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Abstract

In Sweden chlamydia and all other cases of sexually transmitted
diseases (STD) must, according to law, be registered at the institute
of infectious diseases (SMI). This implies that there is an established
database concerning the STD from which one may retrieve information
in order to determine the infection and reinfection risk. A complica-
tion is that each case of an STD is registered and identified with a
code that may be shared with other individuals. This means that if a
code appears more than once in data it may be one already infected
individual that becomes infected again or an individual that shares
the same code as the already infected that becomes infected.

In this thesis a model is constructed, considering this complication
of a non-unique identification, in order to estimate the infection and
reinfection risk on an individual basis. The model is a likelihood
function and the confidence intervals of the estimates are obtained
through two different methods; profile likelihood and bootstrap.
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Stockholm, Sweden. E-mail: ronnioellis@hotmail.com. Supervisor: Mikael Andersson.
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Chapter 1

Introduction

Chlamydia is a sexually transmitted disease, that during the years have had
a fluctuating number of incidents in Sweden, but from 1997 the number of
incidents has been increasing.

Chlamydia is a disease transmitted between people during sexual inter-
course or at birth. The disease is caused by a bacteria called Chlamydia
trachomatis. The bacteria is possible to encounter in the urethra, rectum or
in the throat. Chlamydia is an asymptomatic disease which means that it is
possible to be infected without developing any symptoms.

1.1 Motivation of the thesis

All diseases that are regarded as dangerous in Swedish society are contained
in the law of the infectious diseases (Smittskyddslagen). Since 1988 chlamy-
dia is also contained in this law.

According to this law, chlamydia id a notifiable disease and contact trac-
ing is practiced. It is a duty of the doctor to notify the county medical officer
and Swedish institute for infectious disease control (SMI) about the case.

For all diseases, except a sexually transmitted (STD), a case of infection
is reported and identified in form of a personal number, whereas a case of a
sexually transmitted disease is reported and identified in form of a national
code. A national code is not unique for one individual, it can be shared by
many people.

If there was an individual identification of each case, then it would be
trivial to estimate the reinfection risk or to tell what proportion of individuals
becomes infected. The complication of the procedure of identifying cases
based on national codes forms the basis of this thesis.
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Figure 1.1: Number of incidents of chlamydia

1.2 The aim of this thesis

The aim of this thesis is to develop a method to make it possible to

• Estimate the risk to become infected.

• Estimate the reinfection risk, that is, given that an individual is infected
once during a period, what is the probability to get infected again?
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Chapter 2

Description of national codes
and source data

2.1 National code and personal number

To protect the integrity, a case of a STD is registered at SMI as a national
code. A national code contains information about the infected individual,
such as gender and age, but does not reveal the identity of the individual. To
be able to describe the form of the code, a brief section about the Swedish
system of personal numbers follows.

All people that are registered in the national registration have a personal
number as an identity description. The following personal number
640823− 3234 consists of three parts,

• The time of birth 640823, (yy-mm-dd)

• The birth registration number 323

• The control number 4

The birth registration number is odd if you are a man and even if you
are a woman. Two persons born the same day have different numbers. Until
1990 this number was split up in different series so that each region in Sweden
had a specific series, but now there is only one possible series. The control
number is calculated according to the modulus ten principle.

The above example is taken from the national Swedish tax board and is
a male that is born the 23 of August 1964 with birth number 323.

The National code consists of the year when the patient is born and
the birth registration number together with the control number. Relating
to the above example, the national code would be 64-3234 This implies that
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a case registered at SMI is not a unique individual. Using the modulus
ten algorithm it is possible to calculate the maximum number of possible
individuals with the same code.

2.2 Data

The data available for further analysis consists of two different data bases:

• Database from SMI containing information on the reported cases as
national codes, gender, county where the case received medical atten-
tion, clinic, date of case report arrival and year . The database covers
the years 1997 to 2000. The number of incidents during this period
with respect to gender can be seen in Table 2.1

gender
year male female
1997 5611 8148
1998 6181 8806
1999 6919 9591
2000 8093 10900

Table 2.1: Number of incidents with respect to gender

• Database containing information on the number of people sharing the
same national code. The database originates from SCB, the national
statistical office, and consists of information of people born from 1950
until 1985, taken in 2001. The total number of observations is 4182303.
A histogram over national code data is shown in Figure 2.1
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Chapter 3

A First Simplified Simulation

Before constructing a more complex model in order to obtain the estimates
of interest it would be interesting to get some preliminary result. We may
perform a simplified simulation examining the reinfection risk.

First of all, we have to sort out what we expect to encounter in terms of
reinfection risk. One might expect that either the risk of infection is increased
or decreased given that you already been infected. The motivation to believe
that there is a increased risk is that when one have entered the infected
set of individuals there is individuals that have a risky behavior, while for
the decreased risk one may claim that if an individual becomes infected
he/she change the behavior and avoid future exposure to infection. According
to earlier studies Ramsedt(1991) and Ritmeier et.al(2001) a increased re-
infection risk is to be expected. We proceed this chapter with the expectation
that there is a increased risk of infection given that you already been infected.

A simple way to perform this simulation is to simulate the events of
infection according to a null hypothesis and then compare the outcome of
the null hypothesis with the real data. A suiting null hypothesis is that
infection is spread randomly. That is, by selecting individuals that become
infected uniformly with replacement.

To keep it as simple as possible, let the time of interest be two consecutive
years. Meaning that we will investigate wether the risk of getting infected
the second year is increased if you already been infected the first year.

Let X denote the number of times that a national code gets infected.
A simulation of a random variable X from the frequency distribution is

achieved through:

• A stochastic variable from the distribution in form of an empirical
distribution based on Figure 2.1 is denoted Nj. An outcome from a
simulation is denoted

8



nj =number of individuals sharing the national-code j,

We simulate r random variables from this distribution. A sufficient
number of random variables r is reached when :

∑r
j=1 Nj ≈ T

Where T = Total number of individuals in the population. This num-
ber and N1, . . . , Nr are assumed to be the same for the two consecutive
years and is therefore not updated for the second year.

• For each year, randomly infect as many individuals as there are actually
observed. Each individual share the same national code according to
the simulated distribution. The total number of infected individuals
that are to be infected is the total number of real cases during that
year.

• For each national code, sum the total number of times the individuals
have become infected.

• Finally we compare the simulated number of infected national codes
for the two consecutive years with the real data.

It is only meaningful to compare the two distributions if there is at least one
national code infected in one of the two consecutive years. This reason for this
is that there are only cases in the database, uninfected are not represented
here.

The outcome is illustrated as differences between the simulated and the
actual outcome of the bivariate distribution of the number of cases the first
year and the number of cases the second year . The distribution with respect
to gender for 1997/1998 is illustrated in Figure 3.1 and 3.2. The simulations
for years 1998/1999 and 1999/2000 with respect to gender are illustrated in
Appendix A.

As we can see in Figures 3.1 and 3.2, the number of national codes ap-
pearing 0 the first and 1 the second year (0,1), or vice versa (1,0), are the
only outcomes where a national code appears more frequently in the simu-
lated material. The reason for this is that simulated infections are not likely
to strike the same national code in both years as in the real material. That
is, the risk of reinfection for an individual in the simulated material within
one year is too low. With this conclusion there is no point in proceeding the
work with this simulation. Instead let us turn to the construction of a more
informative model.
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Chapter 4

A Model for estimating the
infection risk

Before continuing to define the model, an important distinction is empha-
sized. We recall that what is observed, concerning the number of cases, is
the number of times a national code appears in the material and that what
we actually are interested in is the number of times a individual is observed.
These two different concepts might be hard to keep apart. It is possible to
consider the events of that an individual gets infected (in time) as a stochas-
tic point process and the events of that a national code appears (in time)
as a sum of the stochastic point processes of the individuals that share the
same national code.

Denote the number of times a national code appears i times in the data
as Mi and the probability that an individual becomes infected i times as
pi and denote the vector of these probabilities as p = [p0, p1, . . .]. In the
proceeding sections the model is defined and estimates of the parameters of
interest are calculated. The main purpose of the model is to estimate pi using
the information that consists of the observations of Mi. The model that will
be established yields an ordinary likelihood function and through ML theory
the estimates are obtained.

4.1 The Likelihood

Let Y denote the number of times a national code appears, taking one of the
values 0, 1, . . . .

The likelihood is defined as:

L(p) =
∞∏

y=0

P (Y = y)My (4.1)
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One should notice that the likelihood is defined for y = 0, while My is an
observational vector with y = 1, 2, . . ., this since we have no information of
national codes that do not appear in the data.

This leads to a problem with the above defined likelihood. One way to
avoid this is to to form a conditional likelihood. A likelihood given that a
national code appears at least once in the material.

L(p|Y > 0) = Π∞
y=1P (Y = y|Y > 0)My

= Π∞
y=1

(
P (Y = y)

1− P (Y = 0)

)My

Let N denote the number of individuals that share the same national
code. The probability P (Y = y) is presently unknown. It may be fully
developed using the law of total probability, which leads to:

P (Y = y) =
∞∑

n=1

P (Y = y|N = n)P (N = n)

P (Y = y|N = n) is the probability that a national code appears y times
given that there are n people sharing the same national code. In the following
sections the details of the different parts of the likelihood (4.1) are uncovered.

4.1.1 The probability that n people share the same
code

The probability P (N = n) , n = 1 . . .m (m = maximum number of people
sharing the same national code), is estimated by the empirical distribution
of the observed frequency distribution. Either we let P (N = n) follow the
empirical distribution, or we may simulate sufficiently many random samples
from it. In the proceeding the simulated version is used.

4.1.2 The conditional probability, P(Y=y|N=n)

Denote the number of individuals that become infected i times as Xi. Let k
be the maximum number of times an individual gets infected, it then follows:
(X0, . . . , Xk) ∼ Mult(n, p0, . . . , pk), Since y = 0 . . . 9 (9 is the maximum
number of times the same national code appears in the material) and n =
1, . . . 39 one realizes that there will be many subparts of the probability
P (Y = y|N = n), due to many possible combinations of coefficients in the
multinomial distribution.
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If we return to the probability P (Y = y), it seems that it is going to turn
out to be a quite complicated expression. What complicates it is, as men-
tioned above, all the possible combinations of the multinomial coefficients.
Remembering that the coefficients represent the numbers of individuals in-
fected i times given that in total y national codes appear in data. So what
we are after is a way to determine all combinations of X0, . . . , Xk so that:

k∑
i=0

Xi = n

k∑
i=1

iXi = y

One straightforward way to determine all possible combinations is to
construct an algorithm.

4.1.3 Algorithm

y = 1 1
y = 2 11 2
y = 3 111 12 3
y = 4 1111 112 13 22 4
y = 5 .. .. .. .. ..

Table 4.1: All possible combinations that sum to y.

Table 4.1 illustrates all combinations that are possible if we want to sum
up to y. So for example on the third row one can see that if we want to sum up
to 3 we can do it in three ways. Either 1+1+1 or 1+2 or 3. Practically, this
means that given that a national code appears 3 times, there are 3 different
ways these infection events may be distributed on individuals sharing this
code. Either 3 individuals become infected once each, one individual becomes
infected twice and one once or one individual becomes infected three times.

Going from stage y to y + 1 is either done by letting one new individual
get infected or letting an individual already infected become infected once
more. Going from stage two to three would be done in the following manner:

13
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The final step in this algorithm is to remove all replicates. In the above
example, since 12 and 21 represent the same combination, one of them is
removed.

The following will work as an illustration on how the probabilities
P (Y = y|N = n) turn out for different y and n during a period of time.

(y=0)

P (Y = 0|N = 1) =
1!

1!0!...0!
p1

0p
0
1...p

0
k (4.2)

P (Y = 0|N = 2) =
2!

2!0!...0!
p2

0p
0
1...p

0
k (4.3)

and so on for n = 1..39.

(y=1)

P (Y = 1|N = 1) =
1!

0!1!...0!
p0

0p
1
1...p

0
k (4.4)
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P (Y = 1|N = 2) =
2!

1!1!...0!
p1

0p
1
1...p

0
k (4.5)

and so on for n = 1..39.

(y=2)

P (Y = 2|N = 1) =
1!

0!0!1!...0!
p0

0p
0
1p

1
2...p

0
k (4.6)

P (Y = 2|N = 2) =
2!

1!0!1!...0!
p1

0p
0
1p

1
2...p

0
k +

2!

0!2!0!...0!
p0

0p
2
1p

0
2...p

0
k (4.7)

We have now completely determined the form of P (Y = y) and we may
proceed with estimation of the parameters.

4.2 Estimating Parameters

4.2.1 Solving the ML equations

After defining the likelihood we may proceed to calculate the estimates based
on the ML equations. But before doing so, we define the optimization prob-
lem:

max L(p) so that





∑
i=0 pi = 1∑
i=0 ipi = T1

pi ≥ 0, ∀i = 0..k

T0 = Total population

T1 =
number of infection events

T0

As one can see this is an optimization problem with 3 constraints. Since
there are linear restrictions to this problem, it may be re-parametrized into
a lower dimensional problem. The following re-parameterization leaves two
arbitrarily chosen variables out, in this case p0 and p1, and express them in
terms of the defined parameters.
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ψi = log( pi

1−p0
), i = 2 . . . k

Or reversed we have that

pi = (1− p0)e
ψi

p0 and p1 are expressed in terms of the rest of the parameters:

{
p0 = T1 − 1

1+eψ1+2eψ2+...(n−2)eψn−2

p1 = 1− p0 −
∑n

i=2 pi

The re-parametrized problem:

max L(p) so that
{ ∀ipi ≥ 0

In the proceeding the log likelihood will be considered, but will of course
yield the same result. Even if we have reduced the optimization problem
by two dimensions we still have a constrained problem. This is not theoret-
ically a problem, but practically it leads to that either we have to use an
optimization method with constraints or we put constraints on the problem
by ourselves. This is done by imposing a penalty to the log-likelihood every
time the optimization algorithm tries to make a step outside the boundaries
of the problem. Before proceeding a brief section containing the principal
conditions for an optimal solution of an unconstrained problem is presented.

4.2.2 Conditions for an optimal solution

Even if we use a pre-implemented optimization algorithm of some program
one should not be too sure that it really is an optimum delivered by the
program. And even if it is an optimum it might be a local optimum. In
order to make sure that we really obtain a global optimum, we should check
if the optimality conditions are fulfilled.

Denote the Hessian of the function as H.

Definition 4.2.1 Suppose that f is a twice differentiable function on a con-
vex set X. An allowed solution point x ∈ X is then a global minimum if f
is a convex function. f is a convex function if H is positive definite or semi
positive-definite

Definition 4.2.2 A set is convex if for every choice of x(1) and x(2) εX
x=λ x(1) + (1− λ)x(2) ∈X, λ ∈ [0, 1]

Finally, we must not forget that a third condition of optimality is that the
partial derivatives in the optimal estimations of the likelihood should be zero.
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4.2.3 Optimization Algorithm

The optimization algorithm chosen is the pre-implemented optimization al-
gorithm in Matlab without constraints, fminsearch. We use the method to
assign a penalty to the likelihood. If the optimization algorithm tries to
take a step outside the boundary, we assign a value to the log-likelihood
that is very small. In this case we have to use a minimization algorithm so
instead of a small value we assign a very large value and use the minus log-
likelihood. The procedure fminsearch uses an algorithm called Nelder-Mead
simplex method. The details of the method will not be explained in this
paper, but are to be found for example in Lagarias (1998).

4.2.4 Estimating the Partial Derivatives and the Hes-
sian

According to the optimality conditions we must make sure that the Hessian
is negative-definite, since it is a maximum, and that the partial derivatives
are zero. The analytical derivatives and Hessian of the log-likelihood is very
complicated to derive so in this situation the numerical approximations of
the derivatives and the Hessian has to be used.

A numerical approximation of the partial derivatives are obtained by a
Taylor series expansion of the first partial derivatives. The form is,

∂f

∂xi

≈ f(x1, . . . , xi + ∆xi
, . . . , xn)− f(x1, . . . , xn)

∆xi

A numerical approximation of the Hessian is also derived from a Taylor
second order approximation, the form is,





∂2f
∂x2

i
≈ f(x1,...,xi+∆xi ,...,xn)+f(x1,...,xi−∆xi ,...,xn)

∆2
xi−2f(x1,...,xn)

∆2
xi

∂2f
∂xi∂xj

≈ f(x1,...,xi+∆xi ,...,xj+∆xj ,...,xn)+f(x1,...,xn)

∆xi∆xj
−f(x1,...,xi+∆xi ,...,xn)−f(x1,...,xj+∆xj ,...,xn)

∆xi∆xj

The approximation of the Hessian is obtained by letting ∆xi
and ∆xj

assume
very small values.
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Chapter 5

Representation of Source Data.

5.1 A brief discussion about the partitioning

of the data

The model is now defined. We want to estimate the risk to become infected
with chlamydia and the reinfection risk. To be able to obtain these two esti-
mates we have to consider the partitioning of the data. The infection risk is
only a matter of definition, we only split up the data in subgroups that are of
interest. The probability to become infected and the reinfection probability
would then be possible to estimate through the parameters p0, . . . , pk in the
model.

We have to remember that gender plays an important role in the inci-
dence of chlamydia. So partition for gender is obvious. One possible way to
represent data would be according to Table 2.1. A different approach is to
partition according to gender and to consider a two-year period, that is male-
female and three different time-periods,1997-1998,1998-1999,1999-2000. The
result of this representation is the frequency Table 5.1 and 5.2. One should
notice that with this representation of data the time periods overlap.

Frequency of national codes
year 1 2 3 4 5 6 7 8

1997-1998 9424 2247 666 196 42 12 3 0
1998-1999 9735 2523 762 233 56 23 3 1
1999-2000 10241 2878 870 295 98 22 10 2

Table 5.1: Female

18



Frequency of national codes
year 1 2 3 4 5 6 7 8

1997-1998 8084 1382 230 57 6 0 0 0 0
1998-1999 8698 1547 317 63 9 4 0 0 0
1999-2000 9484 1866 408 110 20 1 3 0 1

Table 5.2: Male

It is also possible to widen the time frame and consider a three-year
periods,1997-1999 and 1998-2000, or to partition for different ages.

5.2 Is there a preferable representation of data

for further analysis?

A time frame of one year might be too narrow in the sense that in order
to observe repeated infections, the reinfections must occur within that time
frame. This would justify a further analysis with a time frame at least
longer than one year. If the data are split up in three year periods it will
be national codes that appear more times than with a two year frame. This
will increase the time for the calculations. Since the calculations are very
computer intensive, a time frame of two years is chosen. Partitioning for age
is one of the most attractive ideas, but is not performed in the scope of this
thesis.
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Chapter 6

Confidence Intervals for the
Estimated Parameters

It is also of interest to be able to decide the precision of the estimates and
in order to do so we must choose some measure of the variability of the
estimated parameters. Let us now look at Tables 5.1 and 5.2. It is obvious
that there are very few observations in some parts of the table. One usual
procedure in order to obtain a confidence interval is to apply the asymptotic
results of ML-theory, where the parameters p̂, have approximate distribution
N(p, I(p)−1). In this situation it is not feasible. We have to find a different
approach to this problem. Two different approaches are profile-likelihood
and bootstrapping. In the following section we will briefly go through the
details of both methods.

6.1 Profile Likelihood

The basic idea behind profile likelihood is to keep one parameter fixed and
optimize the likelihood for all other parameters. More formally,

Definition 6.1.1 Let p denote the full vector of the parameters p0, . . . , pk

and pi denote the partial vector when the parameter of interest pi is excluded.
Given the joint likelihood L(p), the profile likelihood is

Lprofile(pi) = max
pi

L(p)

The profile likelihood is considered as a normal likelihood and shares all
the characteristics of a likelihood. Let us first construct the log likelihood-
ratio for a general parameter θ:

W = 2 log
L(θ̂)

L(θ)
(6.1)

20



We derive the asymptotic distribution of the ratio (6.1) by first performing
a second-order Taylor-expansion of a multi dimensional θ around θ̂ of L(θ).

log L(θ) ≈ log L(θ̂) + S(θ̂)(θ̂ − θ)− 1

2
(θ̂ − θ)′I(θ̂)(θ̂ − θ)

Where S(θ̂) is the score function and I(θ̂) is the information matrix. Since
S(θ̂) is zero, the remaining series may be written as

L(θ) = ke−
1
2
(θ̂−θ)′I(θ̂)(θ̂−θ) (6.2)

According to (6.2) we see that this is the likelihood for a single observation
θ̂ from a N(θ, I(θ̂)−1)

The ratio (6.1) is now approximated by

W = 2 log
L(θ̂)

L(θ)

= (θ̂ − θ)′I(θ̂)(θ̂ − θ) →d χ2(r) (6.3)

That is, W is approximately χ2 distributed with r degrees of freedom, r is the
degrees of freedom in the nominator - degrees of freedom in the denominator.

Let us Reformulate the ratio in terms of profile likelihood,

Wi = 2 log
L(p̂)

Lprofile(p̂i)

In this case r = 1, as the profile likelihood contains only one free parameter
less than the likelihood since one parameter is fixed in the profile likelihood.

A 100(1-α)% confidence region for pi is defined as

Definition 6.1.2
CR : {pi,Wi 6 χ2

α(1)}
Where χ2

α(1) is the 1−α percentile of the χ2 distribution. The distribution
of Wi is obtained as mentioned before as an asymptotic result. In order
to obtain good estimates the number of observations must be sufficiently
large. Initially, that was the main motivation to use the approach of a profile
likelihood instead of estimating the whole parameter vector p and use the
information matrix to estimate the confidence intervals of all the parameters.
What observations that must be sufficiently large is out of the scope of this
thesis. But what can be concluded is that if the profile likelihood has a nice
quadratic shape, then the normal approximation should be alright.
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6.2 Bootstrap

Bootstrapping is one of many different re-sampling methods. The motivation
to the method is that one wants to estimate a statistic θ from a unknown
distribution F (x). Assume that given is an observed sample x1, . . . , xn, the
parameter θ is estimated from the sample θ̂ = θ̂(x1, . . . , xn). The bootstrap
approach is to consider the empirical distribution of the sample, Fn(x) =
1
n

∑n
i=1 1{xi≤x} as a true distribution and then re-sample from this considered

true distribution.
The procedure of estimating a 95% confidence interval is as follows:

• calculate the ”true” empirical distribution as Fn(x) = 1
n

∑n
i=1 1{xi≤x}

• simulate N bootstrap samples X∗
1 , . . . , X

∗
n from Fn.

• calculate the statistic θ̂∗k(X
∗
1 , . . . , X∗

n) for sample k.

• A 95% confidence interval for θ̂ is most easily achieved by the percentile
method which is CI:[θ̂∗[0.025N ], θ̂

∗
[0.975N ]]

For further reading see Efron and Tibshirani (1993).
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Chapter 7

Results

Both the bootstrapping and the profile likelihood method are very computer
intensive, even if bootstrapping is the most. Considering that there are
six different representations of data, and for each partitioning two different
parameter estimates are of interest, it is going to take some time to derive
the estimates. Because of this, all parameter estimates will not be retrieved.
The profile likelihood will be used to estimate the infection probability and
the reinfection probability, while the bootstrap method will only be used as
a comparison to the profile likelihood.

In the following three sections, results of the two main aims of the the-
sis, as declared in the beginning and as well a secondary product from the
bootstrapping method. An estimate that is not available is denoted na

7.1 What is the probability to get infected

with chlamydia?

In the following sections we denote a confidence interval obtained with the
bootstrap method CIB and obtained with profile likelihood CIP .

The probability to becoming infected with chlamydia is 1 − p0. The
optimal solution to the ML equations is the point estimate 1 − p̂0. Point
estimates of 1− p0 and the corresponding confidence intervals are displayed
in Tables 7.1, 7.2, 7.3 and 7.4

7.2 Reinfection risk

A reinfection risk is defined (as before) as the probability to become infected
again given that you already been infected once. More strictly:
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1− p̂0 CIB(1− p0)
1997-1998 0.001134 0.001122 0.001140
1998-1999 0.001238 0.001223 0.001242
1999-2000 0.001379 na na

Table 7.1: Confidence interval for individual infection probability, bootstrap
,men

1− p̂0 CIP (1− p0)
1997-1998 0.001134 0.001125 0.001143
1998-1999 0.001238 0.001225 0.001245
1999-2000 0.001379 0.001370 0.001392

Table 7.2: Confidence interval for individual infection probability, profile
likelihood,men

1− p̂0 CIB(1− p0)
1997-1998 0.001433 0.001417 0.001462
1998-1999 0.001518 na na
1999-2000 0.001638 na na

Table 7.3: Confidence interval for individual infection probability, bootstrap,
women

1− p̂0 CIP (1− p0)
1997-1998 0.001433 0.001420 0.001446
1998-1999 0.001518 0.001506 0.001533
1999-2000 0.001638 0.001632 0.001657

Table 7.4: Confidence interval for individual infection probability, profile
likelihood, women

R =
1− p0 − p1

1− p0

The point estimates of R and the corresponding confidence intervals are
displayed in Tables 7.5, 7.6, 7.7 and 7.8.

The profile likelihood of the reinfection risk may be displayed visually. If
we re-scale the profile likelihood it is possible to declare a cutoff point for
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R̂ CIB(R)
1997-1998 0.1593 0.1585 0.1627
1998-1999 0.1692 0.1622 0.1746
1999-2000 0.1872 na na

Table 7.5: Confidence interval for reinfection risk, bootstrap ,men

R̂ CIP (R)
1997-1998 0.1593 0.1517 0.1667
1998-1999 0.1692 0.1619 0.1759
1999-2000 0.1872 0.1802 0.1947

Table 7.6: Confidence interval for reinfection risk, profile likelihood,men

R̂ CIB(R)
1997-1998 0.2364 0.2281 0.2462
1998-1999 0.2545 na na
1999-2000 0.2735 na na

Table 7.7: Confidence interval for reinfection risk, bootstrap, women

R̂ CIP (R)
1997-1998 0.2364 0.2297 0.2447
1998-1999 0.2545 0.2477 0.2621
1999-2000 0.2735 0.2682 0.2808

Table 7.8: Confidence interval for reinfection risk, profile likelihood, women

the confidence interval. Recalling the confidence region in Definition 6.1.2,
the cutoff point yields the limits of the confidence region. In the case of
fixating one parameter the degree of freedom are 1 and it follows that the
χ2

0.05(1) = 3.843. This derives the cutoff point as 0.152.
Two graphs will be displayed as examples in Figure, 7.1 and 7.2. In the

graphs the cut off points and the corresponding confidence region are marked.
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Figure 7.1: Re-scaled Profile likelihood for men 1997-1998
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Figure 7.2: Re-scaled Profile likelihood for women 1997-1998

26



7.3 What is the probability to get infected

with chlamydia i times?

One extra bonus from using the bootstrap method is that confidence inter-
vals of all the separate parameters p0, . . . , pn are obtained. The results are
displayed in Appendix B in Tables B.1, B.2.

7.3.1 A comparison between the number of infected
individuals and the number of reported national
codes

After obtaining the estimates that an individual get infected i times during a
period, it would be interesting to compare the proportion of actual reported
number of cases with the estimated probability that an individual becomes
infected. We define the proportion of cases as the total number of cases divided
by the total population. What we expect is that the proportion of actual
reported cases is larger than the estimated probability that an individual
becomes infected. The reason for this is that in the proportion of actual
reported cases it is not taken into account that one individual might represent
multiple cases.

Denote the proportion of actual reported cases with 1− pa
0 and the esti-

mated (as before) with 1−p̂0, we would like to compare 1−pa
0 with 1−p̂0. First

we take a look at the estimations obtained with the bootstrapping method.
Tables 7.9 and 7.10 present a 95% confidence interval for 1− p̂0 and the prob-
ability 1− pa

0. A brief look in the tables reveal that the probability 1− pa
0 is

, as we expected, in all cases larger than the probability 1− p̂0.

year 95 % CI 1− pa
0

men 1997-1998 0.001122 0.001134 0.001352
1998-1999 0.001223 0.001238 0.001498
1999-2000 na na 0.001711

women 1997-1998 0.001417 0.001462 0.001898
1998-1999 na na 0.002058
1999-2000 na na 0.002284

Table 7.9: Estimated individual infection probability versus actual reported
proportion of cases, bootstrapping method
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year 95 % CI 1− pa
0

men 1997-1998 0.001125 0.001143 0.001352
1998-1999 0.001225 0.001245 0.001498
1999-2000 0.001370 0.001392 0.001711

women 1997-1998 0.001420 0.001446 0.001898
1998-1999 0.001506 0.001533 0.002058
1999-2000 0.001632 0.001657 0.002284

Table 7.10: Estimated individual infection probability versus actual reported
proportion of cases, profile likelihood
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Chapter 8

Previous studies and remarks

8.1 Previous studies

To round off, a brief comparison with two other studies on the reinfection risk
are performed. The first study is made by Ramstedt(1991). In this report
there is a retrospective study made at Sahlgrenska Hospital in Gothenburg,
Sweden. Data were collected in two 15 month periods, the first from Jan-
uary 1979 to March 1980 and the second from January 1983 to March 1984.
Out of 2181 observations 156 were reinfected within 12 months, that is the
probability to become reinfected is 0,0715. The second study was performed
in Denver, USA by Ritmaier er al.(2001). A retrospective cohort study that
took place at a STD clinic during one connected 30 month period, between
January 1997 and June 1998. The Study-population were at baseline 3568
individuals, (notice that not all were infected at baseline). At the end of the
study the number of infections and reinfections are summarized in Table 8.1

follow-up
yes no

baseline
yes 99 392
no 286 2791

Table 8.1: number of incidents

If we would like to compare the outcome of this study with the above,
one could conclude that the probability of reinfection given that at the first
control the patient is infected is much higher, 0,202.
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8.2 Remarks

8.2.1 Partition of data

The decision to partition data the way that was done was mostly due to time
consuming optimizations. It would be very interesting to partition the data
into smaller subsets. For example, to take into account that there is a higher
incidence of chlamydia during the younger years and partition data into, let’s
say four different age classes.

8.2.2 Bootstrap and profile likelihood

A result of this thesis was confidence intervals obtained from two different
approaches, bootstrapping and profile likelihood. Let us first take a look
at the probability to become infected, in Tables 7.1, 7.2, 7.3 and 7.4. The
width of the confidence intervals for the two different methods seems more or
less the same, they are slightly wider in the profile likelihood method. One
reason for this might be that the chosen step-length to calculate the profile
likelihood is too rough. This decreases the precision of the profile likelihood.
This can also be seen in the Figure 7.2, where the profile likelihood at one
point is irregular, this depending on a too rough step-length. It is possible
to narrow the step length, but then it will take longer time to calculate.
Now, lets turn to the confidence intervals of the reinfection risk illustrated
in Tables 7.5, 7.6, 7.7 and 7.8. The width of the confidence intervals of the
reinfection risk is also wider for the profile likelihood method, except for the
subpopulation ”female 1997/1998”.

With both methods we obtain acceptably narrow confidence intervals.
One divergence from that is the interval of the separate probabilities to be-
come infected i times, obtained with the bootstrapping method for women
1997/1998, see Appendix B Table B.3. One can see that the confidence in-
terval of parameter p4 looks a bit ”strange”. One should notice that it is not
strange, it is only the lower limits that are a bit wider not the upper.

The two methods does build on assumptions which don’t have to be true.
The main drawback with the confidence intervals of the profile likelihood
method is that we have to assume an asymptotic distribution, which might
not be fulfilled. With the confidence intervals obtained with the bootstrap-
ping method, we do assume that the observed outcome is the real distribu-
tion, which also is questionable.

Finally, both methods do assume doubtful initial approximations, still,
both methods exhibit almost the same confidence intervals and cover the
point estimates. This is a good indication that the confidence intervals ob-
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tained are of an acceptable quality.
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Appendix A

Figures
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Figure A.1: Difference between actual outcome and simulation 1998/1999,
women.
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Figure A.2: Difference between actual outcome and simulation 1998/1999,
men.
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Figure A.3: Difference between actual outcome and simulation 1999/2000,
women
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Figure A.4: Difference between actual outcome and simulation 1999/2000,
men
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Appendix B

Tables

i 95% CI(pi)
0 0.9988 0.9988
1 0.9380 ∗ 10−3 0.9689 ∗ 10−3

2 0.1434 ∗ 10−3 0.1582 ∗ 10−3

3 0.2005 ∗ 10−4 0.2692 ∗ 10−4

4 0.4494 ∗ 10−5 0.7955 ∗ 10−5

5 0 0.1011 ∗ 10−5

Table B.1: estimated probability that a man becomes infected i times 1997-
1998

i 95% CI(pi)
0 0.9987 0.9987
1 0.1013 ∗ 10−2 0.1045 ∗ 10−2

2 0.1605 ∗ 10−3 0.1762 ∗ 10−3

3 0.2886 ∗ 10−4 0.3633 ∗ 10−4

4 0.5410 ∗ 10−5 0.9274 ∗ 10−5

5 0.1900 ∗ 10−12 0.1425 ∗ 10−5

6 0.1086 ∗ 10−12 0.8514 ∗ 10−6

Table B.2: estimated probability that a man becomes infected i times 1998-
1999
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i 95% CI(pi)
0 0.9985 0.9985
1 0.1069 ∗ 10−2 0.1126 ∗ 10−2

2 0.2347 ∗ 10−3 0.2567 ∗ 10−3

3 0.6503 ∗ 10−4 0.8693 ∗ 10−4

4 0 0.2286 ∗ 10−4

5 0.2135 ∗ 10−5 0.5517 ∗ 10−5

6 0.1151 ∗ 10−8 0.1956 ∗ 10−5

7 0 0.7088 ∗ 10−6

Table B.3: estimated probability that a woman becomes infected i times
1997-1998
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