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Abstract

In life annuity business it is of great importance to have accurate
mortality predictions for calculating the value of annuity contracts. In
this paper we are considering the issue of predicting future mortality.
We are using a non-parametric counting process approach combined
with a kernel smoothing- and a bias correction technique for estima-
tion of the past mortality. By using the Lee-Carter method we are
adapting a mortality model and generating forecasts of the future
mortality. We are using population data from Sweden and Denmark
during 1900–2004 and the results are evaluated by backtesting. We
are also evaluating the consequences of varying the length of the es-
timation period in the Lee-Carter model, and it appears that it may
have a great impact on the predictions.
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1 Introduction

1.1 The valuation problem
One of the main problems regarding life annuity business is how to evaluate
di�erent contracts. The main part of the cash �ows belonging to the con-
tracts often takes place a long time ahead, and the task is to identify these
future cash �ows and to the determine their present value. The value of a
contract depends partly on the interest rate, and partly on the remaining
lifetime of one or several insured individuals. Since both the interest rate
and the lifetime of individuals can be regarded as stochastic, one cannot de-
termine the exact value of a contract. Nevertheless, when determining the
size of the company's reserves, it is very important to have a reasonable un-
derstanding for the expected value of a speci�c contract. To estimate the
expected value of a speci�c contract one has to consider both the expected
investment return and the expectation of the underlying mortality. Concern-
ing the investment return, one has to predict the development of the interest
rate during the period from today to the time when the contract expires.
Even if this prediction is not an easy task, one can often overcome the prob-
lem (or at least reduce it) by hedging with �nancial contracts. This way
it is sometimes possible for the company to create a deterministic interest
rate1. Concerning the mortality prediction, the problem is more complicated.
There is no �nancial market, like for the interest rate, where it is possible
to trade and hedge with contracts regarding mortality. This means that we
have to rely on our mortality predictions in a much greater way than we had
for the interest rate predictions. The future mortality has to be predicted by
statistical methods, and usually the predictions are based on historical obser-
vations of the mortality. A problem which complicates this kind of prediction

1However, in life annuity business, where the contracts' time to maturity may be very
long, it is a risk that there is no �nancial contract with the desired time to maturity.
Nevertheless, even if this is the case, the risk connected with the insecurity of the interest
rate can be substantially reduced
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is that the mortality does not tend to be constant over time. The general
trend is that the mortality rate has decreased over time, i.e. the expected
lifetime for individuals have increased (see for example Velfaerdskommissio-
nen (2004)). If you completely rely on historical data when predicting the
expected remaining lifetime, and assumes that the future mortality will be
the same as the mortality today, you will run the risk of overestimating the
mortality, and therefore underestimate the remaining expected lifetime. This
underestimation may result in that the company will face costs, regarding
their contracts, that di�er a lot from their expectations. These unexpected
costs may strike the company in opposite directions. An annuity contract
that pays money to the insured as long as he or she is alive tends to become
more expensive for the company, while a contract that pays money in the
case of death tends to become cheaper. For the company it is primary the
�rst type of contract that it has to worry about, but it is important for the
company to have accurate predictions of all their future costs. In the long
run an incorrect mortality prediction can be a fateful mistake, risking the
whole company's survival.

1.2 Problems with lack of information
A problem that may arise when basing future mortality predictions on histor-
ical mortality observations, may be the lack of data. One way of estimating
the mortality rate for a speci�c age is to compare the number of deaths to
the total number of individuals at that age. The mortality rate is estimated
as the ratio between these two quantities. When considering low- or mid-
dle aged individuals this estimation seldom causes any problem since there
is a lot of information available for individuals at these ages. However, the
higher ages you are considering, the less information is available, since the
number of individuals to study become smaller as people pass away. When
there is not much of information available, the estimated mortality rates are
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more uncertain. This may be a problem since it is desirable to plan the com-
pany's reserves on more reliable estimations. A way to handle the problem
with lack of information for high ages is to use a smoothing technique, where
you "borrow" information from adjacent ages. For example, if you want to
estimate the mortality rate for a 90 year old man, and you do not have so
much demographic information available, you may use the information for
men aged 88-92. In the same way you may use the data for men aged89-93

to estimate the mortality rate for a 91 year old man. By this smoothing
technique you will get more stable mortality estimations, since the estima-
tions are based on more data. Unfortunately, this smoothing technique also
has its drawbacks. The smoothing technique may result in a bias problem
since it is highly probable that the mortality rate is not constant in the in-
terval 88-92. When using this smoothing technique it is important to have
an awareness of this bias problem, and to use suitable methods to overcome it.

1.3 Comparing Sweden and Denmark
As mentioned above, the mortality rate does not tend to be constant over
time. Further, there are noticeable di�erences between men and women
and between di�erent countries. Comparing the expected lifetime in Sweden
and Denmark, using information from Velfaerdskommissionen (2004), we �nd
some interesting facts. In year 1960 the expected lifetime was similar, with
a little advantage for Sweden, and both countries were among those with
the highest life expectancy among the world's developed countries. This was
the case for both men and women. From that on, the overall global trend
is showing an increase in expected lifetime, which is also the case for both
Sweden and Denmark. However, studying the situation in year2000, the in-
crease in Sweden has been much larger than the increase in Denmark. This
has resulted in that Denmark has dropped several places in the ranking at the
expected lifetime table, while Sweden is still in a top position. The pattern is
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similar for both men and women; the di�erence in expected lifetime between
Sweden and Denmark has increased from less than a year (in1960) to almost
three years (in 2000), see Velfaerdskommissionen (2004). These properties
are illustrated in �gure 1, where we have plotted the expected lifetime for
males and females in Sweden and Denmark during1950-2004.

1.4 Purpose
In this Master thesis we are dealing with the problem of estimating and
predicting the mortality rate and the expected lifetime. We are comparing
Sweden and Denmark, and we are investigating how the mortality has devel-
oped. We are considering the force of mortality as a two dimensional func-
tion of age and chronological time. We are using a non-parametric counting
process approach, combined with a kernel smoothing technique, to estimate
the mortality. We will then use the Lee-Carter (LC) method to adapt a
parametric model and to produce predictions of the future mortality rates.
The LC method, proposed in Lee and carter (1992) has become the leading
statistical model, for estimating and predicting mortality, in the demographic
literature (Deaton and Paxson (2001)).

For the estimation we will only use a part of the data available. The rest of
the data is then used for evaluating the performance of the predictions from
the LC method. The observed mortality is compared to the predicted mortal-
ity produced by the LC method. In the evaluation of the LC method we are
mainly comparing the observed and the predicted remaining life expectancy.
Finally, we are trying to improve the performance of the predictions by vary-
ing the length of the estimation period when adapting the model. We are
trying to �nd the optimal length (in years) of the estimation period in terms
of producing as good predictions as possible of the future mortality. The issue
of �nding an optimal length of the estimation period is for us an unfamiliar
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concern in the actuarial literature, and is therefore the main contribution of
this thesis.

In section 2 we are presenting some previous studies of the area of interest.
In section 3 we introduce the basic notation and some general formulas. The
data used in this thesis will then be presented. We will illustrate and dis-
cuss the di�erences between Sweden and Denmark regarding the expected
lifetime. We will also study the mortality rate and the way it can be esti-
mated, using a counting process technique. Further, we will discuss some of
the problems that may arise due to lack of information. In section 4 we will
present suggestions for solving these kind of problems. We will present and
explain the non-parametric kernel smoothing technique, and we will present
a bias correction technique for solving the bias problem from the local con-
stant kernel estimator. In section 5 we are presenting the two dimensional
Lee-Carter (1992) model. We will discuss the model and its properties, and
the way the parameters are being estimated. We will also look at how future
mortality predictions can be generated by the model. In section 6 we are
discussing the importance of validating when choosing a statistical model.
Di�erent ways of measuring the life expectancy are illustrated. We are then
describing the procedure for the evaluation of the Lee-Carter method, and
how to �nd the optimal length of the estimation period. In section 7 we
are presenting the result from the evaluation of the Lee-Carter method. The
results are analyzed in section 8. In section 9 we are using the prediction
method to produce forecast of the future mortality. In section 10 we will
present a summarization and give some concluding remarks. All �gures are
presented in section 11.
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2 Previous Research
Lee and Miller (2001) are evaluating the performance of the LC method for
forecasting mortality. Just as Lee and Carter they are using U.S. data from
the 20th century. They are using the LC method to predict the mortality
(expected lifetime) in 1998. They are constructing forecast with di�erent
"jump-o�" years, by pretending they only had data up to that point. They
are then comparing their forecasts with the actual outcomes. They are also
comparing the forecasts with forecasts made by the Social Security. There
are several interesting conclusions. The hypothetical forecasts tend to be
too low, but they are still fairly close to the actual mortality in1998. The
earlier forecasts, produced by using data up to the1920s and the 1930s, are
on average 5 years below the true value. But the forecasts from1946 and for-
ward are always within 2 years from the actual value in 1998. Compared to
the forecasts from the Social Security, which also have systematically under-
predicted the mortality, the LC forecasts have substantially lower prediction
errors and mean squared errors. Unlike Lee and Miller, who are comparing
the predictions performance from di�erent "jump-o�" years, we will instead
focus on how the predictions are a�ected by varying the number of estima-
tion years for adapting the LC model.

Girosi and King (2005) are considering the Lee-Carter method, and they
show that the method is a special case of a multivariate random walk with
drift (RWD). They also show that LC predictions will become less smooth
after some time, and that this nonsmoothness will continue forever.

Lindbergson (2001) is investigating the mortality in Sweden among elderly
for the years 1988-1997. The annual increase for the observed mortality rate
is increasing with the age, but it levels out at higher ages. Lindbergson
therefore suggest that the Makeham function, which assumes an exponential
growth, is replaced by an straight line at very high ages. She therefore �ts a
"Modi�ed Makeham" function, which is a combination of a Makeham func-
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tion and a straight line. The estimated mortality rates for very high ages
will then be lower than for the ordinary Makeham function.

Fledelius, Guillen, Nielsen and Petersen (2002) are studying the mortality
for old-aged (90 and above) people in Sweden during 1988-1997. They are
using the same data as Lindbergson (2001) and they are applying a smooth
two-dimensional kernel hazard estimation to the data. They apply both a
local constant- and a local linear estimator, and they compare the result to
the work of Lindbergson (2001). They show that the local constant esti-
mator is not suitable for elderly people since it signi�cantly underestimates
the mortality. This is due to the rapid increase in mortality and the rapid
decrease in exposure at these old ages. These properties are similar to those
experienced during working with this thesis.

The overall trend has been a decreasing mortality over time but Willets
(2004) mention that the mortality decrease for adults stopped decline and
even slightly increased in the 1930's due to higher deaths from lung cancer
and heart disease. These trends where also spotted for elderly in the Swedish
and Danish population during this thesis.

Renshaw and Haberman (2003b) have observed that the traditional Lee-
Carter age-period model not always �ts empirical data well. They are there-
fore extending the model (Renshaw and Haberman (2006-forthcoming pub-
lication)) to also include the cohort e�ect. This makes the modeling a bit
more complicated due to the relationship

cohort = period - age

For estimating the parameters they are �rst setting some suitable starting
values, and are then using an iterative process. They are considering the
England and Wales mortality, and when studying residual plots they found
that the extended Lee-Carter (age-period-cohort) model better �ts empirical
data than the original LC version.
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Booth, Maindonald and Smith (2002) have adapted the Lee-Carter model
to take account for departures from the linearity in the time component.
They have expanded the model by including terms of second and higher
order. However, these terms are not easily incorporated into the forecast.
There are a lot of di�erent mortality models. A problem when having a large
number of parameters in the model is that the potential for extrapolation is
limited.
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3 Model and Data

3.1 Mortality Model
Let the lifetime for an individual be denoted byT, which can be regarded as
a non-negative continuous stochastic variable. If the probability distribution
function for T is denoted by F, we get

F (z) = P (T ≤ z), z ≥ 0. (1)

This is the probability that the lifetime of an individual will be shorter than
z years. It is often convenient to study the survival function l(z), which is
de�ned as

l(z) = 1− F (z) = P (T > z), z ≥ 0. (2)

The mortality rate can be interpreted as an intensity at which individuals
die. The mortality rate is de�ned as

µ(z) =
f(z)

1− F (z)
, z ≥ 0. (3)

where f(z) = F ′(z). The mortality rate can also be expressed in terms of
the survival function

µ(z) =
−l′(z)

l(z)
, z ≥ 0. (4)

The remaining lifetime of an individual aged x is denoted by Tx. Just like
the variable T , Tx can be considered as a non-negative continuous stochastic
variable. We have that

P (Tx ≤ z) = P (T ≤ x + z|T > x) =
F (x + z)− F (x)

1− F (x)
, z ≥ 0. (5)
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This is the probability that a person aged x dies within z years. The prob-
ability that a person aged x will live for, at least, another z years can then
be expressed as

lx(z) = P (Tx > z) =
l(x + z)

l(x)
, z ≥ 0. (6)

The density function for Tx is −l′(x+z)
l(z)

for z ≥ 0, and the expected remaining
lifetime for an individual aged x can be expressed as

E(Tx) = ex =

∫ ∞

0

l(x + z)

l(x)
dz (7)

Equation (7) assumes continuous time. In this thesis however, we are work-
ing in discrete time, with annual information about the individuals. We are
therefore using an approximation for calculating the expected remaining life-
time

ex = (
∞∑
i=0

l(x + i)

l(x)
)− 0.5 (8)

3.2 Time Dependent Mortality Model
In all the formulas presented this far, we have not considered the chrono-
logical time as an independent variable. The only independent variable has
been the age of the individual. However, in this thesis, we will consider
the mortality rate to be dependent on not just the age (x), but also on the
chronological time (t). This is because of the overall trend of an increasing life
expectancy over time for individuals. The formulas presented above are still
relevant though. For each time t, we will have an unique density function,
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and therefore also an unique intensity function. Consequently, the di�erence
will be that, instead of just having one speci�c mortality rate for a certain
age, µ(x), we will now for each calender year have an unique mortality rate
for that age, µ(x, t).

3.2.1 Lexis Diagrams

Lexis diagrams are often used in demographical studies, and they are a sim-
ple way to graphically present population dynamics. There are three demo-
graphic co-ordinates of special interest; the chronological time, the age and
the moment of birth of the individual. Using these co-ordinates, the lifetime
of individuals can be illustrated in a three dimensional space. However, it
is su�cient to know two of these three co-ordinates, since the third then is
given by the other two. This means that the lifetime of individuals can be
illustrated by a coordinate system, where the axes can be chosen as two of
these three co-ordinates (se for example Vandeschrick (2001)). Here we are
using Lexis diagrams with the chronological time and the age on the two
axes. In �gure 2 we give an example of a Lexis diagram. The age of the
individual is represented on the vertical axis, while the horizontal axis repre-
sents the calender year. The lifetime for an individual is represented by a45

degrees straight line. Here we are only studying three di�erent individuals,
just to describe the way a Lexis diagram can be used. Each line starts at
the time when the individual �rst get exposed to risk (for example at birth),
and ends when the individual no longer is exposed to risk (for example in the
case of death). Here we are considering ages from0 to 110 and the calender
years from 1900 to 2004. Individual A �rst got exposed to risk at birth in
year 1901. As time goes by, the line representingA stretches up to the right.
In year 2003 individual A dies at the age of 101, and is therefore no longer
exposed to risk. Individual B gets exposed to risk at the age of 17 in year
1900 and dies at the age of 67 in year 1950. Finally, individual C is born in
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1936. At the end of 2004, C is still exposed to risk, at an age of 68.

3.2.2 Estimating the Mortality Rate

The mortality rate can also be expressed in terms of the remaining lifetime

µ(x) = lim
z→0

=
P (Tx ≤ z)

z
(9)

The probability that a person aged x will die at an age within the interval
(x, x + dx) is therefore approximately µ(x)dx for small dx. A natural way
to get an estimation for µ(x) is to therefore study the number of individuals
aged x that passes away at an age within an interval (x, x+dx) compared to
the total number of individuals exposed to risk during the same interval. The
mortality rate can be estimated as the ratio between these two quantities.
The more information available, i.e. the more individuals exposed to risk,
the more stable and reliable the estimation will be, since the randomness of
the estimation will be reduced.

In this thesis we are considering the chronological time as an independent
variable, and we then have to get estimates of the mortality rates, not just
for all ages x, but also for each calender year t. By including this extra in-
dependent variable, we are also adding one extra dimension for the intensity
(mortality rate) function. Instead of considering the mortality function as a
curve, depending on the just the age, in a two dimensional space, it now has
to be considered as a surface in a three dimensional space, depending on both
the age and the calender year. Accordingly, the exposure for the individuals
now has to be split up with respect to both the age and the calender year.
This will substantially reduce the available information for the estimations
(the exposure for a certain age and a certain calender year will become sub-
stantially smaller than the information that could have been used if just the
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age, and not the year was considered). The lack of information may lead to
some di�culties which will be discussed later.

To get the estimates of µ(x, t), we now have to study the number of individ-
uals that passes away at an age "near" x, and at a time "near" t, compared
to the individuals exposed to risk inside the same interval. In other words,
we have to study the number of individuals that dies at an age and at a time
within the two dimensional interval ((x, t), (x + dx, t + dt)), compared to the
total exposure inside the same interval. In this thesis we are only study-
ing integer ages on annual basis, so the interval ((x, t), (x + dx, t + dt)) will
therefore be symmetric with a length and a width of 1 year. Accordingly,
we are not taking care of when exactly during a calender year the deaths
occur. Neither are we considering the exact age of the individuals (we are
just considering integer ages).

Let the "occurrence matrix", Ox,t, represent the number of deaths for indi-
viduals aged x in year t. Further, let the "exposure matrix",Ex,t, represent
the total exposure for individuals aged x in the same period. The mortality
rate mx,t for an individual aged x in time t can then easily be estimated as
the ratio between these two quantities.

m̂(x, t) =
Ox,t

Ex,t

(10)

The occurrence matrix and the exposure matrix can be calculated using a
Lexis diagram as a starting point. Each cell in the Lexis diagram represents
a speci�c age and a speci�c calender year. By summing up the number of
deaths in each cell we will get the elements in theOx,t matrix. In the same
way we can sum up all the exposure in each cell and get the elements in the
Ex,t matrix.

This counting process technique is a non-parametric approach for the estima-

17



tion of the mortality rate, and the technique requires no assumptions about
the distribution of the underlying mortality. (Fledelius, Guillen, Nielsen
and Vogelius (2004)). However, we will assume that the mortality surface
is smooth. Consequently, we assume that there is no large "jumps" in the
mortality rate between adjacent ages and years.

3.3 Data
All data are collected from theHuman Mortality Database2 (HMD). For Swe-
den we have data for the period 1751-2004, and for Denmark we have data
from 1835-2004. The data consists of the deaths and the exposure for indi-
viduals ages 0-110.

3.3.1 Expected Lifetime

Looking at the data for the expected lifetime, we note that there is a very
clear increase in the expected lifetime during time. Roughly speaking we
can say that the expected lifetime in 2004 has doubled since 1835. The data
also indicates that there is an obvious di�erence between men and women.
During the whole time period the life expectancy for men is smaller than for
women. In �gures 3 and 4 where we are illustrating the development of the
expected lifetime during 1835-2004 for men and women in both countries.
During the �rst half of the time period, the curves are rather unsmooth. The
big drop in year 1918 is due to the �u epidemic. The expected lifetime has
over time been slightly higher in Sweden than in Denmark for both men and
women. Furthermore, as mentioned in the introduction, we also observe an
increase in the di�erences between the two countries during the last50 years.

2Human Mortality Database is the work of three teams of researchers in USA, Germany
and Canada.
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This observation is better illustrated in �gure 1, where the expected lifetime
for the period 1950-2004 are plotted. The di�erence in expected lifetime
between Sweden and Denmark was less than a year in 1950, (0.7 years for
males and 0.9 years for females). In 2004 the di�erence between the both
countries has increased to about 3 years (3.2 years for males and 2.9 years
for females). The expected lifetime in 1950 and in 2004 are presented in the
tables below.

1950 2004
Male Sweden 69.83 78.35
Male Denmark 69.10 75.14
Di�erence 0.73 3.21

1950 2004
Female Sweden 72.44 82.66
Female Denmark 71.52 79.80
Di�erence 0.92 2.86

3.3.2 Death Counts and Exposure

Our data is grouped annually, giving us death counts, Ox,t, and exposure,
Ex,t, for each year and each integer age. Both the number of deaths and
the exposure for di�erent ages in di�erent years can be illustrated as a sur-
face in a three dimensional space. The number of deaths at di�erent ages
during 1900-2004 for Swedish women are illustrated in �gure 5. The �g-
ure tells us that there was a high infant mortality at the beginning of the
20th century. During the last 100 years, the number of infant deaths has
decreased considerably, and we instead recognize an increase in the number
of deaths for elderly people. These characteristics are the same for Swedish
men and for both men and women in Denmark. In �gure 6 the exposure for
Swedish females during 1900-2004 are illustrated in the same way. The �gure
shows that the exposure is decreasing with the age. This is completely in line
with our expectations; the exposure will be less when more individuals have
passed away. The �gure also indicates some increase in the exposure with
the chronological time. This can be explained by an increasing population,
and by the fact that the expected lifetime has increased. However, it is the
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age, rather than the chronological time, that has the main in�uence of the
exposure.

3.3.3 Problems with the Counting Process Technique

When the occurrence and the exposure are known, the mortality rates can
easily be calculated according to (10). We assume that the underlying mor-
tality surface is smooth and that there is no large "jumps" between adjacent
ages and years. This assumption causes no problem when the information,
that our estimations are based on, is large. When the exposure is large,
the estimations are rather stable, and the surface describing the estimated
mortality rate is therefore rather smooth. These favorable properties are
ful�lled for most ages and years. However, for higher ages, this is necessary
not true, and we might therefore run into problems with a very small (and
sometimes even zero) exposure for some old ages at a certain year. When
the exposure is small the randomness in the estimations will increase. When
the randomness increases the estimations may become unstable and insecure.
As we have seen earlier, the exposure is deceasing rapidly for higher ages.
Problems that then may come up are the following.

• There might be situations where the number of deaths for a certain
(old) age and year is zero (and the exposure is very small). This will
make the mortality rate estimation equal to zero, which, of course, is
an unrealistic assumption.

• Another di�cult situation is when the exposure is very small (almost
zero), but we still have some death(s). Then the mortality rate estima-
tion may be unrealistic high compared to the adjacent estimations.

• A third problematic situation that might come up is when the exposure,
and therefore also the number of deaths, is zero. In this case we will
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have no mortality estimation at all since ratio between zero and zero is
not de�ned.

3.3.4 Mortality Rate Estimations

These are all problematic situations, which need to be taken care of, when
trying to describe the development of the mortality rate. Looking at our
data of the mortality rates, we recognize these problems for higher ages. In
�gure 7 the estimations of the mortality rate in Sweden and Denmark are
illustrated. To make the illustration more clear, we have only included the
estimations for individuals up to an age of 99. The estimations for people
aged 100 and above are not suitable for graphical presentation, since they are
very unsmooth. The estimations are varying a lot between zero and very high
values. We also have some "missing values" when the exposure is zero. All
these events occur according to the problematic situations described above.
Except the obvious fact that the mortality in general is increasing with the
age, we can, by looking at �gure 7, see that the mortality rate at birth was
rather high at the beginning of the 20th century, but that it has decreased
considerably after that. This is in line with the observations from �gure 5.
We also notice that the mortality at higher ages has decreased over the years,
which also is in line with our, up to now, received experiences. It is di�cult
to draw any big conclusions by just studying this �gure, but we recognize
the estimations to be rather unsmooth at the highest ages (and this is the
case even when individuals aged 100 above are excluded).

The non-parametric approach has the advantage that we do not need to
make a lot of assumptions about the distribution of the mortality. For ex-
ample, we do not have to rely on the Gompertz Makeham model. Further,
we do not have to make assumptions of how the mortality changes over time
(see Fledelius et. al. (2004)). By using annually grouped data and this non-
parametric technique, we are able the get an unique estimate of the mortality
rate for each year and each age.
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In �gure 8 the mortality rate estimations are illustrated in an alternative
graphical approach. The �gures show a contour plot where equal mortality
rate estimations are connected with level curves. The conclusions from the
�gure are about the same as before. It is clear from the �gure that, when
looking at old- or middle aged people, the mortality for a certain age has
decreased over time.

The �gures presented in this section only give us an general picture of the de-
mographic development. Here we have only made the illustration for Swedish
women, but the main demographic trends are the same for Swedish men and
for Danish men and women. To be able to discuss di�erences between the
two countries, we have to study the data more detailed.
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4 Kernel Smoothing Technique
As mentioned in previous sections, there might appear problems when esti-
mating the mortality for higher ages. The reason is that there is less infor-
mation available for people at higher ages. This fact is illustrated in �gure
9, where we have plotted the 25 years (1980-2004) aggregated exposure for
di�erent ages in Sweden and Denmark. As we can se from the �gure, the
exposure decreases rapidly for people aged about75 and above. We also see
that the total exposure is greater in Sweden than in Denmark, due to a larger
population.

The mortality rate is estimated as the ratio between the number of deaths
and the total exposure at a speci�c age and time (see (10)). In section 3

we saw that the estimations could become rather unstable for higher ages
when the exposure were small. This resulted in a very unsmooth mortality
surface, which is not consistent with the smoothness assumption. A way
to overcome this problem is to borrow information from adjacent ages and
times. Suppose for example that we are interested in estimating the mortality
rate for a 90 year old man in year 2000. Instead of just using the information
for the current age and the current year, we may instead, for example, use
all information available for men in the age interval 88-92 during the years
1998-2002. The idea is illustrated in the Lexis diagram in �gure 10. The dark
shaded cell in the middle is representing the age (90) and the year (2000),
for which we want to estimate the mortality. For the estimation we are using
information from cells in a local neighborhood of this origin cell. In this case
we are using information from 25 (5x5) di�erent cells, each representing a
speci�c age and a speci�c year. These cells are the ones that are shaded in
the �gure. The impact on the di�erent cells depends on the distance to the
origin. In the �gure, the distance for each cell is indicated by two numbers,
the �rst representing the absolute distance in the age dimension, while the
second represents the absolute distance in the calender year dimension. The
closer distance to the origin, the more weight is added to the information
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from that cell. By using this smoothing technique, we are using more infor-
mation, and we will therefore have a larger exposure. This way the estimates
will become more stable. However, this smoothing technique may result in
a bias problem since it unlikely that the mortality should be the same for a
88 year old than for a 92 year old. It is also possible that there might be
mortality rate di�erences over time during the period1998-2002. But these
potential di�erences in the "time" dimension are probably small compared
to the di�erences due to the age. To optimize the result of the smoothing
technique, one has to handle this bias problem in one way or another.

4.1 Local Constant Kernel Smoothing
We consider the mortality rate as a two-dimensional function of age and
chronological time. Using the same notations as before we have thatOx,t

and Ex,t are the occurrence (number of deaths) and the exposure for people
aged x in year t. To calculate the mortality rate we will smooth occurrence
and exposure separately. The smoothed occurrence and exposure for the
same age and year are denoted by Ōx,t and Ēx,t.

The smoothed, local constant, mortality rate is then de�ned by

m̄x,t =
Ōx,t

Ēx,t

(11)

where the smoothed occurrence and exposure are de�ned as (see Fledelius,
Lando and Nielsen (2004)).

Ōx,t =
N∑

x1=1

T∑
t1=1

Kb1(x− x1) ∗Kb2(t− t1) ∗Ox1,t1 (12)

Ēx,t =
N∑

x1=1

T∑
t1=1

Kb1(x− x1) ∗Kb2(t− t1) ∗ Ex1,t1 (13)
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where N and T are the highest age and the latest year we are considering.

Ōx,t and Ēx,t can be regarded as weighted averages of the occurrence and
the exposure in the two-dimensional interval (x± b1, t± b2), where b1 and b2

are the bandwidths. b1 decides the number of di�erent ages to be included,
while b2 decides the number of calender years. The weights are determined
by the kernel functions Kb1 and Kb2 . Here we use the Epanechnikov kernel
function.

Kb1(x− x1) = 0.75 ∗ I[|x−x1|<b1] ∗
[
1−

(
x− x1

b1

)2
]

(14)

Kb2(t− t1) = 0.75 ∗ I[|t−t1|<b2] ∗
[
1−

(
t− t1

b2

)2
]

(15)

where I is an indicator function taking value one or zero.

The weight for an observation is a function of the distance to the point of in-
terest. The closer the distance the more weight is added to the observation3.
An observation outside the interval (x± b1, t± b2) will receive zero weight.

The smoothing technique is adapted to the occurrence and the exposure sep-
arately. This means that the idea presented in the Lexis diagram in �gure 10
should be be performed twice, generating smoothed values of both the occur-
rence (Ōx,t) and the exposure (Ēx,t). The smoothed mortality rate are then
calculated as the ratio between (Ōx,t) and (Ēx,t), and (hopefully) the random-
ness in this estimation is strongly reduced compared to the non-smoothed
estimation.

3Compare with the uniform kernel function, where all observations have the same
weight, and the smoothed value is just the empirical average of the observations inside the
interval [x± b1, t± b2].
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4.1.1 Kernel Smoothing at Boundaries

The idea with the Kernel smoothing technique is to borrow information from
the cells in the neighborhood of the origin cell to get a more stable mortality
estimation. The bandwidths b1 and b2 determine the number of extra cells
to be used for the estimation. The Epanechnikov kernel are de�ned in such
a way that we will use the same number of "extra" cells on the right hand
side of the origin cell as on the left hand side. Further, we will use the same
number of cells above as below the origin cell. However, for some areas in the
Lexis diagram, we have to make exceptions from this symmetric. For exam-
ple, if we want to estimate the smoothed mortality for individuals agedx in
year 2004, (i.e. m̄x,2004), it is not possible to use information from calender
years later than 2004, since we only have data available until 2004. We then
have to be content with using information to the left of the origin cell in the
Lexis diagram. This is illustrated in the Lexis diagram in �gure 11, where
we are estimating the mortality for an individual aged90 in year 2004. Here
we are only using information from 15 (3x5) cells (instead of 25 as we did in
�gure 10). The technique explained here may also be used for certain ages,
where we are not able to get information for some adjacent ages. If we for
example want to estimate the mortality at the age of 110, and we have no
data for ages above 110 we will have a similar problem.

Comparing the situations in �gures 10 and 11, we will see that the total
sum of the weights, created from the Epanechnikov kernel in equation 14
and 15, will not be the same for the both cases. This is because we have no
restrictions on the weights. In �gure 10, the sum consists of 25 individual
weights, while the sum in �gure 11 only consists of 15 individual weights.
Therefore, the sum of the weights are considerably greater for the former
sum. This is not a problem though, and a normalization of the weight will
not be necessary. The reason is that we are smoothing the occurrence and
the exposure individually, and the sum of the weights will always be the same
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for the occurrence matrix as for the exposure matrix.4

4.1.2 Bias Problem at Boundaries

In cases, like in �gure 11, when we are not able to use the fully kernel there
might appear bias problem at the boundaries. This boundary bias problem
for the kernel estimator is well known in the literature, see for example Hall
and Park (2002) who are proposing methods for solving these kind of prob-
lems. In �gure 11 the bias problem appears since we are using data from the
years 2002-2004 for estimating the mortality in 2004.5 If the overall trend is
a decreasing mortality we may therefore overestimate the mortality at these
right endpoints.

4.2 Non-Smoothed and Smoothed Mortality Rates
The e�ect of the kernel smoothing technique is illustrated in �gure 12. The
dotted line describes the observed mortality rates for Danish females aged65

during 1900-2004. The full line represents the smoothed mortality rates.

The e�ect of the smoothing technique can also be illustrated in a three di-
mensional graph, as in �gure 13, where we are comparing the non-smoothed
to the smoothed mortality rates for Swedish females aged65-99 during 1900-
2004. From the �gure we see that the non-smoothed mortality rate surface
are much more thorny than the smoothed surface, especially for the higher
ages. The bandwidths used are b1 = 4 and b2 = 4. The way the Epanech-
nikov kernel is de�ned implies that the endpoints in the interval will receive

4If we instead would have adapted the smoothing to the mortality rate directly, it would
have been necessary with a normalizing constraint.

5If the mortality would have been independent of the chronological time, then we would
not have a boundary bias problem in this situation.
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zero weights6. In this case, Since the data only consist of integer ages and
years, the smoothed occurrence (exposure) will be a weighted average of the
observations [x ± 3, t ± 3]. In �gure 14 we are illustrating the same com-
parison for Danish females. In the graph for the non-smoothed mortality
rates we see an example of the problems arising when the exposure is small.
For some years in the beginning of the 20th century, we have a mortality
rate estimation of zero, due to lack of exposure for that certain age and
year. As discussed in section 3 this is of course unrealistic. But looking
at the smoothed graph, we see that the problem is solved, and the surface
is much smoother. In �gures 15 and 16 the same illustration are made for
Swedish and Danish males respectively. The problems with lack of exposure
is even more obvious for males than for females, since males have a shorter life
expectancy. The problem is also more obvious for Denmark than for Sweden.

4.3 Optimal Bandwidth - Bias vs Smoothness
As mentioned earlier, the local constant kernel smoothing estimator is bi-
ased. It will signi�cantly underestimate the true mortality for high ages.
The reason is a rapidly increasing mortality and rapidly decreasing exposure
for those ages. (see for example Fledelius et al. (2002)). When performing
the smoothing technique for the exposure for a certain (high) agex, we will
have a situation where the exposure for ages just lower thanx is much higher
than the exposure for ages just higher than x. These cells with a relatively
high exposure will have a great impact when summing up the the exposure
for the cells included in the "smoothing area". The denominator in (11) will
therefore be "too" large, and the ratio will become "too" small.

The bandwidth vector b = (b1, b2) determines the smoothness of the surface.
6when dealing with continuous distributions, it does not matter whether the endpoints

are included or not
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A larger bandwidth will increase the smoothness, but it will also increase
the bias. A smaller bandwidth will reduce the bias, but will instead increase
the variance and lower the smoothness. This property is clearly illustrated
in �gure 17 where we are presenting the mortality for Danish females in year
2004. As we can see from the �gure, the raw mortality is not very smooth
for higher ages. When selecting a bandwidth of b = (10, 10), we have a very
smooth curve, but we are underestimating the mortality substantially, i.e.
we have a very large bias. When choosing a bandwidth of b = (4, 4), the
curve seems to �t the raw data better. The curve is rather smooth but we
still seem to have a bias problem for higher ages, since the most of the raw
data points lie above the smoothed curve. This fact may be a problem when
performing estimations and predictions.7

4.4 Bias Correction Technique
In �gure (17) we saw that even when choosing a rather small bandwidth,
we still had a bias problem. To be able to get reliable mortality estimations
this bias problem needs to be taken care of. Here we are applying a bias
correction technique used in Fledelius et al. (2002). The technique can be
explained in several steps. First we are creating a preliminary estimator of
the mortality. This estimator, which we call α̃x,t, is created by using the
local constant smoothing technique with very a large bandwidth. Here we
are using a bandwidth of b = 10, 10.

α̃x,t =
Ōx,t

Ēx,t

(16)

The idea is that this preliminary estimator should be very smooth. We are
7Here we have only illustrated the bias problem for Danish females in year2004, but

the situation is similar for both genders, in both countries, and for di�erent years.
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then performing another local constant smoothing. The di�erence this time
is that the exposure Ex,t in the denominator is replaced by Ex,t ∗ α̃t,x, i.e.
the exposure multiplied by our preliminary estimator of the mortality. The
numerator is, just as before, the raw occurrence. This second smoothing is
performed on the numerator and the denominator separately and we are here
using a bandwidth of b = (4, 4). This second smoothing gives us an estimator
which we call gx,t

8.

gx,t =
Ōx,t

Ex,t ∗ α̃x,t

(17)

The �nal step is to multiply the estimatorgx,t with the preliminary estimator
of the mortality α̃.

m̃x,t = gx,t ∗ α̃ (18)

The idea of the way this correction technique works may seem a little bit
unclear, but the e�ect of using it is exceptional. In �gure 18 this bias correc-
tion technique is illustrated. The �gure is an extension of �gure 17, where
we have included an extra curve for the estimation with the bias correction
applied. This estimation �ts the raw data better than the ordinary local
constant kernel smoothing estimation, and there is no visible bias problem.

Even if the bias correction technique described above is applied, we may still
have a bias problem at the boundaries (see section 4.1.2). The bias correc-
tion technique is not taking care of the problem that may arise at boundaries,
where we are not able to use the full kernel. The boundary bias problem may
arise both at certain ages and at certain years. However, in this thesis we
will not have a problem in the age dimension. As we will explain in section 6
we will only consider the ages 65-99, and since the data covers the ages 0-110

8gx,t should not be considered as an estimator of the mortality.
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we will be able to use the full kernel for the smoothing procedure in the age
dimension. Nevertheless, the problem is inevitable at the right boundary for
the calender year dimension. For the left boundary there will be no problem
since we are able to use information from prior years. For the right bound-
ary the problem appears, since we are not able to use future information (see
�gure 11).
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5 The Lee-Carter Method
In this section we will describe the Lee-Carter method (Lee and Carter
(1992)), which consists of a mortality model and a methodology of �tting
the model. The method also contains a time series model of the dominant
parameter, which can be used for forecasting (Booth et. al. (2002)).

5.1 The Model
In section 3 we studied the development of the expected lifetime and the
mortality rate, and it is obvious that neither of these has been constant over
time. When trying to construct a model describing the mortality rate it
is therefore desirable to have a model depending on time. The Lee-Carter
model, proposed in Lee and Carter (1992), has become the leading statistical
mortality model in the demographic literature (Deaton and Paxson,2001). It
is a parsimonious demographic model combined with statistical time-series
methods. Let m(x, t) denote the central mortality rate for age x in year
t. The method proposed by Lee and Carter models the logarithm of the
mortality rate:

ln(mx,t) = ax + bxkt + εx,t (19)

The di�erent parameters can be explained as follows

• ax is a set of age-speci�c constants describing the general pattern of
mortality at di�erent ages.

• kt is an index describing the general level of mortality at di�erent times.
kt captures the main trend in death rates at all ages. Since the overall
trend is a decreasing mortality, one can expect the index to be decreas-
ing as well9

9This statement is dependent on that bx > 0. If bx < 0 then the overall trend of a
decreasing mortality corresponds to an increasing k index. If bx = 0, then the mortality
does not depend on time at all.
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• bx is a set of age-speci�c constants describing the relative speed of
mortality changes, at each age, when kt changes. bx modi�es the main
time trend according to whether the change at a particular age is faster
or slower than the main trend, and if the change is in the same or the
opposite direction. The model allows for both negative and positive
values of bx. A negative value of bx indicates that the mortality for
that age is rising with an increase in time10. However, in practice, this
does not seem to occur in the long run. So, when the model is �tted
over fairly long periods, then all bx have the same sign (Lee and Miller
2001). When bx is large for some x, then the mortality rate at that age
di�ers a lot for di�erent times. When bx is small, the mortality rate at
age x shows small changes for variations in the main trend, which is
often the case with mortality for older ages (Lee and Carter1992).

• εx,t denotes the error term, which is not captured in the model.

5.2 Fitting the Model
The parameters to be estimated in the model areax, bx and kt. For a given
matrix of mortality rates, mx,t we therefore seek the least square solution
to (19). The model is overparameterized, and there is therefore no unique
solution. The parametrization is invariant under either of the transformations
(Renshaw and Haberman (2003b))

{ax, bx, kt} 7→ {ax, bx/c, ckt}

{ax, bx, kt} 7→ {ax − cbx, bx, kt + c}

for any constant c. This means that ax is only determined up to an additive
constant, bx is determined up to a multiplicative constant, and kx is deter-
mined up to a linear transformation11. This is not a problem though; it only
means that the likelihood function associated with the model has an in�nite

10Conditioning on that the time index is decreasing.
11These observations are connected with the discussion above about the sign of thebx's.
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number of equivalent maxima, and all of them would produce identical fore-
casts (Girosi and King (2005)). To obtain a unique solution we just have to
impose some restrictions. Lee and Carter are letting the bx's sum to unity
and the kt's sum to 0.12

∑
x

bx = 1
∑

t

kt = 0 (20)

The implication of the second restriction is that ax is the empirical average
over time for the logarithmic mortality rate for people aged x (Girosi and
King (2005)). This means that, even though the ax's are time independent,
the estimations of the ax's will depend on the historical period we are using
for our estimations. If we change the historical period, the average of the
logarithmic mortality will change, and so will theax's.

Since we only have parameters on the right hand side of (19), and no ob-
served variable, we cannot use ordinary regression methods for solving the
model (Lee and Carter 1992)13. Maximum likelihood methods can be used,
but the multiple maxima or the constraints will make standard optimization
programs work poorly (Girosi and King (2005)). To �nd the least square so-
lution, Lee and Carter suggest to use the singular value decomposition (SVD)
method, applied to the logarithmic mortality matrix after theax's have been
subtracted. This way we will get estimates of the bx's and the kt's.

5.2.1 Second Stage Estimation

When the parameters are known, we are able to calculate the theoretical
mortality rates. Further, applying these rates to the population data we can

12These normalization together with the overall trend of decreasing mortality will prob-
ably lead to that the bx's are positive and that the time index is increasing over time.

13However, the estimates of the ax's, as the empirical average over time, are still least
square estimates due to the normalizing constraints in (20) (Renshaw and Haberman
(2003)).
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derive the number of deaths generated by the model, for each age and each
year. The theoretical number of deaths for each year will in general not be
equal to the actual number of deaths (Lee and Carter (1992)). The reason is
that all ages have received the same weight in the SVD, regardless of the size
of the mortality rate. This means that the error terms,εx,t, corresponding to
small x-values will have the same weights as the error terms corresponding
to large x-values, yet the contribution to the total number of deaths is much
smaller from youth than for older people. Lee and Carter therefore suggest
a reestimation of the kt's, where the values of the ax's and bx's from the �rst
estimation are �xed, so that the actual number of deaths for each yeart will
equal the deaths generated by the model for that year. This second stage
estimation is done by an iterative search.

In this thesis however, we are not applying this reestimation of thek-index.
The reason is that our intention is not to �t the number of deaths exactly
for each year. We have assumed the mortality surface to be smooth, and to
ful�ll this assumption we are applying the kernel smoothing technique. This
way we have reduced some of the randomness included in the raw mortality
rate estimations, especially for higher ages when the exposure is small. The
raw mortality rate estimations are not very smooth, and the intention is not
to �t the exact mortality rate for each year and each age. Instead we want
to have a smooth model that "on average" captures the main trend of the
mortality. For the same reasons we are not interesting in a model that for
each year exactly generates the actual number of deaths for that year.

5.2.2 Studying the Mortality Index

When Lee and Carter developed their model they used U.S. data from1900-
1989. Studying the estimations of the mortality index, the kt's, they found
some interesting facts.
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• During 1900-1989 the mortality index was decreasing roughly linearly.
The decline in the �rst half of the estimation period was about the
same as the decline in the second half. This was interesting since the
development in life expectancy during the same period was de�nitely
not linear14. This appeared to be an advantage by modeling the death
rates instead of modeling the life expectancy.

• They also found that the short-run �uctuations in k was about the
same during the whole time period15.

The linearity and the relatively constant variance are very convenient fea-
tures for prediction purposes.

5.3 Mortality Forecasts
In order to predict the future mortality, we only have to predict the evolu-
tion of the mortality index16. Lee and Carter predict the mortality index by
an univariate time series model. They try several ARIMA speci�cations but
suggest that a random walk with drift describes the index well. They suggest
the following model:

kt = kt−1 + c + et (21)

where c is the drift and et is the error term. The only parameter to be es-
timated is the drift term (c). c is estimated by calculating the slope of the

14During 1900-1944 the life expectancy at birth in USA rose by17.6 years. The increase
in life expectancy during 1944-1988 was 9.9 The decline in the time index for the same
periods was 15.8 and 16.7 respectively.

15Except for the in�uenza epidemic in 1918.
16Booth the ax's and the bx's are age speci�c (do not depend on time) and therefore,

they do not need to be predicted.
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line that is drawn through the �rst and the last observation of thek-index.
When this is done, we are able to predict forecast of the future mortality
rates. The predictions of the future mortality index is then produced by
extrapolation of this line. This is illustrated in �gure 19 where the mortal-
ity index for Swedish females aged 65-99 is estimated during 1970-2004 and
predicted during 2005-2039.

To handle the in�uence epidemic in1918, Lee and Carter introduce a dummy
variable for that year. Due to the in�uence epidemic in1918, the number of
deaths during that year was unusually high. When using the kernel smooth-
ing technique, the e�ect of this disease has been diminished, since the mortal-
ity estimations are then based on information during more than one calender
year. Therefore, we do not �nd it necessary to introduce a dummy variable
for that year.
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6 Procedure

6.1 Backtesting
We have mentioned the great importance for life insurance companies of
having accurate forecast of the future mortality. Unfortunately, you cannot
determine the performance of the predictions until afterwards. Nevertheless,
there is still reasons for carefully considerations of the way you are generat-
ing the mortality predictions. There are a lot of possible ways for producing
forecasts. The common procedure is to consider the historical mortality and
try to �t a model to the historical data. Predictions can be produced by ex-
trapolation of the parameters in the estimated model. It is very important to
be aware of the fact that a good historical �t (between empirical data and the
estimated model) does not guarantee good future predictions. By applying
more complicated models and including new parameters it is often possible
to improve the historical �t. However, when going on to the prediction pur-
poses, there may come up problems. First, as Booth et al. (2002) points
out, a large number of parameters will limit the potential for extrapolation,
and therefore complicate the predictions. Second, even if extrapolation is
possible and predictions are made, the predictions may be unstable and un-
realistic, with large prediction errors (see Fledelius (2003)). A good �t to
the past does not guarantee a god �t in the future, and our objective is ex-
actly a good �t in the future. So, when choosing a mortality model it is the
prediction capacity (rather than the estimation capacity) of the model that
should be of primary interest.

Since the future is unknown, one can never know for sure if a certain model
will be good at predicting the future mortality. However, by evaluating the
historical prediction performance of the model, we may get a hint of its ca-
pacity. If a model historically has performed well, one has stronger reasons
for believing that it will perform well also in the future. In this thesis we
will examine the historical prediction performance of the LC method. We
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will use a part of the data for estimating the model, and the rest part for
comparison to the predictions generated by the estimated model. By this
backtesting technique we are able to get a hint of the potential prediction
capacity of a certain model. Backtesting is therefore an important tool for
validating a prediction model.

6.2 Period and Cohort Expected Lifetime
In �gures 1 and 3-4 we are illustrating the expected lifetime for men and
women in Sweden and Denmark. The expected lifetime for a certain year is
calculated by studying the age of the individuals that die in that year. This
way of measuring is called the period life expectancy, and should not be mixed
up with the cohort life expectancy, i.e. the expected lifetime for individuals
born in a certain year. To calculate the expected lifetime for individuals
born in a certain year we have to follow the whole cohort of individuals that
where born in that speci�c year, and the value of the expected lifetime can
therefore not be known exactly in more than 100 years afterwards. So, it is
important to distinguish between expected lifetime by year of death (period
expected lifetime) and expected lifetime by year of birth (cohort expected
lifetime)17. In the HMD database, from where we have taken our data, both
these measures of the expected lifetime are available. As mentioned before,
we have data for the period life expectancy up to year 2004. But for the
cohort life expectancy, data are only available up to year1913. In �gure 20
the di�erence between the both life expectancy measures are illustrated. In

17In this thesis the "cohort expected lifetime" and "expected lifetime by year of birth"
will have the same meaning. Nevertheless, in this case, it may feel a little bit strange
to call it "expected lifetime by year of birth", since we are not studying the birth year
at all. We are only studying the calender year and the age of the individuals, and by
knowing these two co-ordinates we get information also about the birth year according to
the relationship: cohort = period - age. However, the birth year cannot be known exactly
since we are working with discrete time.
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all graphs, the upper full line represents the expected lifetime by the year
of birth (cohort), while the lower dashed line represents expected lifetime by
year of death (period). The time period in the �gure is 1875-1913. As we
can see from the graphs, the trend is similar for males and females and for
Sweden and Denmark, and there is quite a big di�erence between the two
lines.

A problem when investigating the cohort expected lifetime is that you need
to have information for a very long time ahead. The expected lifetime can
be calculated from the mortality rates, according to (7) and (8) in section
3, but if you want to calculate the cohort expected lifetime for a newly born
individual you need to have predictions of the mortality rates for about100

years ahead. This may be a hard problem in practice since it may be di�cult
to have accurate predictions such a long time into the future.

6.3 Evaluation
In this thesis we are evaluating the performance of the Lee-Carter method
in predicting future mortality rates. We have focused on individuals aged
65-99, since we think that these ages are extra relevant in the perspective
of an insurance company. For the evaluation process we are using all data
from year 1900 and forward. The idea is to �rst use data only from a certain
limited time period, which we will call the estimation period. For this data
we are then performing the local constant kernel smoothing technique with
bias correction. By doing so we will get smooth estimates for the mortality
rate for every year in the estimation period and for every single age in the age
interval 65-99. We will then adapt the Lee-Carter model to this smoothed
data. The parameters in the LC model will be estimated by the Singular
Value Decomposition (SVD) technique.

When all the parameters in the LC model are estimated it is easy to create
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forecasts of the mortality index, by just extrapolating from the latest year
in the estimation period. Since the mortality index is the only parameter
that needs to be predicted, we will then also easily get forecasts for the
future mortality rates. For a time period, called the prediction period, and
starting at the year immediately after the end of the estimation period, we
will perform predictions of the future mortality rates.

The �nal step in the LC evaluation process is to compare the predicted
mortality rates with the actual mortality rates observed. To minimize the
randomness, we are applying the smoothing technique (with bias correction)
to the observed mortality rates before we do the comparison. This is because
we want to minimize the e�ect of the inherent variation of the mortality
for individual observations. By doing this comparison we are able to say
something about the historical performance of the LC method. It is clear
that the closer the predicted mortality rates are to the observed rates the
better the model is18. A natural thought that appear is how far away from
the observed rates the predicted rates are allowed to be in order to call it a
"good" prediction. It may be di�cult to determine the performance of the
model by just studying the mortality rates themselves. The mortality rates
are actually intensities and may sometimes be hard to interpret.19 Just like
Lee and Miller (2001), who are evaluating the performance of the LC method
on American data, we will mainly study the expected lifetime to evaluate the
LC performance. Since we are only studying the ages65-99 we will consider
the expected remaining lifetime for individuals at ages in this interval.

Let's say, for example, that the estimation period ends at calender yeart, i.e.
we have used data up to year t to estimate the parameters in the LC model.

18at least in prediction purposes.
19In this case, however, since we are studying the mortality at discrete, one year interval,

time points, the mortality rates can be seen as a probabilities for dying during a certain
year. This fact will make it easier to interpret the meaning of the intensity. But it may
still be di�culties to explain di�erences between predicted and observed mortality by just
looking at the mortality rates.
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The prediction period does then start at year t+1, and we are predicting the
future mortality rates from year t+1 an on. By using the predicted mortality
rates it is possible to calculate the expected remaining lifetime. The life
expectancy is calculated by summing up the contribution in lifetime for each
single age up to the age of 99. If we want to calculate the cohort expected
remaining lifetime for an individual aged65 in year t+1 we therefore have to
study the following:

• the mortality rate for a 65 year old in year t+1

• the mortality rate for a 66 year old in year t+2

• ...

• the mortality rate for a 99 year old in year t+35

This means that we need predictions 35 years ahead to perform a prediction
of the cohort expected remaining lifetime of an individual aged 65 in year
t+1.20 If we would like to calculate the cohort expected remaining lifetime of
a 66 year old in year x+1, the procedure is the same. We will have to study

• the mortality rate for a 66 year old in year t+1

• the mortality rate for a 67 year old in year t+2

• ...

• the mortality rate for a 99 year old in year t+34

In this case we "only" need 34 years future predictions. For calculating the
life expectancy for a 67 year old we need 33 future predictions and so on.

For calculating the "usual" expected remaining lifetime in yeart+1, i.e. the
life expectancy for individuals that dies in year t+1, we are only using the

20We are here ignoring the contribution in life expectancy for ages higher than 99.
However, this contribution should have no large impact.
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mortality rates in year t+1. Except the fact that we are only using mor-
tality rates from the same year (t+1), the procedure for calculating the life
expectancy is the same as for the cohort life expectancy.

The formulas (7) and (8) for calculating the life expectancy in section 3 were
only considering the age as an independent variable. Since we are also con-
sidering the calender year as an independent variable, we have to introduce
the "time" dimension in the formulas. The period life expectancy for an
individual aged x in year t can be calculated as

ex,t = (
∞∑
i=0

l(x + i, t)

l(x, t)
)− 0.5 (22)

The mortality rates used in the calculation are all from the same calender
year (year t). The cohort life expectancy for an individual agedx in year t

can be calculated as

ex,t = (
∞∑
i=0

l(x + i, t + i)

l(x, t)
)− 0.5 (23)

Here we are using mortality rates for di�erent years in the calculation.

The predicted remaining lifetime should then be compared to the observed
remaining lifetime. The observed remaining lifetime are calculated by using
the observed mortality rates in the same way as for the predicted remaining
lifetime.21 To be able to compare the predicted cohort expected remaining
lifetime for a 65 year old to the observed remaining lifetime we cannot use
data later than 1969 for the estimation period, since we need 35 years pre-
dictions, and we only have data up to 2004 available. For the study of a 66

years old we can at most use data up to 1970 and so on. When studying the
21By using the same procedure as before, the concern that we are ignoring contributions

from individuals aged 100 and above can be neglected.
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expected lifetime by the year of death, we do not have these restrictions, and
can therefore use more recent data for the estimation.

Since we would like to base our LC evaluation on as much information as
possible, we will use several di�erent estimation periods, were each of them
will give an unique prediction.

Before starting the evaluation process we also have to decide the length of
the estimation period. We decided to �rst use an estimation period of 35

years.22 This resulted in the following estimation/prediction periods:

• Period 1: Estimation: 1900-1934 Prediction: 1935-1969

• Period 2: Estimation: 1901-1935 Prediction: 1936-1970

• ...

• Period 71: Estimation: 1970-2004 Prediction: 2005-2039

Thus, when using a length of 35 years of the estimation period, we will get
71 di�erent periods. Each of them will have an unique set of estimates for
the parameter in the LC model. Each of them will also have an unique set of
predictions based on the estimated parameters. But, as mentioned above, we
will not be able to use all predicted mortality rates in the evaluation process
since we only have data until 2004. The last period (Period 71) for example
cannot be used for evaluation at all since the �rst prediction year in this case
is 2005.

6.4 Varying the Length of the Estimation Period
This far the length of the estimation periods has been �xed to35 years. By
using the model estimated from these 35-years estimation periods, we have
predicted the future mortality. The quality of the predictions should then

22Since we are supposed to perform predictions 35 years ahead it may seem natural to
also have an estimation period of 35 years.
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be evaluated by comparing the predicted mortality to the observed mortal-
ity. An interesting thought is how the performance of the predictions would
have changed if we had changed the length of the estimation period.23. If
it is possible to improve the performance of the predictions by changing the
estimation period, it may be of great interest to �nd the optimal length of
the estimation period.24.

6.4.1 Finding the Optimal Length

We now have to introduce some further notation for the remaining life ex-
pectancy. Earlier we de�ned the remaining life expectancy for an individual
aged x in year t as ex,t. At this stage it is suitable to distinguish between pre-
dicted, ep

x,t, and observed, eo
x,t, remaining life expectancy. For the predictions

we have to introduce an additional index, indication the number of years,z,
for the estimation period. So, the predicted remaining life expectancy for an
individual aged x in year t, with an estimation period of z years, will then be
denoted ep

x,t,z.25 We will let the length of the estimation periods vary between
2 and 75 years. In all cases the �rst prediction year (in Period1) will be 1935,
just as before. We will try to �nd the optimal length of the estimation pe-

23This approach is di�erent from the approach performed by Lee and Miller (2001).
They are predicting the mortality in 1998 by using di�erent "jump-o�" years. They are
always using 1900 as the �rst year for the estimation period, while they are varying the last
year for the estimation period. When the estimation period is increased, the prediction
period is decreased. As the length of the prediction period decreases, the uncertainty of
the predictions will be lower. From this approach it is di�cult to evaluate the optimal
length of the estimation period.

24By optimal in this context, we mean the length that historically has been the opti-
mal length. There is absolutely no guarantee that this length will be optimal also for
future predictions. But, as mentioned in section 6.1, if the procedure has been successful
historically one may have stronger expectation about the performance in the future as well

25This z-index is only relevant for the predictions. For the observed life expectancy
there is no estimation period at all.
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riod for each single age between 65 and 99. In the case of a 65 year old, we
therefore has to compare the predictions (ep

65,1935,z, e
p
65,1936,z, ..., e

p
65,1970,z) to

the observed (eo
65,1935, e

o
65,1936, ..., e

o
65,1970) (36 values to compare). In the case

of a 66 year old, we instead has to compare (ep
66,1935,z, e

p
66,1936,z, ..., e

p
66,1971,z)

to (eo
66,1935, e

o
66,1936, ..., e

o
66,1971) (37 values to compare). For higher ages the

same procedure is applied. When we increase the age by one year, we get
one further value that can be used in the evaluation.

To �nd the optimal length we will have to de�ne some technique for measur-
ing the performance of the predictions. As mentioned before, we are mainly
using the life expectancy, rather than just the mortality rates, for evalua-
tion of the performance. We therefore think it is natural to also base the
performance measuring on the life expectancy. We will use three di�erent
measures, which are presented below, to �nd the optimal length of the esti-
mation period. For the illustration we will consider the case of a65 year old.
For each of them we will �nd the z that minimizes the following quantities.

1. Mean Absolute Error
|(ep

65,1935,z − eo
65,1935)|+ ... + |(ep

65,1970,z − eo
65,1970)|

36
(24)

1. Mean Square Error
(ep

65,1935,z − eo
65,1935)

2 + ... + (ep
65,1970,z − eo

65,1970)
2

36
(25)

1. Max Error

Max((ep
65,1935,z − eo

65,1935), ..., (e
p
65,1970,z − eo

65,1970)) (26)

One can discuss which one of these three measures that is most appropriate
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for determining the optimal length of the estimation period, but hopefully
the result will be similar for all the three of them. This procedure will be
implemented for all ages (65-99), for both genders and for both countries.26

26These are just three possible ways, out of many, for measuring the performance. An
alternative approach is to use di�erent weights for the prediction errors. One could then,
for example, use the exposure for determining the weights, A large exposure will correspond
to a large weight an so on.
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7 Results
In this section we are presenting the result together with some clari�cations
about the procedure. We will give some comments to the result, but the main
comments, analysis and conclusions will be given in section 8. The �rst part
of this section (7.1) includes the result when we had a �xed length (35 years)
of the estimation periods. In the second part of this section (7.2) we are
presenting the result when having di�erent lengths of the estimation periods.
From these result we are then trying to determine the optimal length of the
estimation period.

7.1 35 Years Estimation Periods
In this section we have applied a �xed length of the estimation periods. We
are using 35 years for estimating the LC model, and we are then predicting
the future mortality rates for the next 35 years. According to the procedure
described in section 6 we have 71 di�erent time periods, each consisting of
70 calender years, where the �rst 35 years are for estimation and the 35 last
years are for prediction. (For the �rst time period,1935 is the �rst prediction
year, while for the last time period, 2005 is the �rst prediction year.) For
each of the 71 time periods we have produced a matrix of mortality rates.
The dimension of each matrix is 35x70, where the 35 rows are representing
the ages from 65 to 99, and the 70 columns are representing the 70 calender
years. Thus, columns 1-35 are LC estimations, and columns 36-70 are LC
predictions.

7.1.1 Mortality Rates

As mentioned in section 6 it may be di�cult to determine the prediction per-
formance of the LC method by just studying the predicted mortality rates.
Our main evaluation tool in this thesis will instead be the study of the life ex-
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pectancy. However, we will still present some graphs illustrating the compar-
ison between predicted and observed mortality rates. A problem for this kind
of graphical presentations is that it is di�cult to get an extensive overview of
the situation without presenting too many graphs. The reason is that there
are several dimensions to take care of. We both have to consider di�erent
ages and di�erent years. Further, in this case we have applied the LC method
71 times (for each of the 71 di�erent time periods). It is impossible to make a
complete illustration in a single graph since it would require four dimensions,
and then we have not even considered which gender and which country we
are studying.

In �gure 21 we are comparing the observed smoothed mortality rates to the
rates estimated and predicted by the LC method. The comparison is made
for Swedish females, and we have chosen the time period1935-2004. There
are six graphs, and each graph illustrates a �xed age (65, 70, 75, 80, 85 and
90). The dotted line represents the observed smoothed mortality. The full
line represents the estimated (1935-1969) and the predicted (1970-2004) mor-
tality. The vertical line separates the estimation and the prediction period.
In all six graphs, the estimated (1935-1969) mortality seems to �t pretty well
to the observed mortality, at least for most years. However, in all graphs,
except for the age of 65, there is a visible discrepancy between estimated
and observed mortality just at the last 2-3 estimation years. It seems like
the mortality is overestimated at those years. Further, the overestimation at
those years seems to increase with the age. We suspect that this overestima-
tion may occur due to the boundary bias problem discussed in section 4.1.2.
We will return to the discussion of this problem in section 8. Going on to the
prediction performance, we see that for the age of 65 the result looks very
good. The predicted mortality rates are very close to the observed mortality
rates. When studying higher ages, it seems like the LC method is consider-
ably overpredicting the true mortality. The overprediction seems to increase
with the age.
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The situation for Danish females, Swedish males and Danish males are illus-
trated in �gures 22-24. For Swedish males we see a clear tendency that the
LC method is overestimating the mortality, at least at the later part of the
prediction period. For Danish females and males the situation is not that
obvious. For the highest ages however, it still seems like we have an over-
prediction problem. A recurring property is, like for Swedish females, that
there is a discrepancy between estimated and observed mortality for the last
years of the estimation period.

7.1.2 Cohort Expected Lifetime

As discussed in section 6, the way you measure the expected lifetime is of
great importance. There are signi�cant di�erences between the year-of-birth
(cohort)- and the year-of-death (period) expected lifetime (se �gure 20). Our
focus in this thesis is on the life expectancy by year of birth, and we will in
this section present some result concerning the cohort expected lifetime.

In section 7.1.1 we compared the predicted and the observed mortality by
studying the mortality rates. We observed that on some occasions the result
looked good, while sometimes the predicted mortality where far from what
was observed. As mentioned in section 6.3, it may be di�cult to evaluate
the performance of the predictions by just comparing the mortality rates.
It may also be di�cult to determine the consequences of a poor prediction.
If we are studying the life expectancy instead, it may be easier to evalu-
ate the performance of the predictions. When considering the di�erence (in
years) in life expectancy between predicted and observed mortality we get a
good understanding of the actual performance of the LC method. The life
expectancy is also easier (than mortality rates) to understand in everyday
speech.

The life expectancy is calculated by summing up survival probability contri-
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butions from di�erent ages, according to what was described in section 6.3.
The expected lifetime for a 65 year old was calculated by studying 35 dif-
ferent mortality rates. The di�erence in life expectancy (between predicted
and observed) for a 65 year old can therefore be seen as a summary of the
performance of these 35 di�erent predicted mortality rates. The considering
of the life expectancy is therefore a more convenient way for presenting fore-
seeable results compared to the considering of the mortality rates directly.
Of course, there may be some disadvantages enclosed in this procedure. For
example, we could have a situation where the predicted mortality rates are
far away from the observed mortality. If some of the predictions are too high
and some of them are too low, these prediction errors may compensate each
other, and we may see a good result when considering the life expectancy.
However, on the whole, we think that it is more appropriate to consider the
life expectancy than just the mortality rates for the LC evaluation process.

Female, Sweden
In �gure 25 we are comparing the predicted and the observed remaining life
expectancy for Swedish females. The �gure consists of six graphs, where
each graph represents a �xed age (65, 70, 75, 80, 85 and 90 years). The full
line in each graph represents the predictions and the dotted line represents
the observed values. For the remaining life expectancy for a65 year old we
only have observations until 1970. As explained earlier, this is because we
need 35 future years for the calculation of the remaining life expectancy for
a 65 year old. For ages higher than 65 we need less than 35 years for the
calculation, and we are therefore able to make the comparison also for years
later than 1970. For the age of 65 the predicted remaining life expectancy
is considerably lower than the true expected lifetime during the whole time
period. For higher ages, we still have an underprediction problem, but the
problem seems to decrease with the age. For the 85 and 90 year old, the
predictions for the latest years is above the true remaining life expectancy.
For the years around 1945 we notice a peak for the predictions.
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Female, Denmark
Figure 26 illustrates the same graphs for Danish females. Comparing �gure
25 and 26, we notice some similarities. Also for Danish females we tend to
have an underprediction problem. The problem seems to decrease with the
age. For the highest ages, we even notice some years where the predictions
are above the observed remaining life expectancy.

Male, Sweden
For Swedish males, �gure 27, the graphs look di�erent compared to �gures 25
and 26. The increase in remaining life expectancy over time has been much
smaller than for females and the underprediction problem that we observed
earlier is almost disappeared. We are experiencing some underprediction
during the �rst part of the time period, but not at the same size as in the
previous cases. Even if the predictions are a bit unsmooth at some years, it
seems like the predictions overall are much closer to the observed values for
all ages. The increase in remaining life expectancy for Swedish males seems
to be smaller than for Swedish and Danish females.

Male, Denmark
The same graphs for Danish males are illustrated in �gure 28. Here we no-
tice some interesting properties. The increase in the observed remaining life
expectancy over time is smaller than in all previous cases. During some years
we even have a decrease in the remaining life expectancy. Studying the pre-
dictions we see that these are rather unsmooth. Also, we do not seem to
notice the underprediction problem that we have observed earlier.

Summary
By studying �gures 25-28 we are able to draw some conclusions. The increase
in remaining life expectancy over time has been greater for females than for
males. We also notice a greater increase in Sweden than in Denmark. The
unsmoothnes in the predictions is greater in Denmark than in Sweden and
for males than for females. For Swedish and Danish females we tend to have
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an underprediction problem for the lowest ages. For males, we do not seem
to have this problem. In the following table the performance of the LC pre-
dictions are summarized. The table shows the mean absolute di�erence (in
years) between the LC predicted and the observed life expectancy.

Age 65 70 75 80 85 90

Female, Sweden 0.94 0.58 0.36 0.21 0.13 0.09

Female, Denmark 0.96 0.60 0.36 0.21 0.13 0.08

Male, Sweden 0.20 0.15 0.14 0.12 0.09 0.08

Male, Denmark 0.36 0.28 0.23 0.16 0.11 0.09

The result indicate that the mean absolute di�erence is decreasing with the
increase in age. This is natural for two reasons. First, when we increase
the age for which we consider the remaining life expectancy, the number of
prediction years decrease, and the uncertainty therefore also decrease. Sec-
ond, when we increase the age, the remaining life expectancy (both actual
and predicted) decreases and the magnitude of the prediction error therefore
also decreases. Another interesting property is that the prediction error is
on average much greater for females than for males.

7.2 2-75 Years Estimation Periods
In section 7.1 we presented some results concerning the prediction perfor-
mance of the LC method. We had a �xed length (35 years) of the estimation
period. In some cases we saw tendencies of an overestimation of the mortality,
which is connected to an underestimation of the remaining life expectancy. It
may be interesting to examine whether the performance could be improved
by varying the length of the estimation period. For example, if we want
to predict the mortality from year 1950 (and ahead), we have this far used
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the mortality during 1915-1949 27 One can argue that it may be unreason-
able to attach too great importance of the mortality during the beginning
of this period. Maybe the result would have been better if we instead have
used information only from the later part of the period. In order to examine
whether it is possible to improve the results we will here perform the same
procedure as before, but the length of the estimation period will not be �xed
to 35 years. We will let the length of the estimation period vary between2

and 75 years. In this section we will not consider the individual mortality
rates, but only the remaining life expectancy.

7.2.1 Cohort Expected Lifetime

By using the three measures (24)-(26) in section 6.4.1 we will try to �nd the
optimal length of the estimation period. We will just consider the case of the
remaining life expectancy for a 65 year old. Below we present the result for
Swedish females, Danish females, Swedish males and Danish males.

Female, Sweden
In section 7.1.2 we saw that the mean absolute di�erence between predicted
and observed remaining life expectancy was 0.94 for Swedish females aged
65. We also noticed that during the whole time period, for which we where
making predictions (1935-1970), the predictions where below the observed

27To clarify the procedure; When we say that we are using the mortality during1915-
1949 we mean that we are using the smoothed mortality rates during this period. However,
the smoothing technique used here means that the smoothed mortality for1915 actually
is calculated by using data not only from 1915, but also from the adjacent years to 1915.
This means that we are using data for more than 35 year backwards in time. Regarding
the smoothed mortality rate for 1949 we have been careful to not include information
for later years than 1949. This is because we want our examination to be as realistic as
possible. Since our purpose is to predict the mortality for year1950 and ahead, it would
not be far to consider information for these years when calculating the smoothed mortality
for year 1949.
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values. In �gure 29 we have illustrated the consequences of di�erent lengths
of the estimation periods. The �gure includes three di�erent graphs, corre-
sponding to the values of the three measures (24)-(26), for di�erent lengths
of the estimation period. The �rst graph illustrates the mean absolute di�er-
ence. The graph indicates a clear minimum for a length of about10-15 years
of the estimation period. For this length the mean absolute error is reduced
to 0.72 years (minimum is 0.718 for a length of 12 years). The second graph,
illustrating the mean square error, is similar to the �rst one, indicating a
minimum for the same length of the estimation period (minimum is 0.598

for a 12 years length of the estimation period.) The third graph, illustrating
the minimal maximal error between predicted and observed remaining life
expectancy is not as clear as the previous ones. The graph shows a local
minimum of 1.25 years for a 13 years period length. For greater lengths of
the estimation periods the curve seems some irregular, and it shows a global
minimum of 1.20 years error for a 26 years period length.

Taking all three graphs into consideration, we think that the optimal (his-
torically) length of the estimation period is somewhere between 10 and 15

years.

Female, Denmark
Figure 30 is presenting the same graphs as in �gure 29, but for females aged
65 in Denmark. The �rst graph, representing the mean absolute di�erence,
shows a minimum of 0.692 years for a period length of 9 years. This should
be compared to the mean absolute di�erence of 0.96 years for the 35 years
period length. The �rst graph also shows a local minimum 0.705 for a 15

years period length. The second graph, representing the mean square error,
is similar to the �rst one. It indicates a minimum of about0.6 and an opti-
mal length of 9-16 years (minimum is 0.596 for a 13 years length). The third
graph, representing the minimal maximal error, shows a minimum of 1.23

years for a 15 years period.
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The graphs for Danish females where more or less similar to the graphs for
Swedish females. It is therefore natural that also the conclusions are simi-
lar. We think that the historically optimal length of the estimation period is
somewhere between 9 and 16 years.

Male, Sweden
When moving on to Swedish males, we �nd the corresponding graphs in �g-
ure 31. Compared to �gures 29 and 30 this �gure looks completely di�erent.
Instead of �nding a minimum for a 10-15 years estimation period, it now
seems like it is more appropriate to have a much longer estimation period.
An interesting observation is that the magnitude of the prediction error is
much smaller than for Swedish and Danish females. No matter what length
of the estimation period we choose, we still have a lower mean absolute er-
ror and mean square error than we optimally had for Swedish and Danish
females. For both the mean absolute error and the mean square error, we
�nd that the historically optimal length of the estimation period has been72

years. This length gives a minimum of the mean absolute di�erence of0.157

years. The minimum of the mean square error is 0.039. For the minimal
maximal error, the optimal length is 73 years, which gives a minimum of
0.433 years.

Male, Denmark
Finally, the corresponding graphs for Danish males are presented in �gure
32. A quick glance at the graphs tells us that they are quite similar to the
graphs for Swedish males, indicating a much longer optimal length of the
estimation period compared to Swedish and Danish females. The graphs are
indicating two di�erent minimums. The �rst minimum appears for an es-
timation period of about 50 years, while the second minimum indicates an
optimal length of about 70-75 years. When considering the mean absolute
di�erence, we �nd a minimum of 0.326 for a length of 74 years. For the
mean square error the minimum is 0.152 and it appears for a 49 years period
length. The third measure, the min-max error, shows a minimum of0.914
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years, for a length of 50 years. Just like for Swedish males, the magnitude
of the prediction errors is substantially smaller than for Swedish and Danish
females. No matter what length of the estimation period we choose, we still
would have a smaller mean absolute error and mean square error than for
both Swedish and Danish females.

Summary
In the following table the result is summarized.

Mean Absolute Error Mean Square Error Max Error
Female, Sweden 0.72 (12 Years) 0.60 (12 Years) 1.20 (26 Years)
Female, Denmark 0.69 (9 Years) 0.60 (13 Years) 1.23 (15 Years)
Male, Sweden 0.16 (72 Years) 0.04 (72 Years) 0.43 (73 Years)
Male, Denmark 0.33 (74 Years) 0.15 (49 years) 0.91 (50 Years)

The result is similar for Swedish and Danish females and for Swedish and
Danish males. We also observed that the magnitude of the error is greater
for females than for males.
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8 Analysis
In the previous section we observed that the historically optimal length of
the estimation period was considerably shorter, and the prediction error was
considerably greater, for females than for males. We also observed an un-
derprediction problem of the remaining life expectancy for females. In this
section we will try to �nd out and explain the reasons for this result. We
will consider three di�erent concerns:

• 1. The length of the estimation period.

• 2. The size of the prediction error.

• 3. The underprediction problem

First we will consider the consequences of di�erent lengths of the estimation
period.

8.1 Length of the Estimation Period
The shorter length of the estimation period we choose, the more weight (for
our estimations) will be added to more recently observed data. In cases when
we are facing new demographical trends, these trends will be easier captured
when we are using a shorter estimation period. This is an advantage by
using a shorter length. At the same time, a short estimation period will
make the predictions more sensitive to randomness and temporary trends
in the observed mortality during the estimation period. A few years with
unusually high (or low) mortality during the estimation period may result
in a misspeci�ed model and large prediction errors. Even if some of the
mortality randomness should have been erased by the smoothing technique,
we still may have temporary mortality trends complicating the estimation
(and therefore also the prediction). In �gure 33 we are comparing the pre-
dictions (of the remaining life expectancy for a 65 year old) received when
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using a 10 years (full line) and a 50 years (dotted line) estimation period.
These predictions are compared to the observed remaining life expectancy
(plotted points). The four graphs tell us that the variation of the predictions
is greater when using a 10 years length of the estimation period. The 50

years estimation period gives us more stable predictions. This is in line with
the discussion above. The fact that a shorter estimation period easier will
capture new demographical trends may also lead to an exaggerated respect
to temporary trends, which sometimes seems to be the case, especially for
males, in �gure 33.

After having a basic understanding of the consequences of varying the length
of the estimation period, we now go on to analyze the observed result. In sec-
tion 7.2.1 we found out that the historically optimal length of the estimation
period for Swedish females was about 12 years, while the optimal length for
Swedish males was more than 70 years. In order to try to understand these
results we have to look at development of the mortality. In �gure 34 the
smoothed mortality rates for Swedish males and females aged 65 are illus-
trated. The upper line represents males, while the lower line is for females.
The vertical dotted lines illustrate the period (1935-1970) for which our pre-
dictions of the remaining life expectancy are made. Considering females, we
see that there is a sharp break on the curve right before the year1940. The
negative slope of the curve, indicating a decreasing mortality, has been much
higher after 1940 than before. It should be clear that if we put too much
weight of the mortality before 1940 (for estimating the model) we will risk to
get predictions that are not capturing this decreasing mortality trend. In this
case, we will risk to overpredict the mortality, and consequently, underpre-
dict the remaining life expectancy. By choosing a short estimation period we
will quicker get rid of the "misleading" mortality that was observed before
1940. This is con�rmed in �gure 33, where the predictions in general are
better (the underprediction problem is smaller) for the 10 years estimation
period than for the 50 years period.
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Studying the corresponding curve for Swedish males (�gure 34), we observe
that this curve is somewhat di�erent to the curve for Swedish females. Also
for males we notice a break, with a rapid decrease in the mortality, right
before 1940. But the curve is then quickly leveling out and we observe a
very small decrease in the mortality right to the end of the1970's where we
observe a rapid and continuing mortality decrease. Compared to Swedish
females, the decrease in mortality for Swedish males has been rather small
during 1900-1980. In broad outline, one can say that, except for some tem-
porary mortality trends, the decrease in the mortality during1900-1980 has
been fairly constant (at least compared to Swedish females). Therefore, it
should be no surprise that the best historically predictions have been derived
from a very long estimation period, when the temporary trends and the ran-
domness in the mortality have a small e�ect of the future predictions. There
has been no need for a short estimation period, that quickly captures new
demographical trends since the mortality trend has been fairly constant.

However, the fact that a long estimation period has been optimal historically,
do not necessary mean that it should be optimal also for future predictions.
The fact that we have a rapid and continuing decrease in the mortality dur-
ing the last 25 years indicates a potential change in the demographical trend.
Whether this trend will continue also in the future is almost impossible to
say, but, if the method applied here should be used for predicting the future
mortality, we think it is highly probable that is better to use a shorter esti-
mation period than what has been optimal historically.

The corresponding curves for Danish females and males are drawn in �gure
35. As noticed before, the unsmoothness of the mortality has been much
higher in Denmark than in Sweden. For females we observe a great and con-
tinuing mortality improvement starting around1940. For males, we observe
a mortality improvement during the last 20 years. These mortality trends
are in some way similar to the trends observed for Swedish individuals. The
discussion above about concerning Swedish individuals can be applied also
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for Danish individuals. It is then possible to get an understanding of the
result also for Denmark, even if the conclusions are not that obvious as for
Sweden.

Before moving on the next section, we will make a clari�cation. One should
be aware of that the study of �gures 34 and 35 may not be enough for a com-
plete analysis. In these �gures we are only illustrating the mortality for a65

year old. When studying the remaining life expectancy, one has to consider
the mortality at all ages during 65-99. Nevertheless, we think that these
�gures are still relevant for the understanding, due to two reasons. First,
main mortality trends are often similar at di�erent ages, especially when a
smoothing technique is applied. Second, the mortality at the age of 65 is
the mortality that contributes most when calculating the remaining life ex-
pectancy. This is due to the way the life expectancy is calculated (see (22)
and (23)). The contribution from a certain age depends on not just the mor-
tality at that age, but also on the mortality at all previous ages. Therefore,
the mortality at age 65 a�ects the contribution in expected lifetime for all
other forthcoming ages (66-99).

8.2 Size of the Prediction Error
We noticed in section 7.2.1 that the prediction error for females where much
higher than corresponding errors for males, and this was true for both Sweden
and Denmark. We will present two di�erent explanations for this feature.
First, we have measured the prediction errors in absolute (and not in rela-
tive) terms. It is well known that the remaining life expectancy is greater for
females than for males. It is therefore natural that the absolute prediction
error in general is greater when the size of the quantity which we want to
predict is greater. The second explanation, which we also think is the most
relevant, is connected with the overall trend for the life expectancy. The in-
crease in the remaining life expectancy has been higher for females than for
males. During the years for which we are making predictions (1935-1970),
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the development of the remaining life expectancy for a 65 year old is pre-
sented in the table below.

1935 1970 Di�erence
Female, Sweden 13.81 17.96 + 4.15
Female, Denmark 13.38 17.46 + 4.08
Male, Sweden 13.15 14.08 + 0.93
Male, Denmark 12.87 13.41 + 0.54

The increase is more than four years for females, and less than one year for
males. Compared to the females, the remaining life expectancy for males has
been almost constant. It seems natural that it should be easier to predict
something that is almost constant than something that is not. Therefore, it
is no surprise that the prediction errors are much greater for females than
for males.

8.3 Underprediction Problem
Finally, we are considering the underprediction problem of the remaining life
expectancy, that mainly is observed for females. One should be aware of
the fact that the predictions are performed 35 years ahead. If the mortality
during this 35 years period is decreasing more rapidly than it has during the
estimation period, we will probably have an underprediction problem. As
observed, in �gure 34 the mortality for Swedish females has been decreasing
more rapidly after 1940 than before. When using data prior to 1940 we may
underpredict the future mortality, according to the discussion in section 8.1.
However, by reducing the length of the estimation period, one may argue
that this underprediction problem should disappear. For example, when us-
ing a 10 years length of the estimation period, the predictions for year1950

and thereafter will not be a�ected by the mortality prior to1940. However,
studying �gure 33, we see that the underprediction problem follow us all
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the way until 1970. We believe that some of this underprediction problem
depends on a boundary bias problem. The problem comes up in the kernel
smoothing technique at points close to the right boundary in the time dimen-
sion, as discussed in section 4.1.2. Even if we are using the bias correction
technique described in section 4.4, we still may have a bias problem near this
boundary. The bias problem may result in that the smoothed mortality at
this boundary is incorrect. When the mortality trend is decreasing (which
is often the case) we will tend to overestimate the smoothed mortality near
the boundary during the estimation period. The smoothed mortality during
the estimation period underlies the LC estimations, which includes estimates
of the mortality index kt. An overestimated smoothed mortality at the end-
points will therefore automatically be incorporated into the LC estimations.
The way the LC predictions are generated means that the predictions of the
future mortality depends solely on just the �rst and the last value of the
estimated mortality index, since the predicted future mortality index is gen-
erated by extrapolation of the line that is drawn through these two points
(see �gure 19). If the last estimated point of the mortality index is too high,
the negative slope of the mortality index may be too low, which result in
future mortality predictions that are too high. This is illustrated in �gure
36. The plotted points represent the LC estimated mortality index during a
10 years estimation period. The vertical line separates the estimation period
(1960-1969) and the prediction period (1970-2004). The full line represents
the LC predictions of the mortality index. As mentioned before, the predic-
tions are produced by extrapolation of the line that connects the �rst and
the last points of the mortality index. Now assume that the last points of
the estimated mortality index are too high, due to the boundary bias prob-
lem. If we ignore the last three points and instead produce the predictions
by connecting the �rst and the fourth last points of the estimated mortality
index, we would then have predictions according to the dotted line. Com-
paring the two di�erent "prediction curves", we see that there is a fairly big
di�erence between them, especially for the latest prediction years, since the
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gap between the curves increases as time goes by. The potential boundary
bias problem was observed already in �gures 21-24, where we observed a dis-
crepancy between observed and estimated mortality just at the last years of
the estimation period.

It is di�cult to determine in what degree the result has been a�ected by
the possible boundary bias problem. The starting point when analyzing the
performance of the predictions is to compare the predicted to the observed
remaining life expectancy. This is fairly straightforward, but if we want to
analyze the result in more details, we have to consider the individual mor-
tality rates, where we compare our predictions to the observed. The fact
that we are considering the cohort expected lifetime instead of the period
life expectancy makes the graphical analyzing even more complex. To deter-
mine the remaining life expectancy for a 65 year old we have to consider the
mortality rates for individuals aged 65-99. For these 35 ages, the mortality
rates should be considered during 35 di�erent calender years, which makes it
di�cult to graphically analyze the in�uence of the potential boundary bias
problem. It should be clear however that the boundary bias problem will
be smaller when we increase the length of the estimation period. When the
length is increased, the distance (in years) between the �rst and the last
point of the mortality index will become greater. The possible bias of the
boundary point will then have a smaller impact on the slope of the prediction
curve. At the same time, the potential problem becomes more essential when
we decrease the length of the estimation period, which may have been the
case for Swedish and Danish females.

The potential boundary bias problem may probably be reduced by using
methods for boundary bias corrections. It is also possible that a local linear-
instead of a local constant kernel smoothing technique would have been more
appropriate. An interesting and alternative approach for reducing the prob-
lem is to change the way the predictions of the mortality index is produced.
As explained before, the predictions depends only on the �rst and the last ob-
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servation of the mortality index. If the predictions instead would have been
produced by a linear regression, then the impact of the last (and the �rst)
observation would have been reduced. The predictions would then instead
be a�ected by all earlier observations of the mortality index.
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9 Future Forecasts
At this point we are able to present predictions of the future remaining
life expectancy for individuals in Sweden and Denmark. Before making the
predictions we have to decide the number of years to be used for the LC
estimation. The issue of �nding the optimal length of the estimation period
was investigated in section 7.2.1. For females (in both Sweden and Denmark)
we found a historically optimal length of about10-15 years. For Swedish and
Danish females, we have decided to use a 12 years estimation period when
producing our future predictions.

For males, the result, in terms of �nding the optimal length of the estimation
period, was not as obvious as for females. We found that a very long (50-75

years) estimation period historically has been most successful. In section 8.1,
when analyzing the result, we studied the development of the mortality and
had a discussion about the optimal length for producing future predictions.
We had some doubts whether it maybe would be more appropriate to have
a shorter estimation period to capture the more recent mortality trend for
males (se �gure 34 and 35). When producing the future predictions for males
we will therefore present to di�erent predictions, using two di�erent lengths
of the estimation period. First, we will use a "long" estimation period, ac-
cording to what has been optimal historically. We will use a length of 72

years for Swedish males and a length of 50 years for Danish males. In the
second approach we will use a "short" estimation period (15 years) for both
Swedish and Danish males.

In �gure 37 we are illustrating the predicted remaining cohort life expectancy
during 1935-2005 for individuals aged 65. For the prediction for a certain
year, we have used the data available until that year. The predictions of the
remaining life expectancy are calculated as before, using the future35 years
predicted mortality rates. Accordingly, the prediction for2005 are calculated
from the predicted mortality rates during2005-2039, where we have used the
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data until 2004 for estimating the model. As far as it is possible (until1970),
we have included the observed remaining expected lifetime in the graphs,
which is illustrated by the full line. For Swedish and Danish males two dif-
ferent predictions are presented. The dotted line illustrates the predictions
generated from the "long" estimation period (72 years for Sweden and 50

years for Denmark). The dashed line corresponds to the predictions gener-
ated by the "short" (15 years) estimation period. For females, we are only
presenting one prediction (12 years estimation period), which is illustrated
by the dotted line. For females, the predicted remaining life expectancy in
2005 is 21.09 (for Sweden) and 19.25 (for Denmark). The corresponding
predictions for males depends on which of the approaches we are using. If
we are using the "long" estimation period, the predicted remaining life ex-
pectancy is 17.49 (Sweden) and 15.58 (Denmark). If we instead are applying
the "short" estimation period the corresponding values are 18.27 (Sweden)
and 16.34 (Denmark). The result is summarized in the following table, where
we also have included the observed remaining life expectancy in1970.

Observed 1970 Predicted 2005 Di�erence
Female, Sweden 17.96 21.09 3.13
Female, Denmark 17.46 19.25 1.79
Male, Sweden 14.08 17.49 (18.27) 3.41 (4.19)
Male, Denmark 13.41 15.58 (16.34) 2.17 (2.93)

By studying the result we �nd some interesting observations:

• We observe that the remaining life expectancy in 2005 for males de-
pends strongly on whether we are using the "long" or the "short" esti-
mation period. For both Sweden and Denmark, the di�erence between
the two approaches is about 0.8 years. It is no surprise, according to
earlier discussions, that we get a higher value of the prediction when we
are using a shorter estimation period. When applying a shorter period,
the estimated model better captures the more recent demographical
trend of a decreasing mortality. The fact that the both approaches
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di�er that much con�rms the importance of choosing an "appropriate"
length of the estimation period. Compared to other prediction meth-
ods, the LC method is known to involve less subjective judgments (Lee
and Miller (2002)). However, we have here highlighted that one still has
to take care of the issue of choosing the estimation period. The impor-
tance of choosing the length of the estimation period is a concern that
has not been discussed very much earlier in the actuarial literature.

• Another interesting observation is that the increase in remaining life
expectancy (the di�erence between the 2005 prediction and the 1970

observation) is greater for males than for females. This should be com-
pared to the development during1935-1970 (see table on page 62) where
the increase where much greater for females.

• According to the predictions, the di�erence in remaining life expectancy
between Sweden and Denmark tend to increase, compared to the situa-
tion in 1970. In 1970 the di�erence was 0.43 years for females and 0.28

years for males. The predicted di�erence in 2005 is 1.84 years for fe-
males and 1.91 years ("long" estimation period) or 1.93 years ("short"
estimation period) for males.

9.1 Comparison to other Predictions
Finally we will compare our predictions to some other measures of the re-
maining life expectancy for a65 year old. The comparison is illustrated in the
bar charts in �gure 38. The di�erent names of the bars should be interpreted
as follows:

• P: The predicted remaining life expectancy (for females) using a 12

years estimation period.

• P1: The predicted remaining life expectancy (for males) using a "long"
estimation period (72 years for Sweden and 50 years for Denmark.)
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• P2: The predicted remaining life expectancy (for males) using a "short"
estimation period (15 years for both Sweden and Denmark.)

• ITP: The mortality according to the Swedish ITP28-plan.

• 1964: The mortality according to the "1964 års grunder" (M64)

• SCB: The predicted remaining life expectancy in 2005 according to
the Swedish "Statistiska centralbyrån".

• T: The mortality used for tra�c insurance by a Swedish insurance
company.

• G82: The mortality according to the Danish G82, which is the stan-
dard mortality table in Denmark.

The mortality from SCB and the tra�c insurance (T) are, just like our pre-
dictions (P, P1 and P2) based on the whole population, while the rest of the
mortalities are based on insured individuals. The result is summarized in the
following table:

P P1 P2 ITP 1964 SCB T G82
Female, Sweden 21.09 - - 22.41 18.77 20.40 18.89 -
Female, Denmark 19.25 - - - - - - 17.85
Male, Sweden - 17.49 18.27 18.22 15.84 17.25 15.78 -
Male, Denmark - 15.58 16.34 - - - - 15.11

For Swedish females, the predicted remaining life expectancy (21.09) is far
below (1.32 years) the life expectancy according to the ITP-plan (22.41), but
far above the other measures. For Swedish males, the conclusion depends
on which predictions we are considering. When using a "long" (72 years)
estimation period the prediction (17.49) is 0.73 years below ITP (18.22). If
we instead are using the "short" (15 years) estimation period, the predic-
tion (18.27) actually is 0.05 years greater than ITP. One should remember

28ITP=Industrins och handelns tilläggspension.
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that our predictions are based on the whole population whereas the ITP-
predictions are adapted to insurance.

For Denmark we only compare to the G82 standard mortality table. For
both males and females, our predictions are greater than G82. For females,
the di�erence is 1.40 years. For males, the di�erence depends on which pre-
dictions we are using. For the "long" estimation period the di�erence is0.47

years, while the di�erence is 1.23 years for the "short" estimation period.
The di�erence to G82 is large, but one should be aware of that G82 was
created in 1982, and it is well known that it is overestimating the mortality
(i.e. it underestimates the expected lifetime). However, G82 is adapted to
insured individuals, which makes the comparison harder to interpret.
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10 Summary and Concluding Remarks

10.1 Summary
In this thesis we are dealing with the problem of estimating and predicting
the mortality for old aged (65-99) individuals in Sweden and Denmark dur-
ing 1900-2004. When an insurance company settle the reserves for their life
annuity contracts they has to rely on forecasts of the future mortality. It is
well known that the mortality depends on both the gender and the age of
the individual. It is also clear that the mortality has not been constant over
time. In our modeling we are studying each gender and each country (Swe-
den and Denmark) separately, and we are considering both the age of the
individual and the chronological time. For estimating the mortality rate we
are using the ratio of the number of deaths and the exposure at a certain age
and time. This is a-non parametric counting process technique and requires
no assumptions about the distribution of the mortality. However, we assume
the underlying mortality to be smooth. A problem with this technique is
the potential lack of information (exposure) at old ages. As long as individ-
uals passes away, the exposure will become less. When the exposure is less,
the estimations tend to become unstable, which is not consistent with the
smoothness assumption for the counting process technique. To get rid of this
problem, we are applying a kernel smoothing technique. This way we will
have a greater exposure and, therefore, more stable mortality estimations.
Unfortunately, we will also have a bias problem due to the rapidly decreas-
ing exposure and the rapidly increasing mortality at old ages. To handle the
bias problem we are using a bias correction technique. However, we still may
have a bias problem, at the right boundary in the time dimension, for the
estimation period.

The next step is to adapt a parametrical model to our non-parametric mortal-
ity estimations. We are applying the Lee-Carter method to produce estimates
of the mortality. From the LC estimates we are then generating predictions
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of the future mortality. By only using a part of the data for the estimation,
we are able to compare our LC predictions to the actual and observed mor-
tality. We will then be able to evaluate the performance of the LC prediction
method. The evaluation is mainly performed by comparing the predicted
and the observed remaining life expectancy for a 65 year old. We notice a
clear underprediction tendency for females in both Sweden and Denmark.
When using a 35 years estimation period, the mean absolute error between
predicted and observed remaining life expectancy for a 65 year old female
was almost a year in both Sweden (0.94) and Denmark (0.96). For males,
the predictions where in general better than for females, and there where
no clear underprediction tendency. The mean absolute di�erence for males
where 0.20 (for Sweden) and (0.36) years (for Denmark).

We were then trying to improve the results by varying the length of the
estimation period. By reducing the length of the estimation period, new de-
mographical trends will easier be captured by the predictions. At the same
time the predictions will be more sensitive to temporary and random mortal-
ity trends. A longer estimation period will produce more stable predictions,
but requires longer time to incorporate new demographical trends into the
predictions. For females, we found that the historically optimal length of
the estimation period was 10-15 years. The mean absolute error between
predicted and observed remaining life expectancy could then be reduced to
about 0.7 years. For males, the historically optimal length has been 50-75

years. The mean absolute error could then be reduced to0.16 years for Swe-
den and 0.33 years for Denmark. The reason for the di�erence (in optimal
length of the estimation period) between males and females is analyzed by
studying the historically development of the remaining life expectancy for a
65 year old. During the evaluation period (1935-1970), the increase in re-
maining life expectancy for females has been much greater than for males.
The increase for females between 1935 and 1970 is more than 4 years, while
the increase for males is less than one year. For later years, we have seen ten-
dencies of a more rapidly decreasing mortality also for males, and we believe
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that is appropriate to shorter the estimation period for future predictions, in
order to capture this potential decreasing demographical trend.

Finally, we have produced forecasts of the future remaining life expectancy.
An interesting observation is the fact that the future predictions may depend
substantially of the length of the estimation period in the LC model. The LC
method is known to have less subjective judgments than other methods (Lee
and Miller (2002)). However, we have shown that it is important to consider
the length of the estimation period before producing mortality predictions.
The mortality in Sweden has general been lower than in Denmark over time.
During the last 50 years, the di�erence between the both countries has in-
creased. Our predictions of the future mortality is not indicating that the
di�erence will decrease. The predicted remaining life expectancy for a 65

year old in 2005 is 21.1 (19.2) for Swedish (Danish) females and 18.3 (16.3)
for Swedish (Danish) males. Comparing females and males, the improve-
ments in remaining life expectancy has been greater for females over time.
However, our predictions are indicating a more rapidly future improvement
for males than for females.

Our predictions of the future remaining life expectancy have been compared
to other theoretical measures of the remaining life expectancy in Sweden and
Denmark. For both countries and genders, our predictions often are greater
than these theoretical values.

10.2 Concluding Remarks
Throughout this Master thesis we have discussed the importance of having
a lot of information when making estimations and predictions about the
mortality. A small exposure will make the estimations unstable, and it is
obvious that this is not desirable. In this paper we have used information
from the whole Swedish and Danish populations, which can be considered as
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a rather large information amount. Nevertheless, we still have the problem
with insu�cient information, and therefore also the problem with unstable
mortality estimations.

Considering the valuation problem from the point of view of an insurance
company, the task is to perform accurate mortality predictions concerning the
individuals which the contracts' value are based on. A natural question to ask
is whether the mortality of these individuals can be considered as the same
as the mortality of the whole population. Statistical surveys have shown that
this is not the case (see Ajne and Ohlin (1990)). The mortality of an insured
individual is in general lower than the whole populations' mortality, which
is due to the medical check-up that is made in connection with the signing
of the contract. Further, when looking at insured individuals, the time since
the contract was signed is also of importance when considering the mortality.
In �gure 38 and in section 9 we noticed that the LC predictions of the future
remaining life expectancy (for a 65 year old) often were greater than other
theoretical values of the remaining life expectancy. The LC predictions were
based on population data. If we assume that the mortality of the population
actually is higher than the mortality of insured individuals, the di�erence
between our predictions and the theoretical mortality should be even greater.

The fact that there is a di�erence between population and insurance mortality
will complicate things for the insurance company. By using population data
it will run the risk of making incorrect mortality predictions, which could
be an expensive issue for the company. An alternative is to create mortality
estimations based on historical observations only from its own customers.
This way the predictions may be unbiased, but instead they may be very
unstable since the information available is much more less. Since this was a
problem already for the whole population case, one can expect the problem
to be even greater this time.

When looking at the prediction problem from the perspective of an insurance
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company, there is another complicating issue that has not been mentioned
this far. In this thesis we have considered the task of predicting the mortality
after the age of 65. We have assumed an age of 65 for the individual, and
we have then predict the future mortality during the following 35 years.
In practice, it is often the case that the age of an individual signing a life
insurance contract is less than 65. If we assume an age of 50 of the individual
signing the contract, the prediction issue for the insurance company is more
complicated. Instead of considering the mortality at ages65-99 starting from
today (as in this thesis), it instead has to consider the mortality at ages65-
99 starting 15 years from now. Apart from that, it also has to consider the
mortality for the ages 50-65 for the following 15 years. Consequently, the
insurance company has to consider the mortality 50 years ahead (instead of
35). For individuals younger than 50, the situation is even more complicated
since further prediction years are then necessarily.

Taking this di�culties into consideration, combined with the fact that the
mortality prediction already has appeared to be a di�cult task, one realize
that the mortality predictions that an insurance company face may be very
di�cult.
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11 Figures
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Figure 1: The �gure shows the development of the life expectancy during 1950-2004.

The two lines on top represent women, while the lower two lines represent men. The full

lines represent Sweden and the dashed lines represent Denmark.
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Figure 2: Lexis diagram
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Figure 3: The �gure shows the development of the life expectancy for men during1835-
2004. The full line represents Sweden and the dashed line represents Denmark.
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Figure 4: The �gure shows the development of the life expectancy for women during
1835-2004. The full line represents Sweden and the dashed line represents Denmark..
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Figure 5: The �gure shows the number of deaths for Swedish women for di�erent ages

(0-110) and years (1900-2004).
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Figure 6: The �gure shows the exposure for Swedish women for di�erent ages (0-110)

and years (1900-2004).
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Figure 7: The �gure shows the mortality rate estimations for Swedish women for di�erent

ages (0-99) and di�erent years (1900-2004).
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 Mortality rates for Swedish women 1900−2004
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Figure 8: The contour plot shows the mortality rate estimations for Swedish women for

di�erent ages and years. Equally sized estimations are connected with level curves.
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Figure 9: The �gure shows 25 years accumulated exposure in Sweden and Denmark for

di�erent ages. The full line represents Sweden and the dashed line represents Denmark.

The exposure is accumulated for men and women during the period1980-2004.
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Figure 10: The counting process technique. Estimation of m̄90,2000
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Figure 11: The counting process technique. Estimation of m̄90,2004
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Figure 12: The e�ect of the smoothing technique for Danish females aged65.
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Figure 13: The �gure shows the non-smoothed and the smoothed mortality rate estima-

tions for Swedish females aged 65-99 during 1900-2004.
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Figure 14: The �gure shows the non-smoothed and the smoothed mortality rate estima-

tions for Danish females aged 65-99 during 1900-2004.
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Figure 15: The �gure shows the non-smoothed and the smoothed mortality rate estima-

tions for Swedish males aged 65-99 during 1900-2004.
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Figure 16: The �gure shows the non-smoothed and the smoothed mortality rate estima-

tions for Danish males aged 65-99 during 1900-2004.
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Figure 17: The �gure illustrate the mortality for Danish females aged65-99 in year 2004,

and the e�ect of the bandwidth selection. The plotted points represent the raw mortality

(non-smoothed) For the dashed lower line (smoothed) the bandwidth isb = (10, 10). For

the dotted upper line (smoothed) the bandwidth is b = (4, 4).
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Figure 18: The �gure illustrate the e�ect of the bias correction technique for Danish

females aged 65-99 in year 2004. The points represent the raw mortality (non-smoothed)

For the dashed lower line the bandwidth is b = (10, 10). For the dotted upper line the

bandwidth is b = (4, 4). The full line represents the mortality estimates when the bias

correction technique is applied.
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Figure 19: The �gure shows estimations (1970-2004) and predictions (2005-2039) of the

mortality index for Swedish females aged 65-99.
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Figure 20: The �gure shows the expected lifetime. The full line represent the period life

expectancy, while the dashed line represents the cohort expected lifetime.
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Figure 21: The �gure shows the LC estimated and predicted mortality mortality com-

pared to the observed mortality for Swedish females. The dotted line represents the ob-

served smoothed mortality. The full line represents the estimated and predicted mortality.

The vertical line separates the estimation and the prediction period.
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Females, Denmark
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Figure 22: The �gure shows the LC estimated and predicted mortality mortality com-

pared to the observed mortality for Danish females. The dotted line represents the ob-

served smoothed mortality. The full line represents the estimated and predicted mortality.

The vertical line separates the estimation and the prediction period.
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Males, Sweden

1940 1960 1980 2000

0.
01

5
0.

02
5

Age 65

Time (Year)

M
or

ta
lit

y

1940 1960 1980 2000

0.
02

5
0.

04
0

Age 70

Time (Year)

M
or

ta
lit

y

1940 1960 1980 2000

0.
04

0.
06

Age 75

Time (Year)

M
or

ta
lit

y

1940 1960 1980 2000

0.
07

0.
10

Age 80

Time (Year)

M
or

ta
lit

y

1940 1960 1980 2000

0.
14

0.
18

Age 85

Time (Year)

M
or

ta
lit

y

1940 1960 1980 2000

0.
22

0.
28

Age 90

Time (Year)

M
or

ta
lit

y

Figure 23: The �gure shows the LC estimated and predicted mortality mortality com-

pared to the observed mortality for Swedish males. The dotted line represents the observed

smoothed mortality. The full line represents the estimated and predicted mortality. The

vertical line separates the estimation and the prediction period.
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Males, Denmark
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Figure 24: The �gure shows the LC estimated and predicted mortality mortality com-

pared to the observed mortality for Danish males. The dotted line represents the observed

smoothed mortality. The full line represents the estimated and predicted mortality. The

vertical line separates the estimation and the prediction period.
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Figure 25: Comparison between the predicted and the observed remaining life ex-

pectancy (cohort) for Swedish females. The dotted line represents the observed values,

while the full line represents the predictions.
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Female, Denmark
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Figure 26: Comparison between the predicted and the observed remaining life ex-

pectancy (cohort) for Danish females. The dotted line represents the observed values,

while the full line represents the predictions.
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Male, Sweden
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Figure 27: Comparison between the predicted and the observed remaining life ex-

pectancy (cohort) for Swedish males. The dotted line represents the observed values,

while the full line represents the predictions.
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Male, Denmark
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Figure 28: Comparison between the predicted and the observed remaining life ex-

pectancy (cohort) for Danish males. The dotted line represents the observed values, while

the full line represents the predictions.
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Figure 29: Finding the optimal length of the estimation period.
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Female, Denmark
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Figure 30: Finding the optimal length of the estimation period.
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Male, Sweden
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Figure 31: Finding the optimal length of the estimation period.
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Male, Denmark
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Figure 32: Finding the optimal length of the estimation period.
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Remaining Life Expectancy
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Figure 33:
Points: Observed remaining life expectancy

Full line: Predicted remaining life expectancy (10 Years estimation)

Dotted line: Predicted remaining life expectancy (50 Years estimation)

112



1900 1920 1940 1960 1980 2000

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Swedish Males and Females, aged 65

Time (Years)

M
or

ta
lit

y 
R

at
e

Figure 34: Upper line: Swedish Males. Lower line: Swedish Females.
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Figure 35: Upper line: Danish Males. Lower line: Danish Females.
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Figure 36: Illustration of the boundary bias problem
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Remaining life expectancy for a 65 year old
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Figure 37:
Dotted line: Predicted remaining life expectancy (alt. 1)

Dashed line: Predicted remaining life expectancy (alt. 2, for males only)

Full line: Observed remaining life expextancy

Horizontal full line: Theoretical remaining life expectancy
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Remaining life expectancy for a 65 year old

P ITP 1964 SCB T

Female, Sweden

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y

17
19

21
23

P G82

Female, Denmark

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y

16
17

18
19

20

P1 P2 ITP 1964 SCB T

Male, Sweden

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y

15
16

17
18

19
20

P1 P2 G82

Male, Denmark

R
em

ai
ni

ng
 L

ife
 E

xp
ec

ta
nc

y

14
15

16
17

18

Figure 38:
P: Predicted (12 Years estimation period)

P1: Predicted ("Long" estimation period) P2: Predicted ("Short" estimation period)

ITP: ITP plan SCB: Statistiska centralbyrån 1964: 1964 "grunder" T: Tra�c
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