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Abstract

What can we do in order to reduce our long-term costs if we are a policy-
holder of an insurance? This is the problem this paper is about. One
concept is that we could choose to pay a possible damage ourselves in or-
der to prevent a future increase of the premium. This concept extends
with a way to determine an optimal excess. We balance here the lower
premium with the undertaking of paying a part of a possible damage our-
selves. Finally we examine if we would win anything by investing in any
damage preventive measures. Now we balance the advantages with a lower
premium and lower risk for damages with the actual costs of the measures.
A conclusion that could be drawn from this paper is that for at least some
insurances the costs for a policy-holder could be reduced quite much if
good choices are made.
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Preface

This is my Master’s thesis in mathematical statistics at Stockholm Uni-
versity. The problem this paper deals with is which choices policy-holders
should make in order to reduce their long-term costs. This paper should
be useful for people and companies that have an insurance. However, in-
surance companies could use this paper as well when they are going to
determine premiums. Perhaps this paper also could be used in similar ar-
eas if some changes are made. The theory used in this paper is how to
control a Markov process by making optimal choices. There are no theo-
rems and proofs in this paper. However if one realizes that the methods
in this paper are the same as in a book that describes the theory more
carefully there should be no question about if the results from this paper
are correct.

How should this paper be read? I think that one should first understand
chapter 2 in order to be familiar with the problem and the theory. Chap-
ter 3 should then be understood before going into the latter chapters. The
chapters in this paper are very similar to each other and once one has
understood the concept used it should not be too difficult to understand
this paper. However, the latter chapters could be quite messy but the
concept is still the same. The strategy in this paper should be possible
to understand from the figures. If the mathematical formulas are hard to
understand the results from the examples should hopefully be understood
anyway. The assumed values in these examples may be a little unrealistic.

Why did I choose to write about this? The reason is that my supervisor
recommended this theory and I wanted to write about something related
to insurance. After some time I figured out the problem in this paper.
The article mentioned in the reference list that my supervisor has written
have been very useful for me. I would like to thank my supervisor Anders
Martin-Löf for these things and for encouraging me to write about this.
I would also like to thank Monica Bäfverfeldt for her valuable comments
and for helping me with LATEX-related problems.

Michael Nilsson

m99mni@math.su.se
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Chapter 1

Introduction

A problem that there has been written a lot about is how an insurance company
should determine premiums for insurances. This is not the main reason for this paper
even if it could be useful for that purpose as well. The main purpose of this paper
is to examine what a policy-holder of an insurance can do in order to try to reduce
the long-term costs. This problem has not been written about to the same extent.
The concept is that we want to prevent future increases of the premium and instead
reduce them. In order to do this we deal with issues like, when to claim a damage,
what excess to have and which damage preventive measures to have. This should be
reasonable problems to analyze. However the immediate costs of some of these actions
might be too large and then it won’t be profitable, not even in the long run.

We can see the problem as a Markov decision process which uses the theory of dynamic
programming. We here control a Markov process by choosing optimal choices during
time. We will start by giving a short summary of what a Markov decision process is
in next chapter. This chapter is sort of a survey while the rest of this paper examines
these things more carefully.
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2 Introduction



Chapter 2

Markov Decision Processes

A Markov decision process is a Markov process that we can influence by different
decisions in frequent “decision epochs”. Assume that we have a Markov process with
transition probabilities given by P (i, j), that means that the probability for a transition
from state i to state j is given by P (i, j) where i, j = 1, 2, ..., N . Also assume that a
transition from state i to state j has a certain cost given by C(i, j). The last assumption
is that we can influence the transition probabilities and the transition costs through
a control variable u. I.e. the transition probabilities are P (i, j|u) instead and the
transition costs are C(i, j|u) when we are choosing the control u in state i, where
u(i) ∈ D(u(i)). D(u(i)) is not necessarily the same for every i.

What can be done in order to minimize the costs for a long period of time? In this
chapter we intend to minimize the total expected discounted cost during both a finite
and an infinite time horizon by choosing an optimal u(i) in every decision epoch. The
discount factor is given by r. We begin with the finite case.

2.1 Finite time-horizon

Let Vn(i) be the total expected discounted cost in n stages if an optimal policy is
followed and our present state is i. In other words Vn(i) is the expected present value
of all costs during the next n stages. An optimal policy means that in every decision
epoch we choose the control u that minimize the remaining expected discounted cost.
How do we determine Vn(i)? We use the simple principle that the total cost is the
sum of the immediate cost and future costs. Hence we must balance the the wish for
low immediate cost with increased future costs. With this principle in mind Vn(i) can
be determined from

Vn(i) = min
u





N
∑

j=1

P (i, j|u) · C(i, j|u) + r

N
∑

j=1

P (i, j|u) · Vn−1(j)



 (2.1)

3



4 Markov Decision Processes

The first part of the right side of (2.1) is the expected immediate cost and the second
part is the expected future costs. Equation (2.1) is sometimes called the equation of
dynamic programming. Assume that V0(i) are given ∀ i. In many cases V0(i)=0. Now
we can determine Vn(i) from (2.1) by iteration.

Example 1

This example is sort of a survey of this paper but has some obvious limitations. Com-
pare with section 6.2.

Imagine that we have a factory and for that factory we have an insurance against
fire, burglary and similar things. The insurance has three bonus classes with different
premiums. Let the state be given by (k, x). Here k is the bonus class during a year
and x is the cost of the damages during the same year. We assume that there are only
three possible amount of damages x1, x2 and x3. The insurance company has told
us that we can reduce our premium cost if we use some damage preventive measures.
These measures affect the probabilities for damages and hence also the transition prob-
abilities. We can also choose to pay the damages on our own so that we don’t loose
bonus and prevent an increase of the premium. The control variable u is thus given
by u = (u1, u2) where in this example

u1 =
(

1(if measure 1 is used next year), 1(if measure 2 is used next year)
)

Here measure 1 is a fire alarm and measure 2 is a watchman. For example if we choose
to use a firealarm but no watchman next year then u1 = (1, 0).

u2 = 1(if we pay the damage we had last year on our own)

So if we claim a damage u2 = 0. The changes of bonus classes are given by

k →











a(k, 1) if u2 = 0 and x = x1

a(k, 2) if u2 = 0 and x = x2

a(k, 3) if u2 = 0 and x = x3

Thus a(k, j) is the bonus class we will come to if we were in bonus class k and claim
the damage xj. In this example we have

a(k, j) =







1 2 3
1 3 3
2 3 3







On the other hand



2.1 Finite time-horizon 5

k → b(k) if u2 = 1 ∀ x

Thus b(k) is the bonus class we will come to if we are in bonus class k and pay the
damage on our own. Then naturally

b(k) =
(

1 1 2
)

The probability for having the damage xj when we have damage preventive measures
given by u1 is denoted pj(u1) = P (X = xj |u1) . Keep in mind that we know which
bonus class we will come to in the end of the year when we have observed X. Thus if
we claim a damage the transition probabilities are given by

P ((k, xi), (l, xj)|u = (u1, 0)) =





























p1(u1) p2(u1) p3(u1) 0 0 0 0 0 0
0 0 0 p1(u1) p2(u1) p3(u1) 0 0 0
0 0 0 0 0 0 p1(u1) p2(u1) p3(u1)

p1(u1) p2(u1) p3(u1) 0 0 0 0 0 0
0 0 0 0 0 0 p1(u1) p2(u1) p3(u1)
0 0 0 0 0 0 p1(u1) p2(u1) p3(u1)
0 0 0 p1(u1) p2(u1) p3(u1) 0 0 0
0 0 0 0 0 0 p1(u1) p2(u1) p3(u1)
0 0 0 0 0 0 p1(u1) p2(u1) p3(u1)





























and if we pay the damage on our own

P ((k, xi), (l, xj)|u = (u1, 1)) =





























p1(u1) p2(u1) p3(u1) 0 0 0 0 0 0
p1(u1) p2(u1) p3(u1) 0 0 0 0 0 0
p1(u1) p2(u1) p3(u1) 0 0 0 0 0 0
p1(u1) p2(u1) p3(u1) 0 0 0 0 0 0
p1(u1) p2(u1) p3(u1) 0 0 0 0 0 0
p1(u1) p2(u1) p3(u1) 0 0 0 0 0 0

0 0 0 p1(u1) p2(u1) p3(u1) 0 0 0
0 0 0 p1(u1) p2(u1) p3(u1) 0 0 0
0 0 0 p1(u1) p2(u1) p3(u1) 0 0 0




























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The corresponding transition costs are

C((k, xi), (l, xj)|u = (u1, 0)) =





















c(1, u1) c(1, u1) c(1, u1) 0 0 0 0 0 0
0 0 0 c(2, u1) c(2, u1) c(2, u1) 0 0 0
0 0 0 0 0 0 c(3, u1) c(3, u1) c(3, u1)

c(1, u1) c(1, u1) c(1, u1) 0 0 0 0 0 0
0 0 0 0 0 0 c(3, u1) c(3, u1) c(3, u1)
0 0 0 0 0 0 c(3, u1) c(3, u1) c(3, u1)
0 0 0 c(2, u1) c(2, u1) c(2, u1) 0 0 0
0 0 0 0 0 0 c(3, u1) c(3, u1) c(3, u1)
0 0 0 0 0 0 c(3, u1) c(3, u1) c(3, u1)





















and

C((k, xi), (l, xj)|u = (u1, 1)) =





















c(1, u1) + x1 c(1, u1) + x1 c(1, u1) + x1 0 0 0 0 0 0
c(1, u1) + x2 c(1, u1) + x2 c(1, u1) + x2 0 0 0 0 0 0
c(1, u1) + x3 c(1, u1) + x3 c(1, u1) + x3 0 0 0 0 0 0
c(1, u1) + x1 c(1, u1) + x1 c(1, u1) + x1 0 0 0 0 0 0
c(1, u1) + x2 c(1, u1) + x2 c(1, u1) + x2 0 0 0 0 0 0
c(1, u1) + x3 c(1, u1) + x3 c(1, u1) + x3 0 0 0 0 0 0

0 0 0 c(2, u1) + x1 c(2, u1) + x1 c(2, u1) + x1 0 0 0
0 0 0 c(2, u1) + x2 c(2, u1) + x2 c(2, u1) + x2 0 0 0
0 0 0 c(2, u1) + x3 c(2, u1) + x3 c(2, u1) + x3 0 0 0





















c(k, u1) = p(k, u1) + c(u1) where p(k, u1) is the premium cost for bonus class k when
we are using measures given by u1. c(u1) is the cost for using the measures given by
u1.

We assume the following values:

p1((0, 0)) = 0.68 p2((0, 0)) = 0.21 p3((0, 0)) = 0.11
p1((0, 1)) = 0.82 p2((0, 1)) = 0.14 p3((0, 1)) = 0.04
p1((1, 0)) = 0.75 p2((1, 0)) = 0.17 p3((1, 0)) = 0.08
p1((1, 1)) = 0.86 p2((1, 1)) = 0.11 p3((1, 1)) = 0.03

p(1, (0, 0)) = 6 p(2, (0, 0)) = 10 p(3, (0, 0)) = 14
p(1, (0, 1)) = 4 p(2, (0, 1)) = 6 p(3, (0, 1)) = 8
p(1, (1, 0)) = 5 p(2, (1, 0)) = 8 p(3, (1, 0)) = 11
p(1, (1, 1)) = 3 p(2, (1, 1)) = 5 p(3, (1, 1)) = 7

c((0, 0)) = 0 c((0, 1)) = 5.5 c((1, 0)) = 2.5 c((1, 1)) = 8

x1 = 0 x2 = 10 x3 = 60

r = 0.9

We make the following notations for the control variable u in order to make things
more clear.



2.2 Infinite time-horizon 7

((0, 0), 0) = 0
((0, 0), 1) = 1
((0, 1), 0) = 2
((0, 1), 1) = 3
((1, 0), 0) = 4
((1, 0), 1) = 5
((1, 1), 0) = 6
((1, 1), 1) = 7

The optimal choises and corresponding values for V for different horizons and states
are then:

u

state (1,x1) (1,x2) (1,x3) (2,x1) (2,x2) (2,x3) (3,x1) (3,x2) (3,x3)

n = 1 0 0 2 0 2 2 0 2 2
n = 2 0 4 2 0 2 2 4 2 2
n = 3 0 4 2 0 1 2 4 2 2

n = 100 0 4 2 0 1 2 4 2 2
n = 1000 0 4 2 0 1 2 4 2 2

V

state (1,x1) (1,x2) (1,x3) (2,x1) (2,x2) (2,x3) (3,x1) (3,x2) (3,x3)

n = 1 5.30 10.00 12.20 5.30 12.20 12.20 10.00 12.20 12.20
n = 2 11.79 16.51 21.60 11.79 21.60 21.60 16.51 21.60 21.60
n = 3 17.95 23.08 27.97 17.95 27.95 27.97 23.08 27.97 27.97

n = 100 74.59 79.67 84.83 74.59 84.59 84.83 79.67 84.83 84.83
n = 1000 74.59 79.67 84.83 74.59 84.59 84.83 79.67 84.83 84.83

So if we are in state (2, x2) we should choose no measures but pay the damage of 10
on our own if n ≥ 3. Vn will then be about 84.59 for large n.

2.2 Infinite time-horizon

In the case with an infinite horizon we let V (i) be the total expected discounted cost
for an infinite time period if an optimal policy is followed and our present state is i.
V (i) will be determined from the uniqe solution of

V (i) = min
u





N
∑

j=1

P (i, j|u) · C(i, j|u) + r

N
∑

j=1

P (i, j|u) · V (j)



 (2.2)

To find the solution of (2.2) we must follow the algorithm given below.
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1. Choose initial guesses uk(i), (k = 0), for the control u ∀ i.

2. Determine the corresponding Vk(i) from (2.2) by letting u = uk(i).

3. An improved control u = uk+1(i) can now be obtained by choosing the u ∀ i for
which

min
u





N
∑

j=1

P (i, j|u) · C(i, j|u) + r

N
∑

j=1

P (i, j|u) · Vk(j)





is obtained.

4. We must make step 2-3 again until we have found the optimal control u(i) which
we have done when Vk(i) has stopped decreasing ∀ i.

Example 1 (continued)

With this method the results are:

state (1,x1) (1,x2) (1,x3) (2,x1) (2,x2) (2,x3) (3,x1) (3,x2) (3,x3)

u 0 4 2 0 1 2 4 2 2
V 74.59 79.67 84.83 74.59 84.59 84.83 79.67 84.83 84.83

We see that this is exactly what we get when we have a long horizon in the finite case.



Chapter 3

A method to find the optimal

claim-decision

The example from the last chapter can have more bonus classes and more possible
damages but then things would be very unclear. We will now analyze things in an-
other way. This chapter describes many of the things that will be used in the rest of
this paper and should be read carefully.

Imagine that we are a policy holder of an insurance with a bonus system. It means
that the premium cost depends on which bonus class we belong to. The bonus classes
are k = 1, 2, . . . ,K with a premium of C(k) per year in bonus class k. However it’s
not necessary to see them as bonus classes. They could also be seen as different levels
of the premium cost, which in practice is the same thing. The damage X for a year is
the sum of all damages during the year and is supposed to be independent of damages
from other years. The distribution of X is given below, where F (x) is assumed to be
a distribution of a continuous stochastistic variable.

F ∗(x) = P (X ≤ x) = P (X ≤ x | X = 0)P (X = 0) + P (X ≤ x | X > 0)P (X > 0) =

= p0 + (1 − p0)F (x)

In this chapter we consider the following transitions for the bonus classes. The tran-
sitions occur at the beginning of every year. If a claim is made the change of a bonus
class k is

k → ak ∀ x

where x is the cost of the damage. If a claim is not made, i.e. we pay the damage
ourself, the change of a bonus class k is

9



10 A method to find the optimal claim-decision

k → bk ∀ x

Of course bk should be less than ak when a small value of k means a more desirable
bonus class than a high value of k. We assume that ak, bk, K and C(k) are known,
otherwise we have to make guesses about them. Hopefully the following analysis could
give us some useful information anyway. The parameter p0 and the distribution F (x)
are not known so they must be estimated.

As mentioned before this paper is about a strategy for minimizing the costs for a
policy holder of an insurance. In this chapter we can influence these costs through
the controlvariable u that could be chosen to a or b. The choice u = a means that we
claim the damage from a year which is a known amount. The choice u = b means that
we pay the damage on our own. These decisions are made at the end of every year.
Let (k, x) be the state of the Markov decision process, where k is the bonus class we
belonged to during a year and x is the amount of damages during the same year. The
transition probabilities are accordingly:

P [(k, x) → (uk, y)] = F ∗(dy)

where

uk =

{

ak if u = a

bk if u = b

We can now start to develop the strategy.

3.1 Infinite time-horizon

The following section is mainly what is described in the article by Anders Martin-Löf,
[2]. Let V (k, x) be the total expected discounted costs in state (k, x) during an infinite
time horizon with discount factor r under the optimal policy. V (k, x) can be deter-
mined from

V (k, x) = min
u

[

C(uk, x) + r

(

p0 · V (uk, 0) + (1 − p0)

∫

∞

0
V (uk, y)F (dy)

)]

where the immediate cost C(uk, x) is

C(uk, x) = C(k, x|u) =

{

c(ak) if u = a

c(bk) + x if u = b
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Here c(k) is the premium cost for bonus class k. After some consideration we realize
that the control variable u has the following form:

u =

{

b if x ≤ x(k)

a if x > x(k)

V (k, x) will look like figure 3.1. The line v(k) corresponds to claiming a damage and
the line w(k) − x(k) + x corresponds to paying the damage on our own. The thick
parts correspond to the optimal choice. x(k) is the x-value when it doesn’t matter if
we choose u = a or u = b. That is when V (k, x) has the same value for the two choices.
From figure 3.1 we see that when we have found the optimal values then w(k) = v(k).
The problem is thus to determine the optimal values for x(k) and v(k).

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x(k)

v(k)

x 

w(k) − x(k) 

V(k,x)

Figure 3.1: V (k, x) for a fix k.
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We now know that

V (k, x) =



























C(bk) + x + r
(

p0 · V (bk, 0) + (1 − p0)
∫

∞

0 V (bk, y)F (dy)
)

if x ≤ x(k)

C(ak) + r
(

p0 · V (ak, 0) + (1 − p0)
∫

∞

0 V (ak, y)F (dy)
)

if x > x(k)

(3.1)

We see from figure 3.1 that V (k, x) is of the form

V (k, x) = min[w(k) − x(k) + x; v(k)] (3.2)

or

V (k, x) =

{

w(k) − x(k) + x if x ≤ x(k)

v(k) if x > x(k)
(3.3)

for suitable choices of w(k) and v(k). This gives us the following expression for V (k, 0)
and

∫

∞

0 V (k, y)F (dy).

V (k, 0) = w(k) − x(k) := N(k)

∫

∞

0 V (k, y)F (dy) =
∫ x(k)
0 (w(k) − x(k) + y)F (dy) +

∫

∞

x(k) v(k)F (dy) =

= (w(k) − x(k))F (x(k)) + x(k)F (x(k)) − G(x(k)) + v(k)(1 − F (x(k))) =

= w(k)F (x(k)) − G(x(k)) + v(k)(1 − F (x(k))) := E(k)

where G(x) =
∫ x
0 F (y)dy

We have from (3.1) and (3.3) that

w(k) = C(bk) + x(k) + r
(

p0 · N(bk) + (1 − p0) · E(bk

)

v(k) = C(ak) + r
(

p0 · N(ak) + r · (1 − p0) · E(ak

) (3.4)

In order to find the optimal policy we should go on like this.

1. Choose initial guesses xj(k), (j = 0), for x(k) ∀ k.

2. Determine the corresponding wj(k) and vj(k) for w(k) and v(k) from (3.4). This
will be a system of equations.
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3. Determine the updated x(k) from

xj+1(k) = xj(k) + vj(k) − wj(k). (3.5)

The index j stands for the j-th iteration. (3.5) follows from (3.2).

4. Repete 2-3 until x(k) has converged ∀ k.

It could be interesting to compare this strategy with one where we always claim a
damage (except when the damage is zero). In that case just put x(k) = 0 ∀ k and
solve (3.4).

Example 2

Consider a factory with insurance against damages. Assume that there are 10 bonus-
classes. F (x) is assumed to have a Pareto-distribution with parameters α = 60 and
γ = 5, p0 is assumed to be 0.9. The expected value for the damage is then 0.1·15 = 1.5.
The discount factor is set to 0.9. Finally is this assumed:

k 1 2 3 4 5 6 7 8 9 10

ak 2 3 4 5 6 7 8 9 10 10
bk 1 1 2 3 4 5 6 7 8 9

C(k) 1 1 1.2 1.2 1.5 1.5 2 2 3 3

The results are with these values:

k 1 2 3 4 5 6 7 8 9 10

x(k) 0.021 0.259 0.478 0.780 1.063 1.530 1.979 2.891 3.504 1.586
v(k) 10.04 10.28 10.52 11.06 11.58 12.59 13.56 15.48 17.06 17.06

So if we have a damage of 1 during a year when we belong to bonus class 8 we should
pay the damage on our own since 1 < 2.89 and V (8, 1) = 15.48 − 2.89 + 1 = 13.59.

If we always claim a damage then we get these results:

k 1 2 3 4 5 6 7 8 9 10

w(k) 10.02 10.02 10.28 10.52 11.07 11.60 12.02 13.63 15.58 17.06
v(k) 10.04 10.28 10.52 11.07 11.60 12.62 13.63 15.58 17.17 17.17

Here the corresponding value is V (8, 1) = 15.58. We see that the difference is not so
big but that is mainly because p0 is quite large.

3.2 Finite time-horizon

This section is very similar to the previous one and therefore mostly the corresponding
formulas for the finite case will be given. Let Vn(k, x) be the total expected cost in n
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periods with discount factor r under the optimal policy.

Vn(k, x) = min
u

[

C(uk, x) + r

(

p0 · Vn−1(uk, 0) + (1 − p0)

∫

∞

0
Vn−1(uk, y)F (dy)

)]

where
V0(k, x) = 0

Vn(k, x) will look like figure 3.2 precisely as earlier and the control variable u has the
following form.

u =

{

b if x ≤ xn(k)

a if x > xn(k)

Hence

Vn(k, x) =



























C(bk) + x + r
(

p0 · Vn−1(bk, 0) + (1 − p0)
∫

∞

0 Vn−1(bk, y)F (dy)
)

if x ≤ xn(k)

C(ak) + r
(

p0 · Vn−1(ak, 0) + (1 − p0)
∫

∞

0 Vn−1(ak, y)F (dy)
)

if x >n x(k)

(3.6)

Vn(k, x) is of the form

Vn(k, x) = min[wn(k) − xn(k) + x; vn(k)]

or

Vn(k, x) =

{

wn(k) − xn(k) + x if x ≤ xn(k)

vn(k) if x > xn(k)
(3.7)

Vn(k, 0) and
∫

∞

0 Vn(k, y)F (dy) are then

Vn(k, 0) = wn(k) − xn(k) := Nn(k)

∫

∞

0 Vn(k, y)F (dy) = wn(k)F (xn(k)) − G(xn(k)) + vn(k)(1 − F (xn(k))) := En(k)
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Figure 3.2: Vn(k, x) for fix k and n.

We have from (3.6) and (3.7) that

wn(k) = C(bk) + xn(k) + r
(

p0 · Nn−1(bk) + (1 − p0) · En−1(bk)
)

vn(k) = C(ak) + r
(

p0 · Nn−1(ak) + (1 − p0) · En−1(ak)
) (3.8)

In order to find the optimal policy if our present state is (k∗, x∗) and the time horizon
is n∗ we should go on like this.

1. Do 2-5 for i = 1, 2, ..., n∗ − 1.

2. Choose initial guesses xij (k), (j = 0), for xi(k) ∀ k.

3. Determine the corresponding wij (k) and vij (k) for wi(k) and vi(k) from (3.8)

4. Determine the updated xi(k) from

xij+1 = xij (k) + vij (k) − wij (k).

5. Repete 3-4 until xi(k) has converged ∀ k.
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6. Do 2-5 for i = n∗ but only for k = k∗.

If we always claim a damage then put xi(k) = 0 ∀ k, i and make for i = 1, 2, ..., n∗ − 1
step 3 above ∀ k but for i = n∗ only for k = k∗.

Example 2 (continued)

The results are in this case for different n∗ :

k 1 2 3 4 5 6 7 8 9 10

x1(k) 0.000 0.200 0.200 0.300 0.300 0.500 0.500 1.000 1.000 0.000
v1(k) 1.000 1.200 1.200 1.500 1.500 2.000 2.000 3.000 3.000 3.000

x2(k) 0.018 0.218 0.389 0.489 0.587 0.787 0.992 1.492 1.814 0.814
v2(k) 1.918 2.118 2.307 2.607 2.894 3.394 3.886 4.886 5.700 5.700

x5(k) 0.021 0.257 0.466 0.754 0.980 1.389 1.685 2.462 2.918 1.207
v5(k) 4.120 4.357 4.586 5.111 5.566 6.500 7.251 8.962 10.17 10.17

x20(k) 0.021 0.259 0.478 0.780 1.063 1.530 1.979 2.891 3.504 1.586
v20(k) 8.822 9.060 9.300 9.840 10.36 11.37 12.34 14.26 15.85 15.85

x100(k) 0.021 0.259 0.478 0.780 1.063 1.530 1.979 2.891 3.504 1.586
v100(k) 10.04 10.28 10.52 11.06 11.58 12.59 13.56 15.48 17.06 17.06

We see that we get the same results as in the infinite case when n∗ is large enough.

Example 3

We will now use another example. This time with a factory that has a greater risk
for damages. The last example didn’t show how useful this strategy can be mainly
because of the high value of p0. Let us have the following situation instead. Assume
that there are 6 bonusclasses. F (x) is assumed to have a Pareto-distribution with pa-
rameters α = 24 and γ = 4, p0 is assumed to be 0.5. In practice this company probably
would have an excess but for now we assume that the company don’t have that. The
expected value for the damage is then 0.5 ·8 = 4. The discount factor is set to 0.9. The
transitions between bonus classes and the premium costs for different bonus classes are

k 1 2 3 4 5 6

ak 3 4 5 6 6 6
bk 1 1 1 2 3 4

C(k) 1 2.5 3.5 4.5 5.5 7

The results are in this case for n∗ = 1 and n∗ = 100:

k 1 2 3 4 5 6

x1(k) 2.500 3.500 4.500 4.500 3.500 2.500
v1(k) 3.500 4.500 5.500 7.000 7.000 7.000

x100(k) 3.470 6.621 8.642 10.33 9.023 5.872
v100(k) 25.46 28.612 30.63 34.48 34.48 34.48
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If we have a damage of 20 during a year when we belong to bonus class 4 we should
claim the damage and V100(4, 20) = 34.48.

If we always claim a damage then we get the result for n∗ = 100:

k 1 2 3 4 5 6

w100(k) 32.93 32.93 32.93 36.21 38.02 41.97
v100(k) 38.02 41.97 43.79 47.07 47.07 47.07

In this case the corresponding value is V100(4, 20) = 47.07. We see that this factory
has much to win if they follow the first strategy.
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Chapter 4

A method to find the optimal

claim-decision with thresholds

In the previous chapter it didn’t matter how big the damage was if we made a claim.
A reasonable assumption is that a large damage would result in a less desirable bonus
class than a small damage. We therefore extend the analysis with “thresholds”. For
these thresholds we will come to worse bonus classes if the damage exceeds them. From
now on we will always use a definite time horizon. The reasons for this are that it is
easier to analyze things and because we get the same results when n is large enough
we don’t have to use the infinite horizon.

4.1 One threshold

If a claim is made the change of a bonus class k is

k →

{

ak1 if x < x(1)(k)

ak2 if x ≥ x(1)(k)

This means that if x is greater than the threshold x(1)(k) we will come to the less
favourable bonus class ak2. If a claim is not made the change is

k → bk ∀ x

The transition probabilities are given by

P [(k, x) → (uk(x), y)] = F ∗(dy)

where

19
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uk(x) =















ak1 if u = a, x < x(1)(k)

ak2 if u = a, x ≥ x(1)(k)

bk if u = b, ∀ x

Vn(k, x) can in this case be determined from

Vn(k, x) = min
u

[

C(uk(x), x) + r
(

p0 · Vn−1(uk(x), 0) +

+(1 − p0)

∫

∞

0
Vn−1(uk(x), y)F (dy)

)]

where

C(uk(x), x) =















c(ak1) if u = a, x < x(1)(k)

c(ak2) if u = a, x ≥ x(1)(k)

c(bk) + x if u = b, ∀ x

and

V0(k, x) = 0

After some consideration we realize that Vn(k, x) will look like figure 4.1. x1
n(k) is the

first change b → a and x2
n(k) is the second change. When the iteration has converged

we have that w1
n(k) = v1

n(k), w2
n(k) = v2

n(k) and v2
n(k) − x2

n(k) = v1
n(k) − x1

n(k).

The controlvariable u has the following form:

u =























b if x ≤ x1
n(k)

a if x1
n(k) < x < x(1)(k)

b if x(1)(k) ≤ x ≤ x2
n(k)

a if x > x2
n(k)
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Figure 4.1: Vn(k, x) with one threshold.

This gives us:

Vn(k, x) =















































































C(bk) + x + r
(

p0 · Vn−1(bk, 0) + (1 − p0)
∫

∞

0 Vn−1(bk, y)F (dy)
)

if x ≤ x1
n(k)

C(ak1) + r
(

p0 · Vn−1(ak1, 0) + (1 − p0)
∫

∞

0 Vn−1(ak1, y)F (dy)
)

if x1
n(k) < x < x(1)(k)

C(bk) + x + r
(

p0 · Vn−1(bk, 0) + (1 − p0)
∫

∞

0 Vn−1(bk, y)F (dy)
)

if x(1)(k) ≤ x ≤ x2
n(k)

C(ak2) + r
(

p0 · Vn−1(ak2, 0) + (1 − p0)
∫

∞

0 Vn−1(ak2, y)F (dy)
)

if x > x2
n(k)

(4.1)

From figure 4.1 we see that

Vn(k, x) =

{

min[w1
n(k) − x1

n(k) + x; v1
n(k)] if x < x(1)(k)

min[w2
n(k) − x2

n(k) + x; v2
n(k)] if x ≥ x(1)(k)

(4.2)
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or

Vn(k, x) =























w1
n(k) − x1

n(k) + x if x ≤ x1
n(k)

v1
n(k) if x1

n(k) < x < x(1)(k)

w2
n(k) − x2

n(k) + x if x(1)(k) ≤ x ≤ x2
n(k)

v2
n(k) if x > x2

n(k)

(4.3)

for suitable w1
n(k), w2

n(k), v1
n(k) and v2

n(k).

If we look at figure 4.1 and move the threshold x(1)(k) to the left we will eventually
(when we pass x1

n(k)) have a situation that looks like figure 4.2. Now x(1)(k) and
x1

n(k) have no significance so if we, after determined x1
n(k), see that x(1)(k) < x1

n(k)

we introduce a new variable called x
(1)
n (k) and put x

(1)
n (k) = 0. We also put x1

n(k) = 0.
If we instead move the threshold x(1)(k) to the right we will eventually (when we pass
x2

n(k)) have a situation that looks like figure 4.3. So if x(1)(k) > x2
n(k) we now put

x2
n(k) = x(1)(k). We can now use the following expressions:

Vn(k, 0) = w1
n(k) − x1

n(k) := Nn(k)

and

∫

∞

0 Vn(k, y)F (dy) =

=
∫ x1

n(k)
0 (w1

n(k) − x1
n(k) + y)F (dy) +

∫ x
(1)
n (k)

x1
n(k) v1

n(k)F (dy)+

+
∫ x2

n(k)

x
(1)
n (k)

(w2
n(k) − x2

n(k) + y)F (dy) +
∫

∞

x2
n(k) v2

n(k)F (dy) =

= (w1
n(k) − x1

n(k))
∫ x1

n(k)
0 f(y)dy +

∫ x1
n(k)

0 yf(y)dy + v1
n(k)

∫ x
(1)
n (k)

x1
n(k) f(y)dy+

+(w2
n(k) − x2

n(k))
∫ x2

n(k)

x
(1)
n (k)

f(y)dy +
∫ x2

n(k)

x
(1)
n (k)

yf(y)dy + v2
n(k)

∫

∞

x2
n(k) f(y)dy =

= (w1
n(k) − x1

n(k))F (x1
n(k)) + x1

n(k)F (x1
n(k)) − G(x1

n(k))+

+v1
n(k)

(

F (x
(1)
n (k)) − F (x1

n(k))
)

+ (w2
n(k) − x2

n(k))
(

F (x2
n(k)) − F (x

(1)
n (k))

)

+

+x2
n(k)F (x2

n(k)) − x
(1)
n (k)F (x

(1)
n (k)) − G(x2

n(k)) + G(x
(1)
n (k)) + v2

n(k)
(

1 − F (x2
n(k))

)

:= En(k)
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Figure 4.2: Vn(k, x).

We see from (4.1) and (4.3) that

w1
n(k) = C(bk) + x1

n(k) + r
(

p0 · Nn−1(bk) + (1 − p0) · En−1(bk)
)

v1
n(k) = C(ak1) + r

(

p0 · Nn−1(ak1) + (1 − p0) · En−1(ak1)
)

w2
n(k) = C(bk) + x2

n(k) + r
(

p0 · Nn−1(bk) + (1 − p0) · En−1(bk)
)

v2
n(k) = C(ak2) + r

(

p0 · Nn−1(ak2) + (1 − p0) · En−1(ak2)
)

(4.4)

In order to find the optimal policy if our present state is (k∗, x∗) and the horizon is n∗

we should go on like this.

1. Do 2-5 for i = 1, 2, ..., n∗ − 1

2. Choose initial guesses x1
ij

(k) and x2
ij

(k), (j = 0), for x1
i (k) and x2

i (k) ∀ k.

3. Determine the corresponding w1
ij
(k), w2

ij
(k), v1

ij
(k) and v2

ij
(k) for w1

i (k), w2
i (k),

v1
i (k) and v2

i (k) from (4.4)
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Figure 4.3: Vn(k, x).

4. Determine the updated x1
i (k) and x2

i (k) from

x1
ij+1

(k) = x1
ij

(k) + v1
ij
(k) − w1

ij
(k)

x2
ij+1

(k) = x2
ij

(k) + v2
ij

(k) − w2
ij

(k).
(4.5)

(4.5) follows from (4.2).

5. Repete 3-4 until x1
i (k) and x2

i (k) have convergated ∀ k.

6. Do 2-5 for i = n∗ but only for k = k∗.

If we always want to claim a damage just put x1
i (k) = 0 and x2

i (k) = 0 ∀ k, i. Then
make for i = 1, 2, ..., n∗ − 1 step 3 above ∀ k but for i = n∗ only for k = k∗. Then we
will get the result.
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Example 2 (continued)

We use the same values as before but we have to assume some values for ak1, ak2 and
x(1)(k).

k 1 2 3 4 5 6 7 8 9 10

ak1 2 3 4 5 6 7 8 9 10 10
ak2 3 4 5 6 7 8 9 10 10 10

x(1)(k) 1 0.5 1.5 1 2 1.5 2.5 2 0 0

The results are in this case for different n∗:

k 1 2 3 4 5 6 7 8 9 10

x1
1(k) 0.000 0.200 0.200 0.300 0.300 0.500 0.500 1.000 1.000 0.000

x2
1(k) 0.200 0.200 0.500 0.300 0.800 0.500 1.500 2.000 0.000 0.000

v1
1(k) 1.000 1.200 1.200 1.500 1.500 2.000 2.000 3.000 3.000 3.000

v2
1(k) 1.200 1.200 1.500 1.500 2.000 2.000 3.000 3.000 3.000 3.000

x1
2(k) 0.001 0.225 0.389 0.503 0.587 0.823 0.992 1.419 1.814 0.814

x2
2(k) 0.225 0.390 0.727 0.752 1.161 1.242 1.992 2.233 1.814 0.814

v1
2(k) 1.918 2.142 2.307 2.645 2.894 3.468 3.886 4.886 5.700 5.700

v2
2(k) 2.142 2.307 2.645 2.894 3.468 3.886 4.886 5.700 5.700 5.700

x1
5(k) 0.020 0.278 0.502 0.785 1.033 1.458 1.758 2.378 2.776 1.189

x2
5(k) 0.278 0.522 1.043 1.277 2.000 2.249 3.344 3.567 2.776 1.189

v1
5(k) 4.183 4.441 4.685 5.226 5.718 6.684 7.475 9.062 10.25 10.25

v2
5(k) 4.441 4.685 5.226 5.718 6.684 7.475 9.062 10.25 10.25 10.25

x1
20(k) 0.025 0.293 0.538 0.874 1.182 1.684 2.130 2.877 3.386 1.532

x2
20(k) 0.293 0.563 1.143 1.451 2.289 2.707 3.984 4.409 3.386 1.532

v1
20(k) 9.016 9.285 9.554 10.16 10.74 11.84 12.87 14.72 16.25 16.25

v2
20(k) 9.285 9.554 10.16 10.74 11.84 12.87 14.72 16.25 16.25 16.25

x1
100(k) 0.025 0.293 0.538 0.874 1.182 1.684 2.131 2.878 3.386 1.532

x2
100(k) 0.293 0.563 1.143 1.451 2.289 2.708 3.985 4.410 3.386 1.532

v1
100(k) 10.27 10.54 10.81 11.41 11.99 13.10 14.12 15.97 17.51 17.51

v2
100(k) 10.54 10.81 11.41 11.99 13.10 14.12 15.97 17.51 17.51 17.51

We see that the values of V (k, x) are a bit higher now which is natural. For example
V100(8, 1) = 15.97 − 2.88 + 1 = 14.09. If we always want to claim a damage then the
results are:

k 1 2 3 4 5 6 7 8 9 10

w1
100(k) 10.25 10.25 10.27 10.54 10.82 11.43 12.03 13.16 14.23 16.11

v1
100(k) 10.27 10.54 10.82 11.43 12.03 13.16 14.23 16.11 17.64 17.64

v2
100(k) 10.54 10.82 11.43 12.03 13.16 14.23 16.11 17.64 17.64 17.64

Here V100(8, 1) = 16.11. We see again that the difference is not so big.
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4.2 Several thresholds

If a claim is made the change of a bonus class k is

k → akt if x(t−1)(k) ≤ x < x(t)(k), t = 1, 2, .., T, T + 1

where x(0)(k) = 0, x(T+1)(k) = ∞ and T = number of thresholds .

If x is greater than threshold t, x(t)(k), we will come to bonus class ak(t+1). If a claim
is not made the change is

k → bk ∀ x

The transition probabilities are given by

P [(k, x) → (uk(x), y)] = F ∗(dy)

where

uk(x) =

{

akt if u = a, x(t−1)(k) ≤ x < x(t)(k)

bk if u = b, ∀ x

Vn(k, x) can be determined from

Vn(k, x) = min
u

[

C(uk(x), x) + r
(

p0 · Vn−1(uk(x), 0) +

+(1 − p0)

∫

∞

0
Vn−1(uk(x), y)F (dy)

)]

where

C(uk(x), x) =

{

c(akt) if u = a, x(t−1)(k) ≤ x < x(t)(k)

c(bk) + x if u = b, ∀ x

and

V0(k, x) = 0

We now realize that Vn(k, x) will look like figure 4.4. Here xt
n(k) stands for the t:th

change b → a. When the iteration has converged we have that wt
n(k) = vt

n(k) and
vt
n(k) − xt

n(k) = vt−1
n (k) − xt−1

n (k).
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Figure 4.4: Vn(k, x) with two thresholds (T = 2).

The controlvariable u has the following form:

u =

{

b if x(t−1)(k) ≤ x ≤ xt
n(k)

a if xt
n(k) < x < x(t)(k)

which gives us

Vn(k, x) =































C(bk) + x + r
(

p0 · Vn−1(bk, 0) + (1 − p0)
∫

∞

0 Vn−1(bk, y)F (dy)
)

if x
(t−1)
n (k) < x ≤ xt

n(k)

C(akt) + r
(

p0 · Vn−1(akt, 0) + (1 − p0)
∫

∞

0 Vn−1(akt, y)F (dy)
)

if xt
n(k) < x ≤ x(t)(k)

(4.6)

From figure 4.4 we see that

Vn(k, x) = min[wt
n(k) − xt

n(k) + x; vt
n(k)] if x(t)(k) ≤ x < x(t+1)(k)
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or

Vn(k, x) =

{

wt
n(k) − xt

n(k) + x if x(t−1)(k) < x ≤ xt
n(k)

vt
n(k) if xt

n(k) < x ≤ x(t)(k)
(4.7)

for suitable wt
n(k) and vt

n(k).

If we look at figure 4.4 and move the threshold x(1)(k) to the left and move the thresh-
old x(2)(k) to the right we will have a situation that looks like figure 4.5. Now x(1)(k),
x1

n(k) and x3
n(k) have no significance. What should be done in general for being able

to use the expression En(k) for
∫

∞

0 Vn(k, y)F (dy) given below? We will give a rule for
this.

Rule 1

The general rule for being able to use the expression En(k) is:

Put x
(t)
n (k) := x(t)(k) ∀ k, n, t

if x
(t)
n (k) < xt

n(k) put xt
n(k) = x

(t−1)
n (k) and x

(t)
n (k) = x

(t−1)
n (k)

if x
(t)
n (k) > xt+1

n (k) put xt+1
n (k) = x

(t)
n (k)

for t = 1, 2, ..., T

We can now use the following:

Vn(k, 0) = w1
n(k) − x1

n(k) := Nn(k)

and

∫

∞

0 Vn(k, y)F (dy) =

=
∫ x1

n(k)
0 (w1

n(k) − x1
n(k) + y)F (dy) +

∫ x
(1)
n (k)

x1
n(k) v1

n(k)F (dy) + ...

... +
∫ xT+1

n (k)

x
(T )
n (k)

(wT+1
n (k) − xT+1

n (k) + y)F (dy) +
∫

∞

xT+1
n (k)

vT+1
n (k)F (dy) =

= (w1
n(k) − x1

n(k))F (x1
n(k)) +

∑T+1
i=1 [xi

n(k)F (xi
n(k)) − G(xi

n(k))]+

+
∑T

i=1[v
i
n(k)

(

F (x
(i)
n (k)) − F (xi

n(k))
)

+ G(x
(i)
n (k)) − x

(i)
n (k)F (x

(i)
n (k))]+

+
∑T+1

i=2 [(wi
n(k) − xi

n(k))(F (xi
n(k)) − F (x

(i−1)
n (k)))] + vT+1

n (k)
(

1 − F (xT+1
n (k))

)

:= En(k)
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Figure 4.5: Vn(k, x) with two thresholds (T = 2).

We see from (4.6) and (4.7) that

wt
n(k) = C(bk) + xt

n(k) + r
(

p0 · Nn−1(bk) + (1 − p0) · En−1(bk)
)

vt
n(k) = C(akt) + r

(

p0 · Nn−1(akt) + (1 − p0) · En−1(akt)
) (4.8)

In order to find the optimal policy if our present state is (k∗, x∗) and the horizon is n∗

we should go on like this.

1. Do 2-5 for i = 1, 2, ..., n∗ − 1.

2. Choose initial guesses xt
ij

(k), (j = 0), for xt
i(k) ∀k, t.

3. Determine the corresponding wt
ij

(k) and vt
ij
(k) for wt

i(k) and vt
i(k) from (4.8)

4. Determine the updated xt
i(k) from

xt
ij+1

(k) = xt
ij
(k) + vt

ij
(k) − wt

ij
(k).
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5. Repete 3-4 until xt
i(k) has convergated ∀k, t.

6. Make 2-5 for i = n∗ but only for k = k∗.

If we always want to claim a damage just put xt
i(k) = 0 ∀ k, t, i. Then make for

i = 1, 2, ..., n∗ − 1 step 3 above ∀ k, t but for i = n∗ only for k = k∗. Then we will get
the result.

Example 3 (continued)

We now extend with following values:

k 1 2 3 4 5 6

ak1 3 4 5 6 6 6
ak2 4 5 6 6 6 6
ak3 5 6 6 6 6 6
bk 1 1 1 2 3 4

x(1)(k) 2 4 8 0 0 0

x(2)(k) 10 15 0 0 0 0
C(k) 1 2.5 3.5 4.5 5.5 7

The results are in this case for n∗ = 1 and n∗ = 100:

k 1 2 3 4 5 6

x1
1(k) 2.500 3.500 4.500 4.500 3.500 2.500

x2
1(k) 3.500 4.500 6.000 4.500 3.500 2.500

x3
1(k) 4.500 6.000 6.000 4.500 3.500 2.500

v1
1(k) 3.500 4.500 5.500 7.000 7.000 7.000

v2
1(k) 4.500 5.500 7.000 7.000 7.000 7.000

v3
1(k) 5.500 7.000 7.000 7.000 7.000 7.000

x1
100(k) 3.034 5.471 7.386 8.820 7.617 5.180

x2
100(k) 5.471 7.386 10.65 8.820 7.617 5.180

x3
100(k) 7.386 10.65 10.65 8.820 7.617 5.180

v1
100(k) 31.73 34.17 36.08 39.35 39.35 39.35

v2
100(k) 34.17 36.08 39.35 39.35 39.35 39.35

v3
100(k) 36.08 39.35 39.35 39.35 39.35 39.35

We see for example that V100(4, 20) = 39.35. If we always claim a damage then we get
these results:

k 1 2 3 4 5 6

w1
100(k) 39.02 39.02 39.02 41.37 43.28 45.65

v1
100(k) 43.28 45.65 47.51 50.08 50.08 50.08

v2
100(k) 45.65 47.51 50.08 50.08 50.08 50.08

v3
100(k) 47.51 50.08 50.08 50.08 50.08 50.08

Here V100(4, 20) = 50.08.



Chapter 5

A method to find the optimal

claim-decision and excess

Most policy holders of insurances have an excess and we will now extend the previous
method with how to decide which excess to have next year. We assume that the
policy-holders can choose between a number of excesses. Naturally the limit when we
will start to claim a damage will be greater than the excess. Let now the state be
given by (k, x, xs) where k and x are as before and xs is the excess during the same
year. The control variables are now u ∈ [a, b] and U ∈ D(Xs) where U = X1

s means
that the chosen excess for next year is X1

s . D(Xs) is assumed to be a finite set.

5.1 Without thresholds

The changes of bonus classes are the same as in chapter 3 and the transition proba-
bilities are

P [(k, x, xs) → (uk, y, U)] = F ∗(dy)

where uk is the same as before. Vn(k, x, xs) can now be determined from

Vn(k, x, xs) = min
u,U

[

C(uk, x, xs, U) + r
(

p0 · Vn−1(uk, 0, U) +

+(1 − p0)

∫

∞

0
Vn−1(uk, y, U)F (dy)

)]

where

V0(k, x, xs) = min(x, xs)

31
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since we must pay the part of the damage that is less than the excess.

C(uk, x, xs, U) =

{

c(ak, Xs) + min(x, xs) if u = a, U = Xs

c(bk, Xs) + x if u = b, U = Xs

Here c(k,Xs) is the premium when we have the excess Xs in bonus class k. For a fix
choice U = Xs next period Vn(k, x, xs|U = Xs) will be

Vn(k, x, xs|U = Xs) = min
u

[

C(uk, x, xs , Xs) + r
(

p0 · Vn−1(uk, 0, Xs) +

+(1 − p0)

∫

∞

0
Vn−1(uk, y,Xs)F (dy)

)]

We realize that the controlvaraible (u|U = Xs) has the form

(u|U = Xs) =

{

b if x ≤ xn(k, xs, Xs)

a if x > xn(k, xs, Xs)

where xn(k, xs, Xs) > xs. A plot of Vn(k, x, xs|U = Xs) looks like figure 5.1.
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Figure 5.1: Vn(k, x, xs|U = Xs).

Now we can write:
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Vn(k, x, xs|U = Xs) =























































C(bk, Xs) + x + r
(

p0 · Vn−1(bk, 0, Xs)+

(1 − p0)
∫

∞

0 Vn−1(bk, y,Xs)F (dy)
)

if x ≤ xn(k, xs, Xs)

C(ak, Xs) + xs + r
(

p0 · Vn−1(ak, 0, Xs)+

(1 − p0)
∫

∞

0 Vn−1(ak, y,Xs)F (dy)
)

if x > xn(k, xs, Xs)

(5.1)

From figure 5.1 we see that Vn(k, x, xs|U = Xs) can be expressed as

Vn(k, x, xs|U = Xs) = min[wn(k, xs, Xs) − xn(k, xs, Xs) + x; vn(k, xs, Xs)]

or

Vn(k, x, xs|U = Xs) =

{

wn(k, xs, Xs) − xn(k, xs, Xs) + x if x ≤ xn(k, xs, Xs)

vn(k, xs, Xs) if x > xn(k, xs, Xs)
(5.2)

From (5.1) and (5.2) we have

wn(k, xs, Xs) = C(bk, Xs) + xn(k, xs, Xs)+

+r
(

p0 · Nn−1(bk, Xs) + (1 − p0)En−1(bk, Xs)
)

vn(k, xs, Xs) = C(ak, Xs) + xs+

+r
(

p0 · Nn−1(ak, Xs) + (1 − p0)En−1(ak, Xs)
)

(5.3)

where

Nn(k, xs) = Vn(k, 0, xs)

En(k, xs) =
∫

∞

0 Vn(k, y, xs)F (dy)

When we have several choices for U in next period Vn(k, x, xs) looks like figure 5.2
where
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Figure 5.2: Vn(k, x, xs).

x∗

n(k, xs) = min
U

(

vn(k, xs, U)
)

− min
U

(

wn(k, xs, U) − xn(k, xs, U)
)

When we have studied the figure and determined x∗

n(k, xs) we can determine the fol-
lowing:

Nn(k, xs) = Vn(k, 0, xs) = min
U

(

wn(k, xs, U) − xn(k, xs, U)
)

and

En(k, xs) =

∫

∞

0
Vn(k, y, xs)F (dy) =

=

∫ x∗n(k,xs)

0
(min

U
[wn(k, xs, U) − xn(k, xs, U)] + y)F (dy)+

+

∫

∞

x∗n(k,xs)
min

U
[vn(k, xs, U)]F (dy) =

= min
U

[wn(k, xs, U) − xn(k, xs, U)]F (x∗

n(k, xs)) + x∗

n(k, xs)F (x∗

n(k, xs))+
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−G(x∗

n(k, xs)) + min
U

[v∗n(k, xs)(1 − F (x∗

n(k, xs)))]

We see from figure 5.2 that the controlvariables are

(u,U) =

{

(b, [U : min(wn(k, xs, U) − xn(k, xs, U))]) if x ≤ x∗

n(k, xs)
(a, [U : min(vn(k, xs, U))]) if x > x∗

n(k, xs)

If our present state is (k∗, x∗, x∗

s) and our horizon is n∗ then we should go on like this
to get the optimal decisions

1. Do 2-6 for i = 1, 2, ..., n∗ − 1.

2. Choose initial guesses xij (k, xs, Xs) > xs, (j = 0), for xi(k, xs, Xs) ∀k, xs, Xs

3. Determine the corresponding wij (k, xs, Xs) and vij (k, xs, Xs) for wi(k, xs, Xs)
and vi(k, xs, Xs) from (5.3)

4. Update xi(k, xs, Xs) from

xij+1(k, xs, Xs) = xij (k, xs, Xs) + vij (k, xs, Xs) − wij (k, xs, Xs)

5. Repete 3-4 until xi(k, xs, Xs) has converged ∀ k, xs, Xs.

6. Determine

x∗

i (k, xs),

min
U

[wi(k, xs, U) − xi(k, xs, U)] and

min
U

(vi(k, xs, U))

7. Do 2-6 for i = n∗ but this time only for k = k∗ and xs = x∗

s, but still ∀ Xs.
Determine also Uw = [U : min(wn∗(k

∗, x∗

s, U) − xn∗(k
∗, x∗

s, U))] and Uv = [U :
min(vn∗(k

∗, x∗

s, U))]. These give us the optimal excess.

Example 2 (continued)

We assume that we can choose among the following excesses.

D(Xs) = [0 5 10 20]
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The premium costs for different bonus classes and excesses are

c(k,Xs) =





































1.00 0.65 0.45 0.30
1.00 0.65 0.45 0.30
1.20 0.80 0.60 0.40
1.20 0.80 0.60 0.40
1.50 1.00 0.90 0.55
1.50 1.00 0.90 0.55
2.00 1.40 1.20 0.65
2.00 1.40 1.20 0.65
3.00 1.90 1.60 0.80
3.00 1.90 1.60 0.80





































The results are with the following explanation of the rows: (we assume that our excess
last year was 0)

k

x∗

n∗(k, 0)

Uw(k, 0)

min
U

[wn∗(k, 0, U) − xn∗(k, 0, U)]

Uv(k, 0)

min
U

[vn∗(k, 0, U)]

n∗ = 1

1 2 3 4 5 6 7 8 9 10
0.000 0.170 0.170 0.200 0.200 0.203 0.203 0.150 0.150 0.000

0 0 0 5 5 5 5 20 20 20
1.000 1.000 1.000 1.170 1.170 1.370 1.370 1.573 1.573 1.723

0 5 5 5 5 20 20 20 20 20
1.000 1.170 1.170 1.370 1.370 1.573 1.573 1.723 1.723 1.723
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and

n∗ = 100

1 2 3 4 5 6 7 8 9 10
0.018 0.205 0.367 0.551 0.712 0.821 0.912 0.976 1.018 0.475

0 0 0 5 5 5 5 20 20 20
10.02 10.02 10.03 10.22 10.40 10.77 11.11 11.59 12.03 12.57

0 5 5 5 5 20 20 20 20 20
10.03 10.22 10.40 10.77 11.11 11.59 12.03 12.57 13.04 13.04

Here V100(8, 1, 0)=12.57. We see that that we can save a little bit if we choose optimal
excesses because in chapter 3 we had that V100(8, 1)=13.59.

5.2 With thresholds

The changes of bonus classes are the same as in section 4.2 and the transition proba-
bilities are

P [(k, x, xs) → (uk(x), y, U)] = F ∗(dy)

where uk(x) is described in section 4.2. Vn(k, x, xs) can be determined from

Vn(k, x, xs) = min
u,U

[

C(uk(x), x , xs, U) + r
(

p0 · Vn−1(uk(x), 0, U) +

+(1 − p0)

∫

∞

0
Vn−1(uk(x), y, U)F (dy)

)]

where

V0(k, x, xs) = min(x, xs)

and

C(uk(x), x, xs, U) =

{

c(akt, Xs) + min(x, xs) if u = a, U = Xs, x(t−1)(k) ≤ x < x(t)(k)
c(bk, Xs) + x if u = a, U = Xs, ∀x

For a fix choice U = Xs next period Vn(k, x, xs|U = Xs) will be

Vn(k, x, xs|U = Xs) = min
u

[

C(uk(x ) , x, xs, Xs) + r
(

p0 · Vn−1(uk(x), 0, Xs)

+(1 − p0)

∫

∞

0
Vn−1(uk(x), y,Xs)F (dy)

)]
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The controlvariable (u|U = Xs) has the form

(u|U = Xs) =

{

b if x(t−1)(k) ≤ x ≤ xt
n(k, xs, Xs)

a if xt
n(k, xs, Xs) < x < x(t)(k)

A plot of Vn(k, x, xs|U = Xs) look like figure 5.3.
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Figure 5.3: Vn(k, x, xs|U = Xs).

Now we can write:

Vn(k, x, xs|U = Xs) =























































C(bk, Xs) + x + r
(

p0 · Vn−1(bk, 0, Xs)+

+ (1 − p0)
∫

∞

0 Vn−1(bk, y,Xs)F (dy)
)

if x(t−1)(k) ≤ x ≤ xt
n(k, xs, Xs)

C(akt, Xs) + xs + r
(

p0 · Vn−1(akt, 0, Xs)+

+ (1 − p0)
∫

∞

0 Vn−1(akt, y,Xs)F (dy)
)

if xt
n(k, xs, Xs) < x < x(t)(k)

(5.4)
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From figure 5.3 we see that

Vn(k, x, xs|U = Xs) = min[wt
n(k, xs, Xs) − xt

n(k, xs, Xs) + x; vt
n(k, xs, Xs)]

if x(t−1)(k) ≤ x < x(t)(k)

or

Vn(k, x, xs|U = Xs) =



























wt
n(k, xs, Xs) − xt

n(k, xs, Xs) + x

if x(t−1)(k) ≤ x ≤ xt
n(k, xs, Xs)

vt
n(k, xs, Xs)

if xt
n(k, xs, Xs) < x < x(t)(k)

(5.5)

(5.4) and (5.5) give us

wt
n(k, xs, Xs) = C(bk, Xs) + xt

n(k, xs, Xs)+

+r(p0 · Nn−1(bk, Xs) + (1 − p0)En−1(bk, Xs)

vt
n(k, xs, Xs) = C(akt, Xs) + xs+

+r(p0 · Nn−1(akt, Xs) + (1 − p0)En−1(akt, Xs)

(5.6)

where

Nn(k, xs) = Vn(k, 0, xs)

En(k, xs) =
∫

∞

0 Vn(k, y, xs)F (dy)

When we have several choices for U next year Vn(k, x, xs) looks like figure 5.4 where

xt∗
n (k, xs) = min

U

(

vt
n(k, xs, U

)

− min
U

(

wt
n(k, xs, U) − xt

n(k, xs, U)
)

When we have studied the figure and determined xt∗
n (k, xs) we must use the following

rule.
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Figure 5.4: Vn(k, x, xs) with two possible excesses.

Rule 2

Put x
(t)
n (k, xs) := x(t)(k) ∀ k, n, t, xs

if x
(t)
n (k, xs) < xt∗

n (k, xs) put xt∗
n (k, xs) = x

(t−1)
n (k, xs) and x

(t)
n (k, xs) = x

(t−1)
n (k, xs)

if x
(t)
n (k, xs) > x

(t+1)∗
n (k, xs) put x

(t+1)∗
n (k, xs) = x

(t)
n (k, xs)

for t = 1, 2, ..., T, T + 1

Now we can determine the following:

Nn(k, xs) = Vn(k, 0, xs) = min
U

(

w1
n(k, xs, U) − x1

n(k, xs, U)
)

and

En(k, xs) =

∫

∞

0
Vn(k, y, xs)F (dy) =

=

∫ x∗n(k,xs)

0
(min

U
[w1

n(k, xs, U) − x1
n(k, xs, U)] + y)F (dy)+
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+

∫ x
(1)
n (k,xs)

x∗n(k,xs)
min

U
[v1

n(k, xs, U)]F (dy) + ...

... +

∫ x
(T+1)∗
n (k,xs)

x
(T )
n (k,xs)

(min
U

[wT+1
n (k, xs, U) − xT+1

n (k, xs, U)] + y)F (dy)+

+

∫

∞

x
(T+1)∗
n (k,xs)

min
U

[vT+1
n (k, xs, U)]F (dy) =

= min
U

[w1
n(k, xs, U) − x1

n(k, xs, U)]F (x∗

n(k, xs))+

+
T+1
∑

i=1

[

xi∗
n (k, xs)F (xi∗

n (k, xs)) − G(xi∗
n (k, xs))

]

+

+
T

∑

i=1

[

min
U

[vi∗
n (k, xs, U)](F (x(i)

n (k, xs) − F (xi∗
n (k, xs)))+

+G(x(i)
n (k, xs)) − x(i)

n (k, xs)F (x(i)
n (k, xs))

]

+

+
T+1
∑

i=2

[

min
U

(wi
n(k, xs, U) − xi

n(k, xs, U))(F (xi∗
n (k, )xs) − F (x(i−1)

n (k, xs)))
]

+

+min
U

[

vT+1
n (k, xs, U)(1 − F (x(T+1)∗

n (k, xs)))
]

The controlvariables are

(u,U) =











(b, [U : min(wt
n(k, xs, U) − xt

n(k, xs, U)]) if x
(t−1)
n (k, xs) ≤ x ≤ xt∗

n (k, xs)

(a, [U : min(vt
n(k, xs, U)]) if xt∗

n (k, xs) < x < x
(t)
n (k, xs)

t = 1, 2, .., T, T + 1

If our present state is (k∗, x∗, x∗

s) and our horizon is n∗ then we should go on like this
to get the optimal decisions:

1. Do 2-6 for i = 1, 2, .., n∗ − 1.

2. Choose initial guesses xt
ij
(k, xs, Xs) > xs, (j = 0), for xt

i(k, xs, Xs) > xs ∀ t, k, xs, Xs
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3. Determine the corresponding wt
ij

(k, xs, Xs) and vt
ij
(k, xs, Xs) for wt

i(k, xs, Xs)

and vt
i(k, xs, Xs) from (5.6).

4. Update xt
i(k, xs, Xs) from

xt
ij+1

(k, xs, Xs) = xt
ij

(k, xs, Xs) + vt
ij
(k, xs, Xs) − wt

ij
(k, xs, Xs)

5. Repete 3-4 until xt
i(k, xs, Xs) has converged ∀ t, k, xs, Xs.

6. Determine

xt∗
i (k, xs),

min
U

[wt
i(k, xs, U) − xt

i(k, xs, U)] and

min
U

(vt
i(k, xs, U))

7. Do 2-6 for i = n∗ but this time only for k = k∗ and xs = x∗

s but ∀ Xs. De-
termine also U t

w = [U : min(wt
n∗(k

∗, x∗

s, U) − xt
n∗(k

∗, x∗

S , U))] and U t
v = [U :

min(vt
n∗(k

∗, x∗

s, U)]

Example 3 (continued)

We assume that we can choose among the following excesses.

D(Xs) = [0 5 10 20]

The premium costs for different bonus classes and excesses are

c(k,Xs) =



















1.00 0.70 0.60 0.55
2.50 1.70 1.50 1.40
3.50 2.40 1.90 1.80
4.50 3.00 2.50 2.10
5.50 3.50 3.00 2.80
7.00 4.20 3.50 2.90


















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The results are the following: (we assume that our excess last year was 0)

n∗ = 1

k 1 2 3 4 5 6

x∗

1(k, 0) 2.472 3.072 3.572 2.772 1.800 1.200
x2∗

1 (k, 0) 3.072 3.572 4.272 2.772 1.800 1.200
x3∗

1 (k, 0) 3.572 4.272 4.272 2.772 1.800 1.200
U1

w(k, 0) 0 0 0 0 3 3
U2

w(k, 0) 0 0 0 0 3 3
U3

w(k, 0) 0 0 0 0 3 3
minU [w1

1(k, 0, U) − x1
1(k, 0, U)] 1.000 1.000 1.000 2.500 3.472 4.072

U1
v (k, 0) 3 3 3 3 3 3

U2
v (k, 0) 3 3 3 3 3 3

U3
v (k, 0) 3 3 3 3 3 3

minU [v1
1(k, 0, U)] 3.472 4.072 4.572 5.272 5.272 5.272

minU [v2
1(k, 0, U)] 4.072 4.572 5.272 5.272 5.272 5.272

minU [v3
1(k, 0, U)] 4.572 5.272 5.272 5.272 5.272 5.272

n∗ = 100

k 1 2 3 4 5 6

x∗

100(k, 0) 2.352 4.239 5.373 5.891 5.084 3.197
x2∗

100(k, 0) 4.239 5.373 7.437 5.891 5.084 3.197
x3∗

100(k, 0) 5.373 7.437 7.437 5.891 5.084 3.197
U1

w(k, 0) 0 0 0 3 8 8
U2

w(k, 0) 0 0 0 3 8 8
U3

w(k, 0) 0 0 0 3 8 8
minU [w1

100(k, 0, U) − x1
100(k, 0, U)] 23.36 23.36 23.36 24.91 25.722 7.60

U1
v (k, 0) 8 8 3 8 8 8

U2
v (k, 0) 8 3 8 8 8 8

U3
v (k, 0) 3 8 8 8 8 8

minU [v1
100(k, 0, U)] 25.72 27.60 28.74 30.80 30.80 30.80

minU [v2
100(k, 0, U)] 27.60 28.74 30.80 30.80 30.80 30.80

minU [v3
100(k, 0, U)] 28.74 30.80 30.80 30.80 30.80 30.80

Here V100(4, 20, 0)=30.80. We see that that we can save a lot if we choose optimal
excesses because in chapter 4 we had that V100(4, 20)=39.35.
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Chapter 6

A method to find the optimal

claim-decision and preventive

measures

This chapter deals with the issue whether some damage preventive measures should
be taken in action or not. The benefits that are reductions on the premiums and
decreasing risks for damages should be balanced with the actual costs of the measures.
We denote the chosen measures for next year by M = (M1,M2, ...,MN ) where

Mi = 0 if measure i will not be used next year

Mi = 1 if measure i will be used next year

With measures given by M the corresponding distribution for the damages is

FM∗(x) = p0(M) + (1 − p0(M))F M (x)

6.1 Without thresholds and excess

The changes of bonus classes are the same as in chapter 3. Let (k, x,m) be the state
of the Markov decision process, where m = (m1,m2, ...,mN ) and

mi = 0 if measure i have not been used before

mi = 1 if measure i have been used before

This is for handling the once-for-all costs for every measure. The control variables are
u ∈ [a, b] and U ∈ D(M). The transition probabilities are

P [(k, x,m) → (uk, y,max(m,U))] = F U∗(dy)

45
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where

max(m,M) = (max(m1,M1),max(m2,M2), ...,max(mN ,MN ))

Vn(k, x,m) can be determined from

Vn(k, x,m) = min
u,U

[

C(uk, x , m,U) + r
(

p0(U) · Vn−1(uk, 0,max(m,U )) +

+(1 − p0(U))

∫

∞

0
Vn−1(uk, y,max(m,U ))F U (dy)

)]

where

V0(k,m, x) = 0

and

C(uk, x,m,U ) =

{

c(ak,m,M) if u = a, U = M

c(bk,m,M) + x if u = b, U = M

c(k,m,M) is the premium in bonusclass k with measures given by M + the cost for
M + the once-for-all cost for the Mi that havn’t been used before. For a fix choice
U = M next year Vn(k, x,m|U = M) will be

Vn(k, x,m|U = M) = min
u

[C(uk, x,m,M) + r
(

p0(M) · Vn−1(uk, 0,max(m,M)) +

+(1 − p0(M))

∫

∞

0
Vn−1(uk, y,max(m,M))F M (dy)

)]

We see that the control variable (u|U = M) has the form

(u|U = M) =

{

b if x ≤ xn(k,m,M)

a if x > xn(k,m,M)

A plot of this situation looks like figure 6.1. Now we can write:
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Figure 6.1: Vn(k, x,m|U = M).

Vn(k, x,m|U = M) =























































C(bk,m,M) + x + r
(

p0(M) · Vn−1(bk, 0,max(m,M))+

+ (1 − p0(M))
∫

∞

0 Vn−1(bk, y,max(m,M))F M (dy)
)

if x ≤ xn(k,m,M)

C(ak,m,M) + r
(

p0(M) · Vn−1(ak, 0,max(m,M))+

+ (1 − p0(M))
∫

∞

0 Vn−1(ak, y,max(m,M))F M (dy)
)

if x > xn(k,m,M)

(6.1)

From figure 6.1 we realize that

Vn(k, x,m|U = M) = min[wn(k,m,M) − xn(k,m,M) + x; vn(k,m,M)]

or

Vn(k, x,m|U = M) =

{

wn(k,m,M) − xn(k,m,M) + x if x ≤ xn(k,m,M)

vn(k,m,M) if x > xn(k,m,M)
(6.2)
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(6.1) and (6.2) give us

wn(k,m,M) = C(bk,m,M) + xn(k,m,M) + r
(

p0(M) · Nn−1(bk,max(m,M))+

+(1 − p0(M))EM
n−1(bk,max(m,M))

)

vn(k,m,M) = C(ak,m,M) + r
(

p0(M) · Nn−1(ak, 0,max(m,M)+

+ (1 − p0(M))EM
n−1(ak,max(m,M))

)

(6.3)

where

Nn(k,m) = Vn(k, 0,m)

EM
n (k,m) =

∫

∞

0 Vn(k, y,m)F M (dy)

When we have several choices for U in next period Vn(k, x,m) looks like figure 6.2
where

x∗

n(k,m) = min
U

(vn(k,m,U ) − min
U

(wn(k,m,U ) − xn(k,m,U ))

When we have studied the figure and determined x∗

n(k,m) can we determine

Nn(k,m) = Vn(k, 0,m) = min
U

(wn(k,m,U ) − xn(k,m,U ))

EM
n (k,m) =

∫

∞

0
Vn(k, y,m)F M (dy) =

=

∫ x∗n(k,m)

0
(min

U
[wn(k,m,U ) − xn(k,m,U )] + y)F M (dy)+

+

∫

∞

x∗n(k,m)
min

U

(vn(k,m,U ))F M (dy) =

= min
U

[wn(k,m,U ) − xn(k,m,U )] · F M (x∗

n(k,m)) + x∗

n(k,m) · F M (x∗

n(k,m))+
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Figure 6.2: Vn(k, x,m).

+(1 − F M (x∗

n(k,m)) · min
U

[vn(k,m,U )] − GM (x∗

n(k,m))

where G(x) =
∫ x
0 F (y)dy

The controlvariables are

(u,U) =

{

(b, [U : min(wn(k,m,U ) − xn(k,m,U ))]) if x ≤ x∗

n(k,m))
(a, [U : min(vn(k,m,U ))]) if x > x∗

n(k,m))

If our current state is (k∗, x∗,m∗) and our horizon is n∗ then we should go on like this
to get the optimal decisions:

1. Do 2-6 for i = 1, 2, .., n∗ − 1.

2. Choose initial guesses xij (k,m,M), (j = 0), for xi(k,m,M) ∀ k,m,M .

3. Determine the corresponding wij (k,m,M) and vij (k,m,M) for wi(k,m,M) and
vi(k,m,M) from (6.3).

4. Update xi(k,m,M) by

xij+1(k,m,M) = xij (k,m,M) + vij (k,m,M) − wij (k,m,M).



50 A method to find the optimal claim-decision and preventive measures

5. Repete 3-4 until xi(k,m,M) has converged.

6. Determine

x∗

i (k,m),

min
U

[wi(k,m,U ) − xi(k,m,U )] and

min
U

(vi(k,m,U ))

7. Do 2-6 for i = n∗ but this time only for k = k∗ and m = m∗ but still ∀ M .
Determine Uw = [U : min(wn∗(k

∗,m∗, U) − xn∗(k
∗,m∗, U))] and U v = [U :

min(vn∗(k
∗,m∗, U)].

Example 2 (continued)

If we install some fire protection including fire alarm and other protective measures
against fire we could get some reduction on the premium. The installation cost for
this is 0.7 and the service cost is 0.5 every year. We could also have a watchmen that
costs 0.5. The premium costs for different bonus classes and measure are

c(k, (0, 0),M) =





































1.00 1.27 1.95 2.28
1.00 1.27 1.95 2.28
1.20 1.40 2.05 2.35
1.20 1.40 2.05 2.35
1.50 1.60 2.20 2.50
1.50 1.60 2.20 2.50
2.00 2.10 2.60 2.80
2.00 2.10 2.60 2.80
3.00 2.90 3.20 3.30
3.00 2.90 3.20 3.30





































Remember that after the fire protection have been installed the installation costs will
be removed from these costs. We assume a Pareto distribution with the following
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parameters for different measures:

p0((0, 0)) = 0.90

α((0, 0)) = 60

β((0, 0)) = 5

p0((0, 1)) = 0.92

α((0, 1)) = 50

β((0, 1)) = 5

p0((1, 0)) = 0.94

α((1, 0)) = 40

β((1, 0)) = 5

p0((1, 1)) = 0.95

α((1, 1)) = 35

β((1, 1)) = 5

The results are with the following explanation of the rows: (we assume that our excess
last year was 0)

k

x∗

n∗(k, (0, 0))

Uw(k, (0, 0))

min
U

[wn∗(k, (0, 0), U) − xn∗(k, (0, 0), U)]

Uv(k, (0, 0))

min
U

[vn∗(k, (0, 0), U)]

n∗ = 1

1 2 3 4 5 6 7 8 9 10
0.000 0.200 0.200 0.300 0.300 0.500 0.500 0.900 0.900 0.000
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1)
1.000 1.000 1.000 1.200 1.200 1.500 1.500 2.000 2.000 2.900
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1)
1.000 1.200 1.200 1.500 1.500 2.000 2.000 2.900 2.900 2.900



52 A method to find the optimal claim-decision and preventive measures

n∗ = 100

1 2 3 4 5 6 7 8 9 10
0.013 0.149 0.386 0.725 1.018 1.565 1.983 2.544 2.71 1.13
(0,0) (0,0) (0,0) (0,1) (0,0) (0,1) (0,0) (0,0) (0,1) (1,0)
10.01 10.01 10.02 10.16 10.41 10.88 11.43 12.45 13.41 14.99
(0,0) (0,1) (0,0) (0,1) (0,0) (0,0) (0,1) (1,0) (1,0) (1,0)
10.02 10.16 10.41 10.88 11.43 12.45 13.41 14.99 16.12 16.12

Now V100(8, 1, (0, 0)) = 12.45 + 1 = 13.45, which is a little bit less than 13.59 from
section 3.1.

6.2 With thresholds but without excess

The changes of bonus classes are the same as in section 4.2. The transition probabili-
ties are

P [(k, x,m) → (uk(x), y,max(m,U))] = F U∗(dy)

where uk(x) is described in section 4.2. Vn(k, x,m) can be determined from

Vn(k, x,m) = min
u,U

[

C(uk(x ) , x,m,U ) + r
(

p0(U) · Vn−1(uk(x), 0,max(m,U)

+(1 − p0(U))

∫

∞

0
Vn−1(uk(x), y,max(m,U))F U (dy)

)]

where

V0(k, x,m) = 0

For a fix choice U = M next period Vn(k, x,m) will be

Vn(k, x,m|U = M) = min
u

[

c(uk(x), x,m,M) + r
(

p0(M) · Vn−1(uk(x), 0,max(m,M)) +

+(1 − p0(M))

∫

∞

0
Vn−1(uk(x), y,max(m,M))F M (dy)

)]

We know that the controlvariable (u|U = M) has the form

(u|U = M) =

{

b if x(t−1)(k) ≤ x ≤ xt
n(k,m,M)

a if xt
n(k,m,M) < x < x(t)(k)
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Figure 6.3: Vn(k, x,m|U = M).

A plot of Vn(k, x,m|U = M) looks like figure 6.3. Now we can write:

Vn(k, x,m|U = M) =























































C(bk,m,M) + x + r
(

p0(M) · Vn−1(bk, 0,max(m,M)+

+ (1 − p0(M))
∫

∞

0 Vn−1(bk, y,max(m,M))F M (dy)
)

if x(t−1)(k) ≤ x ≤ xt
n(k,m,M)

C(akt,m,M) + r
(

p0(M) · Vn−1(akt, 0,max(m,M))+

+ (1 − p0(M))
∫

∞

0 Vn−1(akt, y,max(m,M))F M (dy)
)

if xt
n(k,m,M) < x < x(t)(k)

(6.4)

From figure 6.3 we realize that

Vn(k, x,m|U = M) = min[wt
n(k,m,M) − xt

n(k,m,M) + x; vt
n(k,m,M)]

if x(t)(k) ≤ x < x(t+1)(k)

or
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Vn(k, x,m|U = M) =

=

{

wt
n(k,m,M) − xt

n(k,m,M) + x if x(t−1)(k) ≤ x ≤ xt
n(k,m,M)

vt
n(k,m,M) if xt

n(k,m,M) < x < x(t)(k)

(6.5)

(6.4) and (6.5) give us

wt
n(k,m,M) = C(bk,m,M) + xt

n(k,m,M) + r
(

p0(M) · Nn−1(bk,max(m,M))+

+(1 − p0(M))EM
n−1(bk,max(m,M))

)

vt
n(k,m,M) = C(akt,m,M) + r

(

p0(M) · Nn−1(akt,max(m,M))+

+(1 − p0(M))EM
n−1(akt,max(m,M))

)

(6.6)

where

Nn(k,m) = Vn(k, 0,m)

EM
n (k,m) =

∫

∞

0 Vn(k, y,m)F M (dy)

When we have several choices for U next year Vn(k, x,m) look like figure 6.4 where

xt∗
n (k,m) = min

U

(vt
n(k,m,U ) − min

U

(wt
n(k,m,U ) − xt

n(k,m,U ))

When we have studied the figure and determined xt∗
n (k,m) we must use the following

rule:

Rule 3

Put x
(t)
n (k,m) := x(t−1)(k)∀ k,m, n, t

if x
(t)
n (k,m) < xt∗

n (k,m) put xt∗
n (k,m) = x

(t−1)
n (k,m) and x

(t)
n (k,m) = x

(t−1)
n (k,m)

if x
(t)
n (k,m) > x

(t+1)∗
n (k,m) put x

(t+1)∗
n (k,m) = x

(t)
n (k,m)

for t = 1, 2, ..., T, T + 1
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Figure 6.4: Vn(k, x,m) with one possible measure.

Now we can determine the following:

Nn(k,m) = Vn(k, 0,m) = min
U

(w1
n(k,m,U ) − x1

n(k,m,U ))

EM
n (k,m) =

∫

∞

0
Vn(k, y,m)F M (dy) =

=

∫ x∗n(k,m)

0
(min

U

[w1
n(k,m,U ) − x1

n(k,m,U )] + y)F M (dy)+

+

∫ x
(1)
n (k,m)

x∗n(k,m)
min

U

(v1
n(k,m,U ))F M (dy) + ...

+...

∫ x
(T+1)∗
n (k,m)

x
(T )
n (k,m)

(min
U

[wT+1
n (k,m,U ) − xT+1

n (k,m,U )] + y)F M (dy)+

+

∫

∞

x
(T+1)∗
n (k,m)

min
U

(vT+1
n (k,m,U ))F M (dy) =
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= min
U

[w1
n(k,m,U ) − x1

n(k,m,U )]F M (x∗

n(k,m))+

+
T+1
∑

i=1

[

xt∗
n (k,m)F M (xi∗

n (k,m)) − GM (xi∗
n (k,m))

]

+

+
T

∑

i=1

[

min
U

vi∗
n (k,m)(F M (x(i)

n (k,m) − F M (xi∗
n (k,m)))+

+GM (x(i)
n (k,m)) − x(i)

n (k,m)F M (x(i)
n (k,m))

]

+

+
T+1
∑

i=2

[

min
U

(wi
n(k,m,U ) − xi

n(k,m,U ))(F M (xi∗
n (k,m)) − F M (x(i−1)

n (k,m)))
]

+

+min
U

[

vT+1
n (k,m,U )(1 − F M (x(T+1)∗

n (k,m)))
]

The controlvariables are

(u,U) =







(b, [U : min(wt
n(k,m,U ) − xt

n(k,m,U ))]) if x
(t−1)
n (k,m) ≤ x ≤ xt∗

n (k,m)

(a, [U : min(vt
n(k,m,U ))]) if xt∗

n (k,m) < x < x
(t)
n (k,m)

If our present state is (k∗, x∗,m∗) and the horizon is n∗ then we should go on like this
to get the optimal decisions:

1. Do 2-6 for i = 1, 2, .., n∗ − 1.

2. Choose initial guesses xt
ij
(k,m,M), (j = 0), for xt

i(k,m,M) ∀ t, k,m,M .

3. Determine the corresponding wt
ij

(k,m,M) and vt
ij

(k,m,M) for wt
i(k,m,M) and

vt
i(k,m,M) from (6.6)

4. Update xt
i(k,m,M) from

xt
ij+1

(k,m,M) = xt
ij
(k,m,M) + vt

ij
(k,m,M) − wt

ij
(k,m,M).

5. Repete 3-4 until xt
i(k,m,M) has converged.
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6. Determine

xt∗
i (k,m),

min
U

[wt
i(k,m,U ) − xt

i(k,m,U )] and

min
U

(vt
i(k,m,U ))

7. Do 2-6 for i = n∗ but this time only for k = k∗ and m = m∗ but still ∀ M .
Determine also U

t
w = [U : min(wt

n∗(k
∗,m∗, U ) − xt

n∗(k
∗,m∗, U ))] and U

t
v = [U :

min(vt
n∗(k

∗,m∗, U))].

Example 1 (continued)

We will now see that the analysis from this chapter gives the same optimal choices as
in chapter 1 for an almost identical example. The data are given by

k 1 2 3

ak1 2 3 3
ak2 3 3 3
bk 1 1 2

x(1)(k) 35 0 0

Our possible measures are

m1 = firealarm
m2 = watchmen

We assume that the once-for-all costs of both measures are 0. We again assume an
Pareto-distribution and the parameters are for different measures:

p0((0, 0)) = 0.68

α((0, 0)) = 81

β((0, 0)) = 4

p0((0, 1)) = 0.82

α((0, 1)) = 63

β((0, 1)) = 4

p0((1, 0)) = 0.75

α((1, 0)) = 78

β((1, 0)) = 4

p0((1, 1)) = 0.86

α((1, 1)) = 62

β((1, 1)) = 4
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The costs are

c(k,M) =







6 9.5 7.5 11
10 11.5 10.5 13
14 13.5 13.5 15







For n∗ = 100 the results are

k 1 2 3

x∗

100(k) 4.759 10.97 6.212
x2∗

100(k) 10.97 10.97 6.212

U
1
w(k) (0,0) (0,0) (1,0)

min (w1
100(k, U

1
w(k)) − x1

100(k, U
1
w(k))) 76.49 76.49 81.25

U
1
v(k) (1,0) (0,1) (0,1)

v1
100(k, U

1
v) 81.25 87.46 87.46

U
2
w(k) (0,0) (0,0) (1,0)

U
2
v(k) (0,1) (0,1) (0,1)

v2
100(k, U

2
v) 87.46 87.46 87.46

If we compare the results with the results from the first chapter we see that the optimal
choices are the same. For example

V100(1, 0) = 76.49 U(1, 0) = (0, 0)

V100(1, 10) = 81.25 U(1, 10) = (1, 0) u = a

V100(2, 10) = 76.49 + 10 = 86.49 U(2, 10) = (0, 0) u = b

V100(2, 60) = 87.46 U(2, 60) = (0, 1) u = a

6.3 With thresholds and excess

Let the state be (k, x, xs,m) and the control variables u ∈ [a, b], U ∈ D(Xs) and
U ∈ D(M). The transition probabilities are then

P [(k, x, xs,m) → (uk(x), y, U,max(m,U))] = F U∗(dy)

Vn(k, x, xs,m) can be determined from

Vn(k, x, xs,m) =
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= min
u,U,U

[

c(uk(x), x, xs,m,U, U ) + r
(

p0(U ) · Vn−1(uk(x), 0, U,max(m,U ))+

+(1 − p0(U))

∫

∞

0
Vn−1(uk(x), y, U,max(m,U))F U (dy)

)]

where

V0(k, x, xs,m) = min(x, xs)

and

C(uk(x), x, xs,m,U, U) =

{

c(akt,m,Xs,M) + min(x, xs) if u = a, U = Xs, U = M and x(t−1)(k) ≤ x < x(t)(k)

c(bk,m,Xs,M) + x if u = b, U = Xs, U = M,∀ x

For fix choices U = Xs and U = M next year Vn(k, x, xs,m|U = Xs, U = M) will be

Vn(k, x, xs,m|U = Xs, U = M) =

= min
u

[

C(uk(x),m,Xs,M) + min(x, xs)+

+r
(

p0(M) · Vn−1(uk(x), 0, Xs,max(m,M))+

+(1 − p0(M))
∫

∞

0 Vn−1(uk(x), y,Xs,max(m,M))F M (dy)
)]

We see that the control variable (u|U = XsU = M) has the form

(u|U = Xs, U = M) =

{

b if x(t−1)(k) ≤ x ≤ xt
n(k,m,M)

a if xt
n(k,m,M) < x < x(t)(k)

A typical plot of Vn(k, x, xs,m|U = Xs, U = M) looks like figure 6.5.
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Figure 6.5: Vn(k, x, xs,m|U = Xs, U = M)).

Now we can write

Vn(k, x, xs,m|U = Xs, U = M) =

=















































































c(bk,m,Xs,M) + x+

+ r
(

p0(M) · Vn−1(bk, 0, Xs,max(m,M))+

+ (1 − p0(M))
∫

∞

0 Vn−1(bk, y,Xs,max(m,M))F M (dy
)

if x(t−1)(k) ≤ x ≤ xt
n(k, xs,m,Xs,M)

c(akt,m,Xs,M) + xs+

+ r
(

p0(M) · Vn−1(akt, 0, Xs,max(m,M))+

+ (1 − p0(M))
∫

∞

0 Vn−1(akt, y,Xs,max(m,M))F M (dy)
)

if xt
n(k, xs,m,Xs,M) < x < x(t)(k)

(6.7)
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From figure 6.5 we realize that

Vn(k, x, xs,m|U = Xs, U = M) =

min[wt
n(k,m,Xs,M) − xt

n(k,m,Xs,M) + x; vt
n(k,m,Xs,M)]

if x(t)(k) ≤ x < x(t+1)(k)

or

Vn(k, x, xs,m|U = Xs, U = M) =

=



























wt
n(k, xs,m,Xs,M) − xt

n(k, xs,m,Xs,M) + x

if x(t−1)(k) ≤ x ≤ xt
n(k, xs,m,Xs,M)

vt
n(k, xs,m,Xs,M)

if xt
n(k, xs,m,Xs,M) < x < x(t)(k)

(6.8)

(6.7) and (6.8) give us

wt
n(k, xs,m,Xs,M) = c(bk,m,Xs,M) + xi

n(k, xs,m,Xs,M)+

+r
(

p0(M) · Nn−1(bk, Xs,max(m,M))+

+(1 − p0(M))EM
n−1(bk, Xs,max(m,M))

)

vt
n(k,Xs,m,Xs,M) = c(akt,m,Xs,M) + r

(

p0(M) · Nn−1(akt, Xs,max(m,M))+

+(1 − p0(M))EM
n−1(akt, Xs,max(m,M))

)

(6.9)

where

Nn(k, xs,m) = Vn(k, 0, xs,m)

EM
n (k, xs,m) =

∫

∞

0 Vn(k, y, xs,m)F M (dy)

When we have several choices for U and U next year Vn(k, x, xs,m) looks like figure
6.6 when we have two possible excesses and one possible measure.

Here

xt∗
n (k, xs,m) =
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Figure 6.6: Vn(k, x, xs,m).

= min
U,U

(vt
n(k, xs,m,U, U ) − min

U

(wt
n(k, xs,m,U, U ) − xt

n(k, xs,m,U, U ))

When we have studied the figure and determined xt∗
n (k, xs,m) we must use the follow-

ing rule:

Rule 4

Put x
(t)
n (k, xs,m) := x(t)(k) ∀ k,m, n, t, xs

if x
(t)
n (k, xs,m) < xt∗

n (k, xs,m)

put xt∗
n (k, xs,m) = x

(t−1)
n (k, xs,m) and x

(t)
n (k, xs,m) = x

(t−1)
n (k, xs,m)

if x
(t)
n (k, xs,m) > x

(t+1)∗
n (k, xs,m) put x

(t+1)∗
n (k, xs,m) = x

(t)
n (k, xs,m)

for t = 1, 2, ..., T, T + 1

Now we can determine the following:

Nn(k, xs,m) = Vn(k, 0, xs,m) = min
U,U

(w1
n(k, xs,m,U, U ) − x1

n(k, xs,m,U, U ))

and

EM
n (k, xs,m) =

∫

∞

0
Vn(k, y, xs,m)F M (dy) =
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=

∫ x∗n(k,xs,m)

0
(min

U,U

[w1
n(k, xs,m,U, U ) − x1

n(k, xs,m,U, U )] + y)F M (dy)+

+

∫ x
(1)
n (k,xs,m)

x∗n(k,xs,m)
min
U,U

(v1
n(k, xs,m,U, U ))F M (dy) + ...

... +

∫ x
(T+1)∗
n (k,xs,m)

x
(T )
n (k,xs,m)

(min
U,U

[wT+1
n (k, xs,m,U, U ) − xT+1

n (k,m, xs, U, U)] + y)F M (dy)+

+

∫

∞

x
(T+1)∗
n (k,m,xs)

min
U,U

(vT+1
n (k,m, xs, U, U))F M (dy) =

= min
U,U

[w1
n(k,m, xs, U, U ) − x1

n(k,m, xs, U, U )]F M (x∗

n(k,m, xs))+

+
T+1
∑

i=1

[

xi∗
n (k,m, xs)F

M (xi∗
n (k,m, xs)) − GM (xi∗

n (k,m, xs))
]

+

+
T

∑

i=1

[

min
U,U

vi∗
n (k,m, xs)(F

M (x(i)
n (k, xs,m) − F M (xi∗

n (k, xs,m)))+

+GM (x(i)
n (k, xs,m)) − x(i)

n (k, xs,m)F M (x(i)
n (k, xs,m))

]

+

+
T+1
∑

i=2

[

min
U,U

(wi
n(k,m, xs, U, U ) − xi

n(k,m, xs, U, U ))·

·(F M (xi∗
n (k,m, xs)) − F M (x(i−1)

n (k, xs,m)))
]

+

+min
U,U

[

vT+1
n (k,m, xs, U, U )(1 − F M (x(T+1)∗

n (k,m, xs)))
]

The controlvariables are

(u,U, U ) =

=



























(b, [U,U : min(wt
n(k, xs,m,U, U ) − xt

n(k, xs,m,U, U ))])

if x
(t−1)
n (k, xs,m) ≤ x ≤ xt∗

n (k, xs,m)

(a, [U,U : min(vt
n(k, xs,m,U, U ))])

if xt∗
n (k,m, xs) < x < x

(t)
n (k, xs,m)
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If our present state is (k∗, x∗, x∗

s,m
∗) and our horizon is n∗ then we should go on like

this to get the optimal decisions:

1. Do 2-6 for i = 1, 2, .., n∗ − 1.

2. Choose initial guesses, (j = 0), xt
ij

(k, xs,m,Xs,M) > xs for xt
i(k, xs,m,Xs,M)

∀ t, k, xs,m,XsM

3. Determine the corresponding wt
ij

(k, xs,m,Xs,M) and vt
ij

(k, xs,m,Xs,M) for

wt
i(k, xs,m,Xs,M) and vt

i(k, xs,m,Xs,M) from (6.9)

4. Update xt
i(k, xs,m,Xs,M) from

xt
ij+1

(k, xs,m,Xs,M) =

= xt
ij

(k, xs,m,Xs,M) + vt
ij

(k, xs,m,Xs,M) − wt
ij
(k, xs,m,Xs,M)

5. Repete 3-4 until xt
i(k, xs,m,Xs,M) has converged.

6. Determine

xt∗
i (k, xs,m),

min
U,U

[wt
i(k, xs,m,U, U ) − xt

i(k, xs,m,U, U )] and

min
U,U

(vt
i(k, xs,m,U, U))

7. Do 2-6 for i = n∗ but this time only for k = k∗, xs = x∗

s and m = m∗ but

still ∀ Xs,M . Determine also (U t
w, U

t
w) = [(U,U ) : min(wt

n∗(k
∗, x∗

s,m
∗, U, U ) −

xt
n∗(k

∗, x∗

s,m
∗, U, U ))] and (U t

v, U
t
v) = [(U,U ) : min(vt

n∗(k
∗, x∗

s,m
∗, U, U))]

Example 3 (continued)

Let us assume that we have the following excesses to choose among:

D(Xs) = [0 3 8 20]

We can also use the following damage preventive measures:

m1 = firealarm
m2 = watchmen
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The installation cost of the fire alarm is 2. The cost for the alarm is 0.6 and for the
watchmen 0.9. The corresponding parameters for the different measures are:

p0((0, 0)) = 0.50

α((0, 0)) = 24

β((0, 0)) = 4

p0((0, 1)) = 0.75

α((0, 1)) = 19

β((0, 1)) = 4

p0((1, 0)) = 0.80

α((1, 0)) = 18

β((1, 0)) = 4

p0((1, 1)) = 0.90

α((1, 1)) = 14

β((1, 1)) = 4

The costs are:

c(k, (0, 0), Xs , (0, 0)) =



















1.00 0.70 0.60 0.55
2.50 1.70 1.50 1.40
3.50 2.40 1.90 1.80
4.50 3.00 2.50 2.10
5.50 3.50 3.00 2.80
7.00 4.20 3.50 2.90



















c(k, (0, 0), Xs , (0, 1)) =



















1.82 1.49 1.46 1.41
3.25 2.55 2.25 2.10
4.00 2.80 2.50 2.32
4.70 3.30 3.10 2.70
5.40 4.10 3.60 3.30
6.70 4.40 3.90 3.40



















C(k, (0, 0), Xs, (1, 0)) =



















3.40 3.18 3.10 3.07
4.80 4.10 3.90 3.75
5.50 4.40 4.10 4.00
5.70 4.95 4.50 4.30
6.40 5.50 4.90 4.60
7.00 5.70 5.20 4.90



















C(k, (0, 0), Xs, (1, 1)) =



















4.25 4.02 3.98 3.95
5.35 5.00 4.73 4.50
5.90 5.20 4.78 4.70
6.20 5.40 5.35 5.00
6.40 5.50 5.40 5.20
6.70 5.90 5.50 5.40


















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The installation cost of the fire alarm can be removed from the costs above after we
have installed it. If we had excess 0 last year then the results for n∗ = 1 and n∗ = 100
are:

n∗ = 1

k 1 2 3 4 5 6

x∗

1(k, 0, (0, 0)) 1.250 1.550 2.250 1.500 1.100 0.800
x2∗

1 (k, 0, (0, 0)) 1.550 2.250 2.350 1.500 1.100 0.800
x3∗

1 (k, 0, (0, 0)) 2.250 2.350 2.350 1.500 1.100 0.800
U1

w(k, 0, (0, 0)) 20 20 20 20 20 20

U
1
w(k, 0, (0, 0)) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

w1
1(k, 0, (0, 0), U 1

w , U
1
w) − x1

1(..) 0.550 0.550 0.550 1.400 1.800 2.100
U1

v (k, 0, (0, 0)) 20 20 20 20 20 20

U
1
v(k, 0, (0, 0)) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

v1
1(k, 0, (0, 0), U 1

v , U
1
v) 1.800 2.100 2.800 2.900 2.900 2.900

U2
w(k, 0, (0, 0)) 20 20 20 20 20 20

U
2
w(k, 0, (0, 0)) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

U2
v (k, 0, (0, 0)) 20 20 20 20 20 20

U
2
v(k, 0, (0, 0)) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

v2
1(k, 0, (0, 0), U 2

v , U
2
v) 2.100 2.800 2.900 2.900 2.900 2.900

U3
w(k, 0, (0, 0) 20 20 20 20 20 20

U
3
w(k, 0, (0, 0)) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

U3
v (k, 0, (0, 0)) 20 20 20 20 20 20

U
3
v(k, 0, (0, 0)) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

v3
1(k, 0, (0, 0), U 3

v , U
3
v) 2.800 2.900 2.900 2.900 2.900 2.900

and
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n∗ = 100

k 1 2 3 4 5 6

x∗

100(k, 0, (0, 0)) 1.215 2.444 2.934 3.244 3.033 1.804
x2∗

100(k, 0, (0, 0)) 2.444 2.934 4.248 3.244 3.033 1.804
x3∗

100(k, 0, (0, 0)) 2.934 4.248 4.248 3.244 3.033 1.804
U1

w(k, 0, (0, 0)) 0 0 0 8 8 20

U
1
w(k, 0, (0, 0)) (0,0) (0,0) (0,0) (1,0) (1,0) (1,0)

w1
100(k, 0, (0, 0), U 1

w , U
1
w) − x1

100(..) 19.48 19.48 19.48 20.48 20.69 21.92
U1

v (k, 0, (0, 0)) 8 20 20 20 20 20

U
1
v(k, 0, (0, 0)) (1,0) (1,0) (1,0) (1,1) (1,1) (1,1)

v1
100(k, 0, (0, 0), U 1

v , U
1
v) 20.69 21.92 22.41 23.72 23.72 23.72

U2
w(k, 0, (0, 0)) 0 0 0 8 8 20

U
2
w(k, 0, (0, 0)) (0,0) (0,0) (0,0) (1,0) (1,0) (1,0)

U2
v (k, 0, (0, 0)) 20 20 20 20 20 20

U
2
v(k, 0, (0, 0)) (1,0) (1,0) (1,1) (1,1) (1.1) (1,1)

v2
100(k, 0, (0, 0), U 2

v , U
2
v) 21.92 22.41 23.72 23.72 23.72 23.72

U3
w(k, 0, (0, 0) 0 0 0 8 8 20

U
3
w(k, 0, (0, 0)) (0,0) (0,0) (0,0) (1,0) (1,0) (1,0)

U3
v (k, 0, (0, 0)) 20 20 20 20 20 20

U
3
v(k, 0, (0, 0)) (1,0) (1,1) (1,1) (1,1) (1,1) (1,1)

v3
100(k, 0, (0, 0), U 3

v , U
3
v) 22.41 23.72 23.72 23.72 23.72 23.72

For example if we are in bonus class 4 and have a damage of 20 we see that
V100(4, 20, 0, (0, 0))=23.72. This is much lower than V100(4, 20)=50.08 from section
4.2 where we had no excess and no damagepreventive measures and always claimed a
damage. Hence, we see that we can save a lot of money.
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Chapter 7

Conclusion

The strategy developed in this paper should be possible to use in real life, at least for
some insurances. Of course some information that are assumed in this paper to be
given are not given in real life. For example the increase of premiums are probably
to unpredictable for many insurances for certain damages. However, if good guesses
about these things are made the strategy described in this paper should be a good
guidance to get a lower long-term cost.

This paper is probably most applicable for companies that insure their business. The
reason for this is that they could have negotiations with the insurance company and
therefore they could get more information. The premiums for companies are probably
also more dependent on how big the costs of their damages have been. For new policy-
holders this paper could be a help for deciding which insurance company to have.
They might be in bonus classes with high premiums and want to advance to better
bonus classes quickly without too high immediate costs. Certain insurance companies
might have low premiums for new customers while others have high premiums in the
beginning but might give more reduction later. The insurance companies might also
not give the same reductions for different damage preventive measures and excesses.
These things could be balanced to see which insurance company is likely to be most
profitable in the long run.

If a policy-holder has a better knowledge about the risk for damages for different
measures than the insurance company this could be useful for the policy-holder. Then
the best combination of preventive measures and excesses could be chosen. Since there
are a lot of different premiums for different measures and excesses to determine for
the insurance company, this should be a problem for them. Another problem for the
insurance company is what to do with new customers so that they will keep them
without loosing money. Maybe they have to accept a loss for new customers in order
to keep more customers in the future. If they make clear about how the premiums
are determined maybe they could attract more customers. This is problems for the
insurance company that this paper could be a help for. This paper might also be
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used for deciding if reinsurance should be made. Maybe there should also be a co-
operation between the insurance company and security firms that are providing the
damage preventive measures.

If it would be possible to claim a part of a damage the optimal strategy with thresholds
would look like figure 7.1 instead. This situation is not treated in this paper but should
be very similar to those which are treated. Since I don’t have much knowledge about
the insurance business maybe some things should have been analyzed in different ways.
However this is how I think things work. Maybe some things should be developed more.
For example if the distribution of damages are likely to change from year to year one
could model the damages as F ∗

n(x) instead. An easy way to handle a general increase
for the premiums is to choose a higher discount factor.
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Figure 7.1: Vn(k, x).



71

References

1. Howard Ronald A. Dynamic Programming and Markov Processes,
The Massachusetts Institute of Technology 1960
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