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Abstract

The primary objective of this work was to investigate and compare
the use of the Cox proportional hazards model and Aalen’s additive
model in analysing survival data.

Survival data from a study of 52 patients with advanced breast
cancer was investigated using the Cox proportional hazards model.
The model was optimized by examining different aspects by use of ap-
propriate residual plots. Covariates judged not to improve the model
significantly were removed. The model was stratified with regard to
tumour size to account for different baseline hazards.

After optimizing the Cox model, the same data was used to fit an
additive model according to Aalen. Plots of the martingale residual
process and Arja’s plot was used to check model fit and optimize model
options.

The information gained from fitting of the two models is similar
in some respects but also quite different in others. Both procedures
resulted in the same covariates selected to remain in the model. The
Cox model yield easily interpreted estimates of the covariates effects,
but the assumption of proportional hazard is necessary to make these
estimates valid. The additive model and the plots of the cumula-
tive regressions functions give an appealing understanding of how the
hazard profile is distributed. Most often however, these cumulative
regression functions do not easily transform into a single numerical
estimate of the covariate effect.

∗Postal address: Swedish Institute for Infectious Disease Control, SE-171 82 Solna,
Sweden. E-mail: anna.torner@smi.ki.se. Supervisor: Mikael Andersson.





Chapter 1

Introduction

Breast cancer is the most common malignant disease for females in north-
ern Europe and North America, corresponding to an age-corrected annual
incidence of 100 to 120 per 100.000 females. The median age for new breast
cancer diagnosis is 60 to 64 years. One out of 11 women will develop breast
cancer in their life time. Breast cancer primarily effects women older than
50 years but even if the absolute incidence in women aged 20- 40 years is
low, breast cancer constitutes about 24 percent of new cancers in this age
group [Bl̊aboka 2003]. This present work has aimed to investigate the use
of two statistical models to model survival of patients with locally advanced
breast cancer. Some emphasis has also been put on trying to explore some
information on mutations in the MDR - and GST gene complex. The work
has been divided in the following parts:

• To build a traditional Cox proportional hazards model to describe
which factors influence the survival of these patients

• To fit an additive regression model to the same data with the same
purpose

• To compare the results derived using the Cox proportional hazards
model with the results from fitting the additive model

Data from a clinical study has kindly been made available by the Depart-
ment for Genetics at the Norwegian Radium hospital, Oslo.
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Chapter 2

Pathophysiology

2.1 Prognostic Factors

A number of factors with great prognostic value for breast cancer have been
identified. The investigation of theses factors are important for prognosis
and for making treatment decisions. For a cancer with a bad prognosis more
aggressive treatment regimes may be chosen and the patient may be willing
to accept more severe side effects. Some of the most commonly discussed
prognostic factors are:

Estrogen- and Progesterone receptors About 60 percent of primary breast
cancers contain estrogen receptors and the levels are usually greater in
postmenopausal women than in premenopausal. If the breast tumor
has positive receptors for both estrogen and progesterone the chances
of response are greater. Hormone receptor negative tumors generally
have a more severe prognosis and more aggressive chemotherapy may
be warranted.

The clinical and histopathological TNM staging , primary tumor size,
regional lymph node status combined with presence or absence of dis-
tant metastases provides important prognostic information.

Tumor size is categorized in four groups, T1 − T4 with T1 being tumors
smaller than 2cm. T3 are tumors larger than 5cm. T4 classification
means tumor of any size but with direct penetration to skin or breast
wall. Tumor size is evaluated by radiologic examination. The pa-
tients in this study all had tumors in group T3 or T4. One could say
that the differences between T1, T2 and T3 is merely a quantitative
difference compared to the difference to T4 which is more of a quali-
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tative difference indicating a more severe diagnosis for the T4 patients
[Bl̊aboka 2003].

Metastatic disease either in lymph nodes (N+) or distant metastatic dis-
ease (M+) predict a more severe prognosis.

Histologic grade describes how well differentiated the tumor cells are. If
the cells are highly differentiated it indicates that the cells are more
mature and that the cell cycle is less out of control compared to tumors
made up of highly undifferentiated cells. Histologic grade is evaluated
by microscopic examination of cells.

P53 is a tumor suppressor gene and mutations in this gene has been asso-
ciated with increased risk of cancer for a number of different cancer
types. In a situation with DNA damage p53 will stop the cell cycle in
G1 phase awaiting DNA repair or aphthosis (cell programmed death).

Multi Drug Resistance gene is implicated in drug resistance towards many
drugs. The MDR gene is coding for trans-membranous proteins acting
as ”pumps” effectively transporting substances such as chemotherapy
out of the target cells. Mutations in the MDR gene has therefore been
hypothesized to predict an increased chance of effect of chemotherapy.

The GST gene complex is implicated in detoxification of exogenous sub-
stances (substances that does not belong to the biological system).

2.2 Classification in Stages

Breast cancer is classified in four stages based on occurrence of different
risk factors. These stages are used internationally to classify the disease for
treatment decisions and prognosis. Since this classification system is truly
international it is convenient to compare different studies and regimes used
in different countries. Stage I disease is the least advanced stage and 5 years
survival, i.e. the proportion of patients being alive after 5 years, is about 90
percent. On the other end of the scale is the most advanced stage, stage IV,
where five years survival is about 30 percent [Bl̊aboka 2003].

To classify the disease in different stages, a number of prognostic fac-
tors are investigated and the overall distribution of these prognostic factors
decided with stage disease is present. It is therefore not always true that
a patient with a large tumor is a stage IV patient, other factors are also
important to consider.
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2.2.1 Locally Advanced Breast Cancer - Stage III Dis-
ease

Patients with Locally advanced breast cancer may have tumors of size T3
or T4 and/or disease with extensive metastases to the lymph nodes, but no
distant metastases. Five year relapse free survival is about 30 percent and
the prognosis severe [Bl̊aboka 2003]. A treatment option is pre-treatment
by chemotherapy followed by surgery and/or radiotherapy. This setting is
characterized as neoadjuvant. The patients in the precent study were all
patient with locally advanced disease.
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Chapter 3

Description of the Data Set

The data set was originally made up of 92 patients with breast cancer, stage
III. For reasons beyond control of the author of this work only data for
52 patients were made available for statistical analysis. This selection of the
patient group may not be representative for the original group of 92 patients.
If the purpose of this work had been to accurately describe the prognosis for
these patients this possibly skewed selection of patients might have been
disadvantageous. However, given the fact that the original group already
is a highly selected group and that the purpose of this work is to compare
the use of different statistical models, this possible non random selection of
patients should not affect the statistical work adversely.

The characteristics of these patients are described in table 3.1 below.
All patients had large tumors (T3/T4) and were treated with chemother-

apy pre-operatively to facilitate surgery and to get a more complete removal
of tumorous tissue at the time of operation. After surgery, Relapse Free Sur-
vival (RFS), and Overall survival (OS) in months were recorded. Relapse free
survival was defined as time without recurrence of disease. For estimation
of RFS there are 25 right censored observations and 27 patients who have
experienced relapse. The RFS times (uncensored) varied from 0−59 months.
The longest observation time is 92 months (censored observation). Informa-
tion on prognostic variables are not complete and the number of patients
included in each analysis is therefore a little bit different.

5



Table 3.1: Characteristics of patients in study, n=52

Covariate Label Value
Estrogen receptor value ER Mean=77 , range(0-733)

Progesterone receptor value PgR Mean=124, range(0-1150)
Total number of mutations in MDR gene Mdr1mut Mean=1.7, range(0-3)

Mutations in p53 gene p53 Yes: n=23 No: n=29
Tumor stage T3 or T4 T3/T4 T3: n=37, T4: n=15
Histological grade 2 Hist2 Yes: n=22, No: n=30
Histological grade 3 Hist3 Yes: n=21, No: n=31
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Chapter 4

Cox Proportional Hazard
Regression Model

The Cox proportional Hazards model is probably the most widely used
method for modelling survival data, Cox (1972). For data with one ex-
planatory variable, i.e. one covariate, non-parametric methods like plotting
of Kaplan-Meier survival probabilities may be adequate if the groups be-
ing compared are reasonably similar. Frequently however, the groups being
compared differ in many respects. They may have different age distribu-
tions, different proportion of men and women, different smoking habits etc.
These differences come in addition to the covariate we are really interested in,
and the analysis must be adjusted to compensate for these other differences,
which may otherwise confound the analysis. The Cox proportional hazards
model is a semi-parametric model for fitting survival data.

The basic model is as follows:

h(t | Z) = h0(t) · exp(β
tZ)

where h0(t) is the baseline hazard which may vary arbitrarily over time,
and Z is the covariate vector. The covariates may be time-dependent but are
here assumed to be fixed at the start of study. β = (β1, ...βp)is a vector of
covariate coefficients. The baseline hazard is treated non-parametrically, but
the individual covariate effects (βp)are assumed to be constant throughout
the study, hence the notation semi-parametric. The model is often called the
proportional hazards model because of this constant covariate effect through-
out the study. If two individuals are compared that have covariate values Z
and Z∗ the ratio of their hazard rates at any time point simplifies to:

h(t|Z)

h(t|Z∗)
=
h0(t) exp[Σ

p
k=1

βZk]

h0(t) exp[Σ
p
k=1

βZ∗
k ]
= exp[

p
∑

k=1

βk(Zk − Z∗
k)]
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This ratio is constant or ”proportional” throughout the study. This as-
sumption greatly facilitates the interpretation of covariate effects, as the
effect of a given covariate compared to the absence of that covariate is ex-
pressed as a single constant. This does not however imply that the absolute
difference between the two individuals discussed above is constant; the ex-
ponentiated covariates act multiplicatively on a baseline hazard which may
vary freely.

4.1 Univariate analysis

Univariate analysis revealed the following factors to be of significant impor-
tance (p < 0.1) in predicting survival (variables with smallest p-value listed
first): Oestrogen receptor status, Mutations in gene p53, Progesterone re-
ceptor status, Indicator variable for histological grade 3, Tumor stage (T3 or
T4).

Indicator variable for Histological grade 2 was not significant (p = 0.21),
but will be investigated in the model together with indicator variable for
histological grade 3.

Age, total number of mutations in the GST gene complex and total num-
ber of mutations in the MDR1 gene all had p-values above 0.1 and will not
be considered for inclusion in the model. Age will often be an important pre-
dictor in breast cancer. The individuals in this data set are however a very
selected group with other prominent risk factors, such as advanced disease,
and this may the explanation for age being non-significant as prognostic fac-
tor. Mutations in the GST gene complex also appears to be a non-important
predictor in this group and these two variables will also be excluded a priori
from investigation in the additive model later.

4.2 Cox model with several covariates

Fitting of the multivariate Cox proportional hazards model was conducted
by starting with a model with all variables listed as significant above. One by
one the least significant variable was removed until only significant variables
remained in the model. Data for relapse free survival and overall survival
were modelled in the same way. Basically the same variables are important
for predicting both relapse free survival and overall survival. Relapse is how-
ever the event occurring first and logically the explanatory variables would
therefore be more closely related to relapse free survival compared to overall
survival. Overall survival is more prone to be influenced by additional fac-
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Table 4.1: Results of preliminary fitting of Cox model

Covariate exp(coef) se(coef) Z p
T3/T4 3.469 0.45822 2.71 0.0066
Hist2 3.874 0.79985 1.69 0.0900
Hist3 5.929 0.80480 2.21 0.0270
PgR 0.993 0.00317 −2.13 0.0330
p53mut 2.305 0.42739 1.95 0.0510

Table 4.2: Comparison of models with and without indicator variables for
histologic grade 2 and histologic grade 3

Model Deviance Number of explanatory variables
Model with Hist2 and Hist3 24.4 5
Model without Hist2 and Hist3 17.6 3

tors occurring after relapse, e.g. treatment after relapse. Therefore only the
results for the end point relapse free survival will be presented here, unless
there are contradictory or exceptional findings for overall survival. The initial
fitting of the Cox proportional hazard model yielded the following parameter
estimates (table 4.1).

Histologic grade is coded as two indicator variables, Hist2 = 1 corre-
sponds to histologic grade 2 and Hist3 = 1 corresponds to histologic grade
3. This preliminary model contains the variables tumor stage, histological
grade, p53 mutation and progesterone receptor level. Hist2, the indicator
variable for histological grade 2 is not significant in itself but Hist3 may not
be included in the model without the inclusion of Hist2 also.

A model with the variables Hist2 and Hist3 may be compared directly
by assessing two times the difference in partial log likelihood, here denoted
as deviance, for the two models divided by the differences in the number of
variables. This simple comparison is possible because the models are nested
(the model without Hist2 and Hist3 is a simpler ”case” of the richer model)
[Klein & Moeschberger 1997].

Difference in deviance:(24.4− 17.6) = 6.8 . The difference in deviance is
approximately χ2 distributed with 2 degrees of freedom, i.e. p = 0.0334. The
difference in deviance for each model is calculated as the deviance compared
to a model with all β equal to 0. This indicates that the inclusion of Hist2
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and Hist3 significantly improves the model. This corresponds well to the
clinical setting where histological grade is usually considered to be indicative
of tumor aggressiveness and prognosis.

4.2.1 Model checking - preliminary model (A)

This first model has been fitted without considering the best functional form
of the continuous variables (Progesterone receptor level) and without ques-
tioning the underlying assumption of proportional hazard. The fit of this pre-
liminary model was therefore investigated by examining the following residual
plots.

• The functional form of the continuous variable Progesterone receptor
was investigated by examining Martingale residuals.

• The proportional hazards assumption was investigated by examining
scaled Schoenfeld residuals.

• Score residuals were used to investigate the influence of individual ob-
servations.

4.2.2 Functional form of continuous covariates

The functional form of the covariate Progesterone receptor level needs to be
checked. From a medical viewpoint it would seem logical to transform the
variable in some way to decrease the positive influence of very high values. It
is beneficial to be receptor positive, i.e. having a relative high receptor count,
but clinical experience indicates it is not 10 times as beneficial to have a value
of 1000 as a value of 100. Introducing a cut-off point for being classified as
”receptor positive” or a log transformation would be logical options. To
approach the problem more methodically I have chosen to use Martingale
residuals to try to determine the correct functional form of the progesterone
covariate [Klein & Moeschberger 1997].

If the data are right-censored and all the covariates are fixed at the start
of the study the martingale residual may be defined as:

M̂j = δj − Ĥ0(Tj) · exp(Σ
p
k=1

Zjkbk), j = 1, 2, ...n (4.1)

T (j)is the time point, when censoring or event occurs, for the j:th indi-
vidual. b(k) are the estimated covariate coefficients. Ĥ0(t) is the estimator
of the cumulative baseline hazard, δ is 1 or 0 depending on if the event of
interest has occurred. The residuals may be interpreted as the difference over
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time of the number of observed events minus the number of expected events.
The residuals are constructed as follows. The covariate for which we are in-
terested in investigating the functional form is assumed to be independent of
the other covariates. A Cox model with all covariates excluding the covariate
to be investigated is fitted. The martingale residuals are plotted against the
covariate to be investigated.A LOWESS smooth may be used to reduce the
noise level. This plot will reveal if and how the martingale residuals change
with increasing values of the covariate that is investigated.If the plot is lin-
ear, no transformation is needed. Including the untransformed covariate will
in the model together with the other covariates yield an appropriate regres-
sion coefficient. If however there appears to be a discrete time point where
the slope changes, a dichotomized transformation of the covariate may be
indicated [Klein & Moeschberger 1997].

Looking at a martingale residual plot for our data, for the progesterone
receptor covariate, the smoothed curve is roughly linear up to about a proges-
terone value of about 100 and then levels off. This suggests that progesterone
receptor level may be coded as an indicator variable. The indicator variable
P is coded as follows:

P =

{

0 if PgR < Θ
1 if PgR ≥ Θ

(4.2)

The cut-off value Θ is chosen from the values of (PgR) in the data set.
A profile likelihood may be plotted for each PgR value in the data set and
the Θ value yielding the highest value of the log-likelihood is chosen. Here
values for PgR in the data set from 64 to 179 were tried ”manually” as cut-
off points for the indicator covariate P . A cut-off point of 85 yielded the
smallest p-value for the covariate and the smallest p-value (log-likelihood)
for the full model. After dichotomizing the Progesterone receptor covariate,
35 patients had P = 0 and 17 patients had P = 1.

The original covariate PgR in the model will therefore be substituted by
an indicator variable P with cut-off point 85.

Details of covariate coefficients for the model with dichotomous proges-
terone values are displayed in table 4.5.

4.2.3 Propotional hazard assumption

The proportional hazard assumption was examined for the variables p53 mu-
tations, tumor stage (T3/T4), Histological grade (Hist2 and Hist3) and the
Progesterone indicator variable (P ).

The S-plus default for checking the proportional hazards assumption is a
formal test and plot of scaled Schoenfeld residuals[Venables & Ripley 1999].
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Figure 4.1: Martingale residuals Progesterone receptor covariate

Table 4.3: Covariate coefficients for Cox model with dichotomized proges-
terone covariate

Covariate coef exp(coef) se(coef) Z p
T3/T4 1.057 2.879 0.445 2.38 0.017
P -0.982 0.375 0.486 -2.02 0.043

Hist2 1.236 3.441 0.802 1.54 0.120
Hist3 1.713 5.543 0.795 2.15 0.031
p53mut 0.990 2.692 0.426 2.32 0.020
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Table 4.4: Test of proportional hazards assumption

Covariate rho chisq p
P -0.0554 0.0813 0.7756

Hist2 -0.2193 1.1735 0.2787
Hist3 -0.3116 2.3423 0.1259
p53mut -0.1044 0.3206 0.5712
T3/T4 -0.3788 3.9570 0.0467
GLOBAL NA 5.5174 0.3560

The scaled Schoenfeld residual is the difference between the covariate at
the failure time and the expected value of the covariate at this time. The
residual plot and test investigates departures of the type

β(t) = β + θ ∗ g(t)

for some smooth function g. The function g(t)used here is the S-plus default,
g(t) = 1− S(t).

The Schoenfeld residual is defined as follows:

Sjk = δj[Zjk − Zk(Tj)] (4.3)

Zk is the average covariate value (at time Tj). The residuals are calculated
at failure times and the ticks given on the x-axes in the plots are the actual
failure times. The results of the test of the proportional hazards assumption
is presented in the table 4.4.

The only variable displaying a significant deviation from the proportional
hazards assumption is the T3/T4 variable, i.e. tumor stage 3 or 4. The scaled
Schoenf+eld residuals for the variables are plotted in fig 4.2, together with
a smooth. When the proportional hazards assumption holds, a relatively
straight horizontal line is expected. Again, the deviation from the propor-
tional hazards assumption is clearly detectable for the T3/T4 variable.

A plot of the survival probabilities for the T3 and T4 shows that the
curves are not parallel but diverges, figure 4.3. This is also consistent with
the general clinical perception of stage T4 and T3, T4 is a more advanced
stage of the disease and the progress of the disease is inevitable. For T3 the
prognosis is more uncertain and some patients may have somewhat longer
life expectancy. The survival probabilities do not start from 1.0 because
some patients relapse immediately after surgery. This is most evident for T4
patients where the tumor tissue sometimes may not be completely removed
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and the tumor continues to progress despite chemotherapy immediately after
surgery.
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Figure 4.3: Survival probabilities for T3/T4 patients

The different baseline hazards for T3/T4 patients indicate that a model
stratified on tumor stage is suitable. The estimates for the final model, strati-
fied on different tumor stage, is displayed in table 4.5. Stratification on tumor
stage means that the covariate coefficients presented are the same for T3 and
T4 patients. The baseline hazard however is different for T3 and T4 patients
which means that the exponentiated β · Z acts multiplicatively on different
baseline hazards for T3 and T4 patients. The relative difference between T3
and T4 patients is thus the same for absence/presence of a given covariate
but the absolute difference may differ due to different baseline hazards.
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Table 4.5: Coefficients for stratified model

Covariate coef exp(coef) se(coef) z p
P -1.001 0.367 0.486 -2.06 0.039

Hist2 1.052 2.864 0.786 1.34 0.180
Hist3 1.454 4.280 0.774 1.88 0.060
p53mut 0.919 2.508 0.425 2.16 0.030

Table 4.6: Individuals with large deviations in score residuals

Patient no RFS Histologic grade Hist2 Hist3 Tumor stage
5 39 1 0 0 T3
13 80 1 0 0 T4
19 59 1 0 0 T3

4.2.4 Influence of individual observations

Influence of individual observations may be studied by the use of score residu-
als. The optimal way of examining the influence of an individual observation
on the estimate b for a given covariate is to estimate β from all data and
thereafter estimate β(i), i.e β estimated with the i’th observation deleted
from the sample. If β − β(i) is close to zero the individual observation has
little influence on the estimate. Below in fig 4.4 score residuals, scaled by the
standard error, are displayed for the covariates in the model.

The size and distribution of the residuals seem reasonable at visual in-
spection. A few noticeable outliers are discussed individually below.

Three patients, no. 5,13 and 19, were outliers for the two indicator vari-
ables for histologic grade 2 and histologic grade 3 (Hist2 and Hist3). These
patients have the following properties.

The residuals are negative for patients 5 and 19 and positive for patient
13. This indicates that observation 5 and 19, when included give a negative
contribution to indicator variables Hist2 and Hist3. The other way around
patient 13 gives a positive contribution to Hist2 and Hist3. These are
reasonable conclusions since patient 5 and 19 had a relatively short Relapse
Free Survival (RFS) considering they have the lowest histological grade. The
opposite is true for patient 13; here RFS was longer than would be expected
from the model.
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Figure 4.4: Scaled score residuals
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Overall the residuals seem reasonable and no subjects will be considered
from exclusion from the analysis. An interesting observation is that the
progesterone covariate, before the transformation into the (0,1) variable had
residuals approaching 2 standard deviations (not shown here). An influence
this extensive could indicate that some observations are weighted to heavily.
After the transformation the maximum deviation is of the order 0.4-0.45
standard deviations.
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Chapter 5

Additive Hazards Regression
Model

In the Cox model the covariates are assumed to act multiplicatively on a
baseline hazard. The baseline hazard is the hazard for individuals with co-
variate values equal to zero and this hazard is a function of time. The model
is semi-parametric in the sense that constant proportional hazard through
the study is assumed. In some cases this assumption of constant proportional
hazard may not always be valid.

An alternative to the Cox model, which does not condition on constant
proportional hazard, is a linear model, proposed by Odd Aalen, [Aalen 1989].
In this model the covariates are modelled as additive risks to a baseline hazard
and allowed to vary freely over time.

5.1 Short description of Aalen’s additive re-

gression model

A number of individuals are observed over time to see if a specified event
occurs. The individuals are assumed to be independent and any events hap-
pening to the individuals are also assumed to be independent between indi-
viduals. The life times we observe may be complete or right censored. The
basic equation may be formulated as follows

h(t|Z) = α0(t) + Σ
k
j=1

αj(t)Zj(t) (5.1)

The hazard at any time is thus a sum of a baseline hazard α0(t) and a
linear combination of the covariate values, Zj.
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The rest of this section will make use of Aalen’s terminology. To model
the intensity of an event occuring, let λi(t) denote the intensity (probability)
of the event occuring at time t for individual i, given that it has not occured
before, n is the number of subjects and k is the number of covariates in the
analysis.

The vector of intensities is modelled as follows:

λ(t) = Y (t)α(t) (5.2)

The matrix Y is of size n · (k+1) and is constructed as follows; if the i’th
individual is a member of the risk set at time t then the i’th row of Y(t) is the
vector Z i(t) = (1, Z i

1
(t), Z i

2
(t), ....Z i

k(t))
′. The vector Z i

j(t), j = 1, ........k are
covariate values, which may be time dependent. If the individual is not at
risk at time t, i.e. the event of interest has already occurred or the individual
has been censored, the corresponding row in Y(t) contains only zeros. Please
not that equations 5.1 and 5.2 are equivalent.

The first element of the vector α(t) is a baseline parameter (intercept)
and the remaining elements are called regression functions and estimate the
influence of the covariates. These regression functions are the equivalents to
the regression parameters ( β ) in the Cox regression model. In contrast to
the Cox model (where the β are constant) the regression functions in the
additive model may vary arbitrarily with time. It is unpractical and difficult
to estimate the individual regression functions and instead the cumulative
regression functions are estimated. The cumulative regression functions are
defined as:

Aj(t) =
∫ t

0

αj(t)ds

If T1 < T2 < ... are the ordered event times, i.e. the times when an actual
event, not censoring, occurs, an estimator of A(t) is given by:

A∗(t) = Σn
i=1
X(Ti)Ii (5.3)

Ii is a vector of zeros except for a one corresponding to the individual
experiencing an event at time Ti X(t) is a generalized inverse of Y(t) and a
choice based on local least square principles is:

X(t) = [Y (t)′Y (t)]−1Y (t)′

An estimator of the cumulative intensity is given by:

Λ∗(t) = A∗(t)′Z (5.4)

20



Z is the vector of covariate values. The cumulative regression functions
are plotted against time and give a description of how the covariates influence
the survival over time. It is therefore the change in the cumulative functions,
e.g. the slope that is of primary interest.

If the covariate values are standardized, i.e. the mean subtracted before
estimation, the baseline regression function (or intercept) gives a description
of the cumulative intensity for an individual with average covariate values.

A feature of the additive model which should be noted is that the inten-
sities λi(t) are not naturally restricted to non-negative numbers. This could
lead to the survival function not being monotone over time, but may increase
for some values of t. The survival function is given by:

P ∗(t) = exp(−Λ∗(t))

The property of not necessarily being monotonically decreasing follows from
equation 5.2 and 5.3 above. For appropriately chosen covariates and data
sets of reasonable size this should not be a pronounced problem.

Statistical software for fitting of additive regression models for S-plus /R
has been developed by Odd Aalen and Harald Fekjaer, Institute for medical
Statistics in Oslo. The choices of generalized inverse, estimation of intensities,
choice of weight function etc. are in accordance with the presentation of the
model above.

5.1.1 Testing

Test statistics have been developed for the additive model. One primary
question may be if a specific covariate has any influence on the distribution
of life times. This corresponds to the following null hypothesis:

Hj : αj(t) = 0 for all t

Index (j) corresponds to the jth covariate in the analysis. This null hy-
pothesis may only be tested over the time interval where Y(t) has full rank.
A test statistic for Hj is given by the jth element Uj of the vector

U =
∑

Ti

K(Ti)X(Ti)Ii

K(t) is an (r+ 1) ∗ (r+ 1) diagonal matrix of weight functions. X(Tk)Ik

is easily recognized as the cumulative regression function estimator A∗ and
the test statistic is therefore simply a weighted summation of the cumulative
regression function estimator for all event times.
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One choice of weight function suggested by Aalen is:

K(t) = {diag[(Y (t)′Y (t))−1]}−1

The weight given to each estimate using this weight function is propor-
tional to the inverse of its variance.This is also the weight function being
used in the software for the fittings in this study. The test statistic using
this weight function K will be denoted TST. Another alternative mentioned
by Aalen is to weigh each estimate according to the number of individual at
risk at this time point.This possibility will not be explored further here.

The covariance matrix of U is estimated by the formula

V =
∑

Ti

K(Ti)X(Ti)I
D
i X(Ti)

′K(Ti)

ID
i is a diagonal matrix with Ii as elements.
The test statistic is therefore a weighted combination of the individual

α(j), i.e. a weighted version of the cumulative regression function.

5.2 Fitting of the additive model

The data described above, with covariate information for oestrogen receptor,
progesterone receptor, tumor stage III/IV , indicator for histological grade
2 and 3, p53 mutations and number of mutations in MDR1 gene, was fitted
as an additive model in the the software described above. The results are
presented graphically below with time on the x-axis and cumulative regres-
sion functions on the y-axis. The dotted lines indicate a 95 percent pointwise
confidence interval.

Above are the cumulative regression estimates for estrogen - and pro-
gesterone receptor level. Both covariates seem to have protective effects
(negative slope of cumulative excess risk curve), more pronounced for the
estrogen receptor but with a wider confidence interval. The effect of pro-
gesterone receptor level is statistically significant, p = 0.04. The estrogen
receptor values and the progesterone receptor values are highly correlated
and inclusion of both variables in the model would only explain marginally
more compared to choosing one of the variables. The confidence interval for
the progesterone cumulative regression function is narrower and the estimate
appear more precise. The logical choice for inclusion in the model is therefore
the progesterone receptor level.

Indicator variable for histological grade 2 and histological grade 3 show an
excess risk compared to histological grade 1. The excess risk is slightly more
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Figure 5.1: Cumulative regression functions for Estrogen receptor and Pro-
gesterone receptor value.
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Figure 5.2: Cumulative intensity functions for Histologic grade 2 and Histo-
logic grade 3.
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pronounced for histological grade 3, which also would be expected clinically.
For both variables the excess risk seem to be more pronounced at earlier time
points.

The cumulative intensity functions for the covariates p53-mutations and
the mdr-mutations are plotted below. Neither is even remotely significant,
p = 0.18 and p = 0.60, and mdr-mutations was the first covariate that was
removed from the model.
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Figure 5.3: Cumulative regression functions for p53-mutations and mutations
in Multidrug resistance gene.
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Figure 5.4: Cumulative regression function for tumor stage

The tumor stage covariate clearly showed non-proportional hazard in the
Cox proportional hazards model. Tumor stage was therefore included as
strata in the model instead of being modelled as a covariate. This non-
proportional hazard property is discernable in the cumulative intensity func-
tion plot; the excess risk seem to be large at earlier time points but levels
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Table 5.1: Value of test statistic TST and p-values for initial fitting of addi-
tive model

Covariate ER PgR T3/T4 Hist2 Hist3 p53 mdrmut
TST -1.68 -2.00 1.63 1.59 1.81 1.3 -0.52
P-value 0.09 0.046 0.10 0.11 0.07 0.18 0.60

out at higher time points. This is also consistent with the general clinical
perception of T3 and T4 tumors, where the prognosis is considerably worse
for T4 tumors. As described under the section ”Prognostic factors” T4 are
tumors of any size, but growing into surrounding tissues, indicating more
aggressive biological characteristics. The cumulative regression function in-
dicates an immediate increased risk for relapse for T4 patients. Looking
at the cumulative regression functions one could conclude that T4 patients,
after this short term immediate risk increase, does not seem to have sub-
stantially higher risk of relapse than T4 patients. When fitting a Cox model
we discovered this non-proportional hazard behavior by examining residual
plots. Residual plots will however not so easily give information on the na-
ture of this non-proportional deviation. When fitting an additive model and
plotting the cumulative risk functions, this changing risk profile over time
becomes immediately apparent.

Test statistics and p-values for this initial fitting of the additive model is
presented in table 5.1.

5.2.1 Power of test statistic TST

Looking at table 5.1 we note that the value of the test statistic TST for
histologic grade 3 indicates that the null hypothesis may not be rejected at
the 5 percent level, which means that the null hypothesis of Hj : αj(t) = 0
for all t, should be retained. However, looking at figure 5.2 where point wise
confidence intervals have been plotted, we can clearly se that the cumulative
regression function is significantly different from 0 at time points approxi-
mately between 12 and 22 months, at least if we do not take multiplicity into
account. This would indicate that the null hypothesis is not true. This ap-
parent contradiction is easily comprehended if one keeps the construction of
the TST test statistic in mind, and it may be useful to remember that there
could be situations where the TST statistic is not so powerful in detecting
deviations from the null hypothesis.
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5.2.2 Fitting of a Cox model starting from a later time
point

To validate the conclusions regarding the nature of the deviation from the
non-proportional hazard for the T4/T3 covariate presented above, a Cox
proportional hazards model was fitted starting at time equal to 4 months
after surgery. This means that patients experiencing a relapse ≤ 4 months
after surgery were deleted from the analysis. There were 8 patients who
relapsed within 4 months of surgery and 6 of these patients were Tumor
stage 4 patients. Performing a Cox analysis with these high risk/rapid relapse
patients we would expect the covariate coefficient for tumor stage to be much
smaller compared to starting from time 0 and no longer significant.

The fitting of a Cox model starting from this later time point did indeed
result in the T3/T4 variable losing all significance in the Cox analysis, p =
0.42. This supports the finding in the additive model: tumor stage 4 does
not significantly increase the risk of relapse after the first critical months.

5.2.3 Revised additive model

In the revised model the following variables are included: progesterone recep-
tor level, histological grade 2 and histological grade 3, tumor stage (T3/T4)
and p53 gene mutations. The estrogen receptor covariate was excluded for
the same reasons described before.The cumulative regression function curve
for the remaining covariates are displayed in fig 5.5.
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Figure 5.5: Cumulative regression functions for Tumor stage and Proges-
terone receptor value

The tumor stage variable is still not significant, p = 0.1605, and the
non-proportional hazard pattern is clearly visible. The cumulative regres-
sion function has the same pattern as before.After removal of the estrogen
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receptor covariate the cumulative regression function for progesterone now
has a higher numerical value and is also clearly much more significant, the 95
percent confidence interval for the cumulative regression function excluding
0 for virtually all time points.

The progesterone receptor level is nicely fitted and the cumulative curve
has a relatively constant slope, indicative of proportional hazard throughout
the model.

The cumulative excess hazard for indicator variables for histological grade
2 and histological grade 3 are displayed in fig 5.6.
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Figure 5.6: Cumulative regression functions for Indicator variables histologic
grade 2 and 3

5.3 Model Checking of Additive Model

5.3.1 Martingale residuals

Martingale residuals may be used for model checking both for the Cox model
and for the additive model[Aalen 1993]. The martingale residuals may be
defined over the time period when estimation is possible, i.e. until the time
when the matrix Y(t) loses full rank. That means that all observation beyond
this time point are considered to be censored, even if the full life length has
been observed at a later time point than this final time point, called R. Si

denotes the observation time and this time is now bounded by R. Ni(t) is
a counting process for the i’th individual and Ni(t) is 0 until the event of
interest has occurred and 1 afterwards. If the individual is censored Ni(t)
will stay at 0.

If we assume that all covariates are time independent (which they are in
our example) the cumulative intensity at time (t) for individual (i) will be:
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Λ∗
i (t) = A∗(t ∧ Si)

′Zi

where t∧ Si means the minimum of the two times , i.e. Λ∗
i (t) is constant

after the observation of the individual has been made.
The martingale residual process for the i’th individual is defined as:

Mres,i(t) = Ni(t)− Λ
∗
i (t)

This means that for each individual the martingale residual process may
change value (usually decreasing) up to the point where either an event oc-
curs and 1 is added to the martingale residual or until the individual is
censored. After the event has occurred or the individual is censored the mar-
tingale residual is constant. The value of the martingale residual process at
the final estimation time is called the martingale residual. The advantage of
looking at the martingale residual process is that it gives a picture of how
accumulated hazard compared to events occurred changes over time. The
idea is to compare the martingale residual process for a subgroup within a
data set with different covariate values, to see if the model is valid for all sub-
groups. In our data set there is only one covariate with continuous values;
the progesterone receptor value. Fitting the Cox model it was shown that
this covariate preferably should be transformed in some way before inclu-
sion in the model. Below is investigated if and how well the untransformed
Progesterone covariate fits in the additive model.

Martingale Residual Process

The Martingale residual process was plotted for subgroups of progesterone
receptor values in our data set. In our present model all variables except pro-
gesterone receptor values are dichotomized and progesterone receptor values
is therefore the only variable in this model which may be investigated by
plotting the martingale residual process. For a variable which is coded as
1/0 the only possibility for dividing the data in two groups is by value 1/0
of the covariate and these values of the covariate is what the model has been
maximized for. Checking the model for a different fit of the two values of
these covariates would therefore not be meaningful since we already have
decided that this covariate improves the model. Also no transformation of
these variables is possible since they already are included in their simplest
form.

The data set was divided in three groups depending on their progesterone
receptor value, group I: Pgr < 20, group II: 20 < Pgr < 100 and group III:
Pgr > 100.
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Table 5.2: Value of test statistic and p-values for final additive model with
dichotomized PgR

Covariate intercept P T3/T4 Hist2 Hist3 p53
TST 4.91 -3.31 1.89 2.07 2.83 1.70
P-value 0 9e-04 0.06 0.04 0.005 0.07

The cut-off points were chosen arbitrarily, but the lowest category was
chosen to include fairly low values of progesterone receptor levels, knowing
these patients generally have a worse prognosis. Division of PgR values in
these ranges should give a good picture of if the model can accommodate a
large range of PgR values with sustained fit. If we would see any deviations in
the martingale residual process we would expect the group with lowest PgR
values to accumulate negative residuals, due to the model not being able
to accumulate enough hazard to match the fairly bad prognosis for these
patients. Complementary, the residuals for the high PgR value group would
be positive, indicating that the model is predicting great protective effects of
very high progesterone receptor values.

The martingale residual process for the model and data above is plotted
in fig 5.7 below. In this and the following martingale residual plot please
note that the process

Mres,i(t) = Λ
∗
i (t)− δi(t)

has been plotted, which is equivalent to the definition of the process given
before, just with opposite signs.

As can be seen we get the kind of deviations in the martingale residual
process we could expect from a covariate with the clinically known hazard
profile of progesterone receptor value where low values yield an increased
hazard but the protective effects do not increase proportionally as the value
increases over 100 up to more than 1000. A convenient choice would be to
dichotomize the progesterone receptor value as was done in the Cox propor-
tional hazards model. Since we know the optimal cut-off point in the Cox
model, PgR = 85 we choose the same cut-off here. Dichotomizing the PgR
variable and re-run the additive model for the same covariates as in the re-
vised additive model. Refitting of the additive model with a dichotomized
PgR covariate yields the test-statistic with respective p-values displayed in
table 5.2.

A plot of the martingale residual process for a model with dichotomized
progesterone receptor covariate is shown in figure 5.8. Deviations in the
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martingale residual process for the dichotomized covariate seem to be less
obvious. The receptor value sub-groups have been divided in the same way
as before. The maximum deviation is now smaller and the deviations also
appear to be more randomly distributed. A model with dichotomized pro-
gesterone covariate therefore seems appropriate.
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Figure 5.8: Martingale residual process for subgroups of progesterone recep-
tor values, dichotomized covariate

Arja’s plot

The concept behind Arja’s plot is to plot expected number of failures (ab-
scissa) against actual number of failures (ordinate) in sub-groups with dif-
ferent covariate values. Arjas’s plot does not capture the time dependency
to the same extent as plotting the martingale residual process. However, to
some extent the actual number of failures is a process over time, so the time
aspect is indirectly a part also of Arja’s plot. The sub-groups chosen were the
same sub-groups of progesterone values as in the martingale residual process
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plot. These are the sub-groups relevant from a clinical perspective and it
also gives an opportunity to compare the model information from these two
residual plots. Arjas’s plot is not a true residual plot, but deviations from
the 45◦ slope will give essentially the same information. Arja’s plot for the
three sub-groups of progesterone values is shown in figure 5.9.
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Figure 5.9: Arjas plot for subgroups of progesterone receptor values

Interestingly the deviations from the optimal fit that was clearly visible
in the martingale residual plots are not as clearly discernable in Arja’s plot
for the same sub-groups.
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Chapter 6

Concluding remarks

The data set examined in this comparative study is fairly small, 52 patients.
The number of initial covariates in the multivariate model is 7. The covariates
are correlated to some degree, this is especially true for the progesterone and
estrogen receptor levels but also other covariates are correlated. It would
therefore not be unexpected if these data would be variable and yield different
results depending on model and fitting procedure.

The comparison made here is very informal in nature and information
gained from fitting the Cox model has been used in optimizing choices in the
additive model.

The Cox model and Aalen’s additive model give surprisingly similar re-
sults with regard to covariates selected to remain in the model. The actual
covariate coefficients estimates are difficult to compare directly since the Cox
covariate coefficients act on baseline hazard in a multiplicative way and the
additive model gives coefficients for added risks.

The test procedure for the effect of covariates is similar but not equivalent.
The null hypothesis for the additive model:

H0 : αj(t) = 0 for all t

corresponds to the null hypothesis in the Cox model:

H0 : βj = 0

The alternative hypotheses, in favor of which the null hypotheses may be
rejected, are however quite dissimilar for the two models. The alternative
for the additive model states that alphaj(t) 6= 0for some t, which is a weaker
alternative compared to the alternative hypothesis in the Cox model. In the
Cox model the alternative is : H1 : βj 6= 0, which is valid for all t. This
would imply that to reject the null hypothesis in the Cox model we would
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require that the best overall estimate of β, which is valid for all time points,
is different from 0. To complicate matters however, one must remember that
the test statistic in the additive model is designed as a weighted combination
of all αj which means that the null hypothesis may not be so easily rejected
even if there are significant deviations from the null hypothesis at a few time
points!

No formal comparison of the validity of the tests have been made here,
and this is not possible since we do not know the true influence of the co-
variates. For a formal comparison we would need to use simulated data with
known covariate effects. Comparison of likelihoods is not possible since the
additive model is not likelihood based. A likelihood based model gives the
advantages of likelihood testing, comparison of likelihoods for model deci-
sions and possibly also comparison of nested models. For the additive model
more decisions need to be based on the comparison of p-values and residual
plots to examine fit.

Both models yielded the same set of covariates, basically by removing the
least significant covariates from the models, but the process was of course
not unbiased since relevant clinical information was used for selection of
covariates and fitting of the Cox model, e.g. transformation of the PgR
covariate was applied when fitting the additive model.

Residual plots indicated that neither model could fit the untransformed
Progesterone receptor value well. This poor fit of the untransformed PgR
value was easily detected for both models.

The tumor stage variable T3/T4 displayed clear non-proportional hazard
properties and was included as strata in the Cox model. The additive model
could easily fit this non-proportional deviation and cumulative regression
plots give indications on the nature of this deviation from non-proportional
hazard behavior.

A crude way of comparing the models would be comparing p-values for
selected covariates. One could argue that size of p-value would be indicative
of the power of rejecting the null hypothesis. In table 6.1 above the p-values
for the respective models are presented.

At first glance the additive model appear surprisingly powerful since the
p-values of the selected covariates are at least as small as for the Cox model,
except for p53 mutations. Generally a non-parametric model will be less
powerful in detecting significant effects. A probable explanation is the differ-
ent alternative hypotheses, which in this case would indicate that the TST
statistic was quite powerful in rejecting the null hypotheses.

Estimation of β and rejecting the null hypothesis for the Cox model im-
mediately gives you a meaningful quantification of the effect, at least relative
to individuals having the value 0 of the covariate in question. Estimation
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Table 6.1: Comparison of p-value for covariates for Cox model and additive
model

Covariate p-value Cox p-value Additive
P 0.039 9e-04
Z1 0.180 0.0384
Z2 0.060 0.0046

p53mut 0.03 0.09
T1 Strata 0.0594

of the cumulative regression functions and rejecting the null hypothesis for
the additive model doesn’t give any immediately meaningful quantification
of the effect. If the cumulative regression function can be fitted with a slope,
this slope can form a quantitative measure of the covariate effect. In other
cases, like for the T3/T4 variable the (close to) rejection of the null hypothe-
sis simply indicates that the effect of the covariates is not 0 at all time points,
without giving any quantitative information.

An overall conclusion is that two models give different pieces of infor-
mation and should not be viewed as alternatives to each other, but as com-
plementary methods that may be used together to give a fuller and more
comprehensive understanding of data.
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