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Abstract

A monthly Business Tendency Survey and a statistical time series are used
to construct new early indicators for the total manufacturing in Sweden. As
in Öller & Tallbom (1996) [9], by smoothing the forecasts, false turning point
warnings are avoided. Introducing a relay that turns off the smoothing when
there is a strong signal, the time shift that occurs in causal filter smoothing
is eliminated.

Keywords: Business Tendency Survey, Exponential Smoothing, Kalman
filter, Statistical Time Series, Smoothing Relay
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Preface

This paper is part of a master thesis in Mathematical Statistics at Stock-
holm University. The paper is written at Statistics Sweden1 where the results,
if any satisfactory, are to be used.

1Statistics Sweden is a central government authority for official statistics and other
government statistics and in this capacity also has the responsibility for coordinating and
supporting the Swedish system for official statistics.



Chapter 1

Introduction

The purpose of this thesis is to create new early monthly indicators of
the Swedish Volume of Production.

Since 1913 Statistics Sweden has published a monthly Statistical Time
Series (STS) of the total manufacturing production volume of the National
Accounts. Starting in the early 1950’s the Swedish National Institute of
Economic Research(NIER) has conducted a quarterly Business Tendency
Survey (BTS), also of the total manufacturing production volume. In 1996
a corresponding monthly BTS of the same type was started. The STS is
a more thorough investigation than the BTS and takes time to assemble.
Thus the STS is published quite late as compared to the BTS. However,
Öller (1990) [10] concludes that survey data alone result in poor forecasts
of the time series of interest and suggests that combining STS and survey
data may result in early warnings of turning points in the business cycle.
Rahiala & Teräsvirta (1993) [6] developed a Kalman filter, using forecasted
STS to regress the already known BTS and then adjust the STS forecast
by adding the difference between the true BTS and the BTS value regressed
with STS, multiplied by the Kalman gain. This was done to combine the
STS and BTS for the quarterly production volume in Swedish and Finnish
metal and engineering industries. Öller & Tallbom (1996) [9] applied this on
quarterly data by using the same Kalman filter, but adding smoothing and
a relay that turns it on/off in turning points. Here this filter is applied on a
monthly BTS series and the STS, leading indicators on a monthly frequency
are constructed, thus increasing the lead of the indicators. This type of
analysis have not been done before on monthly data.

Christoffersson et al. (1992) [7] showed that there is a strong low (busi-
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ness cycle) frequency coherence in quarterly data between the STS and the
BTS series Coincident Volume of Production (CVP), Forward-Looking Vol-
ume of Production (FLVP) and Total Orders (TO). This speaks in favour
of making an experiment with monthly data that monitor the economy even
more closely, as does the fact that the quarterly early indicators of Öller &
Tallbom (1996) [9] have worked very well since their introduction in 1994.
The main problem is that the monthly time series are so short.

Section 2 presents the approach of this study and the model. The analysis
is made both in the frequency and in the time domains. The monthly data
are introduced in Section 3, and the results in Section 4. Section 5 contains
final remarks and conclusions.
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Chapter 2

The model

2.1 The frequency domain

ARMA1 models were estimated for the stationary BTS series and the sta-
tionarized STS series. The Power Spectral Densities (Pj(ω)) were calculated
using the ARMA parameter estimates, applying the formula:

Pj(ω) =
σ̂2

j

∣∣∣1 +
∑q

k=1 θ̂j,ke
−i2πωk

∣∣∣2∣∣∣1−∑p
k=1 φ̂j,ke−i2πωk

∣∣∣2 , j = 1, 2. (2.1)

where the φ̂k and the θ̂k are maximum likelihood estimates of statistically
adequate ARMA models for the series at hand and σ̂2

j is the variance of the
error.

The coherence between two stationary variables xt and yt can be esti-
mated using the Fourier transforms, FX(ω) and FY (ω):

Cohxy(ω) =
E

(
|FX(ω)F ∗

Y (ω)|2
)√

SX(ω)SY (ω)
(2.2)

where SX(ω) is E
(
|FX (ω)|2

)
, SY (ω) is E

(
|FY (ω)|2

)
and F ∗

Y (ω) is the com-
plex conjugate of FY (ω). Here we used the Hanning window with the shortest
width that still retains the main features of the coherence function.

1More about ARMA models in appendix A
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2.2 The time domain

For natural reasons the STS is to be regarded as a more reliable indicator
of production volume than the BTS. Hence STS is chosen as the reference
variable to be forecasted, because the price of its reliability is that it is pub-
lished later than the BTS. If the two types of time series have similarities
for the long term variations (low frequencies), and act similarly in turning
points, one approach to forecasting the STS is to use univariate inertia prop-
erties of the STS, transform the BTS to the STS scale and combine the two
sources of predictive information. The forecast of the STS is then obtained
as a weighted average of the rescaled BTS and a univariate forecast of the
STS series. Both series may be so much contaminated by noise that no reli-
able signals for future values can be extracted. Abrupt changes, typical for
both series, may wrongly be interpreted as turning points. By smoothing,
the noise can be reduced, but a causal filter will then generate a time shift
(late signals) on critical frequencies, as is shown in [11]. By using a relay
that turns off the smoothing when there is a strong indication of an increase
or decrease in the series we want to eliminate the time shift whenever there
is a turning point2. We apply the state space3 approach with a Kalman filter
forecast of STS as introduced in [6] and modified in [9], and use it on monthly
instead of quarterly data.

Following [9], let xt be the logarithm of a monthly STS at time t, and let
∆12xt = xt − xt−12. An autoregressive model of order p (AR(p)) for ∆12xt,

∆12xt = µ+ φ1∆12xt−1 + φ2∆12xt−2 + · · ·+ φp∆12xt−p + ε1,t, (2.3)

is estimated for t = 12+1+p, 12+2+p, ..., T−1, where ε1,t is i.i.d (0,σ2). The
order of the model p is determined through ordinary univariate diagnostics
(Ljung-Box test, AIC, BIC). AR parameterizations that whiten the time
series are preferred to models containing MA parameters because the latter
would make the model much more complicated. Model (2.3) can be stacked
into a vector autoregressive form (VAR):

2More about turning points in Öller & Tallbom (1996) [9] and Koskinen & Öller
(2003) [5].

3More about state space in appendix B
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∆12xt

∆12xt−1

·
·
·

∆12xt−p+1

1


=



φ1 φ2 · · φp µ
1 0 · · · 0
0 1 0 · · 0
· · · ·
· · · ·
· · · 1 0 0
0 · · 0 0 1





∆12xt−1

∆12xt−2

·
·
·

∆12xt−p

1


+



ε1,t

0
·

·
·
0


and in matrix notation;

∆12xt = A∆12xt−1 + ε1,t (2.4)

for t = 13 + p, 14 + p, ..., T − 1.

which is called the transition equation for the STS series. The BTS series yt

is regressed on the analogous STS:

yt = γ + β1∆12xt + ε2,t,

for t = 12 + 1 + p, 12 + 2 + p, ..., T − 1. The scalar valued regression can be
written in vector notation:

yt = b∆12xt + ε2,t (2.5)

for t = 13 + p, 14 + p, ..., T − 1,

which is called the measurement equation for the BTS series and where ε2,t

is i.i.d (0, σ2) and also independent of ε1,t. Note that yt is interpreted as
an indirect observation of ∆12xt. Note also that at time t we use only yt =
Coincident Volume of Production, and att time t+ 1 we use regression with
other BTS data to estimate a value of the Volume of Production. We forecast
the STS for period T by using transition equation (2.4)

∆12xT |T−1 = A∆12xT−1, (2.6)

where ε1,T |T−1 is set to its expected value of zero. The BTS is forecasted for
the same period by using the measurement equation (2.5), based on the AR
prediction ∆12xT |T−1:

ŷT |T−1 = b∆12xT |T−1. (2.7)
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Since we already know the outcome of the BTS, yT , for period T , any discrep-
ancy between the forecast ŷT |T−1 and the outcome yT implies that the last
observation deviates from the estimate derived from measurement equation
(2.5). Now the Kalman4 adjustment factor can be calculated and added to
the VAR forecast in (2.6) to obtain the final coincident forecast :

∆12x
∗
T |T = ∆12xT |T−1 + kT

[
yT − ŷT |T−1

]
(2.8)

kT = V
(
∆12xT |T−1

)
b′V

−1 (
yT |T−1

)
.

Here V
(
∆12xT |T−1

)
is the one-step-ahead forecast covariance-matrix of

∆12xT |T−1 and V
(
yT |T−1

)
is the one-step-ahead forecast covariance-matrix

of y, i.e. the Kalman gain vector kT depends on the forecasting variances
of the transition equation and of the measurement equation. In [4], ch. 4,
it is shown that ∆12x

∗
T |T is the minimum mean square linear estimator of

∆12xT |T .
The exponential smoothing algorithm:

∆12x̃
∗
t = λ∆12x

∗
t + (1− λ)∆12x̃t−1, (2.9)

where ∼ denotes ”smoothed” and 0 < λ < 1 , with starting point:

∆12x̃13 =
∆12x13 + ∆12x14

2
; ∆12xt = 0, t ≤ 12

is used in the last stage. Smoothed and unsmoothed STS values are produced
in parallel by the Kalman filter, where λ is a constant called ”the forgetting
factor”.

Forecasting the STS one step further can be done using the forward look-
ing BTS questions and by substituting the coincident forecast for the last
observation of STS in the transition equation. Here we also incorporate the
two BTS questions on coincident production and order stock in a vector yT |T .
By linear regression we produce an estimated BTS value for t = T + 1:

y̌T+1|T = h
[
yT+1|T ,yT |T

]
(2.10)

Then the forward looking STS ∆12xT+1|T is calculated by repeating the
procedure in (2.8) for T + 1 | T .

4More about the Kalman filter in appendix B
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Chapter 3

The data

The Volume of Production Index (SNI 92, C+D) is a monthly time series
which is not identical to the quarterly series used in [9], but very close. It
has a strong seasonal component and the analysis has been done with sea-
sonally differenced logarithmic STS data. This removes most of the seasonal
variation, and eliminates unit roots on the zero and the seasonal frequen-
cies. Seasonal differencing is a crude way of dealing with seasonality and
unit roots, but given the short and noisy time series, simplicity was preferred
to doubtful results of unit root tests. Because of the limited amount of
BTS data we had to start the estimation period in 1996:1. The observations
2000:6 - 2003:7 were saved for testing. The testing period was chosen so that
forecasts of the drop of the STS in 2001 could be evaluated. The data are
working-day corrected, meaning that the Volume of Production is evaluated
depending on how many working days there is in the month. The time series
is shown in Figure(3.1(a)).

The early data used here to forecast the STS series are the following
Swedish monthly BTS series: Coincident Volume of Production, (CVP),(Figure
3.1(b)), Total Orders, (TO), (Figure 3.1(d)) and Forward Looking Volume
of Production (FLVP) (Figure 3.1(c)). The BTS series are measured as a
distribution of answers across, ”lower”, ”same” and ”higher”. Since the BTS
answers are given on an ordinal scale a quantitative interpretation is difficult.

A visual inspection of Figure 1 (a-d) reveals that the series behave dif-
ferently on all frequencies, lowering the hopes of achieving leading indicators
for STS of a reliability comparable to the quarterly leading indicators. Note,
however, that there is some similarities on the business cycle time interval
(three to six years). Note also that the timing of turning points is promising.
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(a) The reference series ∆12STS (b) Coincident Volume of Production (CVP)

(c) Forward-Looking Volume of Production
(FLVP)

(d) Total Orders (TO)

Figure 3.1: The series used in the analysis
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Chapter 4

Results

Here we will present results from both the frequency domain and the time
domain, with focus on the latter.

4.1 The frequency domain

Figures 4.1 and 4.2 show Power Spectral Density functions (PSD) of the
variables involved and the coherence between the STS and two BTS variables.
Table 1 presents the estimated parameter values that were inserted into (2.1)
to obtain the PSD’s. Actually, the complete model of the STS variable
also contains a seasonal component, which we ignored in Figure 4.1. This
is because in a complete model PSD, the unit root dips would completely
dominate the figure, and we are just interested in the stationary dynamics.
All PSD’s have much power in the low (business cycle) frequencies, where
the coherences are also high.

In Figure(4.2) the coherences between ∆12STS and Coincident Volume of
Production (CVP) and ∆12STS and Forward Looking Volume of Production
(FLVP) is measured. The local maxima around the annual frequency are
either spurious, or reflections of remaining sasonality. In the former case they
can be ignored. In the latter case the seasonality in the STS variable and
the corresponding BTS variable can be expected to be positively correlated
and is thus harmless in the measurement equation. Total Orders (TO) is
a variable used in the regression in (2.10) for estimating BTS Volume of
Production one step ahead and a coherence with ∆12STS is not considered
necessary.
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(a) ∆12STS(-) and Coincident Vol-
ume of Production(· · · )

(b) ∆12STS(-) and Forward-looking
Volume of Production(· · · )

Figure 4.1: PSD’s of ∆12STS vs. the BTS series

Table 1. Models from which the PSDs are derived

STS Model: xt = 0.027+0.402xt−1+0.305xt−2+ε̂t, Ljung-Box(12 Lags): p < 0.0001
CVP Model: xt = 0.132+0.787xt−1+ε̂t, Ljung-Box(12 Lags): p < 0.0001
FLVP Model: xt = 0.198+0.776xt−1 +ε̂t, Ljung-Box(12 Lags): p < 0.0016

(a) ∆12STS and Coincident Volume
of Production

(b) ∆12STS and Forward-looking
Volume of Production

Figure 4.2: Coherences of ∆12STS vs. the BTS series
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Figures 4.1 and 4.2 above show that there are strong similarities between
the monthly BTS variables and the ∆12STS. These results indicate that we
may be able to use the CVP and the FVLP series in the Kalman filter to
produce useful monthly early indicators.

4.2 The time domain

In Table 2. the regression coefficients in the measurement equation (2.5)
and on Total Orders (TO) in (2.10) do not quite reach statistical significance.
Still, a Granger-Newbold test1 on data outside the estimation period deci-
sively rejected the hypothesis that the leading information in BTS does not
improve forecasts generated by the transition equation, both in the coinci-
dent and in the forward-looking cases.

Table 2. The estimated Kalman model

Eq(2.4) Eq(2.5) Eq(2.10)
µ ∆12xt−1 ∆12xt−2 γ ∆12xt CVP FLVP TO

Coeff 0.0274 0.4022 0.3053 0.1372 1.2044 0.4125 0.3048 0.2058
std 0.0111 0.1138 0.1164 0.0345 0.6897 0.1407 0.0718 0.1275
t-val 2.45 3.53 2.62 3.98 1.75 2.93 4.25 1.62

The coincident forecast is generated stepwise for the period 2000:6 - 2003:7
and the forward looking for 2000:7 - 2003:8. Both the coincident and the
forward looking forecasts depend on the smoothing parameter, 0 < λ < 1.
When using the exponential smoothing algorithm in (2.9), a time shift occurs
for higher frequencies, similar to the situation when a possible turning point
is at hand. This is where the smoothing relay comes in. The relay turns
off the smoothing only if both (coincident and forward-looking) smoothed
forecasts indicate an increase or a decrease at the same time as both the
unsmoothed forecasts indicate the opposite. Obviously this is because the
smoothed forecast is stiffer in turning than the unsmoothed strong signal.

1See Appendix C
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FLV P

XXXXXXXXXz
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FLV P

Unsmoothed

The smoothing relay

This eliminates time shifts whenever there is a downward turning point.
The relay turns the smoothing on again when subsequently both the smoothed
forecasts change signs and the absolute value of the smoothed coincident
change is larger than the unsmoothed change, or if the two smoothed val-
ues start pointing in different directions. The larger λ is, the more noise
gets through and the smaller λ the smoother is the signal, and the more the
smoothing approaches a low pass filter, highlighting the interesting business
cycle frecuesies. On the other hand the time shift increases, leading to late
signals. The value λ = 0.15 was chosen as the smallest for which the relay
works in the downturn in January 2001 and the upturn in April 2002.
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Figure 4.3: The STS (−) and the Coincident (�) and Forward-Looking (o)
forecasts, smoothing off 2001:1 - 2002:4, otherwise on, relay active

In Figure 4.3 both indicators drop earlier and much deeper than the STS.
Differently from quarterly indicators the monthly ones become misleading
for the STS.
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Figure 4.4: The STS (−) and the Coincident (�) and Forward-Looking (o)
forecasts, smoothing on, relay inactive

18



Chapter 5

Conclusions

Given the circumstances with relatively short and noisy time series one
could not hope for too much when trying to fit a model to such data. How-
ever, the Kalman filter in [6] is robust enough to extract leading signals
from them. In Section 4.2, the results from the Granger-Newbold test show
some evidence that monthly data contain the information required by leading
indicators. The importance of smoothing is emphasized as in [5]. With no
smoothing the indicators would have been misleading and no turning point
signals would have been issued. The indicators work much better by pre-
serving the smoothing in the contraction period (see Figure 4.4) and one just
needs to register the turning point signals provided by the relay. Considering
the small data set this does not need to be a general rule. The excessively
deep dip may have resulted from an unusual pessimism in the business world
at the time.
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Appendix A

ARMA models

For a time series xt, we can model that the level of its current observations
depends on the level of its lagged observations. This can be represented by
an AR model. The AR(p) (autoregressive of order p) can be written as:

xt = µ+ φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + εt (A.1)

where εt ∼ WN(0, σ2) and we keep this assumption through this appendix.
One way of estimating the AR parameters is by lettingXt = (xt, xt−1, ..., xt−n)′

be a (n× 1) vector and

Xt−1 =


xt−1 xt−2 ... xt−p

xt−2 xt−3 ... xt−p−1
...

. . .
...

xt−n−1 xt−n−2 ... xt−n−p

 ,

and let Θ = (φ1, φ2, ..., φp)
′ and Xt = Xt−1Θ+ εt where εt is the n× 1 vector

of errors, then
(Xt−1X

′
t−1)

−1X′
t−1Xt = Θ̂

In a second way of thinking, we can model that the observations of a
random variable at time t are not only affected by the shock at time t, but
also the shocks that have taken place before time t. This can represented by
an MA model. The MA(q) (moving average of order q) can be written as

xt = γ + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q (A.2)
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If we combine these two models in (A.1) and (A.2), we get a general
ARMA(p,q) model,

xt = ψ + φ1xt−1 + · · ·+ φpxt−p + εt + θ1εt−1 + · · ·+ θqεt−q (A.3)

If ρ̂1, ..., ρ̂n sample autocorrelation of an iid sequence ε1, ..., εn then the
Ljung-Box statistic is defined,

QLB = n(n+ 2)
h∑

j=1

ρ̂2
j

n− j

QLB has a χ2 distribution with h degrees of freedom. As a test for iid, we
reject the hypothesis of iid at level α if QLB > χ2

1−α(h), where χ2
1−α(h) is the

1− α quantile of the chi-squared distribution with h degrees of freedom.
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Appendix B

State space and the Kalman
filter

Assume that at time t−1 we have the information setK = {xt−1, xt−2, ..., x1},
the m × 1 state vector xt is not directly observable but its movements are
assumed to be ruled by a well-defined process, the transition equation:

xt = Ttxt−1 +Rtε1,t, (B.1)

where Tt and Rt are fixed m ×m respectively m × g matrices and ε1,t is a
g×1 noise vector. The N observed variables are defined by a N×1 vector yt.
They are related to the state variables through the measurement equation:

yt = Ztxt + Stε2,t, (B.2)

where Zt and St are N ×m respectively N × n matrices and ε2,t is a n × 1
noise vector. The noise vectors ε1,t and ε2,t are mutually indipendent, have
mean zero and covariance matrices Qt and Ht,respectively. The equations
(B.1) and (B.2) jointly constitute the state space form.

The estimate of xt is adjusted by using the difference of the true value of
yt and the regressed value ŷt,

x∗t = xt + kt [yt − ŷt] , (B.3)

where kt is called the Kalman gain and is defined as,

kt = QtTtH
−1
t .
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Appendix C

The Granger-Newbold test

This is a test that compares the accuracy of two forecasts according to [2]
p. 279. Let δ1 be the error of the forecast (2.4) and δ2 be the error in the
corresponding Kalman filter (2.8) with the condition (δ1,i, δ2,i) is independent
of (δ1,j, δ2,j) for i 6= j. Consider two new stochastic variables δ+ = δ1 + δ2
and δ− = δ1 − δ2. The expected value of the product:

E
(
δ+δ−

)
= E

(
δ2
1 + δ1δ2 − δ1δ2 − δ2

2

)
= E

(
δ2
1

)
− E

(
δ2
2

)
= σ2

1 − σ2
2,

where σ2
1 and σ2

2 are equal if and only if the new variables δ+ and δ− are
uncorrelated so that

r =

∑M
i=T+1 δ

+
i δ

−
i√∑M

i=T+1 δ
+
i

∑M
i=T+1 δ

−
i

is zero. The corresponding test statistic for the hypothesis r = 0 of an
unbiased estimate r̂ of r is

t =
r̂
√
N − 2√
1− r̂2

for N = M − T,

which is distributed as Student’s t with N − 2 degrees of freedom.
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[11] Öller, L.-E., A Note on Exponentially Smoothed Seasonal Differences,
Journal of Business & Economic Statistics, (1986), Volume 4, 485-489


	ARMA models
	State space
	The Granger-Newbold test

