
Mathematical Statistics

Stockholm University

A mixed model with repeated measures

of mammographic breast density

Urban Olanders

Examensarbete 2005:10



Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.math.su.se/matstat



Mathematical Statistics
Stockholm University
Examensarbete 2005:10,
http://www.math.su.se/matstat

A mixed model with repeated measures of

mammographic breast density

Urban Olanders∗

November 2005

Abstract

Breast density are brighter parts of a mammography x-ray film.
Breast density is a risk factor for breast cancer, it increases in hor-
mone therapy. The prognosis of breast cancer is in many cases fa-
vorable. The x-ray pictures of 28 healthy women are digitized to
examine change of breast density over time. For each picture there is
a histogram of the number of pixels for all gray scale values, and the
proportion in the breast that represents breast density is measured.
The quality of the scanned picture is low but conclusions are still pos-
sible to draw. The data is analyzed with a mixed model with repeated
measures. The proportion of breast density decreases with 18% each
year (p<0.001).

50 histograms of x-rays from University of South Florida digital
mammography home page are analyzed. The histogram has a mixture
of two normal distributions. The parameters of these distributions
are p, µ1, σ2

1 , µ2 and σ2
2. ACR breast density rate is a subjective

measure of mammographic breast density. Simple linear regression
suggests that there is a negative correlation between age and ACR
breast density rate and a positive correlation between ACR breast
density rate and σ2

2.
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1 Theory of mixed models

1.1 Introduction

A statistical model is a way to describe how different background variables

affect an outcome variable. The model can be used to test hypotheses, make

estimations or predict responses. There are parametric and non-parametric

models. In a parametric model the outcome variable is assumed to belong

to a certain class of distributions whereas this assumption is not necessary

for a non parametric model. The non-parametric models have often lower

power, i.e. low probability to reject a hypothesis when it is not true. The

parametric models can be divided into linear and non-linear models. The

non linear models may be either intrinsically non-linear, non-linear in the

parameters or in the variables. Among the linear models are the general

linear models, where the response variable has a normal distribution, and

the generalized linear model, where the response variable may have other

distributions than the normal distribution. There are also Bayesian models

that take into account that the parameters in the distribution from which

the response variable belong are stochastic variables.

1.2 The usual linear model

Let y= (y1, . . . , yi, . . . ,yn)’ be an n × 1 vector of observations from some

study. In matrix terms a general linear model is written

y = Xβ + e

For observation i the model is
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yi = β0 + β1xi1 + . . . + βp−1xi(p−1) + ei

xi1, xi2, . . . , xi,p−1 are independent variables. X is a design matrix and β is

a vector of the parameters.The components of the e vector: e1, e2, . . . , en are

the residuals of the model and they are normally distributed N(0, σ2). The

least squares estimates of the parameters in the β vector are obtained when

the sum of squared residuals is minimal. The sum of squares is

e′e = (y − Xβ)′(y − Xβ)

Using the least square method the estimators of the parameters are

β̂ = (X′X)−1X′y

The variance of a parameter estimator β̂j is estimated as

V̂ ar(β̂j) =
∑

i

w2
ijσ̂

2

where wij are known weights and

σ̂2 =

∑
i ê

2
i

n − p

The test statistic to verify that the parameter βj is zero is

Tj =
β̂j√

V̂ ar(β̂j)
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Under the null hypothesis that βj=0 the test statistic has a t-distribution

with n − p degrees of freedom. For further details, see McCulloch, General-

ized, Linear and Mixed Models.

1.3 The mixed model

A linear mixed model contains both fixed and random factors. For the fixed

factors the levels of the effects are chosen beforehand, and these levels are

the levels that are of interest to the researcher. Examples of fixed effects are

time, different treatments or group characteristics that one wants to compare

for instance like in this thesis the difference in breast density between the

left and right breast.

If the levels of the factor can be considered a random sample from a popu-

lation of values which is assumed to follow a certain distribution then it is

a random effect. Random effects govern the variance-covariance structure of

the outcome variable vector y. For example if we randomly select n individ-

uals from a set of patients and measure some value then the individual would

be a random factor; we are not especially interested in these n individuals,

we want to draw conclusions about the whole set of patients. The number

of parameters in the model reduces in the mixed model because in the fixed

model we must have one parameter for each individual, but this is not the

case in mixed models.

A special case of mixed models is random effects models where there are

only random effects. Contrary to the common linear model, the mixed linear

model contains more than one variance parameter. In the fixed models, there

is only one error term.

An example of mixed models is when there are three repeated measures made

on n subjects. The response vector for subject i will be
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yi =




yi1

yi2

yi3




In matrix form this is written

yi = Xiβ + Ziui + ei

where yi is a 3×1 vector of observations, Xi is a 3×4 design matrix for fixed

factors, β is a 4×1 vector of unknown fixed parameters. Zi is a 3×1 design

matrix for random factors, ui is a vector of random factors of dimension 1×1,

ei is a 3×1 error vector. For one individual the model will be

yi =




yi1

yi2

yi3


 =




1 1 0 0
1 0 1 0
1 0 0 1







µ
α1

α2

α3


+




1
1
1


 (ui) +




ei1

ei2

ei3




Bringing together the yi vectors gives

y =




y1
...

yn




The model for all n individuals is

y =




y1
...

yn


 =




X1
...

Xn


β +




Z1 0 . . . 0
0 Z2 . . . 0
...

...
. . .

...
0 0 . . . Zn







u1
...

un


+




e1
...
en




The vectors ui and ei are the random components of the model. Denote the

covariance matrix of ui with Gi and the covariance matrix of ei with Ri.

Then
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V ar(yi) = Σi = V ar(Ziui) + V ar(ei) = ZiGiZ
′

i + Ri

Since the covariance between individuals is zero, the covariance matrix of y

has the structure

Cov(y) =




Σ1 0 . . . 0

0 Σ2 . . . 0
...

...
. . .

...
0 0 . . . Σn




It holds that

E

[
u

e

]
=

[
0

0

]

and

V ar

[
u

e

]
=

[
G 0

0 R

]

For further details, see Applied Mixed Models in Medicine, Helen Brown.

1.3.1 Estimation of parameters

In the model fitting process, estimating fixed effects, random effects and vari-

ance parameters is done. To get estimations of fixed parameters and variance

parameters, likelihood functions are used. Given the data, the likelihood of a

model is the probability of the data under that model. A model can have an

infinite set of different parameter values, one of which has the highest likeli-

hood. In a model where there are n independent observations the likelihood
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function is the product of the n density functions of the distributions from

which the observations come. However, since in a mixed model measures are

made on the same subject, the observations are dependent, so the likelihood

function should be based on the multivariate density function

L =
1

(2π)(1/2)n|V|1/2
exp[−

1

2
(y − Xβ)′V−1(y − Xβ)]

where n is the number of observations and V = ZGZ′ + R.

Maximum likelihood

Since the maximum of the logarithm (log) of the likelihood function is at-

tained in the same point as the maximum of the likelihood function and since

the log likelihood function is simpler to work with, it is used when estimating

the fixed effects. The log likelihood function is given by

LL = k −
1

2
[log|V| + (y − Xβ)′V−1(y − Xβ)]

where k is a constant.To get estimates of the fixed parameters and the vari-

ance of the parameters in the model the log likelihood is maximized by dif-

ferentiating the log likelihood function with respect to β and setting the

resulting expression to zero.

X′V−1(y − Xβ) = 0

Rearrangements gives

β̂ = (X′V−1X)−1X′V−1y

12



The variance of β is

var(β̂) = (X′V−1X)−1X′V−1var(y)V−1X(X′V−1X)−1

= (X′V−1X)−1X′V−1VV−1X(X′V−1X)−1 = (X′V−1X)−1

Residual maximum likelihood (REML )

ML estimators of variances are biased downward. This problem will be es-

pecially significant when there are a lot of parameters compared to the num-

ber of observations. An example of this is when we have a sample of n

observations from a stochastic variable, then, if µ̂ is a sample mean the ML-

estimation of the variance would be Σi(xi − µ̂)2/n instead of the unbiased

estimator Σi(xi − µ̂)2/(n − 1).

To get unbiased estimators the residual maximum likelihood REML has been

developed. In REML estimation, the likelihood function is based on the

residual terms y − Xβ̂. This is done by a linear transformation of y to

w = a′y where a′ = I − X(X′X)−1X′. Then

E(a′y) = (I − X(X′X)−1X′)Xβ = Xβ − Xβ = 0

In balanced mixed models the REML equations have a unique solution that

is the minimum variance unbiased estimator

σ̂2 =
(y − Xβ̂)′(y − Xβ̂)

n − p

In general, however, the estimation of variations, i.e. the parameters in V

can not be done with one explicit equation since the derivates of the log

13



likelihood with respect to the variance parameters are non-linear, instead

iterative methods like Newton-Raphson are used.

Newton- Raphson Iteration

The residual log likelihood function (RLL) is

RLL = −
1

2
[log|V| + log|X′V−1X| + (y − Xβ̂)′V−1(y − Xβ̂)]

The function can be maximized with the Newton-Raphson algorithm. Let

f(θ) be be the RLL function, where θ are the parameters in V that shall be

estimated. The RLL function will have its maximum when

∂f(θ)

∂θ
= 0

Setting a Taylor expansion of ∂f(θ)/∂θ equal to zero gives

∂f(θ)

∂θ
= f ′(θ) ≈ f ′(θ0) +

∂2f(θ)

∂θ∂θ′
(θ − θ0) = 0

Rearrangements gives

θ = θ0 −
[
∂2f(θ)

∂θ∂θ′

]
−1

f ′(θ0)

So the Newton-Raphson algorithm that gives the variance parameters is

θ(m+1) = θ(m) −
[
∂2f(θ)

∂θ∂θ′

]
−1
∣∣∣∣∣
θ=θ(m)

f ′(θ(m))
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Two disadvantages of the Newton-Raphson method are that it does not al-

ways give convergence, and the variance estimates can be negative. An al-

ternative to this method is the Fischer scoring algorithm where the Hessian

matrix is replaced by its expectation, the so called information matrix. The

algorithm will converge even with poor starting values with the Fischer scor-

ing. It is also possible to do the estimation of the parameters with generalized

expectation maximization (GEM) algorithm, GEM is feasible when there is

a large number of covariance parameters.

1.3.2 Negative variance components

The methods of estimating variance components can lead to negative values,

which is not a reasonable result, since all variances are non-negative. When

there are negative variance values, the real values are generally small or zero.

The risk of obtaining negative values of variance increases if the number

of random effect categories and the number of observations per category are

small. Negative variance components are handled either by removing the cor-

responding random effect from the model, or to set the variance component

to zero.

1.3.3 Bias in fixed and random effects standard error

When there is a large degree of imbalance in the data there will be downward

bias in the standard errors. An adjustment for the bias is the “empirical”

variance estimator

v̂ar(β̂) = (X′V−1X)−1X′V−1v̂ar(y)V−1X(X′V−1X)−1

where v̂ar(y) = (y − Xβ̂)(y − Xβ̂)′. The Bayesian method is another way

to deal with the bias of standard errors.
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1.3.4 Significance testing

Contrasts are used for local tests of the significance of fixed and random

effects, for fixed effects the contrast is C = L′β = 0 and for random effects

C = L′u = 0. The terms in the L matrix correspond to the intercept and to

different treatments. For example, when comparing three treatments A, B

and C, if one wants to examine the difference between treatment A and B

the contrast will be

L′β̂ = (0 1 −1 0)β̂ = β̂A − β̂B

With a multiple contrast for instance

L′β̂ =

(
1 0 −1 0
0 1 0 −1

)
β̂ =

(
β̂A − β̂B

β̂A − β̂C

)

L′β̂ =

(
0 1 −1 0
0 1 0 −1

)
β̂ =

(
β̂A − β̂B

β̂A − β̂C

)

the overall equality of treatments can be tested.

The Wald statistic

To test that a multiple contrast is zero, the Wald statistic is used, which is

given by

W = (L′β̂)′(var(Lβ̂))−1(L′β̂)

= (L′β̂)′(L′var(β̂)L)−1(Lβ̂)
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for fixed effects, for random effects û is used in place of β̂ . W can also be

written

W = (L′β̂)′(L′(X′V−1X)−1L)−1(L′β̂)

since var(β̂) = (XV−1X)−1. When the sample size is large and data are bal-

anced W has approximately a χ2
p distribution (p is the rank of L ) otherwise

the Wald F statistic is used, this is calculated by

FDF1,DF2 = W/DF1

where DF1 is the number of linearly independent rows in L, and DF2 is the

denominator degrees of freedom (DF ) that corresponds to the DF of the

contrast variance L′var(β̂)L.

1.3.5 Lost data

As long as data are missing at random, it is possible to make inference

with the mixed model, the model is quite robust. A fixed effects model on

the other hand is less flexible concerning missing data, since information on

subjects with one or more values missing is completely lost. The reasons for

withdrawal should be carefully examined since it is very common that data

are missing for non-random reasons, this makes the interpretation of results

tricky. Simple summaries of the frequency of missing data can be helpful.

(See more about missing data in the chapter 5.1.) That data are missing at

random means that there are no systematic causes to the loss of data. An

example a systematic cause of missing data is when data that are extremely

high (or low) are missing more often then average values.
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2 Theory of repeated measures data

2.1 Introduction

Repeated measurements data can be obtained either by measuring some vari-

able in a subject on multiple occasions or under multiple conditions. Mea-

surements at different time points on the same subject are also called longitu-

dinal data. The response variable might be either univariate or multivariate.

The experimental units might be individuals or, like in this thesis, each of

the breasts in a subject. Whether or not the time intervals are equidistant

or not will affect the study design.

2.2 Advantages and disadvantages of repeated mea-

surements design

In statistical model designs with repeated measurements information con-

cerning pattern of changes in individuals can be gained. It can be measured

if some data increases, is constant or decreases over time. When one wants

to study changes over time, it is more effective to do repeated measurements

on the same individual than to observe different individuals at each time

point. When comparing different treatments, measurements on an individ-

ual can be made both under control (placebo) and treatment condition, this

sharpens the estimation of relevant parameters. Practical issues can make it

easier to collect data at several time points from the same individual rather

than from different individuals. The more time points when measurements

are made, the more missing data there may be for reasons that cannot be

controlled. It has to be considered that when measurements are made on the

same subject, these data are not independent. The efforts to develop models

with repeated measurements have principally been directed to models with

18



a response variable that is normally distributed.

2.3 Fixed effects models

2.3.1 Univariate methods

The multivariate response with a lot of measured data on each subject can

always be transformed to a univariate response, for instance by estimating

the least square regression slope of the measurements of each individual, by

estimating the area under the curve (AUC) or by taking the last minus the

first measured value. The advantage of this is that the issue of correlation be-

tween different time points of the same individual disappears. These methods

are referred to as the summary statistic approach. An important condition

is that the selected summary measure really describe the subjects data in an

accurate way. If there are missing measurements this can sometimes be dealt

with by extrapolation. If the data are normally distributed ANOVA and

the F statistic gives the estimation of the parameters and their confidence

interval, otherwise non-parametric tests like the Kruskal-Wallis test is used.

2.3.2 Multivariate methods

In the multivariate analysis of variance (MANOVA) the model is

Y = Xβ + ε

now the response variable matrix Y has n rows and p columns where n

and p are the numbers of individuals and measurement points respectively,

in contrast to Y in univariate models where Y is a n × 1 vector. X is a

n×q matrix and β is a q×p matrix that contains the parameters where q

is the number of parameters. There are several alternative test statics in

19



MANOVA for the hypothesis that all levels of a certain factor are equal,

for example Hotellings T 2 in the case of two groups, or in the general case

Wilks’ lambda, Roy’s largest root criterion or Pillai’s trace. For details about

multivariate methods, see Statistical Methods for the Analysis of Repeated

Measurements, Charles Davis.

2.4 Mixed models

The linear mixed model for repeated measurements is

yi = Xiβ + Ziui + ei

i = 1, 2,. . . , n. (see section 1.3). The yi vectors has normal distribution with

E( yi)= Xiβ and V ar( yi)=Vi where Vi = ZiGZ′

i + Ri. The diagonal-

matrix R looks like

R =




R1 0 . . . 0.
0 R2 . . . 0
...

...
. . .

...
0 0 0 Rn




Mixed models are very suitable for modeling repeated measurements because

all individuals do not have to be measured at the same time points, missing

data can be coped with as long as the data are missing at random and

they allow several different patterns of the correlation over time e.g. we can

determine whether there is a constant correlation between all the time points,

or whether the pattern of correlation varies with time.
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2.4.1 Covariance structures

The Ri matrix mentioned above is a n×n matrix where n and i are the num-

ber of measurement time points and experimental units, respectively. The Ri

matrix can either be allowed to be free (general or unstructured) covari-

ance structure or have a more restricted structure. General/Unstructured

covariance structure looks as follows:

Ri =




σ2
1 θ12 θ13 θ14

θ12 σ2
2 θ23 θ24

θ13 θ23 σ2
3 θ34

θ14 θ24 θ34 σ2
4




A reason for not choosing the general covariance pattern is that when there

are many measurement time points on each subject, there will be a lot of

parameters and this can cause the iteration algorithm of estimation not to

converge. In the first-order autoregressive model are all the variances

the same, and the co-variances decrease exponentially with time. It seems

right that the correlation between a few time points is larger than between

many time points. The model is especially suitable when time points are

evenly spaced but it can also be used in trials when many measurements in

short intervals are done just in the beginning of a trial and with increasingly

separated intervals later on. First-order autoregressive covariance structure

looks like:

Ri = σ2




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1




In the compound symmetry covariance model all covariances are equal.

The compound symmetry and the first order autoregressive models contain
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only two parameters. Compound symmetry covariance structure looks as

follows:

Ri =




σ2 θ θ θ
θ σ2 θ θ
θ θ σ2 θ
θ θ θ σ2




The Toeplitz model has a separate covariance for each level of separation.

This means that the covariance between e.g. time point one and two will

be the same as between time point two and three, and that the covariance

between time point one and three will be the same as between two and four.

Toeplitz covariance structure looks like:

Ri =




σ2 θ1 θ2 θ3

θ1 σ2 θ1 θ2

θ2 θ1 σ2 θ1

θ3 θ2 θ1 σ2




In the spatial power covariance structure, correlation between two obser-

vations is proportional to the distance in time between them. If variability

in a measurement differs between time points this can be handled with the

heterogeneous covariance structure, where there are different parameters

for the variance of each time point. The example shows heterogeneous first-

order autoregressive but the heterogeneous structure can also be applied to

the models above. Heterogeneous first-order autoregressive covariance struc-

ture looks as follows:

Ri =




σ2
1 ρσ1σ2 ρ2σ1σ3 ρ3σ1σ4

ρσ1σ2 σ2
2 ρσ2σ3 ρ2σ2σ4

ρ2σ1σ3 ρσ2σ3 σ2
3 ρσ3σ4

ρ3σ1σ4 ρ2σ2σ4 ρσ3σ4 σ2
4
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2.5 Choice of covariance structure

The likelihood statistic is a measure of model fit, the higher likelihood the bet-

ter is the fit of the model to the given data. But the likelihood increases when

more covariance parameters are added, so the likelihood can only be used di-

rectly when comparing two models with the same number of parameters.

When comparing models with different covariance structures the likelihood

ratio test can be used if the models are nested within each other. Nest-

ing of covariance parameters means that if the covariance parameters in a

more complex model are restricted to a covariance pattern with a simpler

structure, then these models are nested. It holds that approximately

2(log(L1) − log(L2)) ∼ χ2
DF

where L1 and L2 are the likelihoods of the more complex and the simpler

model respectively, and DF is the difference in numbers of covariance pa-

rameters. If the test statistic is significantly large on say 5% level then the

more complex structure should be chosen. If the covariance parameters in

the models are not nested, a comparison of each model with a simpler model

which is nested within both models can be done. The model with the best

improvement wins.

An alternative when the covariance parameters are not nested is the Akaike

information criterion (AIC) which is given by

AIC = −2 log(L) + 2q

where q is the number of parameters in the model. When more parameters

in the model are chosen q increases, and so does L, so AIC takes into account

both that the likelihood should be large and that the model should be simple,
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i.e. that there are few parameters. The choice of covariance structure can give

additional knowledge to the topic studied, it gives estimates of covariances

between different time points.

2.6 Graphical presentation for repeated measures

A first approach to a statistical analysis is the graphical display of the re-

peated measures. Visualizing data makes it possible to see trends and differ-

ences between groups. All data shall be shown rather then data summaries.

The graphical presentation shall contain both cross-sectional and longitudi-

nal data, and outliers and unusual observations shall be easy to observe. This

is done by using individual profile plot where the development over time is

shown for each individual, the mean profile plot that shows the mean values

and standard error of the mean for different groups in different occasions,

and box-plots that give a more detailed information of the spread of data.

3 A longitudinal study of breast density

3.1 Introduction

Mammographic breast density is a feature of the mammography x-ray that

is seen as brighter parts of the x-ray. The reason for these brighter parts is

that different types of breast tissues are different radio translucent. Fibrog-

landular tissue is less radio translucent then fat tissue. In a breast with high

proportion of fibroglandular tissue the x-ray-beams do not pass through the

breast so easily, this will cause a brightness on the x-ray. Mammographic

breast density can be measured as the percentage of the mammography x-

ray that appears bright. Almost all women have breast density, ranging

from less then 10% to more then 90%. High breast density is a risk factor
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for developing breast cancer. The purpose of this work is to study changes

mammographic breast density over time, in a group who has not developed

breast cancer, to see if breast density increases or decreases with age. For

further information about breast density see Lundström et al. Am. J. Obstet

Gynecol 2002;186:717-772

3.2 Method

Mammography pictures from 28 subjects that had done mammography screen-

ing 1990-1995 at Radiumhemmet at Karolinska hospital were decoded, the

name and personal identity number were removed from the film. Each sub-

ject had pictures from two or three mammography screening occasions. The

examination were normally done with an interval of two years. In each screen-

ing occasion four pictures were taken, two projections on each breast. The

birth year of the subjects were between 36-42. (fig. 1). There were a total of

135 pictures. With a HP scanjet 3970 scanner, the images were digitalized.

The digitalized picture is built up by squares each called a pixel. The mea-

sure of the size of a pixel is d.p.i, dot per inch , the resolution of the pictures

were 100 d.p.i.The digitized x-ray consists of 256 gray-levels, and each pixel

has a certain gray level value ranging from 1/256 to 256/256 where 1/256 is

the darkest gray level black and 256/256 the brightest white. A digitalized

x-ray has a matrix that contains all gray level values of the pixels. A certain

position in the matrix corresponds to the pixel gray level in the same position

in the picture. (E.g. If there is a low value (7/256) in the first row and first

column in the matrix, the first pixel in the upper left corner of the picture

is dark.) With an option in the computer program that places a polygon on

the picture we select only pixels within the breast tissue i.e. the background

in the picture and the breast muscle is excluded. A histogram is made over

the gray level values. We see how many pixels there are in the picture that

have gray level value 1/256 or 2/256 (black) as the first bar to the left in
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Figure 1: Age distribution of the women, birth year on the x-axis, number
on the y-axis.
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the histogram, how many pixels there are with value 2/256 or 3/256 as the

second bar on the left side of the histogram and so on to the bar most to

the right in the histogram, that shows how many pixels there are that have

gray level value 255/256 or 256/256 (white). Totally there are 128 bars in

the histogram. In most pictures, brighter parts of the picture are centered in

the region close to the nipple of the breast, especially when a large portion

of the breast has high density, this feature is obvious.

When only the dense parts in the picture are selected, the histogram shows

unimodal distribution with large mean value (bright), and when only the

non-dense part is selected the histogram shows a unimodal distribution with

small mean value (dark). The histogram of the picture that includes both

the dense parts and the non-dense parts has a bimodal distribution, which

can be regarded as a mixture of two distributions, with means and variance

that coincide with the two separate distributions for dense and non dense

areas respectively, as expected.

3.3 Missing values, selection

The data consisted of 14 subjects that had x-ray pictures from two examina-

tion occasions, and 14 subjects that had pictures from three occasions. From

each occasion the medio lateral oblique MLO projection (from the side) of

the left and right breast were selected, in a mammographic examination a

craniocaudal CC (from upside) projection is also done but these projections

were not included. The feature of the breast density of the two projections

is similar, so the results of the craniocaudal projection should be similar also

to the results of this investigation. The time interval between examinations

was approximately two years. In a few cases the time interval was one or

three years. The x-ray films were selected from a population of healthy sub-

jects, who had undergone mammography screening in a regular screening
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Figure 2: Example of histogram of a x-ray where the scanning has been
optimal. The picture is from the University of South Florida digital mam-
mography home page. The data are fitted to two mixed normal distributions.
The distribution to the left has µ1=0.318 and σ1=0.114 and the distribution
to the right has µ2=0.585 and σ2=0.085. p=0.2338 is the proportion of num-
bers of pixels in the left mode of the distribution compared to all the pixels
in the whole histogram. A high pixel value means that the pixel is bright,
i.e. that there is high breast density. Many pixels with high gray scale value,
i.e. that p is low or µ2 is high should indicate high density in the breast.
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Figure 3: Example of histogram of a x-ray from the where the scanning has
been optimal. The picture is from the University of South Florida digital
mammography home page.
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program, and who had not later been stricken with breast cancer.The se-

lection was done so that there were more subjects with high density in the

sample of 28 then in the population from which the sample was drawn from,

i.e. some pictures with low breast density was sorted out. This for reasons

that it probably should be easier to investigate breast density in subjects

with high breast density, and that breast density is a risk factor for breast

cancer. There is no special reason, why there are different numbers of oc-

casions of examination, two or three within the subjects. Since not all the

subjects have three examinations there will be missing values in the repeated

measurements design for those subjects with two examinations. It can be as-

sumed that those with three examinations do not differ considering breast

density, from those with two, though this can be questioned, so the values

that are missing are assumed missing at random. An example how there can

be a difference between the two groups is that those with two examinations

have participated in fewer examinations, and this for reasons that is asso-

ciated with specific pattern of breast density change over time. It can also

be that that those with two examinations had also a third examination, but

that this was not chosen. One subject’s pictures were not used, because the

feature of the histograms differed a lot from all other subjects’ pictures. The

reason for this was probably that these pictures (which was taken about ten

years earlier than all other pictures) were produced with other techniques or

other film type. One picture was lost in the scanning procedure.

3.4 The parameters

A mixture of two normal distribution has five parameters, p, µ1, σ2
1 , µ2

and σ2
2 .The parameter p is the proportion of the distribution closest to

zero compared to both distributions, i.e. if p is small the first distribution

is small compared to the second, µ1, µ2 , σ2
1 and σ2

2 are the mean values

and variance for the distribution closest to zero and one, respectively. It is
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reasonable to think that in a picture with low breast density the p value is

high reflecting that most gray level values are low (dark) and thus belongs to

the first distribution, the one nearest zero with mean value µ1 and variance

σ2
1 . When there is little breast density µ2 and the difference between µ1 and

µ2 should be low. These changes can also be expected when breast density

changes from one mammography occasion to another when one subject is

examined, it is reasonable that changes in density should be reflected in

changes in the parameters of the mixture distribution. The change of the

parameters over time may be almost the same in both breasts or they may

be different. The risk of developing breast cancer increases with age and

breast density is a risk factor for breast cancer so considering this, breast

density should increase with age. It could also be that breast density with

age decreases more in those who don’t develop cancer compared with those

who do. On the other hand the glandular tissue stimulating sex hormones

decreases after menopause causing the ratio fat tissue/fibroglandular tissue

to increase leading to less mammographic density.

Since the gray level values are larger then zero and smaller then one the data

can also be modeled as a mixture of two beta-distributions. The fit of such

a model is probably better then the normal distribution. (Fig. 2, 3)

3.5 Non optimal scanning

When comparing histogram from the scanned pictures in this study with pic-

tures scanned under optimal conditions from the University of South Florida

digital mammography home page with for instance a Lumisys 200 laser den-

sitometer scanner it is apparent that the scanning in this study has severe

deficiencies that distorts the histogram, the appearance of two distinct mixed

distributions is lost in the scanning, some values has inexplicable many num-

bers of pixels (the peaks in the histogram) due to a shade on the scanned
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pictures. Something in the scanning process interprets the x-ray as if it is a

very common gray level value, which it in reality is not, there was no shade on

the x-ray films. When doing ML-estimation of the mixed distribution this

single extreme value has a great impact so the ML-estimation in the first

distribution will have a mean about 0.1 and with a variance close to zero,

representing the extreme value, the second distribution representing the rest

of the histogram, this is of course not the correct two distributions, the pa-

rameters of these two distributions do not give any information about the

breast density. Doing a ML-estimation with three distributions and putting

a restriction on the ML-estimation that σ2
1 > 0.001 and µ3 > 0.4 only results

in that σ2
1 becomes 0.001 or that µ3 becomes 0.4 which is not either a reason-

able result. Scanning with 300 and 600 d.p.i. does not improve the quality

of the scanned pictures.

3.5.1 The parameter in this study

Since the lack of quality in the scanned pictures makes it impossible to es-

timate the suggested parameters p, µ1, µ2, σ2
1 and σ2

2, the proportion pa-

rameter, defined as the number of pixels with gray scale values > 0.4/total

number of pixels is the outcome variable in this study. 0.4 is measured as

the limit for high breast density. Since the quality of the scanned pictures is

so imperfect the values of the outcome variable is probably not the same in

pictures scanned under optimal conditions, the proportion is probably higher

in the latter pictures. (Fig. 4). The data are assumed to be log-normal, the

proportion decreases with time, (Fig. 5, 6).

3.5.2 An alternative parameter

The absolute number of pixels > 0.4 is a compatible parameter to the propor-

tion parameter. A comparison is made on six subjects, five measurements are
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Figure 4: Example of histogram from this investigation. The feature of a
mixed distribution is lost due to non-optimal scanning. A shade more or
less randomly scattered over the scanned picture surface gives rise to the
spike about 0.19. Gray scale value higher then 0.4 is chosen as a limit value
for high breast density. The outcome variable is the number of pixels with
gray scale value higher then 0.4 divided with the number of all pixels in the
picture, i.e. the proportion of the picture that has high breast density. Since
the resolution is higher, there are more pixels in each bar than in the pictures
from the University of South Florida digital mammography home page.
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Figure 5: Proportion vs. time. There is a decrease of the proportion with
time.

Figure 6: log. proportion vs. time.
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x= number of pixels > 0.4 std/x y=fraction > 0.4 std/y
32780 0.000694 0.2009 0.0311
25880 0.0015 0.2285 0.0074
8100 0.0232 0.0587 0.0294
5900 0.0215 0.0474 0.0138
2120 0.1217 0.0189 0.0952
1976 0.082 0.0724 0.058

Table 1: The data indicates that when there is little breast density, i.e small
proportion or little numbers of pixels with high values, the standard devia-
tion/mean value (variation coefficient) is lower for the proportion measure-
ment then for the absolute number measurement while the opposite is true
for much breast density.

made on each. The differences in the variation coefficients are partly due to

that when there are few pixels>0.4 the impact of artefacts becomes greater,

and that the placing of the polygon is less crucial when there is high breast

density. (table 1)

3.6 The choice of model

For a mixed model, we choose the covariance structure of the V matrix and

the fixed effects must be decided. The possible fixed effects that can affect

the outcome variable proportion is time, side, age and interactions. One

model for both the right and the left breast is chosen and not one model

for each side.Two models for each of the breast were also considered and the

results confirm the results in the model chosen here. Data is transformed

by taking the logarithm of the proportion, that data is log-normal is shown

by examining normal plots and histograms of the transformed data. Other

transformations like the square root is also possible to do.

We want to decide the model that best fits the data. We look at models
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that includes all fixed effects and interactions and where time is modeled as

a class variable. (model 1-6). The model with the smallest AIC is model

5. From model 5 we remove the effects with the highest p-values until only

effects with significant (on a 5% level) effects remain. In model 5E time is

highly significant. Backward elemination is also done in models where time

is modelled as a continuous and not as a class variable (model 8A-9F). 9D

is the model with the lowest AIC. Both side and time are significant effects.

We chose model 9D even though 5D has lower AIC, because in 9D there is a

parameter that describes how much breast density decreases every year, the

interpretation is more direct. (table 2)

3.7 The covariance structure

The G matrix models the random effect of the individuals and the covariance

between the two breasts in each individual. G has dimensions 27×27 with

σ2
G in the diagonal and zeros off-diagonal. Z is a 324×27 matrix.

R models the variance-covariance between different time points in an individ-

ual. The subject that is repeated in the model is individual*side. There are

measurements on six time points but each individual has two or three time

points measured so the Ri matrix dimensions are is 4×4 and 6×6. In, for ex-

ample, a compound symmetry or ar(1) covariance structure for an individual

with two measurements Ri is

compound symmetry

Ri =




σ2 + σ1 σ1 0 0
σ1 σ2 + σ1 0 0
0 0 σ2 + σ1 σ1

0 0 σ1 σ2
1 + σ1




where σ1 is the covariance within the same breast for different time points.
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Model Class log(y)= # par. Cov. type -2LL AIC
1 i s t s a t s*a s*t a*t 41 un 380.4a 462.4
2 i s t s a t s*a s*t a*t 22 cs 389.3 433.3
3 i s t s a t s*a s*t a*t 22 ar(1) 393.8a 437.8
4 i s t a s a t s*a s*t a*t 76 un −b -
5 i s t a s a t s*a s*t a*t 57 cs 314.8 428.8
6 i s t a s a t s*a s*t a*t 57 ar(1) −c -
7 i s s a t s*a s*t a*t 29 un −c -
8 i s s a t s*a s*t a*t 10 cs 416.4 436.4
9 i s s a t s*a s*t a*t 10 ar(1) 407.0 427.0

2A i s t s a t s*a a*t 17 cs 392.8 426.8
2B i s t s a t a*t 16 cs 389.9 421.9
2C i s t s a t 11 cs 388.9 410.9
2D i s t s t 10 cs 386.4 406.4
2E i s t t 9 cs 386.9 404.9
5A i s t a s a t t*a s*a 52 cs 317.7 421.7
5B i s t a s a t t*a 46 cs 327.6 419.6
5C i s t a s a t 16 cs 372.2 404.2
5D i s t a s t 10 cs 386.4 406.4
5E i s t a t 9 cs 386.9 404.9
8A i s s a t a*s a*t 9 cs 413.4 431.4
8B i s s a t a*s 8 cs 407.7 423.7
8C i s s a t 7 cs 404.8 418.8
8D i s s t 6 cs 402.2 414.2
8E i s t 5 cs 402.8 412.8
8F i s t*t t 6 cs 410.4 420.4
9A i s s a t t*s a*t 9 ar(1) 404.0 422.0
9B i s s a t a*t 8 ar(1) 401.2 417.2
9C i s s a t 7 ar(1) 395.7 409.7
9D i s s t 6 ar(1) 393.3 405.3
9E i s t 5 ar(1) 396.0 406.0
9F i s s t t*t 7 ar(1) 394.7 408.7

Table 2: i=individual, s=side, t=time, a=age, a=Hessian matrix not positive
definite, b=iteration stopped because of infinite likelihood, c=iteration did
not converge. The model with the best (smallest) Akaike information criteria
is 5C, but the model 9D is chosen because the interpretation of this model
where age and time are continuous variables is simpler.

37



The correlation coefficient between left and right breast in an individual is

σ2
G/(σ2

G + σ2 + σ1) and the correlation coefficient between time points in an

individual is (σ2
G + σ1)/(σ

2
G + σ2 + σ1).

autoregressive (1)

Ri = σ2




1 ρd 0 0
ρd 1 0 0
0 0 1 ρd

0 0 ρd 1




where d is the number of years between the time points measured. The cor-

relation coefficient between left and right breast in an individual is σ2
G/(σ2

G +

σ2) and the correlation coefficient between time points in an individual is

(σ2
G + σ2ρd)/(σ2

G + σ2).

The covariance structure that is chosen is autoregressive (1). The Ri matrix

for a person with two measurements that are done with a time distance of

four years is

R̂i = 0.8875




1 (−0.697)4 0 0
(−0.697)4 1 0 0

0 0 1 (−0.697)4

0 0 (−0.697)4 1




The estimate for the individual effect (the G matrix) is σ̂2
G = 1.0107 . We

could also choose a covariance structure with a parameter (θ) for the co-

variance between the two breasts at the same time point. This covariance

pattern looks like

Ri = σ2




1 ρd θ 0
ρd 1 0 θ
θ 0 1 ρd

0 θ ρd 1
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The correlation coefficient between the right and the left breast is

Ĉorr(yis1t, yis0t) =
Ĉov(yis1t, yis0t)√

V̂ ar(yis1t)V̂ ar(yis0t)
=

1.0107

1.0107 + 0.8875
= 0.532

where i is individual, s is the left or the right breast and t is the time point.

The correlation coefficient between time points in one individual is (with a

time distance of four years)

Ĉorr(yist0 , yist3) =
Ĉov(yist0 , yist3)√

V̂ ar(yist0)V̂ ar(yist3)
=

1.0107 + 0.8875(−0.697)4

1.0107 + 0.8875
= 0.6428

With a model where θ is estimated a comparison of these correlation coef-

ficients is adequate. Then the correlation coefficient between right and left

breast is

Ĉorr(yis1t, yis0t) =
Ĉov(yis1t, yis0t)√

V̂ ar(yis1t)V̂ ar(yis0t)
=

1.0107 + 0.8875θ̂

1.0107 + 0.8875

3.8 Model checking

In the normal plot and the predicted values vs. residuals plot we see that the

assumptions that the residuals are normally distributed and have constant

variance are satisfied. That the data is above the line in the right part of

the figure indicates that the right tail of the distribution of the residuals is

thinner than the normal distribution, (Fig.7).

The residuals are observed values minus predicted values. From the plot

of predicted values vs. residuals we see that in the model low values of

breast density is estimated as larger than they really are and large values are

estimated as lower than they really are. The variation is constant, (Fig. 8).
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Figure 7: Normal probability plot for the model.
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Figure 8: Predicted values vs. residuals.
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Effect side Estimate Error DF t Value Pr> |t|
µ=intercept -2.7082 0.2789 26 -9.71 < 0.0001

β=time -0.2004 0.04560 106 -4.40 < 0.0001
γ=right breast 1 -0.3913 0.1879 106 -2.08 0.0397

Table 3: Estimates of fixed variables and p-values.

Effect Alpha Lower Upper
µ=intercept 0.05 -3.2815 -2.1348

β=time 0.05 -0.2908 -0.1100
γ=side 0.05 -0.7639 -0.01882

Table 4: Estimates confidence intervals.

3.9 Results

The model chosen is

log(yts) = µ + βt + γs

yts = eµ+βt+γs

= eµ ∗ eβt ∗ eγs

where t = 0, 1,. . . , 5 years and s = 1 for the right breast and s = 0 for the

left breast. The mean value of the proportion for the left breast year zero is

estimated as e−2.2708 = 0.0667, with a 95% confidence-interval of 0.038-0.118.

The parameter for time, β, is significant, with point estimator β̂ = −0.2004.

Each year the proportion of breast density decreases with 1−e−0.2004 = 18%,

with a 95% confidence-interval of 10%-25%. The estimates of the parameter

for side effect γ is -0.391 so there is 1 − e−0.391 = 32% less proportion in

the right breast then in the left, with a 95% confidence interval of 2%-53%.

(Table 3, 4)
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For the left breast year zero the breast density is 0.0667 = e−2.7082∗e−0.2004∗0∗

e−0.391∗0, or for year five in the right breast the density is 0.0166 = e−2.7082 ∗

e−0.2004∗5 ∗ e−0.391∗1

Birth year is not found significant, if the spread of birth years is larger than

36-42 differences might be found.

4 Simple linear regression on pictures from

South Florida digital mammography home

page

Digitalized pictures of high technical quality that are available at the Uni-

versity of South Florida digital home page were analyzed with simple linear

regression on 50 subjects that had undergone one mammographic examina-

tion with the parameters p, µ1, σ1, µ2, σ2 and µ2-µ1 as dependent variable,

and the given data age and the ACR breast density rating as independent

variables. ACR (The American Collage of Radiology) breast density rating

is a coding system for breast density that is determined by visual inspec-

tion of the x-ray picture. The scale is from one to four, where one is low

and four is high breast density. The procedure to take 50 samples were

done by taking the first 50 pictures on the web-site. For further details, see

http://marathon.csee.usf.edu/Mammography/Database.html

4.1 Results

In the Bonferroni method the significance level is 0.05/n=0.0038 (n=13 is

the number of tests made) so in none of the tests differs the slope signif-

icantly from zero. There is a suggested negative correlation between age

and ACR breast density rating and a suggested positive correlation between

43



Figure 9: ACR breast density rating vs. σ2
2

ACR breast density rating vs. σ2, that is the variance of the right part of the

bimodal distribution increases with increased breast density. A correlation

between p and density, µ2 - µ1 and density and between density and age was

expected but not found. (Figure 9, Table 5)

5 Miscellaneous topics

5.1 Dropouts from mammography screening

The participation in mammography screening, as also gynecological cervical

cancer screening, is high in Sweden. The reasons for not participating in the

screening can be many, for instance

• Lack of time.
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x-axis y-axis intercept p-value coefficient p-value
age p 0.3922 0.0002 -0.0019 0.2617
age µ1 0.2882 < 0.0001 -0.0002 0.8187
age σ1 0.1234 < 0.0001 -0.0003 0.4677
age µ2 0.716 < 0.0001 -0.0018 0.1355
age σ2 -0.0003 < 0.0001 -0.0003 0.4089
age ACR density 4.6707 < 0.0001 -0.0291 0.0270
age µ2-µ1 0.4280 < 0.0001 -0.0015 0.0575

ACR density p 0.2488 < 0.0001 0.0113 0.5255
ACR density µ1 0.2952 < 0.0001 -0.0071 0.5164
ACR density σ1 0.1063 < 0.0001 -0.0013 0.8084
ACR density µ2 0.5822 < 0.0001 0.0098 0.4468
ACR density σ2 0.0686 < 0.0001 0.0105 0.0139
ACR density µ2-µ1 0.2871 < 0.0001 0.0169 0.0510

Table 5: Results from simple linear regression of parameters from University
of South Florida digital mammography home page.

• Economical reasons.

• Worry that the radiation causes illness or damages the lactation.

• The risk of a false positive answer that can cause unnecessary investi-

gations and operations.

• Underestimation of the risk of developing cancer.

• Denial of the risk of developing cancer or fear of the treatment if cancer

is shown.

• Pain or discomfort due to the compression of the breast.

• Concerns that the compression will affect the shape of the breasts,damage

the breasts or fear that if there is cancer,it will spread due to the com-

pression of the breast.

• Issues due to breast-implants.
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• Feelings of unpleasantness and shame caused by the nakedness in the

examination situation especially if there are male x-ray staff.

• Avoidance of showing bruises, scares, tattoos, anomalies or disfiguring

skin affections.

• Threats from a family member if participating.

• Low knowledge about diseases.

• A general distrust to authorities, or a feeling of not being respected by

the health care system.

• Earlier maltreatment.

• Religious beliefs.

• Opinions that x-ray examination is technocratic and unnatural.

Among immigrants, where the participation is lower then on average, the

reason can be that there are no screening programs in the countries from

which they come. Due to ethnic differences of breast cancer incidence some

ethnic groups may not participate in mammography screening because they

feel that the risk for them is smaller. Many immigrants come from countries

where human rignts are denied, and contacts with government organizations

including health care system can have been harmful, so screening programs

can be sceptically viewed. Immigrants without residence permit probably

don’t participate in mammography screening. For further reading see Demo-

graphic predictors of mammography and PaP smear screening i US women,

Am J Public Health, Calle et al.

Advertising in media and events about advantages of screening, mobile x-

ray equipment for rural areas, drop-in-hours at evening and at weekends,
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free examinations, information in connection with other health care occa-

sions in adequate language and information on web-sites increase participa-

tion. Information through immigrant organizations should be more effective

if the proportion of women in the committees for immigrant organizations in-

creased. Information about monthly self-examination of the breasts the day

after menstruation should also be given. Breast cancer organizations can

also play an important role. Another way to increase participation in mam-

mography screening can be to offer, at the same occasion other health care,

for instance screening for heart and blood vessel disease (i.e. cardiac infarc-

tion and stroke) risk factors by measuring body mass index, blood pressure

and serum-lipids, or screening for other common disease groups like other

cancers, mental or psycho-social illness, or diseases in the skeleton-locomotor

system.

5.2 Randomization of order of measurement

When deciding where to put the region of interest polygon there is a risk

that the part of the picture that is covered with the polygon varies in a

systematic way between repeated measures. Of each subject all pictures

were analyzed in succession, the order was randomized. The identity and

time of examination of each picture were not coded but the risk of any bias

due to this procedure is not very high. Ideally the pictures should have been

coded. The placing of the polygon on subsequent pictures of one breast of a

subject might be more correct in the later pictures since the appearance of

the picture becomes clearer after having studied the picture for a while. On

the other hand fatigue and getting into a rut can make the former measure

of pictures better then the latter.
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5.3 Model discussion

The variation of the parameters can have several causes. There can be vari-

ations caused by properties of the subjects, e.g. age, hormonal and other

medical and para-medical treatments, previous diseases including diseases of

the breast, day in the menstrual cycle the examination was performed or if

the subject is pre- or post-menopausal, metabolism of sex hormones, changes

of the size of the breast, breast surgery and implants, socio-economic status,

number of deliveries, environmental factors, life style factors like diet, weight,

smoking, drinking, narcotic drug use, physical exercise, and other factors.

There can also be variations caused by technical matters, e.g. x-ray film-type,

time of exposure, voltage, type of x-ray machine, raster, practical matters

when performing the examination and the subjects ability to cooperate, the

angle of the x-ray beam in relation to the breast, the part of the breast that is

examined, and the compression of the breast when the mammography picture

is taken. It is uncertain if there is an automatic x-ray dose adjustment that

increases the dose if the breast density increases, if it is so an increase of the

density in the breast will be underestimated in the x-ray, since a higher x-ray

dose makes the picture darker.

5.4 Ethical considerations

It is important that subjects that are included in medical studies are informed

about the study and that they have given their consent to participate. This

is especially important when the subjects health is at risk. A subject has

the right to chose not to participate in a study for whatever reasons. The

purpose of the study must have intentions that are ethically acceptable, that

is, do good and not cause harm, and the performance in all respects of a

study must be high to guarantee that meaningful conclusions can be drawn.
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Ideally the analysis of the pictures shall be done in a place where not other

students and staff can see the pictures. See also www.nih.gov/sigs/bioethics/

5.5 The use of the parameters in future studies

Since the parameter σ2 has a positive correlation with breast density, σ2 can

be compared between two groups in a t-test, the group with the lowest σ2

has the lowest mammographic breast density, for instance the t-test can be

used to see which of some oestrogen drug that affects breast density least,

or to see if alcohol consumption affects breast density. The change of σ2

between two mammography examinations can be investigated to see if the

change is within the normal range according to some limiting α-value. Each

strata considering age, hormone therapy, etc. will have it’s own distribution

considering the change of σ2. If the radiation from the mammographic ex-

amination affects breast density can be investigated.

Since about 50% of all breast cancer is located in the upper outer quadrant

of the breast it could be of interest to do a mapping of the extent of breast

density in the different parts of the breast to see if there is more breast den-

sity there.

One could investigate if breast density decreases slower, or increases in those

who develop breast cancer than among those who don’t, and if there is a

difference between the groups in both breasts or in the affected breast.

The relationship between cysts, calcifications and lymph nodes density, size

and numbers in the breast and breast density can be investigated. Counts

data can be modelled with a generalized linear model. A generalized linear

model with breast-cancer or no cancer diagnosis as outcome variable and the

parameters as covariates can also be made to see if any of the parameters are

predictors of breast density.

Features of biopsies or histo-pathological preparations (e.g. the extent of

oedema or how many glandular cells there are per square millimeter) can be
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compared with the value of the mammographic breast density on the place

where the biopsy is taken from with for instance simple linear regression to

explain breast density.

A way to estimate the breast density in a more exact way is to add the bars

in the histogram of the CC projection with the bars in the histogram of the

ML projection and then decide the parameters. The average of the two pro-

jections is a better measurement then one of them.

An evaluation of a three dimensional histogram where x- and y-axis are the

locations in the x-ray picture and z is the gray level value can give additional

information of the location of the breast density.

The quality of the x-ray e.g. the extent of contrast can be assessed with the

histogram. The less contrast there is the more the histogram looks like a

single distribution.

If one wants to compare if there is differences in breast density measured as

the parameter σ2 between groups estimation of what power such a study has

shall be made. The power will depend on the variation of σ2 in each group

and the sample size. It takes appr. one minute to analyze one digitalized

picture, so it is possible to have a large sample size.

Investigating the change of the statistical distribution of pixel gray level val-

ues in digitalized pictures can of course be used in a lot of applications, in

principle all biological and medical changes that is reflected in a change of

nuances in a picture can be assessed. Some examples are the healing process

of bone fracture or development of pneumonitis seen on x-ray, or changes in

photos of histological preparations.

How breast cancer and it’s treatment affects breast density can be investi-

gated.
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