly be expressed by the new
strike price

Kdividend = K +
1
N

N∑
i=1

i∑
k=1

er(T−tk)D(tk),

where D(tk) is the dividend paid between time tk and tk−1. In the case of
the Cliquet option these operations has to be made to adjust the floor and
cap for the dividend effect.

5 Results

In this section some results about simulations efficiency improvement will
be presented. The results will not be presented in terms of absolute vari-
ance reduction nor simulation-time. Instead the results are presented as the
simulation-time ratio of crude Monte Carlo in terms of the variance reduced
Monte Carlo, that is,

Efficiency ratio =
time crude Monte Carlo

time variance reduced Monte Carlo

where time denotes the simulation-time until a specified convergence limit
is reached. Presenting the results in this way makes them more indepen-
dent from the simulation procedure itself, as well as computer speed and
other simulation specific settings. The test will be rather general and not
carried out in a range of different setups, so the results will mainly indicate
which ratios that can be achieved. Since the ratios tend to differ between
simulations for some setups, a mean of 3 ratios will be presented.

Simulation parameters are specified in table 1 for the purpose of the re-
simulation model, where it is of interest to know the difference of the vari-
ables. The re-simulation will be performed with values one day before and
one week before the current simulation. For simplicity the interset-rate,
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Simulation parameters
Asset Interest Volatility Asset Price
No rate Current -1 Day -1 Week
1 0.05 0.1 100 103 110
2 0.05 0.2 100 95 92
3 0.05 0.3 100 102 103
4 0.05 0.4 100 103 95
5 0.05 0.5 100 97 103
6 0.05 0.5 100 96 94
7 0.05 0.4 100 98 97
8 0.05 0.3 100 100 95
9 0.05 0.2 100 101 105
10 0.05 0.1 100 101 92

Table 1: Asset parameters used in the simulation
process with current prices, 1 day before and 1
week before.

volatility and correlation will be assumed to be constant, leaving only the
asset price to change over time.

Further the assets are for simplicity assumed to be independent and have
the same jump diffusion parameters, namely intensity λ = 10 and jumps
Y ∼ LN(−0.03, 0.12). The tests will be performed for options written on
asset 1, a basket of asset 1-5 and a basket of asset 1-10. The new re-
simulation method will be tested against the other method described for the
Asian and Cliquet option, in the standard as well as jump diffusion model.
The convergence limit tend to have a rather large impact on the efficiency
ratio. In these tests, simulation is terminated when the standard error is
below 0.001.

The Asian option is a call option with 3 years lifetime and averaging points
every second month, the strike price is finally set to be at the money.

In table 2 it is noted that the geometric Asian control variate is outstanding
for a contract with a single underlying asset but the efficiency improve-
ment decrease as the number of underlying assets increase. Efficiency ratios
achieved with the delta hedge control variate are poor, all increasing the
simulation-time. Although the absolute variance reduction is good, it is
offset by the additional calculations associated with the hedging technique.
The re-simulation method can be seen to perform better on the two basket
options and the efficiency ratio seems more independent of the basket size.
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Asian call - Black and Scholes model
Control Variate

Basket Geometric Delta Re-simulation Re-simulation
Size Asian Hedge -1 Day -1 Week
1 17.83 0.49 5.11 2.50
5 2.33 0.52 6.09 2.97
10 2.56 0.63 6.34 2.59

Table 2: Increased simulation efficiency for the
Asian option.

As mentioned before, the delta hedge control variate contribute with fairly
good variance reduction but the additional calculation time reduces the
efficiency ratio. The results are not very good as table 3 indicates. However,
the results are better than in the standard framework. This is because of
that crude simulation take much longer time in the jump model and make
variance reduction more valuable. The re-simulation on the other hand has
an even greater impact on the efficiency ratio in the jump diffusion model.
The reason for this is probably, again, that crude simulation is more time
consuming in Merton’s model.

Asian call - Merton model
Control Variate

Basket Delta Hedge Re-simulation Re-simulation
Size -1 Day -1 Week
1 2.75 10.81 5.18
5 1.88 8.94 4.47
10 1.83 8.39 4.22

Table 3: Increased simulation efficiency for the
Asian option in the jump diffusion model.

The Cliquet option tested has F = −0.05, C = 0.05, Fg = 0 and Cg = 0.5,
the life time is 3 years and the reset time is every second month.

For the Cliquet option the re-simulation was expected to perform better
than for the Asian option. Since the price change, most likely, only will have
effect in one return period, only that period will be differ the simulations
appart. The results for single asset options in table 4 is yet a nice surprise.
Re-simulation results in a good efficiency ratio for all contracts and again
seems rather independent of the basket size. Somewhat surprisingly, the call
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Cliquet - Black and Scholes model
Control Variate

Basket Bull Call Spreads Re-simulation Re-simulation
Size -1 Day -1 Week
1 1.78 364.76 195.40
5 1.00 12.28 7.31
10 1.18 12.18 8.41

Table 4: Increased simulation efficiency for the
Cliquet option.

spreads results in a poor efficiency ratio, which not had been expected.

In the jump diffusion model, the re-simulation again shows some remarkable
results for the Cliquet option on a single underlying asset. An interesting
result is that the one week re-simulation performs better that the one day
re-simulation for the single asset option. The efficiency ratios are in this
model even poorer with the call spread control variate. The poor control
variate is because the call spreads is much more time consuming to compute
in the Merton model. In this setup, simulation-time even increases. Call
spreads achieve a slight variance reduction, but the reduction is totally offset
by the additional computational time. The poor results from the call spread
method clearly indicates that it is not appropriate as control variate.

Cliquet - Merton model
Control Variate

Basket Bull Call Spreads Re-simulation Re-simulation
Size -1 Day -1 Week
1 1.38 354.49 474.07
5 0.21 15.10 7.34
10 0.15 15.58 7.43

Table 5: Increased simulation efficiency for the
Cliquet option in the jump diffusion model.

Results are as mentioned only presented for one option setup for each op-
tion so further testing of the re-simulation model is of value. However, tests
performed with different option setup and underlying asset yields efficiency
ratios at the same levels for the re-simulation method. The geometric Asian
control variate have a tendency to perform less good as the option become
more out of the money. This effect is not at all unexpected since the geo-
metric average always is lower than the arithmetic average.
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6 Conclusions

In this thesis, three different approaches to control variates (ordinary control
variates, hedging and re-simulation) have been presented and tested. The
new re-simulation method presented has, as seen, impressive impact with
nearly 500 times faster simulation-time for some Cliquet options. For the
remainder of option setups tested, the re-simulation method mostly outer-
perform the other methods, except for the single asset Asian option where
the geometric Asian option serves as an excellent control variate.

The hedging technique is a very interesting approach to control variates and
the technique can contribute with significant variance reduction. Though,
the high computational cost for calculating the hedging parameters limit the
simulation speed up. A more efficient estimation procedure of the hedging
parameters would increase the efficiency ratio for this method. Simpler
approximation formulas may be able to produce good variance reduction in
less time, which may yield a higher efficiency ratio. The importance with
the delta approximation, is that the hedge is driven in the right direction.
The magnitude of the replicating hedge can then be adjusted with the β
coefficient.

Mostly the speed up for re-simulation over crude Monte Carlo is above 10
times for re-simulation within one day. In reality prices are most likely up-
dated several times each day so the efficiency ratios are likely to further
be improved in these cases. Ordinary and hedging control variates tested,
deliver different results depending on the number of underlying assets. Re-
simulation, however, seems more independent regarding the underlying bas-
ket size.

Further investigation of the re-simulation model could include applying some
variance reduction technique to the additional trajectory part that is sim-
ulated. Important sampling, one of the most powerful variance reduction
techniques, is easy implemented when just raw trajectories are simulated.
The use of important sampling, to change to a variance minimizing drift in
the control variate simulation, could further decrease the variance, when the
performance is less good. Implementing a this simple form of importance
sampling should not increase computational time remarkable.
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A Additional Calculations

A.1 Weighted Geometric Portfolio

By equation (2.2), the weighted geometric average can be expressed as

VG(t) =
d∏

i=1

Si(t)qi = VG(0) exp
{ d∑

i=1

qi(µi −
1
2
σ2

i )t +
d∑

i=1

d∑
j=1

qiAijWj(t)
}
,

(A.1)

where VG(0) =
∏d

i=1 Sqi
i (0) is the weighted geometric mean of the asset

values at time = 0. The variance parameter in (A.1) can be calculated as
follows

σ2
G = qAA′q′ = qΣq′.

The geometric drift parameter µG =
∑d

i=1 qiµi. The expected value of VG(t)
is now, however, not VG(0)eµGt, but

E
[
VG(t)

]
= V (0) exp

{(
µG −

1
2

d∑
i=1

qiσ
2
i +

1
2
σ2

G

)
t
}
,

due to the new variance parameter in (A.1). Interpreting the difference

δ =
1
2

( d∑
i=1

qiσ
2
i − σ2

G

)
, (A.2)

as a continuous dividend yield, the standard Black and Scholes can be ap-
plied to evaluate the option price.

A.2 Weighted Geometric Portfolio with Jump Diffusions

In a geometric portfolio in the jump diffusion model, the same results as
in appendix A.1 hold for the GBM part, but the jump diffusion part yields
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some extra calculations. For the jump diffusion part the following should
hold

E
[
e
−λ(φ(1)−1)+

∑N(t)

j=1
Yj
]

= 1, (A.3)

that is, it is a martingale. In a geometric portfolio with weights qi, relation
(A.3) do not hold anymore. Instead the exectation can be calculated as in
(2.4) to be

E
[
e
−qiλ(φi(1)−1)+qi

∑Ni(t)

j=1
Y i

j

]
= e−qiλ(φi(1)−1)+λ(φi(qi)−1),

which results in that the expected value of the weighted geometric portfolio
V (t) is

E
[
VG(t)

]
= VG(0)e(µG−δ−γ)t,

where γ =
∑d

i=1−qiλi(φi(1) − 1) + λ(φi(qi) − 1) and δ and µG is given in
A.1.

A.3 Moment Matching

In this section the calculations leading to the approximative delta function
for an Asian option in the jump diffusion model are presented. The moment
matching approximation assumes that

S̄A =
1
N

N∑
i=1

S(ti) ∼ LN(µM , σ2
M ). (A.4)

The first two moments of A should now be matched by the first two moments
of (A.4). The moments of A is given by

M1 = EQ[S̄A] = eµM+ 1
2
σ2

M ,

M2 = EQ[S̄2
A] = e2(µM+σ2

M ). (A.5)

34



From (A.5) the mean and volatility parameters are solved to be

µM = 2 lnM1 −
1
2

lnM2,

σM = lnM2 − 2 ln M1. (A.6)

Further the first moment of (A.4) is given by

M1 =
S(t0)
N

N∑
i=1

erti ,

and the second moment can, for clarity, be calculated in two parts one for
the GBM part and one for the jump process. Beginning expectation of the
GBM part for u < t

EQ
[
S(t0) exp

{
(µ− 1

2
σ2)u + σW (u)

}
S(t0) exp

{
(µ− 1

2
σ2)t + σW (t)

}]
= S(t0)2 exp

{
(µ− 1

2
σ2)(u + t)

}
EQ
[
exp

{
σ
(
W (t)−W (u)

)
+ 2σW (u)

}]
= S(t0)2 exp

{
(µ− 1

2
σ2)(u + t)

}
exp

{1
2

(
σ2(t− u) + 4σ2u

)}
= S(t0)2 exp

{
µ(t + u) + σ2u

}
.

The expectation for the jump diffusion part for u < t, using the expectations
derived in (2.4), becomes

EQ

[
exp

{N(u)∑
j=1

Yj +
N(t)∑
j=1

Yj

}]
= EQ

[
exp

{
2

N(u)∑
j=1

Yj +
N(t)∑

j=N(u)+1

Yj

}]
= exp

{
λ(φ(2)− 1)u + λ(φ(1)− 1)(t− u)

}
.

A general formula for the second moment can now be expressed
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M2 =
1

N2

N∑
i=1

N∑
j=1

EQ
[
S(ti)S(tj)

]

=
S(t0)2

N2

N∑
i=1

N∑
j=1

exp
{
µ(ti + tj) + σ2 min(ti, tj)

}
× exp

{
λ(φ(2)− 1) min(ti, tj) + λ(φ(1)− 1)|ti − tj |

}
.

Now the mean and variance parameters in (A.6) can be calculated by the
derived moments, M1 and M2. The Black and Scholes formula can then be
used by adjusting the drift and volatility to be at annual rate.

If the underlying object is a geometric basket of assets, as the case frequently
is in this thesis, a problem arises when the basket parameters are derived.
This is due to that the jump parameters not directly can be converted into
geometric basket parameters. This means that the relation

N(t)∑
j=1

Xj = q1

N1(t)∑
j=1

Y 1
j + · · ·+ qd

Nd(t)∑
j=1

Y d
j , (A.7)

do not hold if Xj normally distributed. Thereby the process (A.7) has to
evaluated for the drift adjustment and jump part in the moment matching.
The new drift adjustment is calculated as follows

E

exp
{
q1

N1(t)∑
j=1

Y 1
j + · · ·+ qd

Nd(t)∑
j=1

Y d
j

}
= exp

{
λ1t(φ1(q1)− 1) + · · ·+ λdt(φd(qd)− 1)

}
= exp

{ d∑
k=1

λkt(φk(qk)− 1)
}
,

indicating that the drift should be adjusted by
∑d

k=1 λk(φk(qk)− 1). In the
same manner the moment matched jump part can be determined to, for
u < t,
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EQ

[
exp

{
q1

N1(u)∑
j=1

Y 1
j + q1

N1(t)∑
j=1

Y 1
j + · · ·+ qd

Nd(u)∑
j=1

Y d
j + qd

Nd(t)∑
j=1

Y d
j

}]

= EQ

[
exp

{
d∑

k=1

2qk

Nk(u)∑
j=1

Y k
j + qk

Nk(t)∑
j=Nk(u)+1

Y k
j

}]

= exp
{ d∑

k=1

λk(φk(2qk)− 1)u + λk(φk(qk)− 1)(t− u)
}
.

The jump diffusion part in moment M2 should be replaced by

d∑
k=1

λk(φk(2qk)− 1) min(ti, tj) + λk(φk(qk)− 1)|ti − tj |,

when a geometric basket is used. For this purpose, the jump parameters λ,
a and b must be specified for each asset, while remaining parameters are to
be specified as geometric basket parameters.
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