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Abstract

Influenza is associated with seasonal outbreaks, often with a high
rate of morbidity and mortality. It is also known to be a cause of
significant amount secondary bacterial infections. Streptococcus pneu-
moniae is the main pathogen causing secondary bacterial pneumonia
after influenza and subsequently, influenza could participate in ob-
taining Invasive Pneumococcal Disease (IPD). In this study, we aim
to investigate the relation between influenza and IPD and estimate the
yearly excess of IPD cases due to influenza. For this purpose, we use
influenza periods as an indicator for influenza activity as a risk factor
in subsequent analysis. The statistical modelling has been made in
two modes. First, two negative binomial regression models have been
constructed, and by estimating the contribution of influenza in the
models, excess number of IPD cases has been calculated. Secondly,
an ”influenza free” baseline was constructed, and differences in IPD
data and baseline were used to estimate a yearly additional number of
IPD cases due to influenza. Both modes were calculated using zero to
four weeks lag time. The analysis shows a yearly increase of 72-118
IPD cases due to influenza, which corresponds to 12-24 % per in-
fluenza season. Also, a lag time of one to three weeks appears to be
of significant importance in the relation between IPD and influenza.

*Postal address: Smittskyddsinstitutet, SE-171 82 Solna, Sweden. FE-mail: ka-
sia.grabowska@smi.ki.se. Supervisor: Ake Svensson.
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Chapter 1

Introduction

1.1 Background

Influenza, with its annual epidemics, is the infection associated with highest
mortality in the developed world. In the United States, an average of more
than 18,000 annual deaths are due to influenza, and the influenza epidemics
cause almost 50 000 hospitalisations in influenza and pneumonia annually
among elderly people [1].

Streptococcus pneumoniae is the most important bacteria causing sec-
ondary pneumonia after influenza [2][3][4]. Invasive pneumococcal disease
(IPD) is associated with a high case fatality rate, despite modern intensive
care [5|[6]. Known risk factors for IPD are age (the very old and the very
young), male sex, and underlying debilitating conditions [7]. In Sweden, the
overall incidence of IPD is 15 per 100,000 and year, and in the above 65 years
age group the incidence may be as high as 40 to 50 per 100,000 [5].

Both IPD and influenza have distinct seasonal patterns, with winter peaks
[8][9][10]. Besides this annual seasonal pattern with peaks of influenza inci-
dence during the temperate winter season, there are year-to-year variations
both in intensity and timing of occurrence [10][11][12]. Schwartzman et al
was the first to document a temporal association between influenza and IPD
in the early 1970s [13]. The same finding has later been described in stud-
ies from Scotland [14], the Netherlands [15], and the United States [4][16].
In several early, hospital-based studies, pneumococcal pneumonia has been
shown to be a complication of clinical diagnosis of influenza. [21][22]]23]

The aim of this study was to more in detail model the association
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between influenza and IPD using Swedish surveillance data. The
main aim of this project is to evaluate if the incidence of IPD is
increased during the influenza season. A secondary aim, if the
results show a relationship between the IPD and influenza, is to
establish the increase in IPD incidence, related to influenza.

Poisson regression has often been used in epidemiological studies when
an outcome variable (e.g. number of IPD cases) is a rare occurrence, and
Poisson regression has recently been applied in studies investigating the as-
sociation between influenza and mortality [17][18]. However, one of the main
characteristics of the Poisson model is that its variance equals its mean. In
other words, if a Poisson model is fitted to data with a variance greater than
its mean (overdispersion), the variance will be underestimated. To overcome
this limitation, in this thesis, three negative binomial models are constructed,
which give the same estimation of a mean value as a Poisson model, but in-
clude overdispersion in the variance [19].

1.2 Data

IPD data

Since 1994, all invasive pneumococcal isolates obtained in Sweden (one per
patient) have been reported to the Swedish Institute for Infectious Diseases
Control (SMI). An isolate is defined as invasive if it is retrieved from blood,
cerebrospinal fluid or other normally sterile sites. All such isolates, reported
to the SMI from 1 January 1994 to 28 March 2004 (n=12 010) were included
in the study. Fifty percent of the isolates were from elderly persons (65 years
of age of older), 43% were from adults (20-64 years of age), and 7% of the
isolates were from children and teenagers. In the analysis, the date of culture
to SMI was used. Since this date is not always specified, the samples with
absent date of culture were omitted (n=373). The IPD data set is illustrated
in Figure 1.1.

Influenza data

In Sweden, the influenza surveillance is based on weekly reports (Monday to
Sunday of each individual week) on the number of influenza cases diagnosed
by the local laboratories to SMI. Serology reports are not included in these
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Figure 1.1: Number of IPD diagnosis per week from Jan 1994 to March
2004. Also, the horizontal lines indicate the period of time when influenza
was present.

reports. From 1994 to 2001, the registration of influenza occurred from week
43 to week 16. From 2001/2002, the influenza-reporting season was extended
from week 40 to 20. For the influenza reports, we used the same time period
(January 1994 to March 2004) as for the IPD isolates (n=10,498). The age
distribution of influenza cases varied between individual years. Data on age
of influenza cases are available from the season 1998/1999, and shows that
an average of 47% of the cases were elderly (above 65 years) and 39 % adults
(20-64 years) during the period 1998-2004.

We defined influenza activity as presence of laboratory reports of influenza
cases. As the laboratory cases mainly originate from patients with severe dis-
ease in need of hospital care, this data might not reflect the true influenza
activity among the general population. Since the season 1999-2000 an ad-
ditional component has been added to the Swedish influenza surveillance
system, based on reports of the number of patients with influenza-like illness
from about 120 sentinel physicians in outpatient care. During the time when
both systems have been running in parallel, the time periods for influenza
activity have coincided [17][20], supporting that the laboratory surveillance
system adequately mirrors community influenza activity despite the selected



population it is based on. This consistency does also indicate that even
though the criteria for culturing might have changed during the observation
period, it has not affected the definition of the annual influenza period by
the laboratory reporting.

In the models, an indicator for influenza was used (one if influenza is
present and zero if absent). This approach was found more suitable since,
the influenza data are based on laboratory reports, and as mentioned above,
mainly reflects the hospitalized patients and not the population as total.

1.3 Disposition

This report starts with an introduction into the nature of IPD and the chal-
lenges that arises when this type of data is investigated. In the introduction,
the aim and the structure of the data is specified. In Chapter 2 the analysis
and description of the applied models are made. The details of the computa-
tional part of the analysis models are presented in Chapter 3. This chapter
also contains information about the characteristics of each model and its abil-
ity to establish the relationship between the IPD data and influenza. The
discussion and conclusions are specified in Chapter 4. Finally, all derivations
and additional results related to this report, are presented in Appendix A.

Having the readers in mind, in order to smooth the progress of study-
ing this report, the studied data is applied on the theory throughout the
report. Hence, the general theory is not singled out but recurringly applied
on the specific problem. Also, in this thesis the terminology for the natural
logarithm is ”log” and not "In”.



Chapter 2

Regression models

2.1 Poisson regression

Poisson Regression model is suitable, when an event occurs (as independent
observations) a number of times, Y, during a given period of time. Here,
observations y = y1, 42, ...4n, are number of observed IPD cases during week
i for ten whole years, and 10 weeks of year 11 (hence, n = 10-52+ 10 = 530).
Also, one characteristic for a Poisson variable is that the mean E[Y] and
variance Var(Y') are equal:

ElY] = Var[Y] = p

The mean value pu, can be estimated from the data and affects several ex-
planatory variables. We denote each explanatory variable as z;; where the
index ¢ denote week ¢ = 1,...,530, and j explanatory variable j = 1,...,7.
Hence a Poisson Regression Model with r variables can generally be written
as:

log(E[Yi|x;]) = log(us) = Bo + X514

where (3 is the intercept and [3; are parameters for explanatory variable
j. The investigated explanatory variable of main interest in this report is
influenza.

To be able to capture the cyclic, recurring seasonality in that is observed
in the data, see Figure 1.1, the regression model needs to include a term
that affected the amplitude A and lag ¢ for each season. Note that the lag
represents a fraction of a year at the time ¢, t = 1,...,52).
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To include the term in the model it was rewritten during the simulation

as:
A 27 ; B 27 t) +bsi 27 ;
CoS 5 @ | = acos 5 sin 5

from which A and ¢ can be computed as A = Va2 + b2, ¢ = arctan(b/a),
see Appendix A.2 for details. A general model that captures the the yearly
trend, seasonal variation and influence of influenza can then be presented as:

log(,uz) = ﬁsin Sin (i_;rtz) + 6005 COS (%E) + ﬁinterc + ﬁinﬂxio + 6year$i1(2-1)

where [Fiyterc 1S the intercept, ;o is an indicator variable for influenza
(0 if no influenza occurred week ¢ or 1 if influenza was present week i and
x;1 denotes the year. By, is the year parameter, fi,q describes presence of
influenza and (g, and (., represents the periodicity parameters. t; represent
week 7. The structure of the data set is presented in Table 2.1.

index (7) | influenza (z;0) | year (z;1) | week (¢;) | IPD (y;)
1 1 1994 ) 19
2 1 1994 6 21
3 0 1994 7 15
o2 0 1994 92 15
o3 0 1995 1 67
o4 0 1995 2 23
529 0 2004 9 19
530 0 2004 10 28

Table 2.1: Structure of data.

There are some limitations of this model that should be pointed out:




e the yearly trend is constant and therefore does not allow for variation
in amplitude from year to year.

e since y; belong to a Poisson distribution, the variance equals the mean
in the model.

Finally, one constraint that is to be kept in mind in the Poisson and Negative
binomial regression modelling is that the response variable y;, is considered
to be independent from week i to 7 + 1 or, in other words: Y7, Y, ..., Y530 are
assumed to be independent.

2.2 Negative binomial regression

One of the disadvantages of the previous model was the equality between the
mean and the variance. There are some arguments that promote a higher
variance (rather than equal to its mean) in this data set. One factor is a
random variation of number of IPD.

It is possible to check if a model need to include higher variance (than
the mean), so called overdispersion!. This can be done by calculating the

Pearson y? statistics:
n

X2 — Z (yi — pui)?
i=1 Hi

Now, dispersion is estimated by X?/n. (If there is no overdispersion, the
statistics, X? and n are approximately equal, the ratio is than ~ 1 and the
data is Poisson distributed.) Calculations of Pearson yx? statistics indicate
that overdispersion is present, see Section 3, and that the variance is greater
than the mean. Hence the Poisson assumption is not valid.

A model that is equivalent to the Poisson model but allows for a greater
variance, overdispersion, is a Negative binomial model. In this model, the
assumption of equal expected value and variance E[u] = Var(u) is replaced
by an additional assumption, that the intensity parameter p, is Gamma-
distributed (see Appendix A.1 for details). so that:

Y; ~ Po(u;), where i=1,2,...,530

and
pi ~ (e, 0)

'Models where the variance is greater than its mean are called overdispersed



The mean value E[y;] and variance, Var(y;) is then:

Q;

Elp] = 3
Q;

Var(u) =

Now, the expected value and variance of Y; is:

ElY] = = 2.2

=2 22)
Q; Q;

Var[Yi] = g—l-ﬁ

- % (1 + %) (2.3)

Derivations in Equ.2.2 and 2.3 can be found in [19]. In the Poisson regression
model the variance is equal to its mean, Here when comparing the E[Y;] in
Equ.2.2 and Var[Y;] in Equ.2.3 the difference is the factor (1 4 1/d). This
factor measures the dispersion and is called the dispersion parameter.
In the Negative binomial regression model, p is Gamma-distributed, hence,
the modeled response variable Y; is:
log [E(Y;)] = log (

a;

) = log(a:) — log(9) (2.4)

Subsequently log(c;) and log(d) will represent the response variable y; in
a negative binomial model, presented in Sections 2.2 and 2.2.

Model 1

The Negative binomial regression model can now be presented as:

log(a;) = log(d) + Ssin sin <§—72rt1>

27

+ Bcos COs <5_2tz> + +ﬁinterc + ﬁinfxio + 5year$i1 (25>

where:
g~ F(O‘ia 5)

10



Model 2

In the previous negative binomial model, Equ.2.5, the yearly trend is es-
timated by one parameter, Bye.,. By dividing the Bye. parameter into 11
parameters (one for each year), the model will be specified to:

log(a;) = [eos cOS (ﬁt) ~+ Bin Sin (Et)

11
+ ﬁinterc + ﬁinfwi() + E 5yearjxij
i=1

where

Baseline

The main purpose of this report was to estimate if a presence of influenza
affects the number of registered IPD. One way of studying this discrepancy is
to compare the data (when influenza is present and with an index variable for
influenza) to a model without influenza (baseline). In order to estimate the
baseline, a data set of weeks when no influenza was reported was constructed.
The response variable was then:

Yi if number of influenza = 0 week
Y, = o . . .
missing value if number of influenza > 0 week ¢

This baseline was constructed for one season, where for each week, all
values where no influenza occurred was modelled. Also, since influenza is
not monitored during summer, only weeks when influenza was monitored
was used.

Here, y;x is Poisson distributed, y;x ~ Po(uix) and as before gy is
Gamma distributed. Hence a Negative binomial regression is used to estimate
the baseline:

11
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IOg(O./i) = ﬁcos COSs (Etzk) + ﬁsin Sin (5_2tzk) + ﬂinterc
Hik ~ F(Oézw 5)

where k = 1,2, ..., K; where K; varies between 1 and 10 (depending on
number of weeks with no influenza during week 7). For example: During week
1, influenza was registered for all years except two: 1995 and 2001. Hence i=1
(the observed week) and K;=2 since we only observed two years of eleven,
when no influenza occurred. Then, since p; 5 ~ I'(cy, d) the estimate of oy is
based on two data points.

2.3 Model fitting

For all calculations, STATA 8.0 was used. The Negative binomial regression
models were calculated using function 'nbreg’. Data, available for analysis
was from week 1 1994 to week 10 2004. However, in order to be able to
compare the models with different lags (in other words, have the same number
of data for each lag), week 1 - 4 in 1994 was omitted in the analysis.

For both models, the question of interest was if the presence of influenza
affects the number of IPD cases. Our hypothesis is that an arbitrary case of
IPD could occur due to a previous influenza infection. In order to investi-
gate more in detail if a predefined lag time between influenza infection and
IPD disease promotes the IPD occurrence, both models were tested in four
modes: no lag, 1, 2, 3 and 4 weeks lag. In order to establish if a Negative
binomial regression model should be used instead of Poisson, i.e. to establish
if overdispersion was present, Pearson, statistics were calculated for each of
the evaluated models. See appendix A.3.1 for details.

To evaluate which model was preferred, the log-likelihood was calculated
for each model.
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Chapter 3

Estimation of number of excess
IPD cases

In this Chapter, the results of the models described in Section 2.2 are pre-
sented. Initially, to verify that overdispersion was present (so that the Pois-
son model could be excluded from further analysis), the Pearson x? statistic
was calculated using the formulae presented in Equ. 2.2. The results are
presented in table A.lin Appendix and indicate that x?/n > 1, hence that
the dispersion parameter should be included.

The analysis of the IPD data and influenza was made using two ap-
proaches:

1. Estimating number of excess cases due to the influenza parameter in
the models presented in Section 2.2 with four different lags.

2. Calculating mean difference of cases from the baseline, using the same
lag where the strongest significance was found in the models calculated
using approach 1.

Results of estimates are presented in Table 3.1 and 3.2. Also, Model 1
and Model 2 (with 3 weeks lag) are illustrated in Figure 3.1.

3.1 Results of models

To further estimate the impact of the influenza parameter, the models with
significant parameter, were recalculated without the term [y,;. Setting the

13



Model 1, 3 weeks lag and IPD data
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Figure 3.1: Model 1 and Model 2, both calculated with 3 weeks lag. Also,
IPD data and influenza periods are illustrated.

Model 1 Influenza parameter and | P-value Log-
its 95% c.i. likelihood
No lag 0.08 (-0.01 - 0.18) 0.090 -1843.0
1 week lag 0.15 (0.06 - 0.25) 0.001 -1839.1
2 weeks lag 0.14 (0.04 - 0.24) 0.004 -1840.2
3 weeks lag 0.16 (0.06 - 0.25) 0.001 -1839.0
4 weeks lag 0.14 (0.05 - 0.24) 0.003 -1840.1

Table 3.1: Results of Approach 1, for Model 1
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Model 2 | Influenza parameter and | P-value Log-
its 95% c.i. likelihood
No lag 0.03 (-0.07 - 0.14) 0.55 -1831.0
1 week lag 0.12 (0.02 - 0.23) 0.025 -1828.6
2 weeks lag 0.10 (-0.01 - 0.20) 0.07 -1829.4
3 weeks lag 0.13 (0.02 - 0.23) 0.015 -1828.1
4 weeks lag 0.11 (0.01 - 0.21) 0.03 -1828.8

Table 3.2: Results of Approach 1, for Model 2

term Binf to zero is equivalent to calculating the model with xo; = 0. This
could estimate number of IPD cases that should have occurred if no influenza
was present or if influenza had no effect. The overall mean difference of
the models and its 95% Confidence Intervals (c.i.) for each week was then
calculated. Weekly number of excess IPD cases are illustrated in Figure 3.2.
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Figure 3.2: Differences in number of IPD cases, calculated by Model 1(light
gray bars) and Model 2 (dark grey bars), calculated with 3 weeks lag. Also,
errorbars illustrate 95% confidence intervals.
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3.2 Results of baseline

In this analysis, the difference in IPD-incidence was studied, in weeks when
influenza occurred (influenza weeks) compared to weeks when it was not
present (influenza-free weeks) during the annual influenza registration season.
The baseline was created in order to establish a mean level of IPD-incidence
when influenza was absent. The baseline was modelled from all influenza-
free weeks when influenza was monitored (winter season) during the 11-year
study period; however, during 2003 influenza occurred in all 13 studied weeks,
hence, that year did not contribute to the estimation of baseline.

In order to estimate number of excess cases of differences between IPD
and baseline was calculated. This was made by summarizing total number
of weekly differences, in periods when influenza was monitored and present
(registered). The total sum of differences used in calculation corresponded
to a 10.23 years period. (10 whole years from Jan 1994 to dec 2003 and 12
weeks of year 2004.) Hence in order to calculate number of yearly cases, the
total sum was divided by 10.23.

We choose a 1 - 4 weeks lag in the calculations of baseline, since previ-
ous calculations (estimates of influenza as an index variable in the models)
showed association between influenza and IPD with significant p-value, using
those lags, see Table 3.1 and 3.2.

3.2.1 Bootstrap calculation of 95% confidence inter-
vals.

In order to estimate 95% confidence intervals (c.i.) for the baseline, a data
set containing differences between baseline and IPD data from weeks when
influenza was present was constructed. From those differences (a total of
217 values) values of sums were bootstrapped, by 10000 simulations. When
sorted, value 250 corresponded to 2.5% quantile and value 9750 to 97.5%
quantile of the 95% c.i. Finally, in order to estimate the yearly 95% intervals,
calculated 2.5% and 97.5% values were divided by 10.23.

Number of IPD during influenza free weeks (that occurred while moni-
toring influenza) and baseline estimation for lags 1 to 4 weeks are presented
in Table 3.3. Also, baseline with 3 weeks lag is illustrated in Figure 3.3.

16



Number of cases | % per season

Baseline (1 week lag) | 150 (121 - 181) | 24% (19 - 29%)
Baseline (2 week lag) | 157 (127 - 188) | 25% (20 - 30%)
Baseline (3 week lag) | 152 (122 - 182) | 24% (20 - 29%)
Baseline (4 week lag) | 154 (123 - 185) | 25% (20 - 30%)

Table 3.3: Number of excess IPD cases due to baseline calculations.
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Figure 3.3: Baseline, calculated with 3 weeks lag. Also, number of IPD-cases
during influenza free weeks (in time period when influenza was registered)
are presented.
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3.3 Number of estimated excess cases of IPD

Number of excess cases of IPD, estimated as described in Section 3.1 and 3.2
is presented in Table 3.4.

Number of cases | % per season

Model 1 (3 weeks lag) | 81 (24 - 243) 13% (4 - 24%)
Model 2 (3 weeks lag) 72 (14 - 138) 12% (2 - 23%)
Baseline (3 weeks lag) | 152 (122 - 182) | 24% (20 - 29%)

Table 3.4: Number of excess IPD cases

18



Chapter 4

Discussion

In this report, two approaches are used to study the impact of influenza
on IPD: the first one estimates impact of an influenza parameter in the
models, and the second estimates the mean difference of IPD cases from an
influenza-free baseline. Both methods used in this study indicated an increase
in number of IPD cases due to influenza. Since both take different factors
into account, it is difficult to decide which one of them should be preferred.
Hence, conclusions should be made taking both methods into account. The
first approach, when the effect of the influenza parameter is estimated, uses
influenza data as an indicator variable, which most likely underestimates
the impact of influenza during the winter season. Hence, it was preferred
to more likely get an underestimation of the true effect than the other way
around. This could probably explain why the results in this approach give
lower estimates of number of IPD cases related to influenza, than the baseline
approach.

Furthermore, in this method, the importance of the influenza parameter
in the model and its effect on subsequent IPD cases is studied. The result
shows that one to four weeks lag puts forward the significance of influenza
indicator variable in both models. Also, as it can be seen in Table 3.1 and
3.2, for both models that the size of estimate ﬁ;nf increase with the size of
the lag and peak at 3 weeks lag, indicating presence of delay when taking
into account an effect of influenza on IPD data. However, since influenza
data is transformed to be an indicator variable of influenza, there can be no
inference made about the relative changes in number of IPD by increasing
or decreasing the number of influenza by one unit. The second approach,
where a baseline is constructed, is based on a subset of the IPD data set, in
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other words the baseline is constructed of all weeks when influenza is absent.
The validity of the baseline varies over the season, with lowest variance in
the spring and fall and largest variation during winter (since in this time of
year, influenza is often present, hence, very few data points are used in the
estimation). Since influenza is not monitored during summer, there is no
data from this period used in the estimation of the models.

In order to detect a case of IPD in the surveillance system, a sample must
be collected and sent to the laboratory for culturing. In the analysis, the date
of culture was used as the onset date. Since onset of IPD disease is often of
acute nature, it is realistic to assume that the culturing is made closely to
the onset of disease.

As mentioned in previous studies [24], an increase or decrease in incidence
can be observed due to altered routines in culturing. However, no active
interventions or routine changes in the culturing tradition of IVP have been
executed during 1994-2004.

As for IPD, laboratory tests for influenza are normally performed in an
acute phase of the disease. We can therefore assume that the time estimates
for occurrence of disease are correct, with no major delays between detection
and report of cases.

The results may be biased only by factors that systematically change the
temporal patterns (other than seasonal, annual or long-term trends) of either
influenza or IPD diagnoses. One possibility of bias is therefore changes in
health-care seeking behavior and patient-sampling due to holiday periods.
Therefore, a dummy variable for holiday season was added into the model,
with little effect on our results or conclusions.

Since Model 1 and Model 2 are not of hierarchical structure, it is difficult
to interpret if one of them fits better to the data than the other. However,
since for each model, the same data is used for the different lag calculations,
the log-likelihoods can be compared within the models. For both model 1
and 2, the largest log-likelihood is obtained by using 3 weeks lag indicating
the best fit to the data. On the other hand, the log-likelihood differ (within
the models) very little, see Table 3.1 and 3.2.

This study confirms the association between the two diseases even after
taking into account seasonal variation, and also shows that the strength of
this association is highly seasonal with a peak excess of IPD morbidity due
to influenza in January, see Figure 3.2. However, the data sets (influenza
data and IPD data) have not been compared on an individual level, hence
it is not possible to establish if single individuals are present in both data
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bases.

Finally, the results, considering the association between influenza and
IPD morbidity, coincide, despite the fact that two different approaches are
used to define number of excess IPD cases. Furthermore, the detection of a
lag between the influenza and IPD morbidity falls out to be an important
component in forecasting amount of IPD cases, hence public health measures
against influenza and IPD are preferably considered together.
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Appendix A

Appendix

A.1 Definition of Gamma distribution

In the literature, a various number of re-writings of the definitions for the
Gamma distribution are presented. In this paper, the Gamma distribution
is defined as:

I'(a,b) where a >0, b>0

with a density function:

1

aflba —bx
_F(a) T e

fz) =

Furthermore, since p; is ['(«y, ) distributed, the mean value E[y;] and
variance, Var(y;) is then:

Q;
Elu] = 2
[14:] 5
Q;
Var(p) = =

A.2 Seasonal factors

Show
Acos(kx —¢) = acos(kx)+ bsin(kx) (A.1)
where:



A = amplitude

¢ = lag
27T
kE = —
52
aand b = constants

Knowing that:

cos(s — t) = cos(s) cos(t) + sin(s) sin(t)
we can rewrite the left side of equation A.1:
A(cos(kx — ¢)) = A(cos(kz)cos(p) + sin(kz) sin(y))
= Acos(p) cos(kx) + Asin(p) sin(kz)
T Hbf—/
The relation between a, b and ¢ is:

(«)
@ = arctan | —
a

b Asin(p)

@ Acos(e) = tan(yp)

since:

Furthermore:

VaZ + 02 = \/AZ cos?(p) + A?sin?(p) = A \/COSQ(QO) +sin?(p) = A

~~

=1

This show that equality in Equ.A.1 is valid when va?+0> = A and
= arctan (b).

a

A.3 Results

A.3.1 Pearson )’ statistic

For both models and all lags, Pearson y? vas calculated. Results are presented
in

A.3.2 Estimates of Parameters
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x?%/n for Model 1

x?2/n for Model 2

No lag
1 week lag
2 weeks lag
3 weeks lag
4 weeks lag

3.22
3.19
3.23
3.19
3.21

3.12
3.10
3.13
3.09
3.11

Table A.1: Pearson y? statistic

Parameter | Coef. | Std. Err. z P> |z| | Lower Upper
95% C.I. | 95% C.I.

Byear -0.0009 | 0.0056 | -0.16 | 0.876 | -0.0120 | 0.0102
Binf 0.1413 0.0484 2.92 | 0.003 0.0464 0.2361
/ésin 0.2610 0.0323 8.08 | 0.000 0.1977 0.3243
Bcos 0.2501 0.0257 9.71 0.000 0.1996 0.3006
Binterc 3.0185 0.0374 | 80.63 | 0.000 2.9451 3.0918

) 2.2248 0.2038 1.8197 2.6625

Table A.2: Results Model 1
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Parameter | Coef. | Std. Err. z P> |z| | Lower Upper
95% C.I. | 95% C.I.
Binf 0.1264 | 0.0518 244 | 0.015 0.0249 0.2279
Bsin 0.2768 | 0.0324 8.54 | 0.000 0.2133 0.3403
/écos 0.2495 | 0.02680 | 9.29 | 0.000 0.1969 0.3021
Byearl 0.0611 | 0.1267 0.48 | 0.630 -0.1873 0.3095
ByearZ 0.2608 | 0.1186 2.20 | 0.028 0.0284 0.4932
Byears 0.3260 | 0.1185 | 2.75 | 0.006 0.0938 0.5583
Byear4 0.1684 | 0.1197 1.41 0.160 -0.0662 0.4030
Byearg) 0.2592 | 0.1185 2.19 0.029 0.0261 0.4914
Byear(; 0.1441 | 0.1197 1.20 | 0.229 -0.0910 0.3787
@year7 0.2327 | 0.1194 1.95 | 0.051 -0.0014 0.4668
Byearg 0.2576 | 0.1190 2.16 | 0.030 0.0244 0.4909
Byearg 0.1866 | 0.1195 1.56 | 0.119 -0.0477 0.4208
Byearlo 0.2285 | 0.1188 1.92 | 0.054 -0.0043 0.4613
Bintere 2.8066 | 0.1122 | 25.01 | 0.000 2.5867 3.0266
B 2.0775 | 0.1944 1.7294 2.4958

Table A.3: Results Model 2
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