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Abstract

Bacteria with an increased propensity to develop resistance to an-
timicrobial drugs has today become an alarming health problem.

When a bacterial population consisting of sensitive and resistant
bacteria are treated with antibiotics, the sensitive are inhibited while
the resistant population can still reproduce. The developed phenom-
ena, is called selection of resistant bacteria.

The basis of this paper is an in vitro study with two different
strains of E.coli with different levels of responsiveness to antibiotics.
By varying the dose and elimination rate for an antimicrobial drug,
cefotaxime, different lengths of the selective window were obtained.
The selective window is the time period where there is a bactericidal
effect of the sensitive strain but a growth of the resistant strain. The
aim was to study how the selection of the resistant strain depended on
the length of the selective window.

In this thesis a pharmacodynamic model for the growth of bacteria
is constructed. Parameters in the model were estimated to fit real
data by the Maximum-Likelihood method. The purpose was to get an
increased understanding of when selection of resistant strains occurs.

The result of the estimated model shows selection of the same strain
as real data, which indicates that the model describes the pharmacody-
namic factors rather well. However, the deviation from experimental
data in relation to the number of bacteria seem to increase with the
length of the selective window.

*Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
Supervisor: Mikael Andersson.



During the work of this project, we discovered that the wild-type
strains sometimes mutated to more resistant bacteria. In the model,
the selection of the mutated strain seem to increase with the length of
the selective window. An explanation to the increased deviation from
experimental data with the length of the window could be that some
factors which were assumed to be equal for both the wild-type and the
mutated bacteria in reality differ.



Acknowledgements

First of all, I would like to thank my tutor Mikael Andersson, who with great
pedagogics and encouragement guided me through the statistical theory of
this project. A big thanks to my external tutor Otto Cars, who gave the idea
for this project and also supplied me with the medical theory, and whose
enthusiasm and motive power forced the project forward. A warm thanks to
Sara Olofsson, who provided me with experimental data and without whom
this project would never have seen the light of day.

Finally, I wish to thank Katarzyna Grabowska and Sidney Carter for helping
me with the review of the report, and not at least Per Rolfhamre for assistance
with computer related questions.






Concentration-dependent selection of cefotaxime
resistant E. coli - A pharmacodynamic model

Patricia Geli

March 11, 2003






Contents

1 Introduction 5

1.1 Background . . . . ... ... .. 5

1.1.1 Cefotaxime resistant E.coli . . .. ... ... ... .... 6

1.1.2 Development and selection of resistant bacteria . . . . . . 6

1.1.3 Pharmacokinetics and Pharmacodynamics . . . . . . . . . 7

1.2 Disposition . . .. ... . . 7

1.3 Purpose . . . . . . . e 7

2 Experiment, methods and source data 9
2.1 The in vitro kinetic model . . . . . .. ... oL

2.2 Sourcedata . . . .. ... 10

2.2.1 Restraints of thedata . . . ... ... ... ... ..... 10

2.3 Experimental design for more data . . . . . ... ... ... ... 12

2.3.1 Investigation of genetic changes . . . . . . . ... ... .. 13

2.3.2 Investigation of possible interaction. . . . . . . . ... .. 14

3 The Model 15

3.1 Factors of importance . . . . . . ... ... ... ... ..., 15

3.2 Pure Birthand death . . . .. ... ... ... ... ...... 16

3.3 Antibiotic pressure . . . . .. ... oL 16

3.4 Postantibiotic Effect and Post MIC Effect . . . . ... ... ... 16

3.4.1 Resynthesis of proteins and enzymes . . . . . . ... ... 17

3.5 Geneticchanges. . . . .. .. ... .o oo 19

3.5.1 Mutation . .. .. ... 20

3.5.2 Plasmidloss. . . . . . ... ... 20

3.6 Restrictions in the model . . . . . ... .. ... ... 21

3.7 Discussion . . . . .. ... 22



4 Estimating parameters
4.1 Reduction of parameters . . . . . . . ... ...
4.2 Maximal and minimal growth rate . . . .. ... ... ... ...
4.3 Mutation rate, resynthesis rate and MIC . . . . . . .. ... ...
4.3.1 Maximum Likelihood . . . . . . .. .. ... ... ...
4.3.2 Error estimates . . . . . .. ... Lo

4.3.3 Confidence interval . . . . . . . . . ... ... .. ... ..

5 Results
5.1 Prediction . . . . . . . ..

5.2 Discussion . . . . . . ...
6 Conclusion

A Data
A.1 Control curve for growth rate without antibiotics . . . . . . . ..
A.2 Experiment with high concentration of antibiotics. . . . . . . . .

A.3 Raw data for Maximum-Likelihood estimates . . . . . . ... ..



Chapter 1

Introduction

Antibiotics have been used for more than 50 years to fight infections
caused by bacteria. After their discovery, many believed that this
was the final cure for infectious diseases. However, within a few
years bacteria controlled by antibiotics had developed resistance to
these drugs.

Today, antibiotic resistance has become one of the world’s most
alarming health problems. Although antibiotics have been used for
so many years, the knowledge about optimal dosing regimens to op-
timize efficacy and minimize costs, toxicity and resistance, is still
incomplete.

In this paper, we will concentrate on the last mentioned factor,
namely the optimal dosing to prevent emergence of resistance.

A statistical model, which hopefully could be used to predict when
selection of resistant variants occurs will be constructed.

This introduction provides a more detailed presentation of the back-
ground to this thesis, which also explains common medical termi-
nology which will be used. Furthermore, this is followed by a pre-
sentation of the purpose and disposition of this paper.

1.1 Background

It is known that different dosing-regimens of antibiotics may vary in selection of
resistant bacteria. But the nature of variation with different dosing regimens,
is unknown.

The background to this paper is an experimental setting by a group at the
Antibiotic Reasearch Unit - Departments of Clinical Bacteriology and Infec-
tious Diseases at Uppsala University [13], who have studied a concentration-
dependent selection of cefotaxime resistant strains of E.coli-bacteria with an in
vitro kinetic model.

The following subsections will provide some elementary information of the bac-



terium E.coli and the antiinfective drug cefotaxime that were used in the study.
Also included is an explanation of what we mean by selection and the terms
pharmacodynamics and kinetics.

1.1.1 Cefotaxime resistant E.coli

E.coli, or Escherichia coli, is the most common aerobic bacterium in the normal
intestinal flora and the most common bacterium causing infections of the urinary
tract. It can also cause other extraintestinal infections.

This group of bacteria can produce different enzymes - (-lactamases - which
are able to degrade (to a variable extent) so called [-lactam antibiotics like
cefotaxime.

1.1.2 Development and selection of resistant bacteria

Some bacteria are naturally resistant to antibiotics, which could be a result of
an missing enzyme. Those who are not naturally resistant to antibiotics, can
develop resistance in many ways. There are two principal ways for bacteria to
become resistant.

e Chromosomal mutation

e Acquisition of foreign DNA
- plasmid
- transformation

The most common resistance-mechanisms are,

e Production of an enzyme that degrades the antibiotic
e Reduced penetration into the bacterial cell
e Increased efflux from bacterial cell

e Changed target

Since antibiotic resistance confers a metabolic cost for the resistant bacteria,
these are often inferior to normal bacteria. But when sensitive bacteria are in-
hibited or killed by antibiotics, the resistant bacteria are selected, and therefore
able to spread.

Resistance classification

So, how do we classify bacteria as resistant or not? This is done by so called
MIC-determination, (MIC=Minimum Inhibitory Concentration). With these
data we can classify bacteria into different categories, due to their responsiveness



to antimicrobial drugs. These categories are ”Sensitive”, ”Resistant” and ”In-
termediate”. Sensitive bacteria have low MIC:s and can successfully be treated
with antibiotics. Resistant bacteria represent a category of strains that are not
inhibited by usually achievable concentrations of antibiotics. The third cate-
gory represents an overlapping zone between those classified as either sensitive
or resistant.

1.1.3 Pharmacokinetics and Pharmacodynamics

The study was done with an in vitro kinetic model. This kind of construction
allows simulations of human pharmacokinetics.

Pharmacokinetics attempts to describe the processes involved in the absorption,
distribution and elimination of the drug in the body.

By adjusting the half-life time in the in vitro kinetic model, human pharmacoki-
netics were able to be mimicked. The question of interest in the study was how
the pharmacokinetic and pharmacodynamic factors contribute to the emergence
of resistance.

While pharmacokinetics attempts to describe [1] what "the body does to the
drug”, pharmacodynamics attempts to describe what "the drug does to the
body”. In this case, pharmacodynamics means how bacteria in the body are
affected by different concentrations of antibiotics and by different lapse of con-
centrations.

1.2 Disposition

This introduction is followed by Chapter 2 describing the experimental methods
and the results of the experiments. Chapter 3 describes the statistical modelling
and it also includes more detailed information about factors that may eventually
affect the model. This is followed by Chapter 4, which provides methods for es-
timating the parameters in the model. In Chapter 5, a summary and discussion
of the results is given. Lastly, the conclusions are presented in Chapter 6.

1.3 Purpose

The question of medical interest was to find out when the selection of resistant
bacteria, due to dosing-regimens, occurs. So, the main purpose of this thesis
was to propose a statistical model for the pharmacodynamics behind these ex-
periments and to design further experiments to fulfil this purpose. It was also
intended to estimate parameters from data, to eventually get a practical use of
it, e.g. avoiding dosing regimens that could result in selection and the emergence
of resistance.






Chapter 2

Experiment, methods and
source data

This chapter will provide a more detailed description of how the
experiments were done and present the source data that have been
the basis to this paper. It will also explain some of the further
experimental designs.

2.1 The in vitro kinetic model

All experiments were done with an in vitro kinetic model with two different
E.coli-strains. These strains, TEM-1 and TEM-12 respectively, contain a plas-
mid with genes that controls the production of the S-lactamase. The MICs of
cefotaxime were 0.012 and 0.032 mg/L for TEM-1 and TEM-12 strains, respec-
tively. This means that TEM-12 was more resistant to exposure of cefotaxime
than TEM-1. Therefore TEM-1 and TEM-12 will from now on be referred to
as the sensitive and the resistant strain, respectively.

The populations were kept in a closed system and exposed to different concen-
trations and elimination rates of cefotaxime for 24 hours. See figure 2.1 for an
illustration of the model, where the bottle to the left shows the closed system
with bacteria, and the other contains cefotaxime and nutrition. There is also
one bottle, not shown in the figure, containing rest-products.

The system contained 110 ml of solution, which in the original experiment was
mixed with 10% and 10? bacteria/ml respectively, of each strain. The nutritional
resources were unlimited.

During the experiment, samples of 1 ml each, were withdrawn at different time-
points. After 24 hours of incubation on agar-plates, the number of colonies
per ml were counted to study the development of the populations, after being
exposed to antibiotics. The populations were distinguishable by their different
colours.



Figure 2.1: Experimental arrangement

2.2 Source data

The source data for this paper were obtained from an experimental setting where
the length of the selective window was changed to investigate how this parameter
influenced the grade selection of the resistant strain. Selective window, (SW) is
the time period where concentration lies above MIC for the sensitive strain and
below MIC for the resistant strain. That means that in this window there is
continued bactericidal effect of the sensitive strain but a growth of the resistant
strain.

The hypothesis was that the selection would be proportional to the length of
SW. Later, it will be shown that this was not the case.

The graphs in figure 2.2 shows how the selection varied with the length of SW.

As we can see in the graphs at 24 hours, the resistant strain is the one that is
selected for selective windows 1, 2,4, 8 hours. For the selective window 12 hours
the sensitive strain was selected.

The reason for this was unknown, but could be a result of many factors. So,
further experiments had to be designed to investigate possible reasons for this
result. The next section will describe some of the experiments designed to
investigate this.

2.2.1 Restraints of the data

This method for counting bacteria was not feasible to count numbers below 10.
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2.3 Experimental design for more data

Several factors may have been the reason for the result presented in the previous
section. To be able to model the relationships between the pharmacokinetic and
pharmacodynamic factors, further experiments were done. Some of the results
from these experiments which have been of importance for the modelling will
be presented in this section.

To investigate whether there were any differences between the strains except
from the MIC, experiments with the two strains in separate settings were done
under the same conditions. That means, with the same inoculum, half-life
time and concentration above MIC. The result showed almost exactly the same
growth curve for the both strains. So, the only difference between those two
strains seemed to be the MIC.

In two other experiments with the strains in separate settings, where the time
above MIC was kept constant, but the concentration and half-life time in the
experiments were different, an interesting result was observed. In these two
experiments, which are shown in figure 2.3 and 2.4, the time above MIC was
10 hours, which means that we expect the bacteria to start growing at this
time-point.

T>MIC =10 h, cmax = 2*MIC, T2 =10 h
8 T T T T T T T

o

log10(cfu/ml)
IS

. . . . . . . . . .
0 2 a 6 8 10 12 14 16 18 20 22 24
Time (h)

Figure 2.3: Experiment with low concentration and long half-life time, 7' >
MIC =10h

In figure 2.3, the bacteria start to grow a couple of hours before the concentration
has declined to the MIC and in figure 2.4 the bacterial growth seems to be a
little delayed.

Mutations were not believed to be a factor for E.coli strains, but because the
bacteria in figure 2.3 seem to be less inhibited than normally, an investigation
of genetic changes were done.
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T>MIC =10 h, cmax = 32*MIC, T¥2 = 2
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Figure 2.4: Experiment with high concentration and short half-life time, 7' >
MIC =10h

2.3.1 Investigation of genetic changes

To investigate whether any genetic changes had occurred, MIC was tested during
and after the experiments, by a method called E-test.

E-tests

An E-test consists of a plastic indicator with an antibiotic gradient, which is
put directly on an indicator plate on which bacterial solution is spread. After 24
hours of incubation, the indicator shows which concentration was the minimum
required to inhibit reproduction.

Result

E-test for the experiments in figure 2.3 and 2.4 showed that there was an in-
creased MIC at 24 hours for the experiment in figure 2.4 but not for 2.3. The
MIC value for the resistant strain increased from 0.032 mg/L to 0.50 mg/L and
for the sensitive strain from 0.012 to 0.19 mg/L.

An interesting question was also whether mutations had occurred during the
experiments for the source data. E-test for experiment with ”SW=2", showed
an increase of MIC for the sensitive strain, but not for the resistant strain, which
eventually could be explained by the lower inoculum. The MIC value for the
sensitive strain at 6 h was 0.19 mg/L, but at 24 h the MIC was 0.008 mg/L,
which is lower than the initial value. This can eventually be explained as a
result of a plasmid loss.

How these genetic changes influence the pharmacodynamic will be discussed in
the next chapter.

Because we unexpectedly found out that these strains mutated, further inves-
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tigations were done to find out whether there where any possible interactions
between the strains.

Notation

At the time for writing this report, MIC-determination for the other selective
windows of the source experiments were not available.

2.3.2 Investigation of possible interaction

For some kinds of bacteria, transmission of DNA can occur by interaction be-
tween two strains. The sensitive strain is the recipient of DNA transmitted by
the resistant strain.

This interaction was not believed to be very plausible, but was thoroughly in-
vestigated by repeating experiments with both strains together and in separate
settings.

Result
There was no remarkable difference between experiments with strains together

and separate, which it would have been if there were some kind of interaction.
This factor will therefore not be included in the following modelling.
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Chapter 3

The Model

Mathematical modelling is an important tool in many branches of
science, not only in biology. As mentioned before, we will try to
use this tool to explain which and how certain parameters affect the
pharmacodynamics in the experiments behind this work.

For the modelling, we have to know more about factors that eventu-
ally affect the pharmacodynamics of the strains. This chapter will
therefore not only explain the mathematical theory, but also give
some medical information. Also a more detailed description about
how the experiments were done to investigate whether, and in what
way, a factor should be included or excluded in the model.

The factors will be listed one by one and included in the model.
Factors such as temperature, which was kept constant during the
experiments, will not be taken under consideration.

While the sizes of the bacteria populations are large, the birth or
death of one bacterium will not create a significant change in the
size of the population. Therefore, we will use differential equations
in the construction of the mathematical models.

3.1 Factors of importance

In the previous chapter we described the experimental results of trials to in-
vestigate whether a factor should or should not be included in the model. We
found that genetic changes sometimes developed. These changes will lead to a
different MIC, but other factors of importance will be the same, independent
of these changes. The pharmacokinetic and pharmacodynamic factors that will
be important for the modelling are listed below.

e Pharmacokinetic factors

- Initial concentration of antibiotics, ¢,qz

- Half-life time of antibiotics, T7 /o

15



e Pharmacodynamic factors

Growth rate without antibiotics, A\naz

- Minimal growth rate under pressure of antibiotics, Amin
- Growth rate under pressure of antibiotics, A(¥)

- MIC

3.2 Pure Birth and death

A bacterium can either reproduce by splitting into two new bacteria, or die. So a
very simple start with the modelling is to consider a model where A denotes the
difference between the birth and the death rate, that is the relative reproduction
rate at which the population change. Then we can calculate

AN (t)
dt

=X N(t), (3.1)

where N (t) is the population size at time ¢. The population is representative of
bacteria either of the sensitive strain S, or the resistant, R.

The reality is much more complicated, and we will therefore add some elements
to the model. This equation will nevertheless be useful in the next chapter when
estimating pure maximal and minimal growth rate.

3.3 Antibiotic pressure

So far, we have looked at a model without any antibiotic pressure. Let us see
how the model complicates when we include this factor.

Let ¢paz denote the dose of antibiotics introduced in the system at time ¢ = 0.
The half-life time, T} /5, is known and the exponential decrease of antibiotics
will therefore be described by the following mathematical expression

t

c(t) = Cmax -2 T2, (3.2)

The reproduction-rate A will now be replaced by A(t), which varies depending
on the concentration of antibiotics.

3.4 Postantibiotic Effect and Post MIC Effect

In some of the experiments, we can observe that bacteria do not start growing
directly after the time when concentration has declined below the MIC. This
persistent suppressive effect of exposure to antibiotics is a phenomenon that we
in this paper will call Post MIC Effect (PME).

Normally, [12] PME is defined as a combination of Postantibiotic Effects (PAE)
and Postantibiotic sub-MIC Effect (PASME). That means the total time-lag

16



for bacteria to resume normal growth in a drug-free medium, after exposure
to static concentrations of antibiotics above MIC (PAE) and sub-MIC levels
(PASME). We will in this paper use the term PME for the persistent effects of
exponentially decreasing concentration of antibiotics.

Studies [1] have shown that there is a relationship between the duration of
PAE and the area under the concentration curve (AUC) (i.e. concentration
times duration of exposure). We will in this paper make the assumption that
PME also depends on AUC, but with a reduced effect due to the declining
concentration.

3.4.1 Resynthesis of proteins and enzymes

The knowledge of the mechanisms behind the PAE-phenomenon is still incom-
plete. Many theories have been proposed. One theory, which may be valid for
(B-lactam antibiotics, is based on the mechanisms of Penicillin Binding Proteins,
(PBP). PBP are enzymes needed for synthesis of the bacterial cell wall.

[-lactam antibiotics are bound to these enzymes, and the theory [3] is that PAE
could correspond to the time it takes for the bacteria to rebuild new PBP. This
theory will serve as the basis for the further modelling of the PME.

Let us assume that the time required for bacteria to resume normal growth rate
is dependent on the time it takes for the PBP to resynthesize. A low initial
concentration and a short half-life time will result in a shorter PME than for
higher values of these factors.

So, let P(t) denote the number of unsaturated PBP at time ¢ and assume
that the initial number of these are P,,,, which also is the maximum number of
unsaturated PBP. Since Py, is unknown and to avoid making any assumptions
about this number, we will look at the relative number, Q(t) instead. That

means that Q(t) = P

Praax

Furthermore, let us assume that bacteria creates new PBP at a constant rate 0
and that the PBP are saturated proportional to the concentration lapse and a
saturation parameter . Then, the change in unsaturated PBP will be given by

dQ

=Bt Q). (33)

An illustration of the process of saturation and resynthesis of new PBP is shown
in figure 3.1.

We will now assume that the relative growth rate of bacteria is proportionally
dependent on the time it takes bacteria to reach a critical number of unsaturated
PBP required for bacterial growth. That means,

At) =v- Q) + Amin- (3.4)
The change in number of bacteria can now be written as

17



T -log(2)/Ty ),

Antibiotics,
cmax

Figure 3.1: Illustration of saturation and resynthesis of PBP

dN
—— = \(t) - N(3). .
= A1) N () (35)
Equation 3.4 inserted in 3.5 gives
dN
= W Q)+ Amin) - N(2). (3.6)

This means that the PME will be dependent on how long time it takes for PBP
to reach the critical number, Q¢ = {Q(t¢) : A(t¢) = 0}. More precisely, PME
in this model, is the difference between time above MIC and the time it takes
for PBP to reach the critical number. What we have to think about is that
different methods for MIC-determination can give very different results of the
MIC-data (almost the double MIC-value with broth cultures compared to the
result with E-test), which means that the PME will depend on which method
we have used for the MIC-determination.

The graphs in figure 3.2 aims to give a picture of the development of PBP
for different concentration-lapses. The first figure shows how PME varies with
increasing initial concentrations and a fix half-life time. The second figure shows
PME for increasing half-life time and a fixed initial concentration.

As we can see in the figures, PME increases with higher initial concentration of
antibiotics and we can also see that we have the same relation between PME
and half-life time.

When dosing antibiotics in reality, the aim is to have concentrations above MIC
as long as possible. Many experiments in this area, have therefore been done
with "time above MIC” as an explanatory variable. The time above MIC is
obtained by measuring different combinations of initial concentration and half-
life time.

18
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Figure 3.2: PME for different concentration-lapse

Let us look at PME in an example where we increase the time above MIC in
three cases. We will look at the three cases when T' > MIC = 2,6 and 10
hours. The result of these concentration-lapses is shown in picture 4.1.
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. - = T>MIC=10h
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0 2 4 6 8 10 12 14 16 18 20
Time (hours)

Figure 3.3: PME for different concentration-lapse

The reason for the decreased PME, though a higher time above MIC, is that
the initial concentration influences the development of PBP in a different way

than half-life time.

3.5 Genetic changes

There are sometimes genetic changes such as mutation and plasmid loss in the
bacteria. These were both observed in some of the experiments behind this
work. These kind of changes lead to an increase or decrease in MIC, which in

turn leads to a different model.

19



3.5.1 Mutation

Bacteria under exposure of antibiotics, may result in mutations that develop to
increase the chances for survival.

In the experiment with selective window 2 hours, which was the only experi-
ment of source data where MIC were determined, a significant increase of MIC
was observed. This indicates that mutations had developed. We will therefore
include mutation as a factor in the model.

There is no possibility of seeing any morphological difference between the mu-
tated bacteria and the wild-type. This means that the bacterial counts represent
the sum of mutated bacteria and the original, if there have been any mutations.
If concentrations are within the selective window, we will have an increase of
resistant bacteria and a decrease of sensitive bacteria. The development of the
total population, that means the number that we are counting, will develop as
illustrated in figure 3.4, where the first graph illustrates the development of the
sensitive strain in the selective window, the graph to the right illustrates the
development of the resistant strain and the last graph shows the sum of these
two strains.

As mentioned in the previous chapter, MIC-data for further analysis of muta-
tions were not available at the moment of writing this paper. Without more
data, any conclusions whether the mutation-rate is constant or not, cannot be
made. We will therefore assume that the mutations follow the simplest model,
namely with a constant rate.

So, if we let o denote the mutation-rate, we get the following appearance of the
model

%gZOWQN@+Am“gN@—a-N@. (3.7)

The mutations can then be described by the following equation,

dM

W:(V~QM(t)+)\mm)-M(t)+a-N(t). (3.8)

When comparing the expected number with real data, we will look at graphs
that represent the sum of the solutions of equation (3.7) and (3.8). That is

X(t) = N(t) + M(1). (3.9)

3.5.2 Plasmid loss

Antibiotic resistance often confers a biological fitness cost to the bacteria. If the
resistance gene is not "needed” by the bacteria, it may be lost. Hence very low
concentrations of drugs, may lead to a plasmid loss. This plasmid loss changes
the bacteria back to the original variant, without any resistance mechanism.

While the plasmid loss seems to occur when concentrations of antibiotics are ex-
tremely low, the effects of a lower MIC are assumed not to make any remarkable

20
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Figure 3.4: Development of the sensitive, resistant and total population respec-

tively

difference in the reproduction-rate, A(t).

Notation

Because the mutated bacteria loses their resistance without any pressure of an-
tibiotics, the maximal and minimal reproduction rate were not able to estimate
for these genetic variants. And because we did not see any differences between
the wild-type sensitive and resistant strain, we will assume that all genetic vari-
ants in this work have the same maximal and minimal reproduction rate.

3.6 Restrictions in the model

In the figures of source data in the previous chapter, we could observe that the
bacterial growth seemed to decrease after 12 hours. This could be a result of

21



limited space in the system.

The modelling will therefore be restricted to only include the first 12 hours,
where the bacteria do not seem to be affected by this factor.

3.7 Discussion

The model seems to be adequate in a theoretical perspective. What we do
not know, is whether the mutation-rate is constant, or if it is a function of the
concentration. Experiments to investigate this were not available at the moment
of writing this paper.

There is no explicit solution to the differential equation system. So, a numerical
method will be required to solve these equations which also means that we
first have to estimate the unknown parameters in the model. The estimating
procedure will be described in next chapter.
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Chapter 4

Estimating parameters

The model presented in the previous chapter is so far only theoret-
ical. By estimating the parameters in the model, we could get a
practical use for it. This chapter will describe the methods and the
results of estimation.

4.1 Reduction of parameters

The parameters A, and A respectively, can be estimated separately by
data from experimental settings which will be presented in the next section.
For the rest we will use Maximum Likelihood estimation. But we will first
reduce the number of parameters by the following relations.

When PBP have reached their maximal number, bacteria resumes their normal
growth rate, \;,qz, that means

!

V= Amaz — Amin (41)

Let us furthermore observe which relation we get if we look at a momentary
lapse of a static concentration equal to MIC. The number will then decline to
a number that we denote Q;rc. When we have reached this number, we have
an equilibrium, where we have neither growth of PBP nor of bacteria. We get

aQ

7 =B—7-MIC-Qumic=0

—
Qure = STne
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and

At)=v-Qumic+ Amin =0
<

)\min
Qmric = — ; (4.3)

14

where v is defined as in equation (4.1).

Now, equation (4.1), (4.2) and (4.3) gives that

ﬁ _ )\min
V'MIC_ Amaacf)\min.

The parameter [ is believed to be independent of which strain we look at, in
other words independent of MIC. So, solving this equation with respect to -y
gives

)\ma:v - )\min
ﬁ .

V=T N TMICT

After this reduction of the number of parameters, the model can now be de-
scribed by the following system of differential equations,

dQN _ Amaz = Amin —t/T1/2

| G v v s el = ARATC)

dN

E = (()\maz - )\mzn)QN(t) + )\min)N(t) - OéN(t)

(4.4)

dQM _ Amaz — Amin —t/T1 /o

ot = o Nmin - MICyy o2 Qu ()

dM
W = ((/\m,am - )\mzn)QM (t) + Amzn)M(t) + OéN(t)

Note that N and M in the equations will get an index R or S, depending on
which of the two wild-type populations we want to study.

4.2 Maximal and minimal growth rate

Estimation of the maximal growth rate, A\, and minimal growth rate, Apin,
can easily be done by solving the differential equation (3.1) which yields

N(t)

N(t) = N(0)eM — A= %Z”)

Maximal rate is estimated from an experiment done without any exposure to
antibiotics. This data is presented in Appendix A, and gives that
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Amaz = l(ig:i) =18. (4.5)

The corresponding calculations for the minimal rate is done with data from
an experiment where we have an extremely high initial concentration in the
system. This data can also be found in Appendix A. With these data, we get
the following estimate,

101.0

A @ =-23. (4.6)

min —
2

These parameter values will be used in the following calculations for estimating
the rest of the parameters.

4.3 Mutation rate, resynthesis rate and MIC

In the previous chapter, we defined X (¢) in equation (3.9) as a function of
the unknown parameters o and 3. To estimate these parameters, we need a
distribution function for the number of bacteria.

Let X (t;) for j = 0,1,...,5 denote the number of bacteria at the time-points
to,t1,...,t5 = [0,2,4,6,8,12]. If each single bacteria in generation zero, X,
produces new bacteria with a mean 3 and variance o2, the total number off
offspring will depend on the size of the generation before. This yields that we
can calculate the size of the j th generation by

X.7—1
X; =Y Z,

where Z; is the number of offspring to the ¢ th bacteria of generation j — 1.

If generation zero consisted of one bacteria, the mean of the size of the next gen-
eration would have been equal to 3, which we denoted as the mean offspring of
one bacteria. Furthermore, the variance is by the theory of Branching processes
[7], calculated by

g —1
51

Var(X,) = o?p" ! ( ) ,forB #£1 (4.7)

In our case, we have n generations between time ¢; and t;_;. If each bacteria
produces offspring with a mean (§ in each generation, we get that the mean of
the number of bacteria at time ¢; can be calculated by

BIX(t;) | X(tj-1)] = X(t;—1)B8" = 0(¢;), (4.8)

Furthermore, equation 4.8 gives that
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Figure 4.1: Branching process

n—1 __ H(tj)
= BX(tj-1)’

which inserted in 4.7 yields that the variance in our case is calculated by

vartxiey | 506500 = 55 (357)

¢ tj)2 2

(t)* <
X(tj-1) \BB-1)

>7 Jor B#1

Now, set

02

BB-1)

Then X (t;) is approximately Normal distributed with the parameters in

k=
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X(t) | X(t; )~N<9(t-) 520" > (4.9)

! 7 TTTX (o) ’
In our data-set we have looked at the logarithm of the number, which we also
prefer to do now. So after taking the logarithm of the number of bacteria, Gaus-
sian approximation gives that the mean and variance now can be approximated

by

E[logloX(tj) | X(tj_l)] ~ logloé)(tj) (410)

and

k

Var(logioX(t;) | X(tj-1)) =~ m.

(4.11)

The parameters can now be estimated by the Maximum-Likelihood method.

4.3.1 Maximum Likelihood

Because data for the number of bacteria below 10 were censored, we have to com-
pensate for this by calculating the Maximum Likelihood function with the dis-
tribution function for numbers = 10. This yields that the Maximum-Likelihood
function can be calculated as

L0(t;) = fo,i(tj)(zi(fj)ﬂ(tj))'FXi(tj)(lo)
where
Pt 0e) = BB [, )
0g10X;\l;) — (LOQg1 '2'1131' i—1)-tlO 2
,el,p{(l grozi(t;) — (I 909(t23)) (tj—1) - log(10) }

and ¢ = 1,2,..., 10, are the repetitions of the experiment. Here X (¢;) denotes
the conditional number.

The log-likelihood is given by

(6(t;)) log(L(6(t;)))

= > (log <lo¢g%)) + %log(mi(tj_l))

(lOgloxi(t]‘) — (lOgloe(tj))Q . l‘i(tj_l) . lOg(lO)Q)
2

+log(Fx,(1;)(10)). (4.12)
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What we have now is a maximizing problem. That means, solving the problem
with respect to a and (3 will give us the estimated parameter values.

This problem was solved numerically by letting Matlab 6.1 solve the differential
equations defined by equation (4.4) for different values of the parameters a and
G until the values of these parameters that maximizes the log-likelihood was
found.

This method gave us the following estimates,

Resistant Sensitive
Parameter Estimate Parameter Estimate
QR 1.42-1077 as 8.28 .10~ 10
Or 0.77 Os 1.00
kr 4589 ks 733

As mentioned earlier, the MIC-value is dependent on which method we used
for the MIC-determination, why we also let MIC be a parameter in this model.
However, letting MIC be a parameter in the model, gave us the following esti-

mates

Resistant Sensitive
Parameter Estimate Parameter Estimate
MICyNpg 0.037 MICng 0.0070
MICy g 0.50 MICy g 0.19

4.3.2 FError estimates

Let us introduce the vectors Y = (d,ﬁ, M/IE'N, MTTE’M) and p = (o, B, MICN, MIC\yy).

By the general theory of Maximum-Likelihood estimation [9] Y is now approx-
imate Normal distributed with parameters as follows,

(0%

= 2

_ B 1
MICy =N < vicx |V )
MT[EM MICwy

where I is the information matrix which is defined by,

9% 9%¢ 9% 9%¢

Oa? 0adp 0aOMICN 0aOMIC)y,

0%¢ 9%¢ 0% 9%¢

0adf 032 0BOMIC N OBOMIC),
I=-

0%¢ 9%¢ 00 9%¢
0aOMICy  OBOMICy OMIC% OMICNOMIC,

9% 9%¢ 9%¢ 9%¢
0aOMICy  OBOMIC); OMICNOMIC) OMIC3,
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Since we do not have explicit equations for these parameters, we will use the

definition of derivation to calculate the elements in the information matrix.
That is

ot (&, B+dB, MICn, MICy) — (&, B, MICy, MICy)
o3 g
2 W&, B+2dB, MICN, MICy) — 20(6, 3+ dB, MICy, MICy)
o> (dB)?
U(é, B, MICN, MICy)
(dp)?

and

0%¢ _ l(&+da, B+ dB, MICy, MICy) — £(é + da, B, MICn, MICyy)
oaf dadf
Ll B+ dB, MICx, MICy;) + €(é, 3, MICn, MIC)y)
dadp

Calculations yield the following covariance matrices for the sensitive and resis-
tant strain, respectively.

7.65-1072%  —4.44.10720 -3.48-1072! 4.89-10720
—4.44-10720  4.83.1075 —1.27-107% —1.41-107°

e

rR=Ig = | _38.10-2t _1927.10-6 148-10-7 —1.17-10-°
489-10720  —1.41-107% —1.17-107% 2.50-107°
3.12-1072%  353.10717 —263-1071¢ —1.86-10"1'7

S =1 3.53-10717  380-107° —-2.65-1077 —2.72.1078

S=7s —2.63-10716 —265-1077 5.02-1077 —1.35-107°

—-1.86-10"17 —2.72.-107% —-135-10"°> 3.67-10~*

With these values, we can furthermore calculate the variance for (Y). With
Gaussian approximation it follows that 6(Y) can be calculated by

3 2
Vard(n) = SV (5%)

Y, Y;=Y;
00 00
+2;COU(Y¢7YJ) (m(‘ﬂYJ) Viset,

=
Var(0r(Y)) =726
Var(0s(Y)) = 4114.
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4.3.3 Confidence interval

Let X = £7Y2(Y — p). Then, (4.3.2) yields [8] that

X ~ N(0,I).
A confidence interval will now be given by
SY2(Y — 1) = £X0.025

<
p=Y +3X2)g 025

where Ag.g25 in this case is the 2.5% quartile of the normal distribution.

The confidence intervals for each parameter are summarized in the tables below.

Resistant strain

’ Parameter H Estimate \ Confidence interval ‘

aR 1.42-1077 [ (1.42-107°,1.42-1079)
Or 0.77 (0.76,0.78)
MICyNpg 0.037 (0.036,0.038)
MICygr 0.50 (0.49,0.51)
Sensitive strain
’ Parameter H Estimate \ Confidence interval ‘
ag 819-1010 ] (8.19-10719,8.37-10~19)
Bs 1.00 (0.99,1.012)
MICng 0.0070 (0.0056,0.0084)
MICuyg 0.19 (0.15,0.23)

Note that because the covariance matrixes are close to singular, the results may
due to numerical problems be a little uncertain.

What we still have to do now, is to analyze whether the model will fill its
function, in the question of predicting when the selection of resistance occurs.
This will be discussed in the next chapter.
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Chapter 5

Results

In this chapter, the results of the pharmacodynamic model with
estimated parameters will be presented. The results of the model
will be compared with real data and we will check whether the model
presented in the previous chapter is adequate for our purposes.

5.1 Prediction

An approximative 95-percent prediction interval for § can be calculated by

0(t;) +1.96,/Var(X (t;)).

This means that an observation with 95-percent probability will be included
within this interval. Figure 5.1 shows the estimated model with predictive
interval compared with experimental data.

5.2 Discussion

The parameters o, § and MICpy in the model was estimated from data from
the repeated experiments of SW 2 hours. For this window we can see that real
data seem to be well included by the 95-percent predictive interval of the model.
But we can also see that we seem to get an increased deviation from real data
with increased length of the selective window. In this section possible reasons
to this will be discussed.

In graphs in figure 5.1, we have two populations representing the sum of the
wild-type bacteria and mutated bacteria, which we called X and Xg. Looking
at the subpopulations, that means Nr, M and Ng, Mg, respectively, of the
total populations shows that the part of the total population that consists of
mutations increases with the length of the selective window of each experiment
in the estimated model.
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9 1 e
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Time (hours) Time (hours)

log(cfuy/mi

Time (hours)

Figure 5.1: Different lengths of Selective Window, Estimated model with confi-
dence interval. - - = Sensitive strain with * = experimental data,

— = Resistant
strain with o = experimental data
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In the first experiment, SW=1 h, the total population in the model consisted of
almost only wild-type bacteria and in the last experiment, SW=12 h, the total
population was consisting of mutations only.

If we summarize these observations, one possible reason to the increased devia-
tion from real data with increased selective windows could be that factors that
were assumed to be equal for Ny, Mr and Ng, Mg, respectively, as a matter
of fact differs. For example, wild-type bacteria may have a higher resynthesis
rate of PBP than mutated bacteria. One more possible reason could be that
the mutation rate, which is constant in the model, in reality depends on the
concentration and exposure time of antibiotics.

Also to be mentioned is that it takes a longer time for the mutated bacteria of the
wild-type resistant strain to take over the total population than if we compare
with the wild-type sensitive strain, which is a result of a lower inoculum. So the
inoculum will be an important factor when we look at the selection of the total
populations X and Xg. In the experiment with SW=4 h, X (sum of wild-type
resistant and mutated bacteria) is selected. But looking at the subpopulations
of Xr and Xg, respectively, would in this model show that the main part of
X population consists of wild-life bacteria, while the sensitive population Xg
consists of mutated bacteria. This means that what we really have, is a selection
of the most sensitive strain.

For further investigations, one important thing would be to check by MIC-data
whether there really are mutations in the experiments as the estimated model
describes. Furthermore investigation of how the wild-type bacteria differs from
the mutated bacteria would be of interest.
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Chapter 6

Conclusion

Our primary goal in this thesis was to construct a pharmacodynamic model
which could explain when selection of the wild-type resistant population oc-
curred. Because we unexpectedly found out that the bacteria in the wild-type
populations developed extra resistance by mutating, the question of interest was
now to explain when the most resistant population of the four subpopulations
were selected.

The conclusion was that the selection of Ng, Mg and Ny, Mg, respectively,
increased with the length of the selective window, which could be proved by
repeating these experiments and determining MIC-data. So when it comes to
the total populations of X g and X the selection in this model will be dependent
on how the subpopulations are selected and also on the inoculum of each wild-
type strain.
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Appendix A

Data

This appendix provides data not presented in the report, that were
used to estimate the parameters.

A.1 Control curve for growth rate without an-
tibiotics

The experiment in figure A.1 was done without any pressure of antibiotics. Be-
cause we assumed that bacteria have maximal growth rate without any pressure
of antibiotics, this parameter was estimated from data from this experiment.

As we can see in the figure, we have a time-delay for the bacteria to reach
normal growth rate, which could be a result of the time it takes for bacteria to
7 get accustomed” to the new milieu. The maximal growth rate was therefore
estimated between 2 and 8 hours.

8

log(cfu)/ml

35 L L L L
0 5 10 15 20 25

Time (hours)

Figure A.1: Control curve for growth rate without antibiotics
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A.2 Experiment with high concentration of an-
tibiotics

This experiment was done with extremely high concentrations of antibiotics to

be sure of reaching the maximal kill rate of bacteria. The maximal kill rate
were estimated with data between 0 and 2 hours.

cmax=14.0 mg/l, T =
T T

log(cfu)/ml
=

Time (hours)

Figure A.2: Experiment with high initial concentration of antibiotics
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A.3 Raw data for Maximum-Likelihood estimates

The Maximum-Likelihood estimates in Chapter 4 were estimated with data from
10 repetitions of the experiment with Selective Window = 2 hours, which are
presented in the table below. The numbers are presented in logig-scale.

Trialnr i Strain t [ 0 2 4 6 8§ 12 24

1 S 5.07 274 226 160 3.87 516 6.67
R 3.17 1 1 241 386 6.11 7.71
2 S 494 292 1.85 1 283 b5.77 6.40
R 3.01 1.40 1 2.89 4.09 7.22 812
3 S 5.17 3.61 1.70 1 3.12 645 7.00
R 3.17 2 1 232 431 782 830
4 S 535 2.86 254 1.74 204 522 7.01
R 3.29 1 1 232 3.27 6.60 8.04
) S 5.35 2.58 254 148 234 576 7.22
R 3.21 1 1.30 185 2.89 7.09 7.99
6 S 5.26 279 256 148 240 5.03 7.26
R 3.17 1 1.30 1.95 3.52 6.47 8.34
7 S 5.30 282 259 200 277 542 7.73
R 3.14 1 1 1.60 3.14 6.30 7.96
8 S 531 2.88 227 148 260 5.64 6.32
R 3.10 130 1.18 3.63 5.09 7.54 8.09
9 S 530 285 1.54 148 3.28 548 6.15
R 3.09 1 1 3.61 536 7.64 8.05
10 S 5.14 3.82 1.48 1 293 6.24 7.07
R 3.26  2.32 1 248 4.04 731 8.02
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