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Abstract

A Flash Estimator (FE), using monthly production data to obtain
early estimators on quarterly values of Manufacturing is combined
with Leading Indicators (LI), both monthly and quarterly. The lead-
ing information is extracted from the Business Tendency Survey using
Kalman Filters. The result is called a Leading Flash Estimator (LFE).
LFE proves to be more timely than a conventional FE and more ac-
curate then the LI.
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Preface

This paper is part of a master thesis in Mathematical Statistics at Stock-
holm University. The work was done at Statistics Sweden1 where the results,
if any satisfactory, are to be used.

1Statistics Sweden is a central government authority for official statistics and other
government statistics and in this capacity also has the responsibility for coordinating and
supporting the Swedish system for official statistics.



Chapter 1

Introduction

All over the world statisticians are working on their production routines so
as to make the data more timely, without too much of accuracy being lost in
the process. In the Swedish quarterly Production Accounts, Manufacturing
(YQ) is an important variable that reflects the business cycle, maybe even
more distinctly than the much larger aggregate, GDP. The data on this
variable are published 70 days after the quarter has expired.

Leading indicators are industrial and economic statistics from which an
indication of the value or direction of another variable might be obtained.
In Öller & Tallbom (1996) [10] Quarterly Leading Indicators (QLI ) were
presented, which accurately forecast the preceding quarter in real time (co-
incident) 30 days after the quarter has expired. A forward-looking indicator
provides a first estimate of the current quarter (in real time), which started
30 days ago. The QLI have been published regularly since 1994, first by
the National Institute of Economic Research, Sweden, and since 2003 by
Statistics Sweden.

The Index of Industrial Production (IIP) is a monthly series closely re-
lated to YQ. It has been published regularly since 1913, nowadays with a
delay of 45 days. In Dahllöf & Öller (2003) [3], Monthly Leading Indicators
(MLI) are constructed for this series. The MLI gives us a coincident indica-
tion 30 days after the month ended and a forward-looking indication in the
end of the month. By combining QLI for quarterly data with the monthly IIP
and MLI we want to construct a Leading Flash Estimate (LFE ) of Swedish
YQ. This would precede the QLI coincident estimate by one month and is
expected to be more accurate than the forward-looking QLI for that quarter,
published two months earlier. In other words, we combine the early infor-
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mation in quarterly and monthly leading indicators with the early outcome
registered in related monthly data. Conventional Flash Estimates (FE ) use
only outcome data, for a European model, see Mitchell & Weale (2001) [9].

Conventional Flash Estimators are just intended to speed up the data
production process1. The estimates are compared to the preliminary value
and if the discrepancy is considered moderate the FE is introduced. In the
present case Leading Indicators are also available as early estimates of the
forthcoming preliminary figures. For the LFE to be contributing something
new, it is not enough for them to be earlier than Flash Estimatates, they
must also be more accurate than the Leading Indicators. We have found
only one slightly similar study where a bivariate monthly variabel contains
interpolated values for GDP and monthly inflation data, see Salazar & Weale
(1999) [14]. They found that monthly data improve the ”nowcast” of the
current quarter, but add nothing to the forecast of the next quarter.

Both the quarterly and monthly leading indicators use Business Tendency
Survey data for early signals, which are then combined with autoregression
of the statistical manufacturing variables in a Kalman filter, see Öller &
Tallbom (1996) [10] and Rahiala & Teräsvirta (1993) [13]. The indicators
are exponentially smoothed and include a turning point warning mechanism,
which has worked well during the 10 years the quarterly indicators have been
in use.

In Section 2 we present the model. We then describe the data in Section
3. Section 4 contains the results. Finally, section 5 gives some remarks and
conclusions.

1The Eurostat Handbook on Quartely National Accounts defines a flash estimate as:
The earliest picture of the economy according to national accounts concepts, which is
produced and published as soon as possible after the end of the quarter, using a more
incomplete set of information than that used for traditional quarterly accounts.
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Chapter 2

The Model

Consider the linear regression model:

yt = c + α′yt−1 + β′xt + εt t = 1, 2, . . . , T, (2.1)

where α is an m × 1 column vector of autoregressive (AR) coefficients and
yt−1 is also m × 1 vector containing lags from 1 to m of yt. The regression
coefficient vector β and the regressor xt are both n × 1. The error term εt

is assumed to be independently and identically distributed normal variables
with zero mean and variance σ2 (εt ∼ i.i.dN(0, σ2)).

Let t denote quarter t and α̂ and β̂ the estimates for α and β, respectively,
obtained from (2.1) using Ordinary Least Squares method (OLS ). If xT+1 is
known the estimate of yT+1 is given by

ŷT+1 = ĉ + α̂yT + β̂xT+1 (2.2)

Let yt be Manufacturing Variabel (YQ) and use QLI and outcome values
of IIP as explanatory variables xt in (2.1) to estimate the parameters. Now
use MLI instead of unknown values of IIP in (2.2) to get a LFE, also called
a nowcast of YQT+1

.

Figure 2.1 shows how the available information depends on where the
nowcaster stands in real time. At the end of a quarter (point P0) the infor-
mation consists of quarterly and monthly values. On the quarterly frequency:
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the outcome YQT
of the preceding quarter and the forward-looking QLI for

YQT+1
have been published. The latest monthly values are: IIP outcome

from the first month of the quarter, the coincident MLI of the second month
and a forward-looking value for the third month.

Moving one month ahead to point P1 the latest quarterly outcome is still
YQT

, but now the QLI produces a coincident value for YQT+1
. Outcomes

of IIP are available for months one and two. For month three MLI has
generated a coincident value. This timing procedure is made operative by
estimating (2.1) using data on YQ, QLI and IIP from the estimation period.
Some obsevation at the end of the data set are saved for testing the model
in real situation. Here MLI figures substitute for unknown monthly IIP
outcomes.
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Figure 2.1: Publishing times of quarterly and monthly statistics, here
specified for quarter one
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Chapter 3

Data

3.1 Quarterly Manufacturing (YQ)

Quarterly Manufacturing (YQ) is a Statistical Time Series (STS ) in quar-
terly levels and constant prices, 1980:Q1–2003:Q2. Here data from 1990:Q1
onwards are used. Calendar and outlier effects are estimated in TRAMO and
seasonal adjustment is performed on the TRAMO output in SEATS1.

3.2 Quarterly Leading Indicator (QLI )

The model for QLI in Öller & Tallbom (1996) [10] uses data from 1970:Q1–
1993:Q4, where 1970:Q1–1987:Q4 was used to estimate the model. The series
was transformed into calendar corrected seasonal differences of logarithms;
data were not seasonally adjusted. Here the coincident and the forward-
looking QLI are transformed into levels, calendar and seasonally adjusted us-
ing TRAMO/SEATS, the default option. The data cover the period 1990:Q1
– 2003:Q2.

1More about TRAMO/SEATS in appendix A
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3.3 Index of Industrial Production (IIP)

The monthly Index of Industrial Production (IIP) is published both as a
monthly STS (IIPM) and as a quarterly STS (IIPQ), calculated as a mean
of the three months of a quarter. All IIP figures in this study are in year
2000 prices and are published in levels. Raw figures where sesonally adjusted
with TRAMO/SEATS. The (IIPM) is divided into three quartely STS, one
for each month: IIPm1,IIPm2 and IIPm3. Data are from the period 1990:M1–
2003:M6.

3.4 Monthly Leading Indicator (MLI )

Dahllöf & Öller (2003) [3] estimated their Monthly Leading Indicators
(MLI ) on data from 1996:M1–2000:M5; observations 2000:M6–2003:M7 were
saved for testing. The MLI figure is given in annual differences of logarithms,
but here they are transformed into levels. Since these figures are not used
in the regression model and because the series are so short they are not
seasonally adjusted. The data cover the period from 2001:M1–2003:M6.
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Chapter 4

Results

The Augumented Dickey Fuller1 test (ADF) for unit roots, shows that
all time series used have a unit root in log levels. All were stationarized by
one difference, except YQ for which ADF did not reject the H0 of a unit root
in the difference. Given the short time series and the weak power of the
ADF test, we trust in earlier results, Öller & Tallbom (1996) [10] and more
generally in the econometric literature, that most macroeconomic time series
have a single unit root on frequency zero. Consequently, in all models the
time series are in differences of log levels.

1More about Augumented Dickey Fuller test in appendix B
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Table 4.1 shows the four models for the estimation period 1990:Q2–
2001:Q1. There are two models each for points P0 and P1, in Figure 2.1.
Models 2.0 and 2.1 are identical within the sample. The difference between
1.0 and 1.1 is that in the former we only have a forward-looking QLI (flQLI),
but one month later in P1 the more accurate coincident QLI (cQLI) is avail-
able.

Model Model specification

1.0 ∆LogŶqT+1
= α̂2∆LogYqT−1

+ β̂1∆LogflQLI
T+1

+ β̂6∆LogIIPm3T+1

2.0 ∆LogŶqT+1
= α̂2∆LogYqT−1

+ β̂3∆LogIIPQT+1

1.1 ∆LogŶqT+1
= α̂2∆LogYqT−1

+ β̂2∆LogcQLI
T+1

+ β̂6∆LogIIPm3T+1

2.1 ∆LogŶqT+1
= α̂2∆LogYqT−1

+ β̂3∆LogIIPQT+1

Table 4.1: Model specification, Model 1.0 and 2.0 for time P0 and Model 1.1
and 2.1 for time P1, see Fig. 2.1
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Table 4.2 presents the estimation results of the models in Table 4.1. As
soon as IIPQ was included in a model the QLI variables became insignif-
icant. The reason seems to be that IIP iformation on the entire quarter
outperforms the Quartely Leading Indicator. Note, however, that according
to the diagnostics in Table 4.2 Models 1.0 and 1.1 fit data slightly better
than Models 2.0 and 2.1. The reason to this could be that the third month
of IIP includes information that is poorly covered by QLI, based on BTS
data, in Christofferson et al.(1992) [2]2 it is shown that forward-looking QLI
indicates the expected situation in the beginning of the next quarter rather
than the average of the whole quarter.

Model 1.0 Model 2.0 & 2.1 Model 1.1

α̂2 (p-value) 0,268 (0,038) 0,463 (0,000) 0,305 (0,006)

β̂1 (p-value) 0,233 (0,040) – –

β̂2 (p-value) – – 0,233 (0,025)

β̂3 (p-value) – 0,568 (0,000) –

β̂6 (p-value) 0,807 (0,000) – 0,775 (0,000)
Log-likelihood 134,22 123,65 134,70

BIC -6,125 -5,710 -6,147
AIC -6,249 -5,793 -6,271

RMSE 0,0106 0,0124 0,0097
R2 0,83 0,71 0,83

Jarque-Bera (p-value) 2,219 (0,330) 0,537 (0,764) 1,741 (0,419)

Table 4.2: Results in the sample of OLS estimation of the models in Table
4.1

2Frequency domaine methods reveal that BTS respondents tend to focus on the first
part of a quarter
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In Table 4.3 the models of Table 4.1 are presented as they appear in a
real nowcasting situation (2001:Q2–2003:Q2), where MLI data have to stand
in for IIP figures, not known in points P0 and P1 respectively.

Model Model specification

1.0∗ Model 1.0 with month three from forward-looking MLI
2.0∗ Model 2.0 with IIPQT+1

as a mean of IIP outcome for month
one, coincident and forward-looking MLI for month two and
three respectively

1.1∗ Model 1.1 with month three from coincident MLI
2.1∗ Model 2.1 with IIPQT+1

as a mean of IIP outcome for month
one and two and coincident MLI for month three

Table 4.3: Model specification for nowcasting models at time P0 and P1, see
Fig. 2.1

Table 4.4 shows the root mean square error (RMSE) and the Granger-
Newbold test3(G-N ) statistic in and out of sample. Within sample the rele-
vant comparison is between the models of Table 4.2 and QLI. One wants to
know if the new models of Table 4.2 are more accurate than the QLI ? If the
answer is ”yes” then the next question is: does substituting leading monthly
data for missing obsevations in a real nowcasting situation significantly im-
pair accuracy? If the answer is ”no” then the Leading Flash Estimators of
Table 4.3 can be expected to improve on the QLI both in accurancy and in
timeliness.

3More about Granger Newbold test in appendix C
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In sample Out of sample
Model RMSE G-N(p-value) Model RMSE G-N(p-value)

Forward-looking QLI 0,0215 Model 1.0 0,0136
v.s. 8, 9× 10−8(t > 0) v.s. 0,4111

Model 1.0 0,0106 Model 1.0∗ 0,0099
Forward-looking QLI 0,0215 Model 2.0 0,0105

v.s. 2, 2× 10−5(t > 0) v.s. 0,9324
Model 2.0 0,0124 Model 2.0∗ 0,0107

Coincident QLI 0,0172 Model 1.1 0,0095
v.s. 3, 4× 10−5(t > 0) v.s. 0,5320

Model 1.1 0,0097 Model 1.1∗ 0,0120
Coincident QLI 0,0172 Model 2.1 0,0105

v.s. 0,0158 (t > 0) v.s. 0,6576
Model 2.1 0,0124 Model 2.1∗ 0,0099

Table 4.4: Models compared in and out of sample

The RMSE and the Granger-Newbold test confirm that in P0 Models
1.0 and 2.0 provide a significantly better fit to YQ than the forward-looking
QLI. The same conclusion can be made about Models 1.1 and 2.1 vs. the
coincident QLI. The same statistical comparison is done between the models
using IIP outcome and the ”asterisk models” with MLI ”stand ins”. There
are no major differences in RMSE ; in fact in two cases RMSE decreases using
surrogate MLI figures. G-N finds no significant differences in accuracy. In
other words, we have been able to find Leading Flash Estimators that improve
on the present QLI both in accuracy and in timeliness. The performance of
the models is shown graphically in Figure 4.1. If one had to chose between the
two model specifications in Table 4.1, the larger models (1.0) and (1.1) would
be selected as slightly better than (2.0) and (2.1). The choise of (1.0) instead
of (2.0) in P0 is supported by records in Table 4.4. But for P1 the record
is ambivalent: (1.1) is more accurate within, but less accurate outside the
sample. Anyway, as Figure 4.1 shows, differences between model nowcasts
are small. This is the reason to suggesting two more or less even candidates
for monitoring Manufacturing.
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(a) Models 1.0 and 1.0∗(P0) (b) Models 2.0 and 2.0∗(P0)

(c) Models 1.1 and 1.1∗(P1) (d) Models 2.1 and 2.1∗(P1)

Figure 4.1: Model forecasts within and out of sample compared to outcome
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Chapter 5

Conclusions

The results show that monthly observations, both real and survey-based
leading indicator estimates can improve on both accuracy and timeliness of a
reliable quarterly leading indicator of Manufacturing. Although this variable
is an often cited and sensitive business cycle indicator, many people would
prefer to see GDP in its place.

When attempting at a leading flash estimator of GDP, the models pre-
sented here could be both a building block and a blueprint for other variables
included in GDP. Exports is an analogous case. Long time series of monthly
exports are available to proxy for the slightly differently defined quarterly ex-
ports of the National Accounts. Business Tendency Survey data concerning
quarterly exports have been recorded for decades and monthly analogues are
available from 1996 on. The Exports share in Swedish GDP is close to one
half. A third GDP component is Private Consumption, which also amounts
to one half in the Expenditures Accounts of GDP. In this case the monthly
proxy is Retail Trade. The leading information can in this case be obtained
from the Consumer Survey.

Assuming that Leading Flash Estimators could be constructed for Ex-
ports and Consumption, too, a linear combination of all three could be quite
close to GDP. All components would be important for analysts and forcasters
in their own right, but the combination would be of even greater interest.
Recall that the Leading Indicators contain a turning point alarm. This would
be an additional asset, not provided by ordinary Flash Estimators.
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Appendix A

TRAMO/SEATS

TRAMO and SEATS1 are, in turn, two programs developed at the Bank
of Spain, for time series analysis of data with a monthly or lower frequency of
observations. When used for seasonal adjustment, TRAMO preadjusts the
series to be adjusted by SEATS.

TRAMO (Time Series Regression with ARIMA2 noise, Missing observa-
tions and Outliers) is a program for estimation and forecasting of regression
models with errors that follow in general nonstationary ARIMA processes,
when there may be missing observations in the series, as well as contami-
nation by outliers and other deterministic effects. An important group of
the latter is the Calendar effect, composed of the Trading day effect, Easter
effect, Leap Year effect and hollidays effect.

If B denotes the lag operator, such that Bxt = xt−1, and f the number
of observations per year, given the observations y = (yt1 , yt2 . . . ytm) where
0 < t1 < . . . < tm, TRAMO fits the general model

yt =
nout∑
i=1

ωiλi(B)di(t) +
nc∑
i=1

αicali(t) +

nreg∑
i=1

βiregi(t) + xt (A.1)

where di(t) is a dummy variable that indicates the position of the i:th out-
lier, λi(B) is a polynomial in B reflecting the outlier dynamic pattern, cali

1See Maravall (2002) [8], page 4–8.
2An Auto Regressive Integrated Moving Average (ARIMA) model contains three dif-

ferent kinds of parameters: the p AR-parameters, the q MA-parameters and the variance
of the error term.
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denotes a calendar-type variable, regi a regression or intervention variable,
and x is the ARIMA error. The parameter ωi is the instant i:th outlier effect,
αi and βi are the coefficients of the calendar and regression-intervention vari-
ables, respectively, and nout, nc and nreg denote the total number of variables
entering each summation term in (A.1).

This can in compact notation be rewritten as

yt = z′tγ + xt (A.2)

where γ is th vector with the ω, α and β coefficients, and z′t denotes a
matrix with columns the varibles

[cal1(t), . . . , calnc , λ1(B)d1(t), . . . , λnout(B)dnout(t), reg1(t), . . . , regnreg(t)].

The first term of the addition in (A.2) represents the effects that should
be removed in order to transform the observed series into a series that can
be assumed to follow an ARIMA model; it contains thus the preadjustment
component.

In compact form, the ARIMA model for xt can be written as

φ(B)δ(B)xt = θ(B)at, (A.3)

where at denotes the N(0,σ2
a) white-noise innovation, and φ(B),δ(B) and

θ(B) are finite polynomials in B. The first one contains the stationary au-
toregressive (AR) roots, δ(B) contains the nonstationary AR roots, and θ(B)
is an invertible moving average (MA) polynomial. Often they are assume the
multiplicative form

δ(B) = 5d5ds
f

φ(B) = (1 + φ1B + . . . + φpB
p)(1 + Φ1B

f + . . . + ΦpsB
psf )

θ(B) = (1 + θ1B + . . . + θqB
q)(1 + Θ1B

f + . . . + ΘqsB
qsf )

where5 = 1−B and5f = 1−Bf are the regular and seasonal difference
operators.

SEATS (Signal Extraction in ARIMA Time Series) decomposes the lin-
eraized series into stochastic components, basicly by using the spectral den-
sity function,
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xt =
∑

i

xit

where i = p, c, s, u and the components are xpt = trend − cycle, xct =
transitory, xst = seasonal and xut = irregular.

The trend-cycles captures the peak around zero in the series (pseudo)
spectrum, the seasonal component captures the spectral peaks around the
seasonal frequencies, the irregular component picks up white-noise variation,
and the transitory component captures highly transitory variation differ-
ent from white noise. The components are identified and given a ARIMA-
identification. When estimating the components the rawseries are fore- and
back-casted two years, so that a Wiener-Kolmogorov filter can be used.
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Appendix B

Augumented Dickey Fuller
(ADF) test

Consider a simple general autoregressive process AR(p) given by

Yt = µ + φ1Yt−1 + φ2Yt−2 + . . . + φpYt−p + εt

If this is the process generating data but an AR(1) model is fitted, say

Yt = µ + φ1Yt−1 + νt

then

νt = φ2Yt−2 + . . . + φpYt−p + εt

and the autocorrelations of νt and νt−k for k > 1, will be nonzero, because
of the presence of the lagged Y terms. Thus an indication of whether it is
appropriate to fit an AR(1) model can be aided by considering the autocor-
relations of the residual from the fitted models.

To illustrate how the DF1 test can be extended to autoregressive processes
of order greater then 1, consider the simple AR(2) process below.

Yt = µ + φ1Yt−1 + φ2Yt−2 + εt

then notice that this is the same as:

Yt = µ + (φ1 + φ2)Yt−1 − φ2(Yt−1 − Yt−2) + εt.

1See Dickey & Fuller (1981) [4]
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Subtracting Yt−1 from both sides gives:

∆Yt = µ + βYt−1 − α1∆Yt−1 + εt

where β = φ1 + φ2 − 1 and α1 = −φ2

This means that if the appropriate order of the AR process is 2 rather
than 1, the term ∆Yt−1 should be added to the regression model. A test of
whether there is a unit root can be carried out in the same way as for the
DF test with the test statistics provided by the t̃ statistic of the estimated
β̂ coefficient, H0 : β = 0 (unit root) and H1 : β < 0 (integrated of order
zero). Notice that the critical values for t̃ is not the same as for an ordinary t
statistic and depends on the sample size and whether you include a constant
and/or a time trend2.

The same reasoning can be extended to a generic AR(p) process. There-
fore to perform a Unit Root test on a AR(p) model the following regression
should be estimated:

∆Yt = µ + βYt−1 −
p∑

j=1

αj∆Yt−j + εt

The Standard Dickey-Fuller model has been ’augmented’ by ∆Yt−j. In
this case the regression model and the t̃ test are referred to as the Augmented
Dickey Fuller (ADF) test.

2See Dickey & Fuller (1981) [4]

23



Appendix C

The Granger-Newbold test

This is a test that compares the accuracy of two forecasts according to [5]
p.279. Let δ1 be the error of the first and δ2 be the error in the second
forecast, with the condition (δ1,i, δ2,i) is independent of (δ1,j, δ2,j) for i 6= j.
Consider two new random variables δ+ = δ1 + δ2 and δ− = δ1 − δ2. The
expected value of the product:

E
(
δ+δ−

)
= E

(
δ2
1 + δ1δ2 − δ1δ2 − δ2

2

)
= E

(
δ2
1

)
− E

(
δ2
2

)
= σ2

1 − σ2
2,

where σ2
1 and σ2

2 are equal if and only if the new variables δ+ and δ− are
uncorrelated so that

r =

∑M
i=T+1 δ+

i δ−i√∑M
i=T+1(δ

+
i )2

∑M
i=T+1(δ

−
i )2

is zero. The corresponding test statistic for the hypothesis r = 0 of an
unbiased estimate r̂ of r is

t =
r̂
√

N − 2√
1− r̂2

for N = M − T,

which is distributed as Student’s t with N − 2 degrees of freedom.
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