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Abstract

In this thesis we will look at two epidemic models, the SIR and SIS models,
and study their behaviour when we make them near critical. This will be done
by comparing asymptotic results for near critical epidemics under a certain
scaling, with exact recursively calculated results under the same scaling. We
will show graphically that for both models the asymptotic result is useful
since the recursive algorithm will converge relatively quickly, i.e. for small
populations of susceptibles (≈ 10000).

Sammanfattning

I den här uppsatsen tittar vi p̊a tv̊a epidemimodeller, SIR och SIS mod-
ellerna, och undersöker vissa egenskaper för dessa modeller d̊a vi gör dem
nära-kritiska. Detta görs genom att jämföra asymptotiska resultat under en
särskilld kritisk skalning, med exakta rekursiva resultat under samma kritiska
skalning. Vi visar grafiskt att för b̊ada modellerna är de asymptotiska resul-
taten användbara, eftersom de rekursiva algoritmerna konvergerar snabbt,
dvs. för små populationer (≈ 10000).

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Stockholm,
Sweden. Sweden. E-mail: lindholm@math.su.se. Supervisor: Anders Martin-Löf.
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1 Some concepts concerning epidemics

When you hear the word epidemic, you probably think of an outbreak of some
disease in a population, and how the disease is spreading. Another thing
commonly associated with the word epidemic is the question of vaccination.
Is it possible to vaccinate? How many people need to be vaccinated to avoid
an outbreak? And so on.

When you talk about the outbreak of an epidemic, there are two possible
outcomes. One outcome is that there will only be a small outbreak with only
a few infected individuals and that the disease only persists in the population
for a short time period. The other possible outcome is that there will be a
big outbreak, an explosion, with a large group of infected individuals and
that the disease persists in the population for a relatively long time period.

If we try to figure out how a disease is spreading in a population, there are
many factors that play an important role, such as how infectious the disease
might be, how the disease is transmitted between individuals, for how long
an infected individual might infect others, how individuals make contact in
the population etc. This leads to an almost innumerable amount of possible
factors that might affect the spread of a disease and it’s persistance. If we
want to try to model an epidemic, we realize that the reality is too complex
and that we need to make some assumptions to simplify our model, but these
assumptions will also affect which phenomenons that we can observe.

The first thing we can do is to look at the specific disease that we want to
model and identify all different states which an individual in our population
can visit, i.e. if the individual is ill and infectious, if the individual is well
and susceptible or if the individual is immune or for some other reason not
possible to infect. We can now look at this as a stochastic process, where an
individual can visit some or all of these states, depending on the nature of
the disease, and how she is allowed to move between these states.

An assumption that we will use in our model that will limit the credibility
is that the population is closed, i.e. we don’t allow individuals to immigrate
or emmigrate. But on the other hand this assumption will make it possible
for us to examine how large an outbreak is, given that an infected individual
will become immune or in some other way not possible to infect again. This
is called the final size of an epidemic, which is the number of individuals that
have been infected. If we would have had the more realistic case, where the
population isn’t closed (or if individuals can’t become immune), there isn’t
an unambiguous way to define what the final size is, since we could have
more susceptible individuals at the end of the epidemic, than we had in the
begining.

Another assumption that we will make is that we don’t allow any social



structures, i.e. all individuals in the population are mixing homogeneously.
This is also an assumption that will make our model loose some credibility,
but it will make our calculations easier.

Our last assumption is that we will assume that the time period that
a given individual is infected will follow an exponential distribution, so our
model will become Markovian. This assumption hasn’t any foundation in
epidemiology, but it will make our model easier to handle.

In this thesis we will concentrate on two simple models. The first model
that we will have a look at is the so called standard SIR epidemic, or simply
the SIR epidemic. In this model the individuals can be in any of the states,
susceptible (S), infectious (I), recovered or immune and then removed (R).
For this model it is possible to both calculate the final size distribution of
the epidemic and the duration of the epidemic.

The second model is the SIS model, and here an individual can only be
in any of the two states susceptible or infectious. Therefore it’s only possible
to calculate an expression for the mean time to extinction.

As mentioned in the begining of this chapter, an epidemic can have two
different outcomes. Either the epidemic will die out in a short time period
and only a few individuals get infected, or it will persist for a longer time
period and a large group of individuals get infected. These are two drastically
different outcomes, which also will affect our results concerning epidemics
drastically. In this thesis we will look at epidemics that are just on the
border of these two outcomes. Such an epidemic is called near critical, and
we will define this state later on, and see how this can be expressed in our
models.

For more information about these two models or about stochastic epi-
demic modeling in general, see Andersson and Britton [1].

2 Some basic facts about diffusion processes

and diffusion approximations

To get a feeling for how diffusion approximations work, we here give a brief
heuristic treatment of the subject.

Let X(t) be a discrete valued stochastic process in continuous time. If
we want to make an asymptotic approximation of our process X(t), it is
reasonable to do so with a continuous process U(t), i.e. U(t)’s sample paths
are continuous functions of t with probability 1. This is done by first rescaling
our process X(t) in such a way that the jump sizes decrease and the jump
frequency increases, so that when taking limits our process will tend towards
continuity (in sample path). But that’s not all. We also need to have finite



first and second moments and negligable higher order moments, when taking
limits, under our new scaling.

But what is a diffusion? And why does our discrete process converge to
a diffusion process?

A diffusion is a stochastic process with continuous paths, i.e. with prob-
ability 1, that posseses the strong Markov property.

To see why our discrete process will converge to a diffusion we will look
at the first and second moments of the diffusion. These moments are called
the infinitesimal drift and variance coefficients, respectively, and are denoted
µ(x) and σ2(x). This gives us that the class of diffusion processes is quite
liberal, in the sense that we for example can let our process be location
dependent via it’s drift. An example of this is the Ornstein-Uhlenbeck process
which we will encounter later on in this thesis. Another example of a diffusion
is the standard Wiener process.

When taking limits, the first and second moments of our scaled process
X(t) will converge to the infinitesimal drift and variance coefficients, with
which we identify our diffusion process that we can use as an asymptotic
approximation of our discrete process.

For more elaborate treatment of these topics, see Karlin and Taylor [7].

3 SIR model

In the SIR model we start with a closed population that doesn’t have any
social structure. Initially we have n susceptible individuals and m infected
individuals. Each infected individual stays infectious for an exponentially
distributed time period, with mean ι. The case we will have a look at has
ι = 1. An infected individual will then make contact with a given individual
according to a Poisson process with the intensity λ/n. All infection times
and Poisson processes are assumed independent.

We can now look at the SIR model as a two dimensional Markov process
where (St, It) denote the number of susceptible and infected individuals at
time t. The reason for this being only a two dimensional process follows from
the fact that the population is closed, i.e. Rt = n + m − St − It.

The jumps possible for our process (S, I) to make with respective transi-
tion intensities are

(s, i) → (s − 1, i + 1) with intensity λsi/n
(s, i) → (s, i − 1) with intensity i

Since the population is closed, we are able to calculate the distribution
for the final size, which is the total number of infected individuals Z, but we



can also get the distribution for the time to absorption, i.e. the time it takes
until It = 0 for the first time.

But first we have to look at how we can make our model near critical.
As previously mentioned, our epidemic can either die out fast and only a

few individuals get infected or it can persist for a longer time period with a
large number of infected. These two outcomes are usually referred to as the
sub critical and the super critical case.

But how can we make our model near critical? To make this a bit clearer
we now introduce the quantity R0 called the basic reproduction number. R0 is
defined to be the expected number of individuals that an infected individual
infects in a large population, or more formally R0 = λι (= λ in our case).

One can show that

Z ′
n

n
→ τ when n → ∞

where Z ′
n = Zn + mn and mn/n → µ, where τ is the solution to the

equation

1 + µ − τ = e−λτ (♥)

This gives us that τ is the proportion of individuals who have been in-
fected, while the left side of (♥) represent the proportion of individuals that
have avoided infection. We then have that e−λτ ≈ the probability that a
given individual will avoid infection from a given infected individual.

Depending on which values we let the parameter λ take, we can obtain the
sub and super critical case, by letting λ < 1 and λ > 1 respectively. Therefore
it hopefully seems reasonable to get the near critical case when λ ≈ 1, and
now we see why λ some times is referred to as the critical parameter.

3.1 Asymptotic results and diffusion approximations

under a critical scaling

In Greenwood et. al [5] it is shown that there exists an asymptotic distribu-
tion for the final size Z of the near critical epidemic under a certain ’critical
scaling’. We will now give a very brief resumé of how this is done, using diffu-
sion approximations. For more details, see Greenwood et. al [5], Martin-Löf
[8], [9] and [10].

If we start by looking at our transition intensities and possible jumps

(s, i) → (s − 1, i + 1) with intensity λsi/n
(s, i) → (s, i − 1) with intensity i



and replace our old time scale t by it, i.e. when It = i we get the clock
rate idt instead of dt. This gives us

(s, i) → (s − 1, i + 1) with intensity λs/n
(s, i) → (s, i − 1) with intensity 1

To obtain suitable diffusion approximations for St and It, we need to have
a look at the first and second expected increments moments.

Let ∆S = St+∆t −St and ∆I = It+∆t − It. We then get the first expected
increments moments

{

Es,i(∆S) = −λs
n

∆t,

Es,i(∆I) =
(

λs
n
− 1

)

∆t,

and the second expected increments moments















Es,i(∆S2) = −λs
n

∆t,

Es,i(∆I2) =
(

λs
n

+ 1
)

∆t,

Es,i(∆S∆I) = −λs
n

∆t.

Since St

n
≈ 1 when t ≈ 0, the following approximation of St and It is

proposed:

{

St

n
= 1 +

Xn
t

nα

It = nβY n
t

where

λ = 1 +
a

nγ
.

It is shown, that by choosing α, β and γ as α = β = γ = 1/3, we can
obtain a diffusion approximation to Y n. By taking the limits as n → ∞, on
the time scale s = t/n2/3, it can be shown that Xn

s and Y n
s converge to the

diffusions Xs and Ys.
When we use the proposed values of α, β and γ, and only keep the domi-

nating terms in the expressions for the first and second increments moments
of Xn

t and Y n
t we get

{

E∆Xn = n−2/3∆t
E∆Y n = n−2/3(a − x)∆t

and













E(∆Xn)2 = n−4/3∆t
E(∆Y n)2 = 2n−2/3∆t
E(∆Xn∆Y n) = n−1∆t.

The stochastic differential equations defining Xs and Ys are hence
{

dXs = ds

dYs = (a − Xs)ds +
√

2dWs

on the time scale s = t/n2/3. This gives us that
{

Xs = s

Ys = b + as − s2/2 +
√

2Ws, where b = limn,m→∞m/n1/s

i.e the final size of the epidemic is the value of Xs = s at T , the first
time when Ys = 0, which is the first time the process

√
2Ws hit the parabolic

barrier b + as − s2/2.
Hence we have that Z/n2/3 → T as n → ∞.
The density of T valid for a wide class of models has been calculated in

Martin-Löf [9].
Using Airy functions this expression can be written as

−dPx(T > t)

dt
= exp{−w((t − a)3 + a3)/6 − ax}

×
∫ ∞

−∞

etu(B(u)A(u − x) − A(u)B(u − x))

π(A2(u) + B2(u))
du (♠)

where A(u) = Ai(cu), B(u) = Bi(cu), w = 1
σ2 , c = ( 2

w
)1/3 and x = wb >

0.
To get the Markovian model we see from the Itô equation that σ =

√
2

which gives us that w = 1/2.
In Dhlakama [2] the properties of (♠) are investigated using numerical

approximations, looking at it’s behavior for different choices of the parame-
ters a and b and c = 1, i.e. w = 2 (note that this isn’t the Markovian model).
It turns out that under certain parametrizations, the asymptotic distribution
of T is bimodal.

3.2 Description of a recursive algorithm

If we look at our two dimensional Markov process (St, It), and only look at
those time points where the process jumps, we can let (∆Si, ∆Ii) denote the



ith jump made by (St, It). By the definition of (St, It), we get that (∆Si, ∆Ii)
either take the value (−1, 1) or (0,−1). If we introduce the Markov process
Ui = S0 − Si = n − Si, U0 = 0, we can express our two dimensional process
using only this 0/1 process since

(∆Si, ∆Ii) = (−∆Ui, 2∆Ui − 1)

=

{

(−1, 1) if ∆Ui = 1
(0,−1) if ∆Ui = 0.

So what’s the point with this rewriting? And how do we connect this
relation to the stopping time T ?

Remeber that the stopping time T is the first time point when Ii = 0,
which we can write as

Ii =
i

∑

j=0

Ij = I0 +
i

∑

j=1

(2∆Uj − 1) = m + 2Ui − i = 0

=⇒
UT =

T − m

2
.

But, since Ui is defined to be the number of individuals infected by time
step i, and T is the first time point when Ii = 0, we have that UT = Z, which
is the final size of the epidemic.

Now we see that we can compute the distribution of T , by calculating the
time it takes until the process Ui hits the linear barrier (i − m)/2. Suppose
that we know the distribution of T , then the final size distribution Z is easy
to get since

pz(z) = P (Z = z) = P
(

T − m

2
= z

)

= P (T = 2z + m) = pT (2z + m)

where z = 0, 1, . . . , n.
To see how these relations can be used to calculate the exact distribution

of T , we will now look at a recursive algorithm presented in Greenwood et.
al [5].

It can be shown that the transition probabilities of Ui will be

P (Ui = k + 1 | Ui−1 = k) =
λ(n − k)

λ(n − k) + n
= pk

P (Ui = k − 1 | Ui−1 = k) = 1 − pk = qk



The next step is to calculate the defective distribution Wi(k) = P (Ui =
k, T > i), where W0(k) = δk,0, and it’s computed as

Wi(k) =

{

Wi−1(k − 1)pk−1 + Wi−1(k)qk when k > i−m
2

0 when k ≤ i−m
2

If we let P (T = 0) and suppose that we know Wi−1 and P (T = j), j < i,
then

P (T = i) =

{

Wi−1(
i−m

2
)q(i−m)/2 if i − m is even

0 otherwise

In other words we compute P (T = i) by first checking that we can reach
the barrier in this time step, and if that’s possible, we get the wanted prob-
ability by multiplicating the probability that we weren’t absorbed in the
previous time step and the probability that the process Ui stays on the level
(i − m)/2 since the previous time step, i.e. Ui hits the barrier.

This linear barrier that we use will make it impossible for us to reach it in
all discrete time steps, but as we have seen before, this will not be a problem
when we want to compute P (Z = z) for all z = 1, . . . , n.

3.3 A comparison between exact and asymptotic re-

sults

To be able to compare our exact distribution of Z, with the asymptotic
distribution (♠), we need to use the scaling

m ≈ bn1/3

λ ≈ 1 +
a

n1/3

proposed in Greenwood et. al [5] to make the epidemic near critical, and
to plot pZ(z) = P (Z = z) on the new time scale s = t/n2/3. Don’t forget
that the distribution of Z, computed with the algorithm above, is discrete
and that we don’t need to adjust our probability mass even though we use a
different time scale.

However, to be able to compare these two distributions we need to make
an integral approximation of the discrete distribution. This is done by

n2/3
n

∑

k=0

pZ(sk)(sk − sk−1) = 1.
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Figure 1: On the left side we have the asymptotic curves and on the right
side we have the recursive ones. From the top down we have the following
parameter values: a = 1.5 and b = 0.25 (top), a = 0.5 and b = 0.5 (middle)
and a = 1.0 and b = 1.5 (bottom). For all cases we have w = 0.5 (corre-
sponding to the Markovian assumption). Recursive calculations are carried
out for populations (susceptibles) of size 1000 (dotted), 8000 (dashed) and
27000 (solid).



From fig. 1 we can see that the exact result seems to converge towards
the asymptotic results relatively quickly, i.e. for moderately large populations
(≈ 10000). We also see that there is a precision problem for small t in the
analytic curve when a = 1.0, b = 1.5 and w = 0.5.

As we can see in fig. 1, some choices of the parameters a and b make
the distribution for Z bimodal. But this is not as odd as one could think.
In the introductury chapter of this thesis it was mentioned that one usually
look at sub and super critical epidemics seperately, and that these two cases
have very different outcomes. If the epidemic is sub critical the number of
infectives decline exponentially fast and we have high probabilities for small
final sizes and zero probabilities for large population sizes. For the super
critical case we get that the probability mass is divided into two parts, one
which has got an exponential behaviour for small final sizes and one part
for large population sizes which is approximately Gaussian. With this in
mind, our observed bimodal behaviour doesn’t seem so strange, since what
we have done, is that we in some sense have taken these two different out-
comes and merged them togheter into one coherrent distribution under a new
scaling. For more about the behaviour of sub and super critical epidemics,
see Anderson and Britton [1].

4 SIS model

If we use the same assumptions as for the SIR model regarding infectious pe-
riods and so on, and don’t allow an individual to become removed, then we
have the SIS model. In the same way as we described the SIR epidemic with
a two dimensional Markov process, (St, It), we can now use a one dimensional
process instead, since n + m = St + It. For notational convenience, we will
from now on let n denote the total number of individuals in our population,
instead of the initial number of susceptibles. As mentioned before, we can no
longer calculate the final size distribution Z, since we no longer can define
what a final size is unambiguously. The aim of this part of the thesis will
instead be to compare the asymptotic expression for the mean time to ab-
sorption with an exact expression which will be computed recursively using
an algorithm.

But first, let’s have look at our one dimensional Markov process It. This
will in fact be a birth and death process in continuous time, with I0 = m, an
absorbing state in It = 0 and a reflecting state in It = n. Let λm be the rate
with which the process may take a jump to state m + 1 and let µm be the
rate with which the process may jump to m− 1, with λ0 = 0 and λn = 0. In
Martin-Löf [10] the transition rates are set to









λi = λi
[

1 − i
n

]

= nλ
(

i
n

) [

1 − i
n

]

= nλ
(

i
n

)

µi = i = n
(

i
n

)

= nµ
(

i
n

)

where
{

λ(i) = λi(1 − i)
µ(i) = i

is called Feller’s ’Stochastic Verhulst Process’.
For the sake of completeness we should also mention that the SIS model

also has got an expression for the basic reproduction number R0, which is λ.
So we see that for our chosen jump intensities the basic reproduction number
is the same for both models.

4.1 Asymptotic results and diffusion approximations

under a critical scaling

To get a diffusion approximation and a critical scaling, we must have a look
at the expected increments moments which are







Ei(∆I) = n
[

λ
(

i
n

)

− µ
(

i
n

)]

∆t

Ei(∆I2) = n
[

λ
(

i
n

)

+ µ
(

i
n

)]

∆t.
(♦)

Next we rescale by letting Un(t) = 1
n
It, and we get

{

Eu(∆U) = (λ(u) − µ(u))∆t
Eu(∆U2) = 1

n
(λ(u) + µ(u))∆t

which implies that Un(t) → x(t) as n → ∞, where x(t) is the solution of

dx

dt
= λ(x) − µ(x) = { in our case } = (λ − 1)x − x2.

As before, λ is the critical parameter, and the epidemic is near-critical
when λ ≈ 1.

To obtain a critical scaling we have to look at the expected increments
moments (♦), which can be rewritten as







Ei(∆I) = i
[

(λ − 1) − λi
n

]

∆t

Ei(∆I2) = i
[

(λ + 1) − λi
n

]

∆t



If we let λ → 1 as n → ∞ we get






(λ − 1) = a√
n

I(
√

nt)√
n

= Un(t).

One can now show that
{

Eu(∆U) = u(a − u)∆t
Eu(∆U2) = (2u)∆t

and as in the SIR case we get that Un(t) converges to a diffusion process
U(t) defined by the Itô equation

dU = U(a − U)dt +
√

2UdW

where W (t) is a Wiener process. Unfortunately we can’t calculate an
analytic expression for the distribution of T , the time until absorbtion, nor
the final size distribution, but we can obtain an expression for T ∗

u = Eu(T ).
In Martin-Löf [10] it is shown that T ∗

u will be

T ∗
u =

∫ u

0

F (v)

f(v)
dv (♣)

where

F (v) =
∫ ∞

v

f(s)

s
ds and f(s) = e−

(s−a)2

2 .

If we look at the integrand of (♣) we see that it is non negative for all
u > 0, i.e. our function is monotone. A consequence of this fact is of course
that we won’t get a bimodal behaviour for T ∗

u no matter which values we let
the parameter a take.

4.2 Description of a recursive algorithm

In this section we will have a look at a recursive algorithm which make it
possible to compute T ∗

u = Eu(T ) exactly. Then it will be possible to compare
the asymptotic result (♣) with the exact one, which we will do in the next
section.

First of all, let us look at what we know about the SIS model.
In Martin-Löf [10] it is proposed that

{

λk = λk
(

1 − k
n

)

µk = k



Then we have the following transition probabilities:

pk =
λk

λk + µk
=

λ(1 − k/n)

λ(1 − k/n) + 1
= 1 − qk

where pk is the probability for a jump from k to k + 1, and qk is the
probability for a jump from k to k − 1.

As mentioned in the previous chapter we can make our epidemic critical
by using λ = 1 + a/

√
n. Note that this isn’t the same scaling as for the SIR

model.
If we let Tk = E(T | I0 = k) we have that

Tk = E(length of infectious period k) + pkTk+1 + qkTk−1

=
1

λk + µk
+

λk

λk + µk
Tk+1 +

µk

λk + µk
Tk−1

since our model is Markovian. This can be rewritten as

λk(Tk+1 − Tk) = µk(Tk − Tk−1) − 1

and by introducing Dk = Tk+1 − Tk we get the difference equation

Dk =
µk

λk

Dk−1 −
1

λk

.

We also know that It = 0 is an absorbing state and that It = n is a
reflecting barrier. This gives us that λ0 = µ0 = 0 and that λn = 0.

By solving the difference equation backwards, i.e. starting in Dn, we get
that

0 · Dn = µnDn−1 − 1 ⇒ Dn−1 =
1

µn

Dn−1 =
µn−1

λn−1

Dn−2 −
1

λn−1

⇒ Dn−2 =
λn−1

µn−1

Dn−1 +
1

µn−1

Dn−2 =
µn−2

λn−2

Dn−3 +
1

λn−2

⇒ Dn−3 =
λn−2

µn−2

Dn−2 +
1

µn−2

...

Dk =
λk+1

µk+1

Dk+1 +
1

µk+1

, for k = 0, . . . , n − 2

and one can show by induction that









Dn−1 = 1
µn

Dk = 1
µk+1

[

1 +
∑n−(k+1)

i=1

∏n−i
j=k+1

(

λj

µj+1

)]

for k = 0, . . . , n − 2.

Since all Dk can be calculated, we can finally compute our Tk using the
following forward equation

T0 = 0 (by definition)

T1 = T1 − T0 = D0

T2 = (T2 − T1) + (T1 − T0) = D1 + D0

T3 = (T3 − T2) + (T2 − T1) + (T1 − T0) = D2 + D1 + D0

...

Tn =
n−1
∑

k=0

Dk.

For more about difference equations and birth and death processes, see
Dynkin and Juschkewitsch [4] or Karlin [6].

4.3 A comparison between exact and asymptotic re-

sults

Now it’s time to make a similar comparison between our exact and asymptotic
results as we have done in the previous section for the SIR model. To do so
we first need to look at our critical scaling

λ ≈ 1 +
a√
n

s =
t√
n

.

Notice once again that this is not the same critical scaling as used for the
SIR model.

We will now plot the asymptotic function for T ∗
u and compare it with

the results from the recursive algorithm for different population sizes and
values of the parameter a. But as mentioned before the expression (♣) is
monotone, so we will not get a similar interesting bimodal behaviour as for
the distribution of Z for the SIR model.
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Figure 2: The left side is the asymptotic distribution and the right side is
the recursive distribution. Both curves are for a = 1.5, and for the recursive
curves the population sizes (susceptibles) are 2500 (dotted), 10000 (dashed)
and 28900 (solid).

In fig. 2 we see, as for the SIR model, that the recursive algorithm
converges quickly, that is for populations of susceptibles around 10 000 indi-
viduals.

One also notices that the x-axis is cut off at the value 8, which is due to
numerical problems with the expression (♣), but this is not a problem since
the most dramatic behaviour of the functions are in the beginning, and in
this interval they have already started to level out.

5 A short summary and closing discussion

We have now had a look at two epidemic models, the SIR and the SIS model,
and their asymptotic behaviour when they are made near critical. For the
SIR model we have studied the behaviour for the final size distribution, and
we have seen that under some parametrizations we get a bimodal distribution.

For the SIS model we have looked at the expected time until absorption
given that the epidemic has k initially infected individuals, instead of the final
size distribution (since the final size doesn’t have an unambiguous expression
for this model).

We have also compared these two asymptotic results with calculations
made with two recursive algorithms, one for each model. Comparing the
asymptotic results with the recursively calculated ones showed us that for
both models we had what looked like a fast convergence towards the asymp-
totic result for populations of susceptibles consisting of about 10000 individ-
uals.

If we again look at the concept of near critical epidemics, they are useful



in a vaccination situation, i.e. when we have super critical epidemic and we
start a vaccination program, we will after some time reach a state of the
epidemic when we can consider it as near critical.
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