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Abstract

Missing data occur invariably in longitudinal studies. Subjects
may drop out before the study terminates, or be lost to follow-up
in such a way that no further measurements are provided after the
time of dropout. Statistical methods which ignore the mechanism for
dropout will lead to biased inference. Generally, which method is to
be considered for handling incomplete data, depends on which type of
dropout mechanism it is. As the focus in this report is on dropouts
missing at random, i.e., the probability of dropout is related to the
observed responses, inverse probability weights (IPW) approach is be-
ing applied to account for dropouts. The underlying idea behind IPW
methodology is, each available observation at a particular occasion is
given a weight that is inverse cumulative probability of being observed
at that time. To describe how inverse probability weights can be ap-
plied in marginal regression model, we use the longitudinal data on
body weights from 550 rats who were randomized in a clinical trial to
receive a daily dose of new substances of concentration 0 or 1.0 , 5.0
and 25-36 mg/kg. The primary interest lies on comparison of control
and dose groups. However, the analysis of body weight data is compli-
cated by dropouts due to death, in the sense that rats with low body
weight at one measurement occasion tend to drop out of the trial at
the next occasion. Based on this longitudinal data, results from IPW
approach will be compared with those obtained from an ’unweighted’
analysis.
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E-mail: fk03yng@math.su.se. Supervisor: Joanna Tyrcha.
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1 Introduction

In a longitudinal clinical study, each individual or subject is measured repeat-
edly on the same outcome at a number of time points. A common problem
with analyzing longitudinal data is not all responses are observed at all oc-
casions, resulting in a large class of patterns of missing values. In general,
there are two distinguishable types of missing data: intermittent, in which
an individual’s response can be missing at one follow-up time and then be
measured at the later follow-up time, and dropouts, in which once an individ-
ual drops out from the study prematurely, no subsequent repeated measures
of the response are obtained on that individual. The latter is referred as
monotone missing data pattern. Individuals drop out from the study for var-
ious reasons, include death, adverse reactions, lack of improvement, recovery,
undesirable side effects and other factors unrelated to specific treatment or
outcome.

In the presence of dropouts, the standard methods of longitudinal analysis
may yield biased estimates and standard errors. Thereby the choice of ana-
lytical method has important implications on the estimates of the outcome
variable and the relationship between outcome and covariates. Thus the
mechanisms producing the missing observations must be considered. Follow-
ing the terminology described by Little and Rubin [11] and Fitzmaurice et
al [5] for longitudinal data, dropout mechanisms can be classified into one
of three categories. First, an individual is dropping out completely at ran-
dom (MCAR) if the probability of dropout at each occasion is independent
of both the observed and the missing values of the response. Second, an
individual is dropping out at random (MAR) if the probability of dropout
at each occasion is related to the observed responses, but not the missing
values. A more detail of MAR is outlined in section 4.1. Third, a dropout
mechanism is non-ignorable if the probability of dropout at each occasion
depends on unobserved responses.

There is a large literature on statistical methodology for handling different
types of dropout mechanisms mentioned above. When inferences about the
average response in the subpopulation sharing a common covariate vector are
the focus, fitting marginal models is the most appropriate. One of the chief
attractions with marginal models is it does not require complete specification
of the joint distribution of the longitudinal response but rather is based only
on specification of the means and variances of the responses. When the
data are MCAR, the marginal approach will give consistent estimates for the
parameters. While under MAR or non-ignorable assumptions, the estimating
equations are not unbiased and they fail to provide consistent estimates.
Inverse probability weighted estimating equations described in Robins et al
[14] have been developed to deal with biases that may result from incomplete
data which are MAR. Here the underlying idea is, each observed response
is given a weight that is inverse cumulative probability of being observed in
order to adjust for dropouts.
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The main focus of this report is on the application of marginal regression
model using inverse probability weights to adjust for dropouts from a clinical
trial of some substances of a new drug that are tested in rats. In the trial, 234
of 550 rats dropped out due to death, leaving behind an amount of missing
measurements. The missing responses (body weights) are assumed to be
MAR, since rats who are observed to be weaker (via their previous observed
body weights) are more likely to drop out when they reach a certain value
of the body weight, as long as their probability of dropout does not further
depend on their missing responses.

In the foregoing, the report is structured as follows. A review of general
linear models, including distributional assumption, parameter estimation and
statistical inferences is outlined section 2. Marginal model for continuous
response with different covariance patterns is considered briefly in section
3. Dropouts and weighting approach are set out in section 4. Section 5
describes the application of the weighting method in which, the results are
compared to those in an unweighted method. Conclusions and discussion are
also involved in this section.

2 General linear models for longitudinal data

The term ’ longitudinal data ’ as used in this report refers to the data in
form of repeated measurements on the same unit (human, plan, plot, sample
etc.) over time. That is, the same response is measured again and again
on the same individual under a fixed time interval. The scientific questions
of interest in this kind of data, often involve not only the usual questions,
such as how the mean response differs across treatments, but also how the
change in the mean response over time differs and other issues concerning the
relationship between response and time. Thus, it is necessary to present the
situation in term of a statistical model that acknowledges the way in which
the data were collected in order to address these questions. In the following,
we will study the ways to model these data and explore the approaches to
analyzing them. To begin, we introduce a general linear model with response
variable that is continuous and assumed to have an approximate multivariate
normal distribution.

2.1 Notation

Following the description of linear models of Fitzmaurice et al [5] for longi-
tudinal data, we assume that there are n individuals and each individual i is
to be measured repeatedly on a set of ti times (i =1,. . . ,n). The notation ti

allows different individuals to have unequal numbers of observations, which
implies the possible presence of missing values. We can form ti x 1 response
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vector

Yi =




Yi1

Yi2
...

Yiti




where Yij is the outcome variable for the ith individual at time j, i =1,. . . ,n
and j =1,. . . ,ti. Each observation Yij has an associated set of covariates
that may be either regression-type continuous variables or dummy variables
indicating class membership. Let Xij denote the vector of covariates with
length p.

Xij =




Xij1

Xij2
...

Xijp




Next we consider a linear regression model for Yij , which is modeled as a
linear function of covariates as

Yij = β1Xij1 + β2Xij2 + . . . + βpXijp + eij (1)

where β = (β1, β2, . . . βp) is a p × 1 vector of unknown regression param-
eters and eij are unknown independent and identically distributed normal
random errors, with mean zero and variance σ2, representing deviations of
the responses from their corresponding predicted means

E(Yij | Xij) = β1Xij1 + β2Xij2 + . . . + βpXijp

With longitudinal data, we expect eij to be correlated within individuals.
That is

Cov(eij, eik) 6= 0 (j 6= k)

The preceding equations in (1) can be written using vectors and a matrix as
follows:




Yi1

Yi1
...

Yiti




=




Xi11 Xi12 . . . Xi1p

Xi21 Xi22 . . . Xi2p
...

...
. . .

...
Xiti1 Xiti2 . . . Xitip



×




β1

β2
...

βp




+




ei1

ei2

. . .
eiti




Note that the first column of the matrix Xi consists of ones corresponding to
the intercept β1, for all i and j. For simplicity and extendibility, this entire
system can be presented in form

Yi = Xiβ + ei,

where Yi = (Yi1, . . . , Yi2, . . . , Yiti)
′ denote the ti × 1 vector of responses, Xi

is ti × p matrix of covariates and ei = (ei1, ei2, . . ., eit)
′ is an ti × 1 vector of

random errors.
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2.2 Covariance matrix

We have noted previously that in longitudinal study, each individual is ob-
served at several points over time. Measures on different individuals are
independent, while repeated measures on the same individual are not, i.e.
correlated, so covariance concern is only with the latter. The covariance
structure refers to the variances at individual times and to correlation be-
tween measures at different times. There are basically two aspects of the
correlation. The first one is, two measures on the same individual are corre-
lated simply because they share common contributions from the individual.
This is due to variation between individuals. Second, measures on the same
individual that are taken at adjacent times are typically more highly corre-
lated than measurements taken several time points apart. This is covariation
within individuals. Also, variances of repeated measurements are not usually
constant over study time. In context to longitudinal data, heterogeneity of
variance across occasions can be accounted by allowing the diagonal elements
of the covariance matrix to differ.

Let Yi be a response vector that contains ti repeated measurements for in-
dividual i with elements Yi = (Yi1, Yi2 . . . Yiti). Then the variances and the
covariances or correlation for Yi can be combined into a covariance matrix

Cov




Yi1

Yi1
...

Yiti




=




V ar(Yi1) Cov(Yi1, Yi2) . . . Cov(Yi1, Yiti)
Cov(Yi2, Yi1) V ar(Yi2) . . . Cov(Yi2, Yiti)

...
...

. . .
...

Cov(Yiti , Yi1) Cov(Yiti , Yi2) . . . V ar(Yiti)




Of note, we allow Cov(Yi) to be ”unrestricted” or ” unstructed”, which means
it can take on any valid pattern of variances and correlations (as long as it
is a proper covariance matrix, i.e. that it is positive definite). An overview
of different covariance structures is described in section 3.2.

2.3 Multivariate normal distribution

In general linear models, the vector of continuous responses Yi is often as-
sumed to have a multivariate normal distribution with mean

E(Yi) = µi = Xiβ

and covariance matrix
Cov(Yi) = Σi

The multivariate normal probability density function has the following rep-
resentation

f(yi) = (yi1, yi2, . . . , yiti) = (2π)ti/2 | Σi |
1/2 exp{−

1

2
(yi−Xiβ)′Σi

−1(yi−Xiβ)}
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where | Σi |
1/2 is the determinant of Σi (also known as the generalized vari-

ance).
Some well known properties of multivariate normal distribution are

• f(yi) is completely determined by µi = Xiβ and Σi

• and depends in a large extent on (yi − Xiβ)′Σ−1
i (yi − Xiβ)

The latter has interpretation in terms of a measure of distance.

2.4 Parameter estimation

Estimation of the unknown parameters β and Σi is often done using the stan-
dard method of maximum likelihood (ML). The idea behind ML estimation
is to determine values of β and Σi that best predict the observed data. These
values are obtained by maximizing a so-called likelihood function. The like-
lihood function is defined by using the density function of the observations.
Normally, with independent observations, the likelihood function is simply
the product of the individual univariate normal density functions for Yij. In
the case where observations on the same individual are not independent, i.e.
correlated, the likelihood function has to be based on the joint density func-
tion for the vector of repeated measures. To find the maximum likelihood
estimate of β in the setting of correlated data we first make the assumption
that Σi is known. Given that Yi = (Yi1, Yi2 . . . Yiti)

′ is multivariate normal
distributed, the likelihood function can be written in the form

L =
n∏

i=1

(2π)ti/2 | Σi |
1/2 exp{−

1

2
(yi − Xiβ)′Σ−1

i (yi − Xiβ)}.

To derive the ML-estimate β we have to maximize L with respect to β. For
the normal distribution, an extreme value will always be a maximum. The
maximum value of likelihood function will coincide with the maximum value
of the logarithm of the same likelihood function and if we take the logarithm
of the likelihood function, we will replace the product sign with a summation
sign which makes derivation somewhat easier. Thus, instead of maximizing
L we could equally well maximizing the logarithm of the likelihood function.
The latter is denoted l and is given by

l = −
K

2
log(2π) −

1

2

n∑

i=1

log | Σi | −
1

2

n∑

i=1

(yi − Xiβ)′Σ−1
i (yi − Xiβ)

where K = (
∑n

i=1 ti) is the total number of observations. Since we are maxi-
mizing l with respect to β, all terms that do not include β are eliminated. In
addition, the third term of log-likelihood function has a negative sign which

9



means that we minimize

n∑

i=1

(yi − Xiβ)′Σ−1
i (yi − Xiβ) (2)

Differentiation of (2) with respect to β yields

β̂ = {
n∑

i=1

(X ′
iΣ

−1
i Xi}

−1
n∑

i=1

(X ′
iΣ

−1
i Yi)

The resulting value β̂ is called the generalized least square estimate (GLS).
Suppose that Σi is known, we can then outline some properties of GLS esti-
mator of β. For any choice of Σi, the GLS estimate of β is unbiased

E(β̂) = (
n∑

i=1

X ′
iΣ

−1
i Xi)

−1
n∑

i=1

X ′
iΣiXiβ = β

and has covariance

Cov(β̂) = {
n∑

i=1

X ′
iΣ

−1
i Xi}

−1

In large samples with the meaning that the sample size n, grows larger while
number of repeated measures and model parameter remains fixed, the distri-
bution of β has the form

β̂ ∼ N(β, {
n∑

i=1

(X ′
iΣ

−1
i Xi}

−1)

So far we have based estimation of β on the assumption that Σi is known but
usually Σi is unknown and has to be replaced by an estimate. Estimation
of Σi is done in similar manner as with estimation of β. That is we obtain
estimate of Σi by solving the derivative of the log-likelihood function with
respect to Σi and then finding the values of Σi that make those derivatives
equal to 0. However, this equation is non-linear and has to be solved by
using numerical algorithms that maximize the likelihood. A commonly used
algorithms is Newton-Raphson (see section 2.6). Once the iterative estimate

of Σi, say Σ̂i, has been found, it is used to caculate the GLS-estimate of β,

β̂ = {
n∑

i=1

(X ′
iΣ̂

−1
i Xi}

−1
n∑

i=1

(X ′
iΣ̂

−1
i Yi) (3)

In larges samples, the resulting estimator of β in (3) will have all the same
properties as when Σi is known.
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2.5 Residual maximum likelihood estimation

Restricted or residual maximum likelihood estimation (REML) is an alter-
native method to find the best unbiased estimator of Σi since it is a well
known fact that ML-estimates of Σi are downward biased in small samples
( e.g. the diagonal elements of Σi are underestimated). To get an idea of
what REML is and how it differs from ML, we will consider the case where
observations are independent, i.e. each observation Yij is univariate normal
distributed with mean, µij = X ′

ijβ and constant variance, σ2. Thus, the log
likelihood function is defined as

l = −
K

2
log(2πσ2) −

1

2σ2

n∑

i=1

ti∑

j=1

(Yij − Xiβ)2

Maximizing l with respect to σ2 gives

σ̂2 =
n∑

i=1

ti∑

j=1

(Yij − X ′
ijβ̂)2/K

where K = n × ti. The expected value of σ2 is

E(σ̂2) = (
K − p

K
)σ2

where p is the dimension of β. This indicates that ML-estimate of σ2 is biased
if the number of observations is small relative to the number of parameters
and underestimates σ2. The bias arises because the ML-estimate has not
regarded the fact that β, also, is estimated. That is, in the estimator of σ2

we have replaced β by β̂. This has led to the development of REML, where
unbiased estimator of σ2 can be obtained. The basic idea behind REML is
to eliminate the parameters β from the likelihood so that it is defined only in
terms of σ2. This can be done by using the likelihood for the residuals which
will depend only on σ2, and not on β. Suppose that a linear regression for
Yij is

Yij = Xijβ + eij

where eij are residuals (errors) and univariate normal distributed with mean
zero and constant variance σ2. Then the ML-estimate of β is

β̂ = {
n∑

i=1

ti∑

j=1

X ′
ijXij}

−1
n∑

i=1

ti∑

j=1

(XijYij)

We can estimate the residuals by

êij =
n∑

i=1

ti∑

j=1

(Yij − Xijβ̂) =
n∑

i=1

ti∑

j=1

(Yij − Xij(X
′
ijXij)

−1XijYij)
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The ML-estimate of σ2 is computing the variance of the estimated residuals:

σ̂2 =
1

K

n∑

i=1

ti∑

j=1

ê2
ij

In terms of algebra, the ML-estimate of σ2 will be

σ̂2 =
ê′ij êij

K
=

1

K
(Yij − Xijβ̂)′(Yij − Xijβ̂)

=
1

K
(Yij − Xij(X

′
ijXij)

−1XijYij)
′(Yij − Xij(X

′
ijXij)

−1XijYij)

This estimator of σ2 is too small or downward biased because

E(σ̂2) = E(
ê′ij êij

K
) =

K − p

K
σ2

where p is dimension of Xij. The unbiased estimator of the variance of the
estimated residuals, which is the REML estimator, is

s2 =
ê′ij êij

K − p

=
(Yij − Xij(X

′
ijXij)

−1XijYij)
′(Yij − Xij(X

′
ijXij)

−1XijYij)

K − p

and has the expected value E(s2) = σ2. Here, the REML estimator is based
on K − p error contrasts, that is, it is based on what is left over after we
get rid of the regression coefficients β. In the setting of correlated data,
where Yi has a multivariate normal distribution with mean µi = Xiβ and
Cov(Yi) = Σi, REML-estimate of Σi is obtained by maximizing the residual
log likelihood

1

2

n∑

i=1

log | Σi | −
1

2

n∑

i=1

(yi − Xiβ̂)Σ−1
i (yi − Xiβ̂) −

1

2
log |

n∑

i=1

X ′
iΣ

−1
i Xi |

Note that the residual log likelihood includes an extra determinant term that
makes a correction in a manner similar to changing the divisor as in linear
regression above.

2.6 Newton - Raphson Iteration

Residual log likelihood and ML-method described in previous section have no
closed-form solution, therefore an iterative algorithm like Newton-Raphson,
is required to calculate estimates of Σi. Let f(θ) be the residual log likelihood
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function above, where θ are the parameters in Σi that need to be estimated.
From Newton-Raphson procedure a root of

f ′(θ) =
∂f(θ)

∂θ
= 0

can be found which is a maximum. Using only the first order Taylor series
approximation to the function f ′(θ) about θ0, we have

f ′(θ) = f ′(θ0) +
∂2f(θ)

∂θ∂θ′
(θ − θ0) = 0

Setting f ′(θ) to 0 we obtain the root

θ1 = θ0 −

[
∂2f(θ)

∂θ∂θ′

]−1

f ′(θ0)

Now, θ1 can be replaced by θ0 and the Newton-Raphson algorithm with
(m + 1) iteration will be

θ(m+1) = θ(m) −

[
∂2f(θ)

∂θ∂θ′

]−1
∣∣∣∣∣∣
θ=θ(m)

f ′(θ(m))

2.7 Different types of tests

Hypotheses and confidence intervals on single parameters or groups of pa-
rameters can be tested in different ways in general linear models. To test
hypotheses about β we can make direct use of the ML-estimate β̂ and its
estimate covariance matrix

Ĉov(β̂) = {
n∑

i=1

(X ′
iΣ

−1
i Xi}

−1

2.7.1 Wald test on single parameters

A test of the hypothesis that single parameter βk of vector β is zero can be
made by comparing the Wald statistic

Z =
β̂k√

V̂ ar(β̂k)
(4)

with the appropriate percentage point of the normal distribution. V̂ ar(β̂k)
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is the diagonal component of Ĉov(β̂) corresponding to βk. Similarly

β = β̂k ± zα

√
V̂ arβ̂k (5)

would provide a (1 − α) confidence interval for the parameter βk.

2.7.2 Wald test on groups of parameters

Generally, it is often of interest to make inference about linear combinations
of the components of β. Let L denote a vector or matrix of known weights
(often representing contrasts of interest, for example treatment effects or dif-
ferences between treatment groups). Here L is assumed to be a matrix whose
rows represent different linear combinations for a single linear combination,
that is, L is a row vector. Now, let us suppose that it is of interest to test
H0 : Lβ = 0 and as an example let β = (β1, β2, β3) and L = (0,0,1). The
test H0 : Lβ = 0 will be equivalent to H0 : β3 = 0. A natural estimate of
Lβ is Lβ̂ and the covariance matrix of Lβ̂ is given by LCov(β̂)L′. Thus, the

sampling distribution of Lβ̂ is

Lβ̂ ∼ N(Lβ, LCov(β̂)L′)

As mentioned above, L is a single row vector then LCov(β̂)L′ is a single

value (scalar) and the standard error of the estimator Lβ̂ is obtained as√
LCov(β̂)L′. An approximate confidence interval for Lβ is

Lβ̂ = Lβ̂ ± zα

√
LCov(β̂)L′ (6)

We can also use a t critical value from a t-distribution in place of the normal
critical value, with degrees of freedom chosen in various ways. When testing
H0 : Lβ = 0 versus H1 : Lβ 6= 0, we can form the Wald test statistic

Z =
Lβ̂√

LCov(β̂)L′
(7)

and compare Z to the critical values of the standard normal distribution.
Based on the fact that if Z is standard normal random variable, then Z2

follows a χ2 distribution on 1 degree of freedom. Thus, we could conduct the
identical test by comparing Z2 to the appropriate χ2 critical value with one
degree of freedom. In fact, we can write Z2 equivalently as

W = (Lβ̂)′(LCov(β̂)L′)−1(Lβ̂) (8)

The generalization of L having more than one row and testing more than one
hypothesis is straight forward. If we want to test H0 : Lβ = 0 corresponding
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to H0 : β1 = β2 = β3 = 0 then H0 can be expressed as

Lβ =

(
1 −1 0
1 0 −1

)


β1

β2

β3


 =

(
β1 − β2

β1 − β3

)

If L has r rows, then a simultaneous test of the r contrasts has the same
form in (6)

W = (Lβ̂)′(LCov(β̂)L′)−1(Lβ̂)

which follows a χ2 distribution with r degree of freedom under the null hy-
pothesis.

2.7.3 Likelihood ratio test

Another way to test the regression parameters is the likelihood ratio test.
The likelihood ratio test of H0 : Lβ = 0 versus H1 : Lβ 6= 0 is based on the
following principle. Suppose that we have two models that have the same
fixed effects, except one model has Lβ = 0. The ’full’ model is the one with
all the parameters and the reduced model is the one with Lβ = 0. That is,
the reduced model is simpler than the full model, so that when the reduced
model holds the full model must necessarily hold. The reduced model is said
to be nested within the full model. We can compare two nested models by
comparing their maximized log-likelihoods that are denoted by l̂full and l̂red.
The likelihood ratio statistic will be of the form

G2 = −2log(L̂red/L̂full) = −2[log(L̂red) − log(̂Lfull)] = −2(l̂red − l̂full) (9)

where L̂red and L̂full are likelihood functions for respective model. If H0 is
true (as well as other assumptions) then the test statistic (9) is asymptoti-
cally distributed as a χ2 random variable with degrees of freedom equal to
the number of parameters in full model minus the number of parameters in
reduced model. The likelihood ratio test in (9) indicates that the larger the

differences between l̂full and l̂red the stronger the evidence that the reduced
model is inadequate or H0 is rejected in favor of H1 at level of significance α
if

G2 > χ2
r,1−α

where r is the difference in number of parameters in the two models.

3 Marginal models

Marginal models can be viewed as an extension of general linear models
in the case of correlated data. Additionally, marginal models is the most
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appropriate approach if the main interest is in population average (e.g. mean
effect of treatment within a population) but also includes a model accounting
for within-subject correlation among the responses. As note in Fitzmaurice
et al [5], ”the term marginal is used here to emphasize that the mean response
modeled is conditionally only on the covariates of interest and not on any
random effects or previous responses”. Specially, marginal models do not
require complete specification of the joint distribution of the longitudinal
response, only a regression model for the mean response. That is, marginal
models provide a unified approach to model all types of response variables
including continuous, discrete, survival and count responses.
Let Yi= (Yi1, . . . , Yi2, . . . ,Yiti)’ denote a ti x 1 vector of correlated responses,
where Yij is the outcome variable for the ith individual at time j, i = 1,. . . , n
and j = 1, . . . , ti and Xij = (Xij1, Xij2 . . . Xijp) is p × 1 vector of covariates.
With marginal models, following assumptions are made:

1. The marginal expectation or mean of the response, E(Yij | Xij) = µij,
is modeled as a function of explanatory variables, Xij, through a known
link function

g(µij) = ηij = X ′
ijβ

2. The marginal variance of each Yij is related to the marginal mean, µij

through
V ar(Yij) = v(µij)φ

where v(µij)
1 is a known ’variance function’ and φ is a scale or disper-

sion parameter that may be known or estimated.

3. The correlation between Yij and Yik is a function of the means µij,
µik and perhaps of additional parameters, ρ, that may also need to be
estimated.

More details of these assumptions will be coming shortly. It is worth to
keep in mind that with marginal models the mean and the within-subject
dependence are modeled separately. This separation of the modeling of the
mean response and the correlation among responses has important impli-
cations for interpretation of the regression parameters in the model for the
mean response. That is, the regression coefficients β, are interpreted for the
population rather than for individual or more specifically, they have inter-
pretations in term of how the effects of certain covariates on the marginal
expectations or average responses vary among sub-populations (e.g., different
treatment or exposure groups). Of note, the occurrence of the correlation
does not alter the interpretation of β.

1
v(µij) describes how the variance of the response is functionally related to the mean

of the response.
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3.1 The link function

The link function g(.) is a function relating the expected values, µi of the
response Yi to the predictors Xi1, Xi2 . . . Xip. It has the general form

g(µi) = ηi = β1Xi1 + β2Xi2 + . . . + βpXip = X ′
ipβ

where ηi is often called ’linear predictor’ which is a linear combination of
the vector of unknown regression parameters β = (β1, β2, . . . βp)

′ and the
vector of covariates. The function g(.) must be monotone and differentiable.
For a monotone function we can define the inverse function g(.)−1 by the
relation g−1(g(µi)) = µi. The choice of link function depends on the type
of data. For continuous normal theory data, the link function is an identity
link: g(µi) = µi and the inverse is simply µi = g(µi). For data in the form
of counts from a Poisson distribution, µi is restricted to be positive and the
link function is g(µi) = log(µi) and its inverse has the form µi = exp(g(µi)).
As an final example, for data in the form of proportions, µi is restricted to
the interval [0,1] with a logit link function g(µi) = log(µi/(1 − µi)) and the
inverse is µi = exp(g(µi))/1 + exp(g(µi)).

3.2 Covariance structures for repeated measures

As mentioned earlier, the repeated measurements on the same individual in
longitudinal data are correlated and have to be accounted in some way in
order to get reasonable statistical tests for the parameters. Accounting for
the correlations between measurement occasions usually increase efficiency
or the precision with which we can estimate the regression parameters. In
this section, we present a number of possible covariance or correlation struc-
tures. For these structure, the covariance can be characterized in terms of
the variances and the correlations modeled by a vector of parameters ρ. The
objective is to find a covariance structure that is most suitable for the data
and at the same time is as simple as possible.

3.2.1 Unstructed covariance

In the Unstructed covariance matrix, no assumptions about the variance
(σ2

j ) and covariance of the repeated measures (σjk) are made rather they are
assumed to be completely general or have no patterns. This covariance struc-
ture brings the disadvantage of having a very large number of parameters as
the number of measurements on each individual increase. With ti measure-
ment occasions, the ”unstructed” covariance matrix has ti×(ti+1)

2
parameters:

the ti variances at each time point and the ti×(ti−1)
2

pair wise covariances (or
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correlation),

Cov(Yi) =




σ2
1 σ12 . . . σ1ti

σ21 σ2
2 . . . σ2ti

...
...

. . .
...

σti1 σti2 . . . σ2
ti




When the sample size is small relative to the number of parameters that need
to be estimated, the unstructed covariance structure can cause problem in the
convergence of the iterative procedure. Therefore, it is often an advantage
to impose a more limited structure. Some of such covariance patterns are
introduced below.

3.2.2 Compound symmetry

The Compound symmetry has the simplest structure of all covariance pat-
terns. It is typically characterized by the property that the variance, σ2, and
the correlation, Corr(Yij, Yik) = ρ, for all j and k are assumed to be constant
over time with the restriction that ρ ≥ 0. The structure has the matrix form,

Cov(Yi) = σ2




1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1




This does not agree with the concept that discussed above that correlations
between repeated measurements are larger between measurements close in
time than between measurements far part in time. This property of com-
pound symmetry covariance pattern may not be satisfactory in many cases
with longitudinal data, but there are other covariance structures to be inves-
tigated.

3.2.3 Autoregressive: AR(1)

The first-order autoregressive covariance pattern specifies homogeneous vari-
ances. It also specifies that correlations between observations on the same
individual are not equal, but decrease toward zero with increasing length of
the time interval between observations. Let the parameter σ2 stand for the
variance of an observation and Corr(Yij, Yik) = ρ|k−j‖ stand for the pairwise
correlation between observations, for all j and k and ρ ≥ 0. In AR(1), the
correlation between measurements at times one and two is ρ, between mea-
surements at times one and three is ρ2, between measurements at times one
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and four is ρ3, and so on. That is,

Cov(Yi) = σ2




1 ρ ρ2 . . . ρti−1

ρ 1 ρ . . . ρti−2

ρ2 ρ 1 . . . ρti−3

...
...

...
. . .

...
ρti−1 ρti−2 ρti−3 . . . 1




Note that this structure i best suited to equally-spaced measurements.

3.2.4 Toeplitz

The toeplitz has covariances of the form,

Cov(Yi) = σ2




1 ρ1 ρ2 . . . ρti−1

ρ1 1 ρ1 . . . ρti−2

ρ2 ρ1 1 . . . ρti−3
...

...
...

. . .
...

ρti−1 ρti−2 ρti−3 . . . 1




and the specifications that the variance is constant over time and any pair
of measurements that are equally separated in time have the same correla-
tion. That is, correlation between measurements at times one and two will
be same as correlation between measurements at times two and three, and
correlation between measurements at times five and sex, and so on. Of note
this structure is only appropriate when the measurements are made at equal
(or approximately equal) time intervals. The toeplitz covariance structure
has ti parameters: 1 variance parameter, and (ti −1) correlation parameters.

3.2.5 Heterogeneous AR(1)

Unlike compound symmetry, autoregressive and toeplitz covariances, the het-
erogeneous autoregressive covariance pattern allows variances and correla-
tions of the observations to be different for each time unit and has ti + 1
parameters (ti variance parameters and one correlation parameter).

Cov(Yi) =




σ1
2 ρσ1σ2 ρ2σ1σ3 . . . ρti−1σ1σti

ρσ1σ2 σ2
2 ρσ2σ3 . . . ρti−2σ2σti

ρ2σ1σ3 ρσ2σ3 σ3
2 . . . ρti−3σ3σti

...
...

...
. . .

...
ρti−1σ1σti ρti−2σ2σti ρti−3σ3σti . . . σti

2
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Here the heterogeneous covariance structure is presented for the autoregres-
sive pattern but it could be applied to the compound symmetry and toeplitz
covariance structures as well.

3.3 Selection of model for covariance

Since model selection criteria for the mean requires the correct specification
of the model for the covariance (e.g., confidence intervals and tests of hy-
potheses concerning elements of β depend critically upon the correct model
for the covariance), the first task is to choose a covariance structure that
provide a good fit to the data. If we choose a covariance model with too
little structure (e.g., unstructed), there may be too many parameters to be
estimated with the limited amount of data available. This would leave too
little information available for estimating β and as a result it leads to weaker
inferences concerning β. On other hand, if we choose a covariance model with
too much structure (e.g., compound symmetry), there is more information
available for estimating β. Then there is a potential risk of model misspec-
ification that may lead to biased inferences concerning β. Thus, choosing
among models is to some extend an ’art form’, but a good dose of subjec-
tivity is also involved. In general, there are two approaches for comparing
models for the covariance matrix in order to decide which model to prefer,

1. Restricted ML (REML) when the models are nested.

2. Information criteria when they are not nested:

• Akaike’s Information Criterion (AIC)

• Schwarz’s Bayesian Information Criterion (BIC)

3.3.1 Comparing nested models for the covariance

A standard approach for comparing two nested models, is via the likelihood
ratio tests as desribed in section 2.7.3. The likelihood ratio test is carried
out by

G2 = −2(l̂red − l̂full)

which is compared to a chi-square distribution with degrees of freedom equal
to the difference in number of covariance parameters for the two models.
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3.3.2 Comparing non-nested models for the covariance

For non-nested comparisons, the covariance models can be compared in terms
of Information criteria. The idea behind these criteria is they all start with
the value of the likelihood function of a model and adjust it based on model
complexity (i.e., number of parameters). A somewhat more specific state-
ment is to say that the information criteria penalize the models with many
parameters in such way that simpler model are being preferred. Two most
widely used criteria are Akaike’s Information Criterion (AIC) and Schwarz’s
Bayesian Information Criterion (BIC).

Akaike’s Information Criterion (AIC) is defined as

AIC = l̂ − c

where l̂ is either the maximized ML or REML log likelihood and c is number
of covariance parameters. Formulated this way, AIC can be used to compare
models with the same fixed effects (i.e., the same model for the mean) but
different covariance structures. With Proc Mixed in SAS-program, the model
with smallest value of AIC is deemed best.

While Schwarz’s Bayesian Information Criterion (BIC) has following defini-
tion

BIC = l̂ −
c

2
ln(n∗)

where l̂ is either the maximized ML or REML log likelihood, c is number
of covariance parameters and n∗ is the number of effectives individuals, n
in the case of ML and n − p in the case of REML estimation (where p is
the dimension of β). Again, models with smaller BIC are preferred but note
that when n∗ is relative large, BIC penalizes models with a greater number
of covariance parameters more than AIC does.
Finally, some remarks regarding Information Criteria are

• Some computer programs report the AIC and BIC with the opposite
sign: large values would then indicate a good model.

• Information criteria are only ”rules of thumb” and not statistical tests.

• The different criteria may not always agree as to which covariance
model is best.

3.4 Sandwich estimator

Of knowledge, statistical inferences about β are based on estimated standard
errors, that are obtained under a assumed model for the covariance structure.
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This approach is potentially problematic if the assumed covariance structure
has been misspecified. By misspecification, we mean the situations in which,
for example, a compound symmetry might be assumed but correlations in
fact decline over time. Alternatively, a first-order autoregressive might be
assumed but really the variance and correlation increase with time. A con-
sequence of wrong specification of the covariances is that estimated standard
error of the parameter estimates may be biased. This, in turn, may affect
the conclusions drawn from the analysis, like hypothesis tests. Recall, the
estimator of β is given by

β̂ = {
n∑

i=1

(X ′
iΣ̂

−1
i Xi}

−1
n∑

i=1

(X ′
iΣ̂

−1
i Yi)

where Σ̂i is the REML estimate of Σi and it has covariance matrix

Cov(β̂) = {
n∑

i=1

(X ′
iΣ̂

−1
i Xi}

−1
n∑

i=1

(X ′
iΣ̂

−1
i V ar(Yi)Σ̂

−1
i Xi){

n∑

i=1

(X ′
iΣ̂

−1
i Xi}

−1

If V ar(Yi) is replaced by Σ̂i, the REML estimate of Σi, Cov(Yi) can be esti-
mated by

{
n∑

i=1

(X ′
iΣ̂

−1
i Xi}

−1

This formula requires that the structure of the covariance matrix within indi-
vidual is correctly specified. If the covariance has been incorrectly specified,
then an alternative estimator for V ar(Yi) is needed. A so-called ”sandwich”

estimator of Cov(β̂) was developed by Huber and White [8] to make the
estimates of the standard errors more robust. The sandwich estimator of
Cov(β̂) is obtained from replacing V ar(Yi) by

V̂i = (Yi − Xiβ)(Yi − Xiβ)

Thus, the ”sandwich” estimator which is also known as ”empirical” or ”ro-
bust” estimator of Cov(β̂) is estimated by

Cov(β̂) = {
n∑

i=1

(X ′
iΣ̂

−1
i Xi}

−1
n∑

i=1

(X ′
iΣ̂

−1
i V̂iΣ̂

−1
i Xi)

n∑

i=1

{X ′
iΣ̂

−1
i Xi}

−1

The remarkable thing about the sandwich estimator of Cov(β̂) is that it
provides a consistent estimator of the covariance even when the model for
the covariance matrix has been misspecified as long as the mean is correctly
specified. In large samples the empirical covariance estimator yields correctly
standard errors which lead to robust versions of hypothesis tests.

22



3.5 Marginal model for a continuous response

Since the continuous response is of interest in this report, other types of
response variables will not be covered. In this section we will point out
the connections between marginal models for a continuous response and the
methods for longitudinal data analysis presented in section 2.
Let Yij be a continuous response and it is of interest to characterize how
changes in mean response over time depend on the covariates. Then marginal
model for Yij is given by

1. The mean of Yij is related to the covariates by an identity link function

µij = ηij = X ′
ijβ

Under the identity link, the expected value of the dependent variable
is simply a linear function of the explanatory variables multiplied by
their regression coefficients.

2. The variance of each Yij, given the effects of the covariates, is φ and
does not depend on the mean response. That is,

V ar(Yij) = v(µij)φ

where v(µij) = 1 and φ presents the variance of the conditional normal
distribution of the response given covariates. The assumption that the
variance is constant over time may be unrealistic and to relax it, a
separate scale parameter, φj, could be estimated at the jth occasion if
the longitudinal design is balanced on time.

3. The within-individual correlation among repeated responses is mod-
elling by assuming, for example a first -order autoregressive covariance
structure.

Corr(Yij, Yik) = ρ|k−j|

where 0 ≤ ρ ≤ 1. Here ρ is independent of the means and is the pair-
wise correlations of among observations. Other specific choices of the
covariance structures than autoregressive are also possible for modeling
the within-individual correlation. The link function can be other link
functions than identity as well.

3.6 Estimating marginal models

Generalized Estimation Equations (GEE) was introduced by Liang and Zeger
[9] as methods of parameter estimation of marginal models when dealing with
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correlated data. The underlying idea is to generalize the usual univariate
likelihood equations by introducing the covariance matrix of the vector of
responses, Yi. The GEE methodology has become very popular especially
for analysis of categorical and count outcomes, though they can be use for
continuous as well. However, for linear models, i.e., marginal models with an
identity link function, the generalized least squares (GLS) of β discussed in
section 2 can be considered a special case of the GEE approach. Thus, the
estimates of parameters in marginal model for continuous response with and
identity link are

β̂ = {
n∑

i=1

(X ′
iΣ̂

−1
i Xi}

−1
n∑

i=1

(X ′
iΣ̂

−1
i Yi)

where Σ̂i is the REML estimate of Σi and

Cov(β̂) = {
n∑

i=1

(X ′
iΣ̂

−1
i Xi}

−1
n∑

i=1

(X ′
iΣ̂

−1
i V̂iΣ̂

−1
i Xi){

n∑

i=1

(X ′
iΣ̂

−1
i Xi}

−1

where V̂i = (Yi −Xiβ)(Yi −Xiβ) is an estimate of V ar(Yi) in order to obtain

a robust estimator of Cov(β̂).

4 Dropouts

Missing data problems arise very often in longitudinal studies whenever one
or more of the sequences of measurements is incomplete, in the sense that
intended measurements are not taken, are lost, or are otherwise unavailable.
A particular pattern of missingness that is common in longitudinal studies is
dropout. Following the terminology described by Little and Rubin [11] and
Fitzmaurice et al [5] for longitudinal data, three types of drop-out mecha-
nisms can be distinguished based on how missing data processes depend on
the responses. The first is missing completely at random (MCAR) mecha-
nism, where the probability of drop out at each occasion is assumed to be
independent of either the observed or unobserved responses (given the co-
variates). That is with completely random dropout, an individual leaves the
study in a process which is unrelated to that individual’s outcomes. The sec-
ond type of dropout mechanism is missing at random (MAR), where dropout
can depend on the observed responses, but is conditionally independent of
the unobserved responses. In this process, it means that the probability of
drop out at each occasion is conditionally independent of current and future
responses, given the history of the responses prior to that occasion. The third
type of dropout mechanism is a non-ignorable dropout mechanism, where the
probability of dropout at each occasion is related to unobserved responses.
Under MCAR and MAR assumptions, the data mechanism is often referred
to as being ’ignorable’. Examples of MCAR include studies where patients
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are lost to follow-up for reasons unrelated to their prognosis or where miss-
ing data are generated by staggered entry, MAR arise in situations where
subjects drop out when they reach a specific value of the outcome variable,
and missing non-ignorable in smoking cessation studies where the outcome
variable is whether a person is smoking or not at a given time point, and re-
searcher often assume that if a subject is missing at a particular time point,
it is because they are smoking. Statistical methods which ignore the mecha-
nism for drop out will lead to biased estimates and standard errors. In this
section, the focus is on method for dealing with dropouts missing at random
in marginal models.

4.1 Missing at random (MAR)

Dropout is missing at random (MAR) in a longitudinal clinical study if, for
example, among individuals with the same set of covariates, those who are
observed to be sicker via their previous observed values of the response, are
more likely to drop out, as long as their probability of dropout does not
further depend on their missing responses. To introduce a model for dropout
we need a necessary additional notation. As before, let (Yi1, Yi2, . . . Yiti)

′ be
a vector of correlated responses. For individual i at occasion j, where j
=1,. . . ,ti a missing value indicator Rij is defined such as

Rij =

{
1 if Yij is observed
0 otherwise

Worth to mention is dropout (specially, when dropout is due to death) gives
rise to monotone missing data pattern in the sense that if Yij is missing, then
Yi(j+1), . . . Yiti are also missing. Alternatively, when expressed in terms of the
response missing indicators, dropout refers to the case where if Rij = 0 then
Ri(j+1) = . . . = Riti = 0. Let λij(α) = pr[Rij = 0|Ri(j−1) = 1, Xi, Yi(j−1), α]
stand for ith individual’s probability of dropout at occasion j, given the
history of all available response values observed up to (j − 1) and Xi is a
vector of covariates. Generally it is assumed that all individuals are observed
on the first occasion, that is Ri1 = 1 which in turn means λi1(α) = 0.

Ordinarily, λij(α) is not known and must be estimated from the observed
data by fitting a logistic regression model

logit{λij(α)} = αZij

or in reverse we have

λij(α) =
eαZij

1 + eαZij

where α is q × 1 vector of unknown parameters and Zij is a design matrix
which may contains the observed responses prior to dropout, and treatment
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assignment and any additional covariates that are thought likely to predict
dropout. The log partial likelihood for ith individual takes the form

n∑

i=1

ti∑

j=2

Ri(j−1)log{λij(α)Rij [1 − λij(α)]1−Rij} (10)

Differentiation of (10) with respect to α gives the estimating equations

Si(α) = {
n∑

i=1

ti∑

j=2

Ri(j−1)[Rij − λij(α)} (11)

Setting (11) equal to zero yields α̂, thereafter we can obtain estimate of

λij(α̂), which is λ̂ij(α̂).
To provide consistent estimates of parameters β in weighted method two
assumptions [7] must be fulfilled in addition to MAR:

Assumption 1 (Non-zero probability of remaining in study)
Given the past history of observed responses and covariates, the probability
that individual i is still in the study at time j is bounded away from zero or
formally pr[Rij = 1|Ri(j−1) = 1, Xi, Yij]>δ> 0.

Assumption 2
The probability of dropout model must be correctly specified i.e. λij(α) =
pr[Rij = 0|Ri(j−1) = 1, Xi, Yi(j−1)].

Under MAR assumption and monotone missingness the probabilities of re-
maining in the study, πij(α) are calculated from

πij(α) = pr[Rij = 1 | Ri(j−1) = 1, Xi, Yi1, . . . , Yi(j−1), α] =
ti∏

j=1

{1 − λij(α)}

4.2 Inverse probability weights

Finally, adjustments for dropouts can be made by using a variety of differ-
ent weighting approaches, e.g., the propensity weighted methods described
in Heyting et al [6] and the inverse probability weighted (IPW) estimating
equations approaches described in Robins, Rotnitzky and Zhao [14]. Here,
we will apply inverse probability weights in marginal model in order to cor-
rect the bias that is caused by dropouts missing at random. The essential
idea behind IPW is, if observation i has a probability of being observed of
πij, then this observation should be given weight, wij, in order to replace
the missing measures due to dropouts in the analysis. The weight wij for
ith individual at time j is assigned as inverse of the cumulative product of
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fitted probabilities, ŵij(α̂) = (π̂i1(α̂) × π̂i2(α̂) × . . . × π̂ij(α̂))−1. To get an
idea of what weights are, we adopt the example that is illustrated by James
R. Carpenter et al [1] as follows. Assume that the following data has been
seen,

Group: A B C
Response: 1 1 1 2 2 2 3 3 3

then the average response is 2. However if we observed

Group: A B C
Response: 1 ? ? 2 2 2 ? 3 3

then the average response is 13/6, which is biased. To correct this bias,
we first calculate the probabilities of being observed in each group corre-
sponding to 1/3 in group A, 1 in group B and 2/3 in group C. Thereafter
a weighted average, where each observation is weighted by 1/[Probability of
being observed], can be interpreted as

1 × 3
1

+ (2 + 2 + 2) × 1 + (3 + 3) × 3
2

3
1

+ 1 + 1 + 1 + 3
2

+ 3
2

= 2

Conclusion to be drawn in this case is inverse probability weighting has elim-
inated the bias. In summary, the probability π̂ij that individual i is still in
the study at time j should be counted as 1

π̂ij
individuals rather than one in

subsequent analyses, corresponding to once for herself and 1
π̂ij

− 1 times for

others who drop out with the same past reponses and covariates. Note that
an observation with low probability of being observed will receive a large
weight.

Setting all assumptions that are made in preceding sections together, we will
get valid parameter estimates in longitudinal studies with dropouts missing
at random by solving the weighted estimating equations

n∑

i=1

(yi − Xiβ)′Σ−1
i Wi(α̂)(yi − Xiβ) = 0 (12)

where Wi(α̂) = diag{ŵi1(α̂), . . . , ŵiti(α̂)}, for j = 2, . . . , ti, and ŵi1 = 1.
Note that (12) has similiar construction as (2), they only differ in matrix
Wi(α̂). The estiamators of the parameters in weighted marginal model for
continuous response with an identity link will be of the forms

β̂ = {
n∑

i=1

(X ′
iΣ̂

−1
i Wi(α̂)Xi}

−1
n∑

i=1

(X ′
iΣ̂

−1
i Wi(α̂)Xi)
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and

Cov(β̂) = {
n∑

i=1

X ′
iΣ

−1
i Wi(α̂)Xi}

−1(
n∑

i=1

X ′
iΣ

−1
i Wi(α̂)Wi(α̂)′Xi){

n∑

i=1

X ′
iΣ

−1
i Wi(α̂)Xi}

−1

5 Application

5.1 Clinical trial of some substances in rats

Next we consider the application of the aforementioned methods for handling
dropouts in longitudinal clinical trial. The methods are applied to data from
the clinical trial of some substances of a new drug that are tested in rats
under a period of two years. In the trial, the rats were randomly selected
in five groups: three doses (low, medium and high) of substances and two
controls. Each rat was given a daily dose and the dose in the high dose group
was increased from 25 mg/kg till 36 mg/kg on day 225. At the start of the
experiment each group consisted of 55 males and 55 females (see table 1). The
response of interest in this report is body weight. The rats were weighted
weekly during the period of week two to seventeen, afterward they were
weighted every two weeks. The rats who completed the study were totally
weighted 61 times. One notable feature of the trial is that rats dropped out
due to death. More than one third of rats dropped out before the termination
of the trial; 40.0% of rats in the two control groups, 50.0% in the low dose
group, 36.4% and 41.8% in the medium and high dose group, respectively
dropped out. The number of deaths is different between the sexes. Table 2
shows the mortality of males and females separately. The two control groups,
1 and 5, were pooled as control group with twice number of rats as compared
to the dose groups. Death is a common event in these sorts of studies and
causes a substantial amount of missing data on body weight which in turn
means loss of information. As a consequence, missing body weights reduce
efficiency and precision with which we can estimate the changes in the mean
body weight. In fact, the greater the amount of missing body weights the
greater the decrease in precision. Also, missing body weights give rise to
bias and hence they lead to misleading inferences about changes in the mean
response.

5.2 Purposes of the report

The primary purposes of this report are

• to consider statistical approaches for correcting the bias that caused by
deaths of the rats and how these approaches affect the bias.
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• to investigate the dose -response relationship, i.e. if the treatments
have effect on body weight.

• to compare dose groups with control group in differences of the treat-
ment effects based on different types of tests and confidence intervals.

5.3 Model formulation

In the proceeding, we analyze the data from the clinical trial described earlier
by formulating two marginal models: an unweighted marginal model based
on the data with missing body weights and compare its results to those
from a weighted model, where missing body weights due to loss of rats have
been corrected. Recall that in this report, estimating the average difference
between dose groups is one of the main objectives. Thus, a marginal model
seems appropriate for the applicable data. Because the response variable
of interest at each occasion is the body weight and continuous, the identity
link function and the scale parameter φ will be used. Let Yij denote the
body weight from rat i at week j for i = 1, 2, . . . , 550 and j = 1, 2, . . . , 61.
Furthermore, the covariate vector for rat i at week j includes

xij2 =

{
1 if ith rat receives a low dose
0 otherwise

xij3 =

{
1 if ith rat receives a medium dose
0 otherwise

xij4 =

{
1 if ith rat receives a high dose
0 otherwise

xij5 = weeks

xij6 = week*xijp

where p = 1, 2, . . . , 6 and variable week is treated as a categorical variable
with levels of 61 weeks. The covariate xij6 denotes the dose-by-time interac-

Table 1: Summary of groups and doses

Group No. of rats Compound Inhaled daily dose(mg/kg)
1 55 M + 55 F Air 0
2 55 M + 55 F Low dose 1.0
3 55 M + 55 F Medium dose 5.0
4 55 M + 55 F High dose 25/36
5 55 M + 55 F Air 0
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Table 2: Summary of the number of survivors and deaths for each sex.

Group Females Males
Total Survivor Death Total Survivor Death

1 110 61 49 110 66 44
2 55 24 31 55 31 24
3 55 37 18 55 33 22
4 55 30 25 55 34 21

tion. Note that the control group is considered as the reference group. Table
3 display the data from the first five rats in each group.

Table 3: Layout for repeated body weights from the first five males in each
group. * denotes missing value.

Dosage Rat Sex Body weight(gram)
(mg/kg) at week

1 2 3 ... 105
0 1 m 28.4 28.6 28.7 ... 32.1

2 m 29.9 31.6 31.0 ... 34.4
3 m 23.5 24.4 24.4 ... *
4 m 29.1 30.9 31.3 ... *
5 m 30.3 30.4 30.0 ... 36.5

1.0 1 m 25.4 26.5 27.8 ... 32.8
2 m 28.4 28.4 30.1 ... 35.9
3 m 26.9 27.8 28.7 ... *
4 m 28.9 29.8 31.2 ... 36.6
5 m 31.9 32.5 33.9 ... *

5.0 1 m 29.2 31.4 31.7 ... *
2 m 26.8 26.9 27.3 ... 33.2
3 m 25.6 26.2 26.2 ... 32.4
4 m 26.3 26.3 26.5 ... *
5 m 30.5 31.4 31.1 ... 40.3

25/36 1 m 26.6 27.5 27.8 ... 28.9
2 m 28.6 28.4 28.7 ... 33.6
3 m 26.6 27.7 27.9 ... *
4 m 30.0 29.4 28.3 ... *
5 m 23.6 24.9 25.3 ... *

30



5.3.1 Weight caculation for MAR analysis

Next, we consider the model for dropout. Given the clinical data, it is rea-
sonable to assume that, each rat has a probability of drop-out at each week,
λij(α). And as rats with low body weights at one measurement occasion tend
to drop out of the study at the next occasion, the missing body weights are
assumed to be MAR. Of note, all rats have λi1(α) = 0 at first week. From
the logistic regression model

λ̂ij(α) = pr[Rij = 0|Ri(j−1) = 1, xij2, xij3, xij4, xij5, Yi(j−1), xij5Yi(j−1), α]

=
exp(αj1 + αj2xij2 + . . . + αj6Yi(j−1) + αj7xij5Yi(j−1))

1 + exp(αj1 + αj2xij2 + . . . + αj6Yi(j−1) + αj7xij5Yi(j−1))

we can estimate, for examples, λi2(α) and λi3(α) for first male who had a
low dose as

λ̂12(α) = pr[R12 = 0|Ri1 = 1, x112, x125, Y11, x125Y11, α]

=
exp(α21 + α22x112 + α25x125 + α26 ∗ 28.4 + α27x125 ∗ 28.4)

1 + exp(α21 + α22x112 + α25x125 + α26 ∗ 28.4 + α27x125 ∗ 28.4)

λ̂13(α) = pr[R13 = 0|R12 = 1, x122, x135, Y12, x135Y12, α]

=
exp(α31 + α32x122 + α35 ∗ x135 + α36 ∗ 28.6 + α37 ∗ x135 ∗ 28.6)

1 + exp(α31 + α32x122 + α35x135 + α36 ∗ 28.6 + α37x135 ∗ 28.6)

which imply that, given the body weights 28.4 and 28.6, the conditional
probability of drop-out at second and third week are independent of the data
at first and second week, respectively. Once the probabilities of missingness
are fitted, we obtain the marginal probabilities that Rij = 1 for i = 1 at week
j= 1, 2, 3 by

π̂11(α) = 1 − λ̂11(α) = 1

π̂12(α) = (1 − λ̂11(α)) × (1 − λ̂12(α))

π̂13(α) = (1 − λ̂11(α)) × (1 − λ̂12(α)) × (1 − λ̂13(α))

The weights that are inverses of the cumulative probabilities of being ob-
served at time j are caculated in the example of three weeks as follows

ŵ11(α̂) = π̂11(α̂)−1

ŵ12(α̂) = (π̂11(α̂) × π̂12(α̂))−1

ŵ13(α̂) = (π̂11(α̂) × π̂12(α̂) × π̂32(α̂))−1

The weights for the remaining rats are calculated in similar way. Table
4 shows the inverse probability weights for the first five male rats in each
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Table 4: Inverse probability weights of the first five males in each group. *
denotes missing weight.

Dosage Rat Sex Inverse probability weight
(mg/kg) at week

1 2 3 ... 105
0 1 m 1.00 1.00 1.00 ... 1.85

2 m 1.00 1.00 1.00 ... 2.37
3 m 1.00 1.00 1.00 ... *
4 m 1.00 1.00 1.00 ... *
5 m 1.00 1.00 1.00 ... 2.63

1.0 1 m 1.00 1.00 1.00 ... 1.85
2 m 1.00 1.00 1.00 ... 1.96
3 m 1.00 1.00 1.00 ... *
4 m 1.00 1.00 1.00 ... 2.09
5 m 1.00 1.00 1.00 ... *

5.0 1 m 1.00 1.00 1.00 ... *
2 m 1.00 1.00 1.00 ... 2.39
3 m 1.00 1.00 1.00 ... 2.40
4 m 1.00 1.00 1.00 ... *
5 m 1.00 1.00 1.00 ... 3.82

25/36 1 m 1.00 1.00 1.00 ... 2.10
2 m 1.00 1.00 1.00 ... 2.13
3 m 1.00 1.00 1.00 ... *
4 m 1.00 1.00 1.00 ... *
5 m 1.00 1.00 1.00 ... *

group. As being seen in the table, the weights at the first three weeks and
even few weeks later, for all doses are equal to one. This seems reasonable
in the sense that it was start of the study and the doses might not have an
effect on the body weight yet. Another ground is, we base the probability of
remaining in the study at a particular week on body weight at previous week
and as rats were under growth period, the cumulative probabilities of being
alive are high at the first weeks which result in low weights. Remember,
only available body weights at time j are given inverse probability weights
in order to account for the missing measures at that time.

Before involving the fitted weights in marginal model, we have to exam-
ine the distribution of weights. Reason for this is under weighted marginal
model, estimation of the parameters can become unstable when the sampling
probabilities π̂ij(α) are very close to zero, which leads to outsized weights.
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Figure 1: Box plot: Inverse probability weights vs week
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When this happens, careful attention has to be paid because of these ex-
treme weights (in the right-hand tail) may cause undue influence to available
individual observations. Figure 1 displays box plot of ŵij(α) at each time
point. The variation in weights gets larger with time, but most weights take
value between 1 and 3, the maximum is around 4.5. Therefore, the estimated
π̂ij(α) are bounded well away from zero, with minimum value around 0.20
and large sample inference can be expected to be stable.

5.3.2 Marginal regression model via inverse weighting

Now, when the weight distribution has been checked, we can formulate the
weighted model by defining

Y ∗
ij = ŵij(α)Yij

x∗
ij = ŵij(α)xij

and the mean response model will be

E(Y ∗
ij | x∗

ij) = µ∗
ij = β1 + β2x

∗
ij2 + β3x

∗
ij3 + β4x

∗
ij4 + β5x

∗
ij5 + β6x

∗
ij6 (13)

where β1 is the population average intercept and β2, β3, β4, β5, β6 is the av-
erage rate of change in each xijp. In addition to this marginal model, we
need to model the covariance structure of the correlated body weights on a
given rat. Ideally, in the case of balance data, we would use several different
covariance structures and then assess the Information Criterion or the likeli-
hood ratio test in order to decide which structure is the best fit for the data.
However, in application of IPW and owing to large number of missing body
weights in unweighted analysis, only first order-autoregressive AR(1) and
compound symmetry covariances can be implemented, the other structures
severe computational problem. Apparently, AR(1) is our choice of covariance
structure since it shares the common characteristic in longitudinal data: the
correlation between measurements on the same subject to be unequal but
decrease as measurements get farther apart from each other in time. In con-
trast, CS allows the within-subject correlation to be homogeneous over time.
Moreover, in comparison of the two aforementioned approaches, the sexes
are treated equally. From model (13), the parameter estimates are found as
the root of the weighted estimation equations

n∑

i=1

(Yi − Xiβ)′Σ−1
i Wi(α̂)(Yi − Xiβ) = 0 (14)

where Yi and Xi are vectors of body weights and covariates respectively, for
ith rat and Wi(α̂) is a diagonal matrix contains inverse probability weights for
ith rat. In the following tables, we summarize the results of the unweighted
and weighted analyses. The interaction group*week in table 5, indicates the
comparison of the dose groups in terms of their patterns of change over time
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Table 5: Wald tests of fixed effects from unweighted and weighted models.

Effect Unweigted Weighted
df Chi-square p-value df Chi-square p-value

Group 3 9.97 0.0188 3 8.53 0.0362
Week 60 2986.92 0.0001 60 2529.44 0.0001

Group*Week 180 468.51 0.0001 180 467.48 0.0001

Table 6: Unweighted marginal regression parameter estimates and standard
errors (std error) for the body weight.

Effect Estimate Standard error p-value
Intercept 33.0839 0.2772 0.0001
Low dose 0.1470 0.6231 0.8136
Med dose 1.2659 0.6531 0.0531
High dose -1.8715 0.6380 0.0035

Week1 -6.9239 0.4319 0.0001
Week91 0.4757 0.2423 0.0496
Week103 -0.2026 0.1003 0.0433

Low dose*week1 0.1084 0.7292 0.8819
Medium dose*week1 -1.2405 0.7551 0.1004

High dose*weel1 1.9444 0.7421 0.0088
Low dose*week91 0.3093 0.3943 0.4327

Medium dose*week91 -0.4501 0.4315 0.2968
High dose*week91 0.4293 0.4163 0.3025
Low dose*week103 0.4058 0.1650 0.0139

Medium dose*week103 0.1382 0.1183 0.4513
High dose*week103 0.0683 0.1749 0.6939

in mean body weight. This interaction yields a Wald statistic of 468.51 and
467.48 in respective model. When compared with the reference chi-square
distribution with 180 degrees of freedom, there is strong evidence to conclude
that the patterns of changes over time in mean body weight are not the same
in the four groups. Given the pattern of observed body weight, this result
is expected. As also being seen in table 5, both group and week effects are
statistically significant at 5% level as well. The weighted method gives a
somewhat higher p-value in the test of the main effect of the group than the
unweighted method. Based on these conclusions, we go on with taking a
closer look at the parameter estimates. Since the week variable consists of
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Table 7: Weighted marginal regression parameter estimates and standard
errors for the body weight.

Effect Estimate Standard error p-value
Intercept 33.0809 0.2772 0.0001
Low dose 0.0906 0.4943 0.8545

Medium dose 1.4109 0.4668 0.0026
High dose -1.7113 0.4803 0.0004

Week1 -7.0278 0.3980 0.0001
Week91 0.0418 0.1866 0.0274
Week103 -1.1683 0.0727 0.0208

Low dose*week1 0.1306 0.6928 0.8505
Medium dose*week1 -1.3686 0.6840 0.0454

High dose*weel1 -1.7886 0.6884 0.0094
Low dose*week91 0.3379 0.3200 0.2911

Medium dose*week91 -0.4400 0.3215 0.1712
High dose*week91 0.4086 0.3235 0.2066
Low dose*week103 0.3770 0.1270 0.0030

Medium dose*week103 0.1169 0.1274 0.3590
High dose*week103 0.0182 0.1289 0.9269

too many levels (61 levels), we only report the estimates of three times points.
In addition, it is not of primary interest to compare the dose effects at each
week. The estimates from the weighted approach in table 7 imply that there
is a difference between medium dose and control group, such that rats who
received a medium dose of the substances have higher body weights than rats
in control group. Also, rats who have been given a high dose weighted less
than those from control group. Moreover, there is no difference between low
dose and control group. In contrast, results from the unweighted approach
(table 6) suggest that low dose respective medium dose group has the same
effect on body weights as control group. While control and high dose group
differ in the same sense as in the weighted analysis: rats who had a high dose
weighted less than rats who only have been given the air. Furthermore, most
of the parameter estimates and standard errors from the weighted analysis
are smaller than those from the unweighted analysis. Table 8 shows that,
rats in the high dose group have the lowest overall least square mean body
weight, but the value is a little bit higher in weighted analysis. Standard
errors that are obtained from weighted method are also higher, which lead
to wider 95% confidence intervals. The least square means of body weight
in each group, for each model are figured below. Now, we have seen that
inverse probability weighting method has made some improvements, we will
apply it in the following to model the sexes separately. Because of we were
not able to compute other covariances than the AR(1), the AR(1) covariance
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Figure 2: Unweighted: Plot of least square means of body weight
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Figure 3: Weighted: Plot of least square means of body weight
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Table 8: Unweighted and weighted method: Least square means of body
weight and 95%-confidence interval (CI) in each dose group.

Unweighted regression
Effect Estimate Std error 95%CI

Low dose 32.8900 0.3497 32.2031 33.5768
Medium dose 33.1345 0.3498 32.4475 33.8216

High dose 31.7741 0.3472 31.0922 32.4561
Placebo 32.2334 0.2471 31.7480 32.7187

Weighted regression
Low dose 32.9806 0.3881 32.2181 33.7430

Medium dose 33.3365 0.3754 32.5990 34.0739
High dose 31.9507 0.3785 31.2073 32.6942

Placebo 32.3629 0.2687 31.8350 32.8907

Table 9: Differences of least square means between control and dose groups
and 95%-confidence interval (CI) for each model.

Effect Estimate SE t-value p-value 95% CI
Unweighted

Low - control 0.6566 0.4282 0.53 0.1257 0.1845 1.4977
Medium - control 0.9012 0.4283 2.10 0.0358 0.05996 1.7424

High - control -0.4592 0.4261 -1.08 -1.2963 -1.3841 0.3778
Weighted

Low - control 0.6177 0.4721 1.31 0.1913 -0.3096 1.5450
Medium - control 0.9736 0.0.4617 2.11 0.0354 0.06669 1.8805

High - control -0.4121 0.4642 -0.89 0.3750 -1.32391 1.8805

may be misspecified. Hence the Sandwich estimator (SE) of Cov(β̂) is also
used to provide robust standard errors. The next tables display the results of
each sex. Table 10 only displays the first two rows and seven columns of the
AR(1) matrix. As indicated, the autoregressive estimates show the general
trend of correlations decreasing with length of time interval. In addition,
the values of variance and correlations are higher for males than for females.

Conclusions drawn from tables 11, 12 and 13 are, the changes in mean
body weight over time vary by group for each sex. For females, there are
no differences between the control group and respective dose groups at 5%
level of significance. There also seems to be no significant interaction effects
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Table 10: REML variance, covariance and correlation estimates for AR(1)
structure for repeated body weights.

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7
Females

11.8810 11.2374 10.6287 10.0505 9.5060 8.9511 8.4662
11.2374 11.8810 11.2374 10.6261 10.0505 9.4637 8.9511

Males
15.8024 15.2920 14.7981 14.3072 13.8451 13.3978 12.9651
15.2920 15.8024 15.2929 14.7848 14.3072 13.8450 13.3978

Table 11: Wald tests of fixed effects for each sex.

Effect Females Males
df Chi-square p-value df Chi-square p-value

Group 3 10.80 0.0128 3 10.13 0.0175
Week 60 9878.87 0.0001 60 6773.17 0.0001

Group*Week 180 2001.10 0.0001 180 4987.22 0.0001

except for low dose and high dose group at week 103. While for males, the
difference between control and medium dose group is significant at 5% level,
in the meaning that rats in the control group had lower body weights than
rats in the medium dose group. The interaction effects are significant at 5%
level for medium dose group at week one and for high dose group at week 103.
Table 14 and 15 show the overall least square means body weights and the
differences of overall least square means of body weight between the control
and respective dose groups. The estimates suggest that males had higher
body weight than females in all groups. Also rats in medium dose group had
the highest body weight while rats in high dose group had the lowest body
weight for both sexes. The results are displayed graphically in figures 4 and
5 below.
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Figure 4: Females: Plot of least square means of body weight
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Figure 5: Males: Plot of least square means of body weight
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Table 12: Weighted marginal regression parameter estimates and Sandwich
estimators of standard errors for females.

Effect Estimate Standard error p-value
Intercept 30.8951 0.5030 0.0001
Low dose -0.4652 0.7661 0.5442
Med dose 0.5272 0.8889 0.5536
High dose -1.5847 0.9095 0.0826

Week1 -7.7903 0.4492 0.0001
Week91 0.2872 0.3397 0.3979
Week103 -0.3532 0.1613 0.02860

Low dose*week1 0.3986 0.7211 0.5805
Medium dose*week1 -0.6838 0.8460 0.4190

High dose*weel1 1.3171 0.8518 0.1221
Low dose*week91 0.2125 0.4898 0.6645

Medium dose*week91 -0.5163 0.6887 0.4534
High dose*week91 0.1762 0.6005 0.7692
Low dose*week103 0.7119 0.2093 0.0007

Medium dose*week103 0.3559 0.2552 0.1632
High dose*week103 0.4869 0.2397 0.0422

5.3.3 Discussion

Inverse probability weights method is one of a few existing and common meth-
ods for handling dropouts that are missing at random and is more widely
used in marginal models for discrete responses than for continuous responses.
When handling with continuous outcome as in this report, the calculation of
correlation between different observations on the same subject is the main
difficulty. As mentioned before, we were only able to apply two covariance
structures AR(1) and compound symmetry while the others caused compu-
tational problems. However, this achievement is quite satisfactory comparing
to the analyses described in Dufouil et al [4], where the within-subject cor-
relation was completely ignored in application of inverse probability weights
approach. This was due to software limitation and instead a standard multi-
ple regression using inverse probability weights was fitted, which would not
be appropriate for the data in this report. The reasons are that, the correla-
tions between body weights are strong and the numbers of measurements per
rat varies markedly since some rats died very early in the trial. To ignore the
correlation in our case, could give rise to inefficient parameter estimates. An-
other disadvantage in addition to the assumed AR(1) covariance pattern is
that the scale parameter φ is time-invariant which is against the property of
longitudinal clinical data as ours where the variance between measurements
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Table 13: Weighted marginal regression parameter estimates and Sandwich
estimators of standard errors for males.

Effect Estimate Std error p-value
Intercept 34.9310 0.5329 0.0001
Low dose 0.8888 0.8644 0.3048
Med dose 2.02647 0.8387 0.0163
High dose -1.4026 1.3185 0.2884

Week1 -6.0445 0.5304 0.0001
Week91 0.7062 0.3104 0.0229
Week103 0.0067 0.1396 0.9616

Low dose*week1 -0.3133 0.8853 0.7076
Medium dose*week1 -1.7717 0.7793 0.0230

High dose*weel1 1.8700 1.2353 0.1301
Low dose*week91 0.3398 0.5666 0.5487

Medium dose*week91 -0.0461 0.4768 0.9229
High dose*week91 0.4381 1.0372 0.6728
Low dose*week103 0.0167 0.2813 0.9669

Medium dose*week103 -0.0650 0.1821 0.7212
High dose*week103 -0.5012 0.1962 0.0106

Table 14: Least square means of body weight and 95%-confidence interval
(CI) for each sex, in each dose group.

Females
Effect Estimate SE 95% CI

Low dose 29.4099 0.2674 28.8834 29.9364
Medium dose 30.0980 0.3235 29.4632 30.7329

High dose 28.6423 0.3133 28.0256 29.2591
Placebo 29.1960 0.2825 28.6399 29.7521

Males
Low dose 36.4840 0.4282 35.6409 37.3271

Medium dose 36.4325 0.3884 35.6677 3719.72
High dose 35.1934 0.4999 34.2092 36.1776

Placebo 35.3369 0.2433 34.8579 35.8159

usually vary from occasion to occasion.
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Table 15: Differences of least square means between control and dose groups
and 95%-confidence interval (CI) for each sex.

Effect Estimate SE t-value p-value 95% CI
Females

Low - control 0.2139 0.3890 0.55 0.5829 -0.5520 0.9797
Medium - control 0.9020 0.4287 2.10 0.0363 0.05804 1.7460

High - control -0.5537 0.4218 -1.31 0.1904 -1.3841 0.2768
Males

Low - control 1.1471 0.4925 2.33 0.0206 0.1774 2.1167
Medium - control 1.0956 0.4583 2.39 0.0175 0.1932 1.9979

High - control -0.1435 0.5560 -0.26 0.7965 -1.2381 0.9510

Finally, after accounting for missing at random dropouts, there is a slightly
weaker dose-response relationship than was indicated from the unweighted
analysis. It is worth to mention that in practice, it is common to report
analysis only for complete-case. This approach is performed by excluding
any rats that do not have measurements at all intended weeks. Hence the
analysis is limited to study survivors, who tend to have higher body weight
and slower decline in body weight over time than rats who die. This method
is very problematic and is rarely an acceptable approach to the analysis.
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