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Abstract

This paper examines the impact of interest rate risk that a life
insurer is subject to, especially the effect of interest rate risk on the
restricted assets and the technical provisions. The main work has been
estimating the yield curves and scenario analyzing. Stress test has
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the assets and liabilities in such a way that changes in interest rates
by shifts do not affect the financing of liabilities.
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1 INTRODUCTION

On January 1, 2006 the Directive on Institutions for Occupational Retirement
Provisions (IORP Directive) came into force in Sweden. This is the beginning of a
series of regulatory changes in the insurance area over the next few years. The Traffic
Light System, as a new supervisory tool is designed by The Swedish Financial
Supervisory Authority (Finansinspektionen) aiming to measure financial risks (see
figure 1) that life insurance companies and occupational pension funds may be exposed
to. Finansinspektionen believes the earlier identification of insurers with high financial
risk, the better protection can be achieved for the policyholders. The main risk that
undertakings are subject to is interest rate risk, with consideration to the fact that
insurance liabilities often have long durations. In our study, the insurance business
consists of occupational life long pensions on a defined benefit basis, occupational
temporary pensions on a defined contribution basis and private pensions, temporary
and life long. Such a composition obviously generates a long duration of our liabilities
that are very sensitive to the changes in interest rates. So in this paper, the risk of
interest rates stands in the focus.

Figure 1: Overview of financial risks

According to the Traffic Light System, life insurers are required to follow the Prudent
Person Principle in the case of valuing their technical provisions. Finansinspektionen
emphasizes that each transaction in an insurance contract must essentially be
discounted individually using the risk free rate of interest that corresponds to the
duration of the liabilities, provided that an institution can categorize its liabilities in this
manner. For an institution that cannot apply cash flow categorization, the problem can
be solved by other approximate measures, which we will not take into account in this
work.
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As we mentioned above, the cornerstone of the Prudent Person Principle is valuing the
technical provisions at their realistic value. It gives rise to a series of changes in the
annual report. First of all, as an opposite financial position in a balance sheet, the
restricted assets have to respond to the changes in the technical provisions. In other
words, this principle requires insurers to increase their restricted assets in both
quantities and qualities, so the assets at least will satisfy the solvency ratio requirement.
Furthermore, from the view of risk taking a proper balance between the assets and
liabilities is expected for a life insurer. In the following figure, we try to summarize the
structure of balance sheet affected by the Prudent Person Principle.

Figure 2: Overview of existing balance sheet in a life insurance company after introducing the
Traffic Light System
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2 FIXED-INCOME SECURITIES
2.1 TERM STRUCTURE OF INTEREST RATE

Term structure theory puts aside the notion of yield, and instead focuses on the
relationship between financial securities of different terms. The term structures of
interest rates, also known as the yield curves therein interest rates are determined by
their terms. The curves usually slope gradually upward as maturities increase. Such
typical shape of yield curves reflects the expectation hypothesis in which market’s
expectation for the future interest rates is explained on the basis of the current market
conditions.

Government treasuries are considered risk free. Their yields are often observed as
benchmarks for the fixed-income securities with the same maturities. Here we give
some examples for the most popular financial securities, zero-coupon bonds and
coupon bonds.

• Zero coupon bonds
A zero coupon bond is a debt security that does not pay coupons during its life, but it is
traded at a deep discount to its face value, which will be worth when the bond matures
or comes due. Zero-coupon bonds have an important advantage of being free of
reinvestment risk, though such bonds cannot enjoy the effects of an interest rate rise.
Zero coupon bonds tend to be very sensitive to the changes in interest rates. Their
prices fluctuate more than other types of bonds in the secondary market in the since that
there are no coupons during their life to reduce the effect of the changes in interest
rates.

• Coupon bonds
A coupon bond is a debt obligation with coupons affixed to the bond itself, and each
coupon represents a single interest payment. 

The current price of a bond should be the same as the present value of the stream of
future cash flows, which is the nominal amount of money to change hands at some
future date, discounted to account for the time value of money, e.g. interest rate.
(http://en.wikipedia.org/wiki/Present_value). Present value of a stream of cash flows
can be obtained by adding discounted magnitudes of the individual cash flows due to
the present value is additive. It should be noted that sooner the money is received, more
value it is worth if it is compared with the same amount of money that is received later
since interest can be earned by loaning money out.

Suppose there is a stream consisting of several payments at the end of each period for
total of n periods ),...,,( 21 nXXX  and m times per year. Interest rate r is the nominal
annual compounded interest rate. In the formula below, PV is used to denote the present
value of the stream of payments (consisting of the coupon payments and the final face-
value redemption payment).



5

In a context of finance, discounting is referred to a process of calculating the present
value of future monetary amounts. With the help of discount factor, a future cash flow
can be valuated at a given time that we are interested in. Let td  indicate the discount
factor for its term t. The value of td can be obtained by the formulas below with the
consideration of different types of interest rates. Suppose that the fixed annual interest
rate r compounded m times per year for total t periods, and then the appropriate
discount factor is

In the case of continuous compounding, we gave the following formula

2.2 RISK MEASURES FOR THE TERM STRUCTURES

We start this section with introducing a conception of yield. Yield for a bond is
the effective rate of interest paid on the bond, at which the present value for a stream of
payments is exactly equal to the current price of the bond. The stream here consists of
all coupon payments and the final face-value redemption payment. This effective rate
of interest is always quoted on an annual basis, and termed more properly as yield to
maturity (YTM).

Formulas below are given for the bond prices therein coupon payments made at the end
of each period of total n periods, and m times per year. Time to maturity is T years,
which equates with n/m. YTM is constant and denoted by λ, the payment that made in
period k is indicated to kC , and its present value is denoted by kPV .

Duration is a measure of time until a bond gives a profit. It is useful in the sense that it
directly measures the sensitivity of prices to the effects of changes in YTM. For a zero-
coupon bond, duration is the same as its time to maturity. For a coupon bond, duration
is strictly less than their life period. We start our discussion about this measure with
introducing two kinds of durations. Suppose we have coupon payment made m times
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per year in T years, YTM is λ and kC  is the payment that made in period k. Macaulay
duration of such a bond can be found according to the following formula.

It is easy to realize that Macaulay duration is the average of the stream of payments
over the life of a bond, each coupon payment is discounted on the basis of a common
yield curve. The other duration we want to mention here is Modified duration. The
relationship between these two durations can be described by the following.

It should be noted that for large values of m - the number of payments made per year or
small values of YTM, we have Dmacaulay ≅ Dmodified. With the help of modified duration,
derivation of bond price with respect to λ can be reduced to the following expression.

That can be even rewritten as following

(*)

With the help of the formula above, we readily realized that modified duration reveals
the relative slope of the price-yield curve at a given point. A certain percentage change
of bond price leads to a corresponding change of the yield curve. That gives a straight-
line approximation to the price-yield curve.

Another risk measure for the sensitivity of price-yield curve is convexity, which
measures a certain percentage change in the modified duration if the yield increases
with one basis point. Convexity is defined as below

If the bond price P is described in terms of cash flows, the formula above will have a
different appearance. In the following formula, coupon payments are paid m times per
year for total n periods; kC is the payment that made at period k, and its present value is
denoted by kPV .
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With the help of convexity, the formula (*) can be derived even further. A better
approximation for the price-yield curve can be achieved by taking in the second-order
derivative.

As we mentioned earlier in this section, the current price of a bond is exactly equal to
the present value for the stream of its coupon payments. The way to calculate Macaulay
duration and Modified duration for a single bond can be utilized to a portfolio as well.
Suppose there is a portfolio, in which several bonds (say m) with different durations are
assembled.  Let Pi and Di denote the price and duration for these bonds respectively,
and i= 1, 2 …m. The value of such portfolio can be obtained by the formula below
therein P and D are used to denote the value of this portfolio and its duration,
respectively.
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3 PARAMETRIC MODEL FOR THE YIELD CURVES

Estimates of the yield curves are required to have enough flexibility in order to
represent the shape associated with the curves, which means the estimates should
provide a maximal approximation to the observed data. God precision of the estimates
is another requirement with the consideration of the analytical demands in the context
of monetary policy.

In 1987, Nelson, C.R. and Siegel, A.F. published their parsimonious modeling of yield
curves (so-called Nelson-Siegel Model), which successfully seized a trade-off between
the smoothness of the estimated curve and the flexibility. In 1994, Svensson, L.E.O
extended Nelson-Siegel Model by his work ‘Estimating and interpreting forward
interest rates’ (so-called Extended Nelson-Siegel Model), in which he demonstrated the
use of forward interest rates as a monetary policy indicator. He also pointed out ‘the
forward rate curve more easily allows a separation of expectations for the short,
medium and long term than does the yield curve’.

Litterman and Scheinkman in 1991 claimed that most of the observed variation in bond
returns could be explained by three factors baptized to the name – level, slope and
curvature. Their findings provided another interpretation of short-, medium- and long-
term components for the estimates of the yield curves, which were used in the paper
written by Nelson and Siegel.

According to BIS (Bank for International Settlements), most central banks have
adopted either Nelson-Siegel or Extended Nelson-Siegel Model, except those countries
Canada, Japan, the U.K and the U.S. In the case of Sweden, Riksbank - Sweden’s
central bank adopted the ‘smoothing splines’ method in 2001, but it still reports
Extended Nelson-Siegel estimates to the BIS Data Bank.

3.1 NELSON-SIEGEL MODEL

This model is motivated by, but not dependent on, the expectation theory of the term
structure. It offers a parsimonious representation of the range of shapes associated with
the term structure of interest rate: monotonic, humped and S shaped. The model has
advantages of estimating lesser number of parameters and therefore ensuring a smooth
forward curve.

In order to understand the ideas of Nelson-Siegel model, we start our discussion about
this model with recalling the definition of instantaneous forward rate and finite-
maturity forward rate. Suppose that mts ,  is the spot interest rate for a zero coupon bond
traded at a given point of time t and matures at time m; ),,( mitf is the forward rate
with trade date t, settlement date i and maturity date m. Below we gave the formulas
that describe the relationship amongst spot interest rate, instantaneous forward rate (the
forward rate for a forward contract with an infinitesimal investment period after the
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settlement date) and finite maturity forward rate. It should be noted that the possible
value of m must be higher or equal to the value of i.

Nelson-Siegel Model derives the instantaneous forward rate ),,( tmf Θ at maturity m in
a functional form given below where Θ denotes the parameters β0, β1, β2, τ1 that need
to be estimated from the observed data, and t indexes to the point of time at which
estimation is carried out.

This forward rate model generates a family of forward rate curves that take on
monotonic, humped, or S shapes depending on the values of beta-parameters. Nelson
and Siegel interpreted the coefficients of each component as indicators that measure the
strengths of the long-, short-, and medium-term components for the forward rate curve.
The long-term component is constant that does not decay to zero in the limit. The short-
term has the fastest decay of all functions that decay monotonically to zero. The
medium-term starts out at zero and decays to zero. Figure 3.1 shows the characteristics
of these components for the forward rate curve. There the contribution of the long-term
component β0 is equal to 1.

Figure 3.1: Components of forward rate curve estimated by Nelson-Siegel Model

Based on the forward rate model, the yield for zero-coupon bonds with different
maturities is denoted as ),,( tmR Θ , which can be obtained by integrating the forward
rate function from zero to m and then divided by m. ),,( tmR Θ is actually the average of
forward rates over time.
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We realize that the value of ),,( tmR Θ  converges to β0,t as maturity goes to infinity.
That is the reason that β0,t is interpreted as contribution of the long-term component of
the curve. It indicates the level of the term structure of interest rates. The estimated
value of β0,t should be obviously positive.

),,( tmR Θ  converges to β0,t+ β1,t as soon as m decreases to zero. To understand this, it
is better to go back to the forward rate model therein β1,t is the coefficient of a term
decaying monotonically and fast to zero. β1,t determines the starting value of the curve
in terms of deviation from the asymptote β0,t, and this is why Nelson and Siegel
considered this parameter as contribution for the short-term component. β1,t indicates
the slope of the yield curve.

In the yield function ),,( tmR Θ , the coefficient of the third component - β2,t specifies
curvature of the yield curves. As long as the sign of β2,t is determined, hump (positive)
or U shape (negative) is made. The absolute value of β2,t indicates the magnitude of the
curvature.

In the case of parameter τ1,t, it should be positive and determines the position of the
curvature for the estimated yield curve.

3.2 EXTENDED NELSON-SIEGEL MODEL

Svensson L.E.O. extended the Nelson-Siegel model by an additional component in
which two parameters β3,t and τ2,t were involved. In other word, Extended Nelson-Siegel
model consists of total six parameters β0,t, β1,t, β2,t, β3,t, τ1,t and τ2,t. The forth component
creates an additional turning point in the estimated curve. In the context of
parsimonious modeling of the yield curves, Nelson-Siegel model is usually considered
as a restrictive application for the Extended Nelson-Siegel model. The yield function is
given below

The additional parameter τ2,t should be greater than zero, and indicates the position of
the second hump or the U-shape on the curve. Parameter β3,t has the same function as
parameter β2,t , its sign determines the shape of the estimated curve and its absolute
value indicates the magnitudes of the second curvature.
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Figure 3.2 below shows the characteristics of these four components in Extended N-S
model. Total sex parameters are estimated from the data set selected on 28, April
2006, and their estimated value are β0,t = 3,40%, β1,t  = -1,37%, β2,t = -2,03%, τ1,t =
0,43, τ2,t = 5,57 and β3,t = 1,97%.

Figure 3.2: Components of the yield curve estimated by Extended N-S model.
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4 ESTIMATION FOR THE YIELD CURVES
4.1 CRITERION FOR THE ESTIMATION

Parameters in Nelson-Siegel or Extended Nelson-Siegel model can be estimated by
minimizing either the sum of squared bond-price errors or the sum of squared yield
errors. Decision of whether the first or the later should be applied depends on the
purpose of estimation.

However, as pointed out by Svensson (1994) minimizing price errors sometimes results
in fairly large yield errors for bonds with short maturities. This is because prices are
very insensitive to yields for short maturities. BIS (Bank for International Settlements)
also noted that using bond prices in the estimation irrespective to their durations would
lead to over-fitting of the long-term bond prices at the expense of the short-term prices.
Facing this problem, several approaches have been introduced amongst which the most
popular remedy is non-linear least squares algorithm e.g. the price error of each bond is
weighted by the inverse of its duration, so-called interest rate sensitivity factors of
price.

In the formula below, y indicates the yield, jP is the market price for bond j and e
jP is

the theoretical price for bond j. jφ is denoted for the weight given to j:th bond (interest
rate sensitivity factor for j:th bond). In our case the parameters  ,,,, 13210 τββββ and
2τ are estimated by minimizing the sum of squared bond price errors weighted by Φ/1 :

4.2 DATA SELECTION

Theoretically, a term structure of interest rates with continuous time is related to a full
set of zero-coupon bond with default risk. Unfortunately, most bonds are coupon bonds
with time to maturity beyond 12 months, which means the yield of such bonds cannot
be used as YTM directly. In Sweden, government bonds (nominal) are medium- and
long-term coupon bonds, but the longest one is much shorter than duration that most
life insurance companies have on their debt. Therefore we have to estimate a yield
curve with enough long maturities.

For the purpose of yield curve estimation we selected data sets from ECOWIN at three
different points of time (Mars 31, April 28 and August 1, 2006). Table 4.2-1 below
provided the information about spot interest rates for zero coupon bonds (with
maturities less or equal to 12 months), Swedish government bonds without SO-1035
and SO-1038 due to their relatively short maturities. It should be noted that Swedish
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government bonds have convention 30/360, e.g. every calendar month has exactly 30
days.

Table 4.2-1: Data stets selected on different points of time

Mars 31,2006 April 28, 2006 August 1, 2006

Name

Time to

maturity Yield Coupon

Time to

maturity Yield Coupon

Time to

maturity Yield Coupon

1 Month 2006-04-30 2,00% 0,00% 2006-05-28 2,00% 0,00% 2006-08-31 2,24% 0,00%

2 Month 2006-05-30 2,00% 0,00% 2006-06-27 2,00% 0,00% 2006-09-30 2,27% 0,00%

3 Month 2006-06-29 2,02% 0,00% 2006-07-27 2,07% 0,00% 2006-10-30 2,39% 0,00%

6 Month 2006-09-27 2,15% 0,00% 2006-10-25 2,16% 0,00% 2007-01-28 2,62% 0,00%

9 Month 2006-12-26 2,25% 0,00% 2007-01-23 2,28% 0,00% 2007-04-28 2,80% 0,00%

12 month 2007-03-26 2,37% 0,00% 2007-04-23 2,42% 0,00% 2007-07-27 2,96% 0,00%

SO-1037 2007-08-15 2,64% 8,00% 2007-08-15 2,69% 8,00% 2007-08-15 2,93% 8,00%

SO-1040 2008-05-05 2,95% 6,50% 2008-05-05 3,03% 6,50% 2008-05-05 3,20% 6,50%

SO-1043 2009-01-28 3,16% 5,00% 2009-01-28 3,25% 5,00% 2009-01-28 3,40% 5,00%

SO-1034 2009-04-20 3,26% 9,00% 2009-04-20 3,35% 9,00% 2009-04-20 3,50% 9,00%

SO-1048 2009-12-01 3,31% 4,00% 2009-12-01 3,43% 4,00% 2009-12-01 3,54% 4,00%

SO-1045 2011-03-15 3,46% 5,25% 2011-03-15 3,61% 5,25% 2011-03-15 3,67% 5,25%

SO-1046 2012-10-08 3,56% 5,50% 2012-10-08 3,73% 5,50% 2012-10-08 3,76% 5,50%

SO-1041 2014-05-05 3,61% 6,75% 2014-05-05 3,81% 6,75% 2014-05-05 3,80% 6,75%

SO-1049 2015-08-12 3,66% 4,50% 2015-08-12 3,88% 4,50% 2015-08-12 3,84% 4,50%

SO-1050 2016-07-12 3,69% 3,00% 2016-07-12 3,92% 3,00% 2016-07-12 3,87% 3,00%

SO-1047 2020-12-01 3,70% 5,00% 2020-12-01 3,96% 5,00% 2020-12-01 3,91% 5,00%

4.3 ESTIMATES OF PARAMETERS

The purpose of comparing yield curves estimated at different points of time is to
answer the question if the estimates of parameters by Extended Nelson-Siegel model
reflect the changes in time horizon, in other words if the estimated yield curves are time
dependent. In table 4.3-1 below, we listed the estimated values of the parameters and
the yield with maturity 10 years corresponding to the yield curves estimated on the
different points of time. Price errors after optimization are given in the last raw of the
table, they are obtained by the criterion that we mentioned in the previous section:

The results confirmed that the estimated value of parameters varied from time point to
time point. In the cases of beta-parameters, the magnitude of their variations is
relatively higher than do the parameters _1 and _2. That partly reflects the changes of
time horizon, and partly depends on the specific properties of these parameters.
Therefore we will investigate more about these parameters in the next section.
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Table 4.3-1: Estimated value of the parameters in Extended Nelson-Siegel Model based on
data selected on the different points of time.

Parameter Mars 31, 2006 April 28, 2006 August 1, 2006

β0(t) 3,63% 3,40% 3,99%

β1(t) -1,75% -1,37% -1,30%

β2(t) -2,22% -2,03% -1,74%

τ1(t) 0,43 0,43 0,512

τ2(t) 5,57 5,57 6,747

β3(t) 0,56% 1,97% -0,07%

),,10( tR Θ 3,6310% 3,8421% 3,8130%

Price Error after

optimization 3,9E-07 1,3E-06 5,5E-07

Table 4.3-1 can be rewrite in the form of the function of yield.

Furthermore, with the consideration of making easier to compare these estimates at a
certain point (time-to-maturity) we plotted all these estimated yield curves together in
figure 4.3-1, in which we could see clearly that the discrepancy between estimates for
April 28 and August 1 is more legible when maturity is going longer. But in the case of
comparison between the yield curves estimated on April 28 and Mars 31, we did not
find the same tendency. The discrepancy between estimates April 28 and Mars 31 is
smaller for the maturities first from 0 up to 6 years and then from 30 up to 55 years.
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Figure 4.3-1: Yield curves estimated at the different points of time

4.4 IMPACT OF THE YIELD CURVES

Valuing the technical provisions into the value of market (realistic value) is the
cornerstone of the Solvency System aiming to protect the policyholders from the
financial risks. It is a crucial issue for any life insurance company to estimate a
reasonable yield curve, which will be used as risk free rate of interest in present value
computation for its technical provisions. In our case, we suppose that a life insurance
company can apply cash flow categorization following the regular that
Finansinspektionen requires. In the figures below, we plotted the technical provisions
together with their realistic values. The realistic values of the technical provisions are
obtained on the basis of yield curves estimated on the different points of time April 28
and August 1, 2006.

Figure 4.4-1.2: Realistic value of the technical provisions corresponding to the yield curves
estimated on April 28 and August 1, 2006. Unit value is million Swedish kronor.

With the help of figures above, we can see clearly the impact of the yield curves on the
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difference between these two realistic values here. So we made a graph instead of using
histograms where the realistic values are plotted against each other.

Figure 4.4-3: Realistic value of the technical provisions corresponding to the yield curves
estimated at April 28 and August 1, 2006. Unit value is million Swedish kronor.

4.5 ALTERNATIVE YIELD CURVES

Before we finish this section, let us talk, in short about the alternative yield curves
that are acceptable from the view of Finansinspektionen to be used in the present
value calculation. According to the decision maid by Finansinspektionen, alternative
yield curves cannot be utilized in the assert-liability valuation if they are not derived
under the following conditions:

• Derive from interest rates with low credit risk.
• Exclude any credit risk premiums
• Are not higher than the interest rate that could reasonably be expected on a risk-fee fixed-

income instrument with good liquidity and with corresponding duration
• Follow the prudent person principle in such a manner that the assumption that provides the

lowest interest rate is used in cases where there is uncertainty regarding the choice of
assumption

• Are calculated on the basis of recognized methodology.

In practice, several life insurance companies tried to derive their alternative yield
curves based on the interest rate swaps, which are often used by companies to alter their
exposure to interest rate fluctuations. However, interest rate swaps are not considered
as risk-free due to the involved credit risk. This kind of risk comes into play in the case
where one of the parties is in the money, then that party faces credit risk of possible
default by another party. The purpose for using such alternative yield curve is that
interest rate swaps have much longer maturity, e.g. we have more observed data.
Secondly, the assets for any life insurance companies normally have higher return then
government bonds do, so it seems to be more motivated to utilize alternative yield
curves in valuing their insurance liabilities. But using interest rate swaps to derive the
yield curves brings us a spiny trouble that is how to identify the size of credit risk
premiums on the swaps.
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To identify the premium of the credit risks is a problem that needs to be discussed more
in details. But in this paper, we will not go further than doing a comparison between the
yield curves derived from government bonds and interest rate swaps. This comparison
was carried out at the same point of time - Mars 31, 2006 and showed in figure 4.5-1.
Moreover, in order to seize the impact of these two estimates of the yield curves on the
realistic valuation, we plotted together the realistic values calculated on the basis of
these yield curves.

Figure 4.5-1: Comparison between the yield curves estimated on the basis of different term
structures – government bonds and interest rate swaps

Figure 4.5-2: Realistic values of the technical provisions discounted on the basis of different
yield curves
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5 PARAMETRIC EFFECT ON THE YIELD CURVES

In section ‘Parametric model for the yield curves’, we theoretically briefed on the
functions of the parameters in the estimates of the yield curves. But in this section, we
want shift our focus onto the quantification analysis for the effect of these parameters.
We want to elucidate to which extent a parameter can contribute the changes in the
estimates. It is useful for prognosticating the development of the assets and liabilities,
especially to answer the question what will happen if interest rate increases by a certain
percentage.

We start our analysis by taking one parameter into account at a time, which means we
let β0 very within a reasonable interval and keep other parameters unchanged. We want
to seize the effects of these parameters individually and elucidate their influences on the
level, slope and curvature of the yield curves.

The yield curves used for our analysis are estimated from the data set selected on
August 1, 2006. The main results are summarized in the form of tables in which the
point in brackets indicates the analyzed parameter, YTM(.; 10) is used to denote the
yield with maturity 10 years; d(.;10) is discount factor corresponding to 10 years;
Ni=10(.) is the present value of the technical provision categorized in the 10th year; F(.)
is obtained by adding each Ni, in our case i= 0, 1, 2,…94.

5.1 INFLUENCE OF PARAMETER β0

We already knew the value of YTM will converge to β0 as maturity goes to infinity. β0

is considered as a contribution for the long-term component. We did a series of
variations for β0 from 2.99% up to 4.99% with unit step 0.1%. We verified that the
variation caused by β0 leads to a parallel shift on the yield curve, which means the
value of YTM goes up or down with exact the same percentage corresponding to the
percentage changes in β0.

Table 5.1:  Impact of β0  on YTM(10), N i =10  and F(.)

Parameter Estimate YTM(10) d(.;10) N i=10 (.) F(.)

(million)

Diff

Estimate

Diff

YTM

Diff

Ni=10(.)

(million)

Diff

F (.)

Parameter

β0

3.99% 3.81% 0.6878 -85 305 963 -3572 - - - -

Lower

boundary
2.99% 2.81% 0.7577 -93 975 896 -4649 -1.0% -1.0% -9 -1.1E+09

Upper

boundary
4.99% 4.81% 0.6250 -77 507 781 -2780 1.0% 1.0% 8 7.92E+08
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Figure 5.1: The impact of β0 on the yield curves

5.2 INFLUENCE OF PARAMETER β1 AND τ1

An increment and reduction of β1 leads to a proportional increment and reduction of
YTM, respectively, but the magnitude of changes on YTM is smaller than what β0 did.
An increment and reduction of τ1 makes a proportional reduction and increment on
YTM, respectively, but the corresponding variation on YTM is much smaller than what
beta parameters generated. But unfortunately, the impact of a combination of these two
parameters is hard to be quantified due to their adverse characteristics.

Table 5.2: Impact of β1 and τ1 on YTM(10) and Ni=10

Parameter (.) Estimate YTM(.;10) d(.;10) Ni=10 (.)
Estimate

Diff

YTM(.;10)

Diff

Ni=10(.)

Diff

Parameter β1
-1.30% 3.81% 0.6878 -85305963 - - -

Lower boundary -2.30% 3.76% 0.6912 -85727807 -1.00% -0.05% -421844

Upper boundary -0.10% 3.87% 0.6838 -84802762 1.20% 0.06% 503201

Parameter τ1 0.5120 3.81% 0.6878 -85305963  - - -

Lower boundary 0.1120 3.93% 0.6798 -84313751 -0.4000 0.12% 992212

Upper boundary 0.7220 3.75% 0.6921 -85831995 0.2100 -0.06% -526032

Combination of

β1 and τ1 (-1,30 ; 0,5120) 3.81% 0.6878 -85305963 -  - -

Lower boundary (-2,30% ; 0,1120) 3.92% 0.6806 -84404638 (-1% ;-0.4) 0.11% 901325

Upper boundary (-0,10% ; 0,7220) 3.84% 0.6863 -85118531 (1.2% ; 0.21) 0.03% 187432
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Figure 5.2: The impact of β1 and τ1 on YTM(10).

5.3 INFLUENCE OF PARAMETERS β2 AND τ1

An increment and reduction of β2 leads to a proportional increment and reduction of
YTM, respectively, the magnitude of changes of YTM caused by this parameter is very
small compared with what β0 did on the YTM. However, the impact of a combination of
parameters β2 and τ1 is hard to be quantified due to their adverse characteristics.

Table 5.3: Impact of β2 and τ1 on YTM(10) and Ni=10

Parameter Estimate YTM (.;10) d(.;10) Ni=10 (.) Estimate

Diff

YTM

Diff

Ni=10(.)

Diff

Parameter β2
-1.74% 3.81% 0.6878 -85305963 - - -

Lower

boundary -2.74% 3.76% 0.6912 -85727807 -1.00% -0.05% -421844

Upper

boundary -0.64% 3.87% 0.6841 -84844571 1.10% 0.06% 461392

Parameter τ1
0.5120 3.81% 0.6878 -85305963 - - -

Lower

boundary 0.1120 3.93% 0.6798 -84313751 -0.4000 0.12% 992212

Upper

boundary 0.7220 3.75% 0.6921 -85831995 0.2100 -0.06% -526032

Combination

of β2 and τ1 (-1,74% ;0,5120) 3.81% 0.6878 -85305963 - - -

Lower

boundary (-2,74 ; 0,1120) 3.78% 0.6899 -85561170 (-1% ; -0.4) -0.03% -255207

Upper

boundary (-0,64% ;0,7220) 3.86% 0.6849 -84939618 (1.1% ; 0.21) 0.05% 366345
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Figure 5.3: The impact of β2 and τ1 on YTM(10)

5.4 INFLUENCE OF PARAMETERS β3 AND τ2

A series of variations has been maid on the parameters β3 and τ2.  An increment and
reduction of β3 leads to a proportional increment and reduction of YTM, respectively.
But the magnitude of changes in YTM(10) corresponding to the effect of β3 is
considerably small. In the case of τ2, an increment and reduction of it does not make a
corresponding linear variation of YTM, and moreover the magnitude of changes of
YTM(10) effected by the variation of τ2 is extremely small. Figure 5.4 showed us what
kind of impact that τ2 has on Ni=10. To quantify the impact of these parameters’
combination is a delicate matter in the sense that parameter τ2 has a complicated
property.

Table 5.4: Impact of β3 and τ2 on YTM(10) and Ni=10

Parameter Estimate YTM(.;10) d(.;10) Ni =10 (.) Estimate

Diff

YTM(.;10)

Diff

Ni =10 (.)

Diff

Parameter β3 -0.07% 3.81% 0.6878 -85305963 - - -

Lower boundary -2.07% 3.22% 0.7281 -90296746 -2.00% -0.59% -4990783

Upper boundary 2.53% 4.58% 0.6391 -79266073 2.60% 0.77% 6039890

Parameter τ2 6.75 3.810% 0.6878 -85305963 - - -

Lower boundary 1.75 3.822% 0.685 -85231830 -5.00 0.012% 74133

Upper boundary 11.75 3.817% 0.6843 -85277177 5.00 0.007% 28786

Combination of β3 and τ2 (-0,07% ; 6,75) 3.81% 0.6878 -85305963 - - -

Lower boundary (-2,07% ; 1,75) 3.48% 0.7103 -88089233 (-2.0% ; -5) -0.33% -2783270

Upper boundary (2,53% ; 11,75) 4.46% 0.6466 -80189361 (2.6% ; 5) 0.65% 5116602
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Figure 5.4: The impact of β3 and τ2 on N i=10 . Unit value is million Swedish kronor.
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6 LIFE INSURANCE MATHEMATICS
6.1 PENSION SYSTEM IN SWEDEN

A pyramid with three layers can generalize the Swedish pension system (see the figure
6.1 below). The basis of the pyramid is national pension, interlayer is occupational
pension and the top-level is private pension. The national pension is a statutory
pension, which is paid out by the National Insurance Office. Individuals earn money for
their national pension during their entire life. The old system (basic pension and
national supplementary pension) remains for people born in 1937 or earlier. The new
pension system covers people born in 1938 or later and started to pay out pension in
2003. The national pension comprises three components: income pension, premium
pension and guarantee pension. Occupational pension is built up on an agreement
between trade unions and employers for the benefit of the employees, and paid out by
different pension institutions, depending on whether you work within private industry,
local government/county council etc. Generally the occupational pension
approximately amounts to 10 per cent of salary at the year before he/she retires on
his/her pension. The total period of employment, moreover, affects the outcome of
occupational pension.  Individuals create private pension savings as supplement for
their pension. There are several life insurance products that people can choose to fit
their own life situation, such as traditional pension insurance, unit-link fund insurance
and ordinary savings.

Figure6.1: Swedish pension system shaped in a form of pyramid.

6.2 LIFE INSURANCE RISKS

As we mentioned before in section one ‘Interest rate risk in the focus’,
Finansinspektionen emphasizes that each transaction in an insurance contract must
essentially be discounted individually using the risk-free rate of interest that
correspond to the duration of the liabilities.

In reality, it’s not easy for a life insurance company to evaluate these future
transactions exactly, because the magnitude of in- and out-cash flows are not
determined. Quantifying the changes that could be caused by the decisions made from
insurers and policyholders requires a more complicated calculating approach in which
distribution of profit, requirement of repayment cover etc. can be taken into account.

Occupational pension

National pension (Income-, premium- and guarantee pension)

Private pension
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In this paper we don’t keep our focus on risk factor identification, but how to quantify
these uncertainties. Furthermore, we are not going to discus all factors that possibly
have statistical effects on valuing cash flows, it will be impossible with the
consideration of paper space. We decided to discuss risks that have a great deal of
impact on life assurance mathematics.

Transfer risk: A policyholder signs up for a certain insurance contract period but
changes his mind after a while and wants his accumulated capital transferred to another
insurance company before the maturity date of the policy. This is defined as transfer
risk. It should be noted that surrender is a term most often for life policies but transfer
might often have the same economic impact on the insurance business. In this paper we
have not taken transfer risk into account.

Paid-up risk: Another possible opportunity for those who wish to discontinue
premium payment is the paid-up policy. Such a policy remains in-force but no further
premiums will be paid in. In practice, using a standard paid-up assumption seems to be
a solution to deal with such problems, e.g. each year a certain percentage of policies
with regular premiums will be converted to paid-up.

Mortality risk: Discussion around mortality risk is a hot topic, in the sense that
mortality risk is the most important uncertainty in the context of life-assurance
mathematics, and especially as longevity is continually rising. For the purpose of
focusing on mortality risk, we assume an insurance product where only mortality risk
has impact on valuing technical provision. Based on this assumption, liability does
neither lose nor profit from other risk factors than mortality risk from now on.

In Sweden, most life insurance companies apply Gompertz-Makeham model to
describe the development in mortality. We cannot deduce this approach completely
because of restrictions in space, but it will be helpful for us to run through Gompertz-
Makeham model. We assume that the mortality intensity xµ for a person at age x
( 0≥x ) is continuously differentiable as a function of age. It is the same if we regard
xµ as probability for that, a person at age x will die in a very short time

interval ),( dxxx + . Let us neglect the gender aspect at the moment; we have a formula
of xµ  according to the law of mortality in Gompertz-Makeham model. In practice, we
even work more often with another variable xl , so-called survival function. It describes
the probability that an x-year old person can survive t years longer. If we introduce Tx

for the remainder of life for an x-year old person, then xl can be expressed with the help
of Tx in the form  )()( tltTP xx => .
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With the specification in the current official Swedish mortality table M90, we have the
explicit formula for mortality intensity, which is utilized also in this paper.

In practice, commutation functions D (x) and N (x) are introduced into valuing
provision for the purpose of reducing complexities. D (x) and N (x) are defined as
below

In this paper, out-cash flow in a life insurance company is approximately equal to the
expected value of benefit on the collective level, which will be paid out from the
company successively in the future. We also assume that in-cash flow is equal to the
expected value of premium on the same level as benefit, which will be paid in from
policyholders successively during the signed contract period. Net cash flow is simply
equal to the difference between the out- and in-cash flows under the condition that
policyholders are alive during this period.

6.3 CASH FLOW VALUATION

We start with a simple insurance product for the needs of occupational pension,
wherein benefit S will be paid out successively to a policyholder at the year from which
he has reached 65, as long as he is alive but no longer than 5 years. During the signed
contract period, the policyholder will pay his premium until he is 65. Our policyholder
here is 60 years old at the point of time t when the calculation is carried out.

At the point of time t, out- and in-cash flows for a policyholder are calculated by the
formulas below.
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It should be noted that functions a(t) and b(t) are not directly dependent on t, but the
age of our policyholder at the time point t. At the point of time t, the calculation of out-
and in-cash flow on the collective level can be carried out in a similar way. In the
formula below, w(60) is denoted for a total number of individuals who are 60 years old
in the year of calculation and they have exactly the same insurance contract.

Formulas above give us a comprehensive view of development of benefit and premium
from statistic perspective, but now we want to shift our focus into technical detail,
which means the formula will be deduced in a discrete context.

We can even more develop the function above under a condition that pension will be
paid out from the insurance company to the policyholder in the beginning of each year.

Furthermore, let V (t) denote the present value of net cash flows in a life insurance
company at point of time t, e.g.  V (t) =B (t) - A (t).
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7 PROBLEM OF MISMATCH

7.1 MISMATCH BETWEEN THE ASSET AND THE LIABILITY

Mismatching between the assets and the liabilities is a very problematic issue in the
financial area because it has a multiple property. Mismatching in a life insurance
company is sculptured out of life insurance mathematics due to the actuarial
assumptions made in insurance subsidiaries. A traditional way to scrutinize this
problem is to partition it into segments, in which the assets and liabilities are
mismatched. It should be noted that in this paper the mismatching problem has been
localized on the level where we are supposed to get a suitable balance between the
restricted assets and the technical provisions.

Let us for the moment leave the provisions aside and concentrate upon the restricted
assets. For an asset portfolio consists of interest rate instruments, there are at least three
mismatched segments that a life actuary must to take into account. These segments are
mismatched present values, durations and liquidities. As a well known financial
solution, immunization has been used to reduce the impact of interest rate fluctuations
that generate the mismatch in the present value and duration. By the help of this
approach, these two mismatched segments can successfully bridged over, we can even
get a better match between the assets and liabilities if their convexities could be equal.
But unfortunately, the immunization cannot contribute anything for solving the
mismatch in the liquidity, which means at a certain moment the value of asset portfolio
is not enough for the liabilities or adversely much more than necessary. Both situations
will cost a company huge money, because the first possibility will force an insurer to
make credits, and in the case of temporary surplus, we have to keep them under the
mattress to fit the future payments. A possible compensation for immunization is to
have a buffer capital for such happenings.

For an asset portfolio consists of more than interest rate instruments, for instance,
shares and properties, ALM (Asset-Liability Model) seems to be a reasonable approach
to deal with the problem of mismatch. ALM is a modeling trying to capture the
stochastic uncertainties involved in the assets and liabilities. It provides the insurers a
solution in which they have a dynamic control over the development of their assets and
liabilities, provided that the structure of the assets and liabilities are unchanged through
the ages. However, the reality for a life insurer is much more complicated in the sense
that the actuarial assumptions do change over time. There is limitation in ALM to keep
up a correspondence to such uncertainties. A possible compensation for the ALM is to
build up a realistic model for the in- and out- cash flows in a life insurance company.
This model will reflect all uncertainties hid behind the assets and insurance liabilities,
e.g. the financial, operational and insurance risks.

7.2 THE RESTRICTED ASSETS

Building up a realistic model is out of this work because the object of this paper is
protecting the guaranteed undertakings from the interest rate risk with a high degree of
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certainty, which means the asset portfolio is not designed for a better return but
matching the guaranteed undertakings.  A portfolio consists of only governments bonds
should be suitable for this purpose. It would be easy for us to solve the problem if the
method of immunization can be applied in this case, but unfortunately this approach is
not available due to the short maturities (almost 15 years for the longest one) that
Swedish government bonds have.

Our strategy for solving the mismatch problem is creating an asset portfolio whose cash
flows are distributed more like our insurance liabilities; furthermore the portfolio is
expected to have more tolerance to the interest rate fluctuations. The point of departure
is testing reasonable combinations of bonds that could satisfy our requirements above.
We decided to have an asset portfolio that consists of government bonds SO-1037,
1040, 1045, 1049 and 1047 with the consideration of their different long durations.
Based on the tests we finally managed up an asset portfolio where the magnitudes of
each bond is given to 2400, 1800, 400, 300 and 225 standard respectively.  Table 7.2-1
listed the present value of our assets that are designed to cover our determined technical
provisions. The present value calculation is carried out on the basis of three estimated
yield curves. Two scenarios - buffer capital and solvency ratio are introduced to
describe the positions of our restricted assets and technical provisions. The value of our
buffer capital is obtained by adding the present values of the assets and provisions.
Solvency ratio is equal to the absolute value of the division between the realistic value
of the restricted assets and technical provisions. PV stands here for the realistic values.

Table7.2-1: Realistic values of restricted assets and technical provisions calculated on the
basis of different yield curves. Unit value is milliard Swedish kronor.

Mars 31 April 28 August 1

YTM(10) 3.6310% 3.8421% 3.8130%

PV (provisions) -3,804 -3,768 -3,572

PV (restricted assets) 5,583 5,580 5,543

SO-1037 2400 2400 2400

SO-1040 1800 1800 1800
SO-1045 400 400 400
SO-1049 300 300 300
SO-1047 225 225 225

Buffer capital 1,780 1,812 1,971
Solvency ratio 1.47 1.48 1.55

Based on the earlier studies we know that the changes in the yield curves made the life
insurance companies vulnerable due to the long duration for their insurance liabilities.
With the help of Extended Nelson-Siegel modeling, we are capable to carry out a stress
test on the yield curves aiming to prognosticating the development of our assets and
liabilities corresponding to the changes in interest rates.

In the stress test, we made a series of paralleled shifts on each of original yield curves
estimated on the different time points. The magnitude of each shift is 5 basis points
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(5bp = 0.05%). Our created asset portfolio passed the stress tests by a good tolerance
for a broad paralleled shift (from -150bp to +150bp) on the yield curves.

A part of results of stress tests is showed in the tables below in which we found that
each +50bp stressed on these yield curves leads to a reduction by about 20 percent for
the solvency ratio; each -50bp stressed for the curves gives an increment by about 16
percent for the solvency ratio. The most important signal for a life insurance company
is the solvency ratio getting close to the crucial level 1 when the interest rate going
down with 1%.

Table7.2-2: Paralleled shift by ±  50bp stressed on the different yield curves. Unit value is
milliard Swedish kronor.

+50bp -50bp

Mars 31 April 28 August 1 Mars 31 April 28 August 1

YTM(10) 4,1310% 4,3421% 4,3130% 3,1310% 3,3421% 3,3130%

Paralleled shift 0,5000% 0,5000% 0,5000% -0,5000% -0,5000% -0,5000%

PV(provisions) -3, 344 -3, 309 -3, 146 -4, 341 -4, 304 -4, 068

PV(restricted assets) 5, 535 5, 535 5, 495 5, 633 5, 628 5, 593

SO-1037 2400 2400 2400 2400 2400 2400

SO-1040 1800 1800 1800 1800 1800 1800

SO-1045 400 400 400 400 400 400
SO-1049 300 300 300 300 300 300
SO-1047 225 225 225 225 225 225

Buffer capital 2,191 2,225 2,349 1, 292 1, 323 1, 525
Solvency ratio 1,66 1,67 1,75 1,30 1,31 1,37

Table7.2-3: Paralleled shift by 100bp stressed on the different yield curves. Unit value is
milliard Swedish kronor.

+100bp -100bp

Mars 31 April 28 August 1 Mars 31 April 28 August 1

YTM (10) 4,6310% 4,8421% 4,8130% 2,6310% 2,8421% 2,8130%

Paralleled shift 1,0000% 1,0000% 1,0000% -1,0000% -1,0000% -1,0000%

PV (provision) -2, 949 -2, 916 -2, 780 -4, 972 -4, 935 -4, 649

PV (restricted assets) 5, 489 5, 490 5, 449 5, 685 5, 677 5, 644

SO-1037 2400 2400 2400 2400 2400 2400
SO-1040 1800 1800 1800 1800 1800 1800
SO-1045 400 400 400 400 400 400
SO-1049 300 300 300 300 300 300
SO-1047 225 225 225 225 225 225

Buffer capital 2, 540 2, 575 2, 670 0, 714 0, 742 0, 995

Solvency ratio 1,86 1,88 1,96 1,14 1,15 1,21
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7.3 SENSITIVITY TO THE INTEREST RATE RISK

Even though the method of immunization cannot be applied in our case, it is still
important for an actuary to control how the restricted assets, technical provisions and
buffer capital behave corresponding to the changes in interest rate.

We already know from section ‘Term structure of interest rate’, duration and convexity
are two powerful risk measures that can be used to assess the interest rate risk. Duration
provides the information about the slope of the line tangent to the price -yield curve at a
certain point, and its magnitude is ( PD ified ∗− mod ). With the help of convexity we can
get even better approximation for the price-yield curve because it provides the relative
curvature at a given point on the curve.

However in this section, we will leave these two well known financial measures behind
and introduce another interest rate risk measures, e.g. delta yield and gamma yield.
Generally delta value shows the sensitivity of the present value to the changes in the
main source of risk of an instrument.  In our case the delta yield indicates the changes
in the present value corresponding to each one basis point shift made on the yield
curves. It should be noted that the day count fraction in our case is Act/365. The delta
yield can either refer to an upward or a downward shift of the curves. The general
formulas for delta yield and gamma yield are given below.

[ ]
.1000 and 00001.0 where

*)()(

=±=

−+=Δ

scaleh
scalerPVhrPVyield

[ ] [ ]
.1000  and  00001.0 where

*)()(2)2()()(

=±=

++−+=∂−+∂=Γ

scaleh
scaleyPVhyPVhyPVyhyyield

According to the definitions and the formulas of delta yield and gamma yield; we
realized that these values are reflected the shifts made on the entire yield curves.
However, what a life insurance company really desires to know is how much capital
will be exposed to the changes in the short or long interest rate, respectively. So instead
of being satisfied with the calculations of delta and gamma yield, we want to go further
to investigate what will happen with the restricted assets, technical provisions and
buffer capital if a shift made on a segment of the yield curves. As we will see later, the
yield curve delta and gamma can be broken down into different time buckets, and we
should not be surprised either if the sum of delta/gamma yields corresponding to the
different time buckets represents a one basis point shift on the entire curve. There are
different kind of shifting in the time buckets, for instance, rectangle shift, triangle shift
and smooth shift. Choosing which kind of shift depends on the purpose of study. In our
case, the rectangle shift was chosen with the consideration of simple application and
understanding of this kind of shift. Figure 7.3-1is an example for the rectangle shift,
there we made four time buckets in order 0-1, 5-10, 15-25 and longer than 50 years.
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Figure 7.3-1: Rectangle shift with different time buckets on the yield curve.
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We start our analysis with calculating delta yield and gamma yield for our restricted
assets, technical provisions and buffer capital respectively. The yield curve that used
for this study is the yield curve estimated on August 1, 2006. The magnitude of step h
was decided to be equal to ± 0,001%. The results are summarized in the following
tables and figures. We can readily see from the figures that delta yield and gamma
yield move symmetrically around the point where h is equal to 0, delta yield and
gamma yield for the restricted assets and technical provisions have different sign,
which is not a surprise because we already know that the assets and insurance
liabilities will move to the different directions when interest rate go up or down with
a certain percentage. Delta yield and gamma yield show once again that the technical
provisions have higher sensitivity to the fluctuations in interest rate due to its long
duration. The value of delta yield and gamma yield for the buffer capital is quite near
to the values for the technical provisions, which indicates that the insurance liabilities
have a dominate effect in the economical status. We also realized that the asset
portfolio we managed up is not high qualified even though such a portfolio passed the
stress tests with good solvency ratios. Table 7.3-1 listed the values of delta yield and
gamma yield for the restricted assets, technical provisions and buffer capital.

Table 7.3-1: Value of delta yield and gamma yield for the restricted assets, technical
provisions and buffer capital

Restricted capital Technical provision Buffer capital

Step h scale delta gamma delta Gamma delta gamma

-0.015% -1.5 -2,200,349 3,549 20,690,021 -142,534 18,489, 672 -138,984

-0.014% -1.4 -1,916,680 2,693 18,020,539 -108,160 16,103,859 -105,466

-0.013% -1.3 -1,652,588 2,003 15,535,731 -80,413 13,883,143 -78,411

-0.012% -1.2 -1,408,072 1,454 13,235,513 -58,382 11,827,441 -56,928

-0.011% -1.1 -1,183,129 1,027 11,119,799 -41,221 9,936,670 -40,195

-0.010% -1 -977,757 701 9,188,505 -28,155 8,210,748 -27, 454

-0.009% -0.9 -791,955 460 7,441,546 -18,472 6,649,591 -18,012

-0.008% -0.8 -625,720 287 5,878,838 -11,532 5,253,118 -11,245
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-0.007% -0.7 -479,050 168 4,500,294 -6,760 4,021,244 -6,592

-0.006% -0.6 -351,942 91 3,305,831 -3,649 2,953,889 -3,558

-0.005% -0.5 -244,396 44 2,295,364 -1,760 2,050,968 -1,716

-0.004% -0.4 -156,408 18 1,468,807 -721 1,312,400 -703

-0.003% -0.3 -87,976 6 826,077 -228 738,101 -222

-0.002% -0.2 -39,099 1 367,089 -45 327,990 -44

-0.001% -0.1 -9,774 0.07 91,758 -3 81,984 -3

0.000% 0 0 0.00 0 0 0 0

0.001% 0.1 -9,774 0.07 91,730 -3 81,956 -3

0.002% 0.2 -39,093 1 366,864 -45 327,770 -44

0.003% 0.3 -87,957 6 825,317 -228 737,360 -222

0.004% 0.4 -156,363 18 1,467,005 -721 1,310,643 -703

0.005% 0.5 -244,308 44 2,291,844 -1,760 2,047,536 -1,716

0.006% 0.6 -351,791 91 3,299,749 -3,649 2 947 959 -3,558

0.007% 0.7 -478,809 168 4,490,637 -6,760 4,011,828 -6,592

0.008% 0.8 -625,361 287 5,864,422 -11,532 5,239,061 -11,245

0.009% 0.9 -791,444 460 7,421,022 -18,472 6,629,578 -18,012

0.010% 1 -977,056 701 9,160,351 -28,155 8,183,294 -27, 454

0.011% 1.1 -1,182,196 1,027 11,082,325 -41,221 9,900,129 -40,195

0.012% 1.2 -1,406,860 1,454 13,186,861 -58,382 11,780,001 -56,928

0.013% 1.3 -1,651,048 2,003 15,473,875 -80,413 13,822,827 -78,411

0.014% 1.4 -1,914,756 2,693 17,943,282 -108,160 16,028,526 -105,466

0.015% 1.5 -2,197,983 3,549 20,594,999 -142,534 18,397,016 -138,984

In the analysis of shifting segments of the yield curve, we did the following restrictions
to simplify the calculations. We decided to make a shift with magnitude one basis
point, and moreover we chose the underlying capital in our analysis to be the net cash
flows that indicate how much capitals are available at each point of time. We
summarized our results in table 7.3-2. If we compare the result with the values that we
obtained for the buffer capital, (delta yield =8 183 294 and gamma yield = -27 454, see
table 7.3-1), we realized these values are quite close to each other. It verified that our
statement made earlier in this section, the sum of different time buckets should
represent the shift on the whole yield curve.

Table7.3-2: Investigation summary for sifting segments of the yield curve with one basis point

Time bucket (year) Delta yield Gamma yield

0-1 -19,701 4

1-2 364,118 106

2-5 -217,063 120

5-10 5,702 -23

10-15 637,292 -911

15-25 2,124,773 -4,560

25-50 5,476,851 -19,365

>50 514,578 -2,808

Total value 8,158,313 27,437
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Based on table 7.3-1, we made up figures 7.3-2 where we put together the delta yield
for the restricted assets, technical provisions and buffer capital. In figure 7.3-3 we put
together their gamma yield. The purpose for doing so is to describe the financial risk
status for a life insurance company. It is useful for an actuary to have such
information besides the balance sheet, so he or she can possibly have a whole picture
of the economic growth for his or her company. As we mentioned in the very
beginning of this paper, the cornerstone of the Traffic Light System is to protect
policyholders from the financial uncertainties and in our case especially to protect
them from the interest rate fluctuations.

Figure 7.3-2: Delta yield for the restricted assets, technical provisions and buffer capital. Unit
value is million Swedish kronor
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Figure7.3-3: Gamma yield for the restricted assets, technical provisions and buffer capital.
Unite value is thousands Swedish kronor
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8 CONCLUSION

Every insurer desires to have the suitable balance between the assets and liabilities
aiming to improve growth, profit and risk control. An insurer may be exposed to many
different types of risks, and the unique one amongst them is insurance risk. It requires
an insurer to utilize a specific risk-control method that differs from the general financial
management. As a response to the IORP Directive, the Traffic Light System is assigned
by the Swedish Financial Supervisory Authority to obtain more complete control over
the life insurers in Sweden.

This paper examines the impact of interest rate risk on the life insurance assets and
liabilities. The main work has been estimating the yield curves and sensitivity testing.
Stress test of interest rates has been applied for this purpose in order to achieve a
suitable balance between the assets and liabilities in such a way that fluctuations in
interest rates by shifts do not affect the financing of liabilities.

The technical provisions have been valued at their realistic value, which means at every
given point of time the technical provisions have been discounted on the basis of a
yield curve estimated by Extended Nelson Siegel model. Four yield curves (estimated
on the different point of time and underlying instruments) have been applied in our
analysis. The results delivered from these curves showed that the estimates are time
dependent. Furthermore as a consequence of the dependency, the estimates have a great
impact on the realistic value of our technical provisions. It motivates the requirement
from the Swedish authority about estimating reasonable discount rates.

As we mentioned in the beginning of this paper, our focus is interest rate risk. That
means mismatch between life insurance assets and liabilities caused by interest rate
fluctuations is the issue for this paper. Several stress tests have been applied for
investigating the problem. Based on the portfolio assigned for the restricted assets, we
carried out stress tests to see if such a portfolio will exceed the required solvency ratio.
The results showed that the created portfolio has good tolerance for the paralleled shift
(from -150 bp up to +150 bp) on the entire yield curves. However, the solvency ratio
will get close to the crucial level when the interest rates are going down with one
percentage.

Stress tests are considered as a tool for examining what might happen in a particular
stress scenario. However, it should be noted that stress tests do not predict what will
happen. Moreover, stress tests are not suitable approaches for an insurer who expects to
apply techniques that are appropriate for the whole risk profile and the business
undertaken. We have mentioned before in section ‘Life insurance mathematics’, we
believe a complex realistic modeling should be an appropriate tool for the life insurers.

Furthermore, for the purpose of analyzing the interest rate risk, we decided to have
simple structure for both insurance assets and liabilities. However, with the
consideration of life insurers’ reality, the technical provisions might be calculated in
such a way that they could reflect the reality of the insurance contracts.  In the case of



35

the restricted assets, their simple structure made extremely difficult for insurers to
obtain a suitable balance aiming to improve their risk control. A following work after
this paper could be to create a realistic portfolio with more complex structure for the
restricted assets, shares and interest rate swaps could be considered in such a case.
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10 APPENDIX

• The yield function ),,( tmR Θ in Nelson-Siegel model

• The form of Extension Temporary Pension in a discrete context
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