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Abstract 

In order to maintain a profitable business of health insurance, the insurance 
companies must almost continuously adjust the assumptions which form the basis of 
estimating premiums as well as sickness reserves. These assumptions involve, among 
others, the probability of getting ill and remaining ill. Estimating this probability is 
mostly done by parametric methods. However, in recent years, the companies’ 
financial situations suggest that these methods possibly need some adjustment.  
 
This dissertation is done in order to examine whether an adjustment is needed and if 
so, to indicate the direction of this adjustment. The comparison is made between the 
parametric G84 and the non-parametric method based on the Nelson-Aalen 
estimator. Diagrams affirm the notion that the parametric method needs an 
adjustment as well as the fact that the adjustment will lead to higher premiums for 
the policyholders. 



 
 
 

iii

Contents 

1 Introduction.......................................................................................................................1 
1.1 An internal relationship between ),( txν and ),( txλ .............................................3 

2 t -Frequencies ....................................................................................................................4 
3 Termination Function ),( txλ ..........................................................................................5 

3.1 The non-parametric method ...................................................................................5 
3.1.1 Time-To-Event Analysis ..................................................................................5 

3.1.1.1 Censoring and truncation............................................................................5 
3.1.2 Counting Processes and the Multiplicative Intensity Model .....................7 
3.1.3 Martingales and Stochastic Integrals .............................................................9 
3.1.4 The Nelson-Aalen estimator .........................................................................12 

3.1.4.1 Some asymptotic results ............................................................................13 
3.2 The parametric method..........................................................................................15 

4 The results........................................................................................................................16 
5 Conclusion .......................................................................................................................18 
References ................................................................................................................................19 



 
 
 

iv

Preface 

The Swedish Insurance Federation (Sveriges Försäkringsförbund) is the trade 
association for insurance companies active in Sweden. The Insurance Federation 
promotes the interests of the member companies and their possibilities to operate in 
Sweden and internationally by representing the industry primarily to the 
Government and other authorities. It also provides its members with a range of 
services such as statistical information among others. 
 
This report is an outcome of my master thesis that was carried out at the Swedish 
Insurance Federation, under supervision of the Department of Mathematics, Division 
Mathematical statistics at Stockholm University, Stockholm. 
 
I would like to thank my supervisor Arne Sandström at the Swedish Insurance 
Federation for his encouragement, understanding and patience, and my professor 
Mikael Andersson at Stockholm University for his commitment and support. Others I 
would like to thank are the participating insurance companies and their 
representatives for making this project possible. 
 
I would also like to thank Hans Ekhult for giving the historical insight on insurance 
business and the staff at the Swedish Insurance Federation for making my time with 
them an enjoyable experience. 
 
Marija Milicevic 
 
marijamilicevic@hotmail.com 
 
Stockholm, January 2003 



 
 
 

1

1  Introduction 

Non-cancellable, long-term, health insurance has been carried on in Sweden since the 
beginning of the twentieth century. It is designed to provide the right to a monthly 
benefit (as compensation for the reduction or loss of income) as long as the loss of 
working capacity due to sickness or accident is total or amounts to at least 50 per cent. 
Benefits are payable after the lapse of the waiting period1 until the expiry of the total 
insurance period. No benefits are payable before the age of 16 and the upper age limit 
is usually 65 years. If partial-working capacity is at hand, the benefits payable 
correspond to the degree of disablement. 
 
In order to maintain profitable business of health insurance, the insurance companies 
must almost continuously adjust the assumptions which form the basis of estimating 
premiums as well as sickness reserves. Two of the most important assumptions are 
the one on the probability of getting ill and the other on the combined probability of 
getting ill and remaining ill. These probabilities appear in calculations of both 
premiums and sickness reserves. Estimating the combined probability of getting ill 
and remaining ill is done mostly by parametric methods whereas the probability of 
getting ill is calculated from the actual number of ill and healthy policyholders. 
However, in recent years, the companies’ financial situations suggest that these 
methods possibly need some adjustment.  
 
This dissertation is done in order to examine whether an adjustment is needed and if 
so, to indicate the direction of this adjustment. Properties as well as quantity of 
policyholders in each of the companies form the basis of these adjustments. However, 
the quantity of policyholders is considered rather modest to secure statistically 
significant results. 
  
Clustering all policyholders into one group and performing analysis would minimise 
the uncertainty in the results. Four Swedish insurance companies: Folksam, SEB Liv, 
Länsförsäkringar and Nordea decided to do so and finance an implementation of a 
program that would produce an estimation of these probabilities by both parametric 
and non-parametric methods and a comparison between these. Developing the 
program ‘Sjuklighet’2 and analysing the obtained results was the scope of this 
dissertation. 

                                                 
1 The waiting period is usually three months but could be either shorter or longer as well as so-called 
floating waiting period (R-karens) of no fixed time limit implying right to a benefit as soon as the 
insured under the national insurance is granted disability pension. 
2 Sickliness. 
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A policyholder’s health condition viewed by the insurance company can be described 
schematically with a so-called disability model: 
 
                                                      )(xη  
                                                                          ),(1 txµ  
                         )(xγ                                                                       ),(2 txµ  
 

                                                            Figure 2 

Where: 
  

)(xη       - The force of morbidity also called the intensity of disability  
),(1 txµ  - The cure rate 
),(2 txµ  - The death intensity of disabled  

)(xγ       - The death intensity of healthy3 
 
Where: 
 
x  -The age at which a person is disabled or dead 
t   -The time a person has been disabled (and at which he/she terminates from   
      disability to either of the states “Alive and well” or “Dead”) 
 
Quantities of interest for the insurance companies are:  
 

),( txν – The combined intensity that a person will fall ill at age x and remain ill t  
              years later. The estimates of ν ( x , t ) will be referred to as t-frequencies.   

),( txλ – The probability that the person who falls ill at the age x  will remain ill   
               t  years later, i.e. ==≤−==≥ )(1)( xXtTPxXtTP )(1 xtF −  
               there )( xtF   is the conditional cumulative distribution function. 
               The estimate of ),( txλ will be referred to as the termination function. 
 
These functions are of vital importance for the insurance business. The importance is 
illustrated by the following formulas: 
 
The sickness reserves4 for one “monetary unit”: 
 

 due
tx
ux

txztxa tu
xz

t

)(

),(
),(

),,( −⋅−
−

⋅=−− ∫ δ

λ
λ  

                                                 
3 Those familiar with the theory of stochastic processes note a certain resemblance with Markov 
processes. This is in fact a so-called semi-Markov process depending on time of disablement as well as 
on the duration of illness.  
4 The sickness reserve is the present value of a disability annuity to a person )( tx +  years old who, at 
the age of x, was entitled to a disability annuity expired latest at the age of z. 

Alive and well Alive and disabled 

Dead 
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The single premium5 for one “monetary unit” per annum, excluding loading: 
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Where the t-frequency appears as a product: 
 

),()(),( txxtx λην ⋅=  
 
The other terms are: 
 
k                   - The waiting period 

x

sx

l
l +               - The probability of a x  years old person to live s years later 

)1ln( r+=δ  - The force of interest  
)(⋅kη              - The intensity of disability that depends on k  

1.1 An internal relationship between ),( txν  and ),( txλ  

Let =),( txµ +),(1 txµ ),(2 txµ  be the aggregated intensity6 of termination from the 
state “Alive and disabled”. Allowing for this assumption is the fact that the insurers 
are not interested in what caused the termination from the state “Alive and disabled”, 
only that it occurred. 
 
Further on, for arbitrary x : 
 

=)(tµ
0
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→h h

tThtTtP )( >+≤<
 = 
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),(1
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0 tTP
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)(
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⋅

> →
 

        = )(
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According to the equation above, dtt)(µ  can be interpreted as the probability of an 
instantaneous termination given that policyholder is disabled at time t . 
 
As mentioned earlier: 

==≤−==≥ )(1)( xXtTPxXtTP )(1 xtF −  

)(),( xtF
t

tx
t


∂
∂

−=
∂
∂

λ  

                                                 
5 Premiums are estimated as a product of the risk of loss and the amount at risk. 
6 Also called the hazard function. 
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This implies that for a given x : 
 

=)(tµ )(
)(

1
tF

tTP
′⋅

>
 = -

)(
)(

t
t

λ
λ ′

 = - ))((ln t
dt
d

λ  ⇔  )(tλ  = exp (- ∫
t

dss
0

)(µ ) 

 
Whereas the probability that a person x years of age will be disabled during the small 
time-interval dx  is dxx)(η 7, the combined probability of falling ill and remaining ill is: 
 

dxxtxdxtx )(),(),( ηλν ⋅=   

2 t -Frequencies 

The −t frequencies are, in the Swedish model, calculated as the ratio between the 
number of cases of sickness at age x with duration of at least t years, ),,( ItxM  and the 
total number of policyholders of the same age, ),( IxN , (both active and disabled): 
 

),(
),,(

),(ˆ
IxN
ItxM

tx =ν          ( I - The observed time interval) 

 
It is understood that the −t frequencies are estimated for the values of t  at which they 
can be observed, i.e. for kt ≥  where k  is the waiting period. 
 
As the time interval I  can be a period of say m years, ),( 1 mnnI = , ),( IxN  can be 
approximated by: 
 

)(
2
1

)1(...)1()(
2
1

),( 11 mxmxxx nNnNnNnNIxN ⋅+−++++⋅≈  

 
Where: 
 

)(nN x - The number of persons at the age x  at the time n−− 0101 . 
 
In addition, the calculation of ),( IxN  can be simplified by considering the age classes 
X  instead of single ages x . The error introduced by it is presumably small but can 
not be estimated. 
A disadvantage of defining t -frequencies in the manner introduced above is that it 
depends on the composition of the portfolio. For example, in a portfolio of new 
policies, the number of actual cases of sickness is zero whereas a decreasing portfolio 
might, under exceptional conditions, be exclusively composed of disabled persons. 

                                                 
7 This quantity shall not be regarded as a correct estimate of the transition probability but as a little less 
specific measure of the morbidity. 
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 Thus, special attention should be paid to the proportion between active and disabled 
persons in upper age groups of older portfolios. When estimating the −t frequencies, 
one might obtain too low values to apply, for instance, to a portfolio of new policies, 
where the proportion between the active and disabled persons can be expected to be 
higher than in the older ones.  

3 Termination Function ),( txλ   

In estimating ),( txλ  both non-parametric and parametric methods will be used. The 
non-parametric method is based on the Nelson-Aalen estimator. The mathematical 
terms appearing in the derivation of the estimator are a multivariate counting process 
with the corresponding intensity process, martingales and stochastic integrals. These 
will be addressed in proceeding chapters.  
 
In order to restrict the representation of the theory involved, terms to be clarified 
subsequently will only be those necessary in derivation of the Nelson-Aalen 
estimator. 

3.1 The non-parametric method 

The non-parametric methods are often used to provide a crude estimation of 
statistical terms. Advantage of the non-parametric methods over the parametric is 
that the non-parametric methods make direct use of the basic data and need fewer 
assumptions to be valid.  

3.1.1 Time-To-Event Analysis  

Time-to-event analysis is used in various fields for analysing data involving the 
duration between two events, or more generally the times of transition among several 
states or conditions (see Figure 2). The key characteristic that distinguishes time-to-
event analysis from other areas in statistics is that time-to-event data are usually 
censored.  

3.1.1.1 Censoring and truncation 

Censoring occurs when incomplete information is available about the termination 
time of the observed subjects. In order to determine the time to a certain event, 
defining two time points is necessary: the time at which an original event occurs and 
the time at which the final event occurs. A subject is said to be at risk if the original 
event has occurred, but the final event has not.  
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The following figure describes data to be analysed later: 

 

 
 
 
 
 
 
 
 
 
 

Figure 3 
 
Obviously the time points marked “Start of study” and “End of study”, give rise to 
censored data. The solid lines represent the risk period for each subject whereas the 
solid points indicate an occurrence of the event of interest; in this case the beginning 
and the termination8 of illness. For instance, the entire risk period for subject G falls 
within the observation period and the times of occurrence are known; hence there is 
no censoring for this observation. For subject I, the risk period starts during the 
observation period and the termination event occurs after follow-up is terminated at 
T1. The observation of subject I is therefore right censored at T1. By right censoring, it 
is meant that the risk period exceeds a certain date. Subject F is another right censored 
observation where the termination is caused by an event other then the one of 
interest. While subjects C, E, F and I represent right censoring, A, B and C represent 
subjects with left truncation. The left truncation means that a risk period of a certain 
subject is included in the set of subjects who are at risk if a specific condition is 
satisfied; in this case if a person has been disabled longer than the waiting period, 
before entering the study. Conditional on knowing the time from the beginning of the 
risk period to the beginning of the observation period T0, analysis can be done with 
the methods developed for right censoring (such as the Nelson-Aalen estimator) with 
proper adjustment of the risk set. In order to correctly apply these methods some 
assumption about censoring must be made: 
i)          Independent censoring: 
            The risk period is independent of any mechanism that causes an individual’s   
            time to be censored. 
ii)        Non-prognostic censoring: 
            Prognosis for an individual to be disabled at time t should not be affected by   
            censoring at t.9 

                                                 
8 In the proceedings no distinction between the causes of termination will be pointed out other than 
censoring (caused by expiration of either study or insurance). 
9 Independent and non-prognostic censoring models are proven to be special cases of the so-called 
non-informative censoring model. Its characteristic is that the instantaneous probability of termination 
in a small interval about y  given that the subject was at risk up to y  is unchanged by the additional 
information that the subject was uncensored up to time y . 

Start of study End of study
t

A

C
D

B 

E
F

G
H
I 

T0 T1t
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In the case where the policyholder's duration of illness represents the risk period 
conditions mentioned above are satisfied. 

3.1.2 Counting Processes and the Multiplicative Intensity Model 

Suppose that there are n policyholders suffering from illness. For each of these, the 
illness duration iT  is observed, which is either the total illness duration or a censored 
duration10. In order to indicate the difference an indicator variable iD  is introduced 
indicating the true illness duration when 1=iD , otherwise 0=iD . The pair of random 
variables ),( ii DT  represents now the information available on each policyholder. 
Moreover, independence between pairs ),( ii DT  is assumed.  
 
Consider a process )1,()( =≤= iii DtTItN . It is equal to zero until a policyholder i  
recovers from illness. It changes to one, however, when recovery occurs. This kind of 
process is called a counting process whose formal definition is as follows: 
 
A counting process { }∞<≤ ttN i 0),(  is a stochastic process that counts the occurrences 
as time t proceeds. It has the following properties: 
 
1) 0)0( =iN  
2) 1))(( =∞<tNP i  
3) The sample paths are right-continuous and piecewise constant with jump of size 

+1. 
 
A multivariate counting process { })(),...,(),( 21 tNtNtNN n= possesses obviously the 
same properties as those mentioned above. Moreover, no two component processes 
are assumed to jump simultaneously, which follows as a consequence of the 
assumption of the continuity of time t .  
 
Imagine now taking a walk along the time axis in Figure 3. At any time t  (and 
looking back) you would know whether subject i  has been observed to terminate 
from illness (e.g. subject A), been censored (e.g. subject F) or is still suffering from 
illness and uncensored (e.g. subjects B, C, D, E, G, H and I). This accumulated 
knowledge about what has happened to, in our case, policyholders up to, but not 
including t  is called the history or filtration of the counting process and is denoted −tF . 
It is self-evident that ts FF ⊆ , whenever ts ≤ , that is as time proceeds more and more 
is known about the population. Let dtI  be a small time interval of length dt  around 
time t . For the first two cases (i.e. subjects A and F) the conditional probability of 
observing )(tN i  to change from 0 to 111 in the interval dtI  is 0. For the latter cases (i.e. 

                                                 
10 Illness duration up to a closing time.  
11 That is observing the true illness duration. 
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subjects B, C, D, E, G, H and I) this conditional probability is dtti )(µ 12 because those 
still suffering from illness and uncensored are at risk of making a transition from 
being ill to either being well or dead. Define now a function )()( wptTItY ii ≥≥=  
where wp  stands for the waiting period13. This function indicates whether subject i  is 
at risk of making the transition or not. Denoting the increment of )(tNi  at t  as 

)(tdNi the conditional probability of observing )(tN i  to change from 0 to 1 in the 
interval dtI  can now be written as:  
 

dttYtFtdNP iiti )()()1)(( ⋅== − µ  
 
Define: 
 

)()()( tYtt iii ⋅= µα  
 
Then: 
 

dttFtdNP iti )()1)(( α== −  
 
Where )(tiα  represents the intensity process of the counting process )(tN i .  
 
A multivariate counting process { })(),...,(),()( 21 tNtNtNtN n=  has the intensity process 
of the form { })(),...,(),()( 21 tttt nαααα = . 
 
Assuming that the population of policyholders is homogeneous, implying 

)(...)()( 21 ttt nµµµ === , the formula given above can be rewritten: 
 

)()()( tYtt ii ⋅= µα  
 
Where )(tµ  denotes the common value. 
 
Aggregating the individual counting processes )(),...,(),( 21 tNtNtN n would produce a 
so-called univariate counting process, which counts the total number of observed 
terminations in [0, t], i.e.: 

∑
=

=
n

i
i tNtN

1

)()(  

 
Its intensity process is given by: 
 

                                                 
12 See page 3. 
13 See page 1. By defining )(i tY  in such a manner the issue of left truncation has been taking care of. 
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)()()()()()()()(
111

tYttYttYttt
n

i
i

n

i
i

n

i
i ⋅=⋅=⋅== ∑∑∑

===

µµµαα  

 

Where ∑
=

=
n

i
i tYtY

1

)()( counts the total number of, in our case policyholders at risk for 

transition at an instant just prior to time t . 
 
This approach was introduced by Odd Aalen in 1978 and labelled a multiplicative 
intensity model for counting processes where the intensity process is given by 

)()()( tYtt ⋅= µα . Properties assumed in this model regarding )(tµ  are that it is a non-
negative deterministic function whereas )(tY  is a non-negative observable stochastic 
process. This kind of processes is even called predictable processes implying that 
knowing the history of the process up to time t  determines its value at t . 

3.1.3 Martingales and Stochastic Integrals  

Let the increment of )(tN  at t : 
 

)())(()( −−−+= tNdttNtdN  
 
This random variable can only take values 0 and 114 so taking the conditional 
expectation gives: 
 

[ ] dttFtdNE t )()( α= −  
 
This equality is valid for any counting process. The intensity process defined in such 
a manner is characterised by the fact that: 
 

)()()( ttNtM Α−=          [ ]dtttdNtdtdNtdM )()()()()( α−=Α−=⇔  
 
Where )(tM  is a counting process martingale and )(tΑ  is a cumulative intensity process, 
even called compensator of the counting process and defined as: 
 

∫=Α
t

dsst
0

)()( α ,  0≥t  

 
One of the defining properties of the counting process martingale is that: 
 

[ ] [ ] [ ] [ ] 0)()()()()()()( =−=−=Α−= −−−− dttFtdNEFdtttdNEFtdtdNEFtdME tttt αα  

                                                 
14 No two component processes are assumed to jump simultaneously. 
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The last equality is due to the fact mentioned earlier; )()()( tYtt ⋅= µα  is a predictable 
process through the dependence on the predictable process )(tY  and therefore non-
random.   
 
A martingale can be considered as being a pure noise process. The systematic part of 
the counting process is its compensator: a smoothly varying and predictable process, 
which, subtracted from the counting process, leaves unpredictable zero-mean noise. 
 
The conditional variance of the increment )(tdM  is: 
 

( ) ( )[ ] [ ]( ) ( )[ ]−−−− =−= tttt FtdMEFtdMEFtdMEFtdMVar 222 )()()()(  
 
A closer look at the equation above suggests that the conditional variance of 
increment of M  is the increments of the compensator of another process namely 2M . 
In order to show this let the increment of 2M : 
 

( ) ( )( ) ( ) ( )( ) ( )22222 )()( −−+−=−−−+= tMtdMtMtMdttMtMd  
 
                ( )2)()()(2 tdMtdMtM +⋅−⋅=  
 
Taking the expectation: 
 

( )[ ] ( )[ ]
[ ] ( )[ ] ( )[ ] ( ) )()()()()()(2

)()()(2)(
22

22

tMdFtdMVarFtdMEFtdMEFtdMEtM

FtdMtdMtMEFtMdE

tttt

tt

===+⋅−⋅

=+⋅−⋅=

−−−−

−−  

 
This is known as M ’s predictable variation process and is denoted by M . Although 

M is a pure noise process, 2M has a tendency to increase over time. 
 
Determining the conditional variance: 
 

( ) ( )[ ] ( )[ ]
( )[ ] [ ] ( )

( ) ( ) ( ) dttdttdttdttdttdttdttdttdtt

dttFtdNEdttFtdNE

FdtttdNEFtdMEFtdMVar

tt

ttt

)()(1)()()()()()(2)(

)()()(2)(

)()()()(

22

22

22

ααααααααα

αα

α

≈−⋅=−=+⋅⋅−

=+⋅⋅−

=−==

−−

−−−

 

 
When there are ties in data the approximation in the last step will not hold. 
 
The result: 

∫=
t

dsstM
0

)()( α  
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Another concept needed to introduce is the predictable covariation process defined by 
having the increments:  
 

( ) ( ) ( ){ }−= tjiji FtdMtdMCovtMMd ,,  

 
Two martingales are said to be orthogonal if 0)(, =tMM ji . 

 
For martingales dtttdNtdM iii )()()( α−=  and dtttdNtdM jjj )()()( α−=  the predictable 
covariation process is found to be: 
 

( ) ( ) ( )( ) ( ) ( )( )[ ]−−−= tjjiiji FdtttdNdtttdNEtMMd αα,  

                       ( ) ( )[ ] ( ) ( ) 0≈⋅−⋅= − dttdttFtdNtdNE jitji αα  
 
The approximation in the last step is due to the fact that ( )tN i  and ( )tN j  never jump 
simultaneously. Apparently these martingales are orthogonal. 
 
In order to be able to derive the Nelson-Aalen estimator, the definition of stochastic 
integrals is necessary.  
 

The stochastic integral, ∫
t

sdYsX
0

)()( , i.e. the integration of one stochastic process, 

)(sX , with respect to another, )(tdY , is considered here to be a pathwise operation: 
for a given event Ω∈ω 15, one forms an ordinary Lebesque-Stieltjes integral16 over a 

given time interval under the condition that ∞<∫
t

tdYsX
0

)()( .  

 
Assume now that )(tΗ  is a predictable process17. The stochastic integral of such a 
process with respect to a martingale: 
 

∫Η=
t

sdMstW
0

)()()(  

 
This is a martingale itself because: 
 

[ ] [ ] 0)()()()( =⋅Η=Η −− tt FtdMEtFtdMtE  

                                                 
15 The set of all possible outcomes. 
16 For further information on Lebesque-Stieltjes integral see http://mathworld.wolfram.com/. 
17 See page 9.  
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The predictable variation process is now easily found to be: 
 

( ) ( ) )()()()()()( 22 tMdtFtdMVartFtdMtVar tt ⋅Η=⋅Η=Η −−   

So: 
 

∫Η=
t

sMdstW
0

2 )()()(  

3.1.4 The Nelson-Aalen estimator 

Recall: 
 

"")()()()()( noisedttYttdMdtttdN +⋅≈+= µα  
 
If the whole equation is divided by )(tY : 
 

)(
)(

)(
)(
)(

tY
tdM

dtt
tY
tdN

+= µ  

 
And integrated: 
 

∫ ∫ ∫+=
t t t

sY
sdM

dss
sY
sdN

0 0 0 )(
)(

)(
)(
)(

µ  

 
In order to deal with the fact that )(tY  could be 0 at times, an indicator variable is 
introduced: 
 

( )0)()( >= tYItJ  
 

Taking that into account and defining 0
0
0

=  gives: 

 

∫ ∫ ∫ ⋅+⋅=⋅
t t t

sdM
sY
sJ

dsssJsdN
sY
sJ

0 0 0

)(
)(
)(

)()()(
)(
)(

µ   

 
Recall that: 
 

)(tλ  = exp (- ∫
t

dss
0

)(µ ) 
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If the value of ∫
t

dss
0

)(µ  is estimated so is the value of )(tλ . 

Rewriting the summation above: 
 

∫ ∫∫ ⋅−⋅=⋅
t tt

sdM
sY
sJ

sdN
sY
sJ

dsssJ
0 00

)(
)(
)(

)(
)(
)(

)()( µ   

The term on the left is essentially the same as the integration that determines the 
termination function )(tλ . They are equal  in the range where there are observations.  
 

The first term on the right is known as the Nelson-Aalen estimator of ∫
t

dss
0

)(µ . It is 

calculated as a single sum. To see that let ...321 <<< τττ  be successive jump-times for 
)(tN  implying that )(tdN  is equal one when t  equal any of the jumps-times and zero 

otherwise. Hence ∫ ⋅
t

sdN
sY
sJ

0

)(
)(
)(  can be rewritten as ∑

≤ ):( )(
1

ti ii
Yτ τ

. This is an increasing 

and right-continuous step-function. 
 

 ∫ ⋅
t

sdM
sY
sJ

0

)(
)(
)(  is a stochastic integral with respect to a martingale and therefore a 

martingale itself. As a consequence ∫ ⋅
t

sdN
sY
sJ

0

)(
)(
)(  is an unbiased estimator of 

∫ ⋅
t

dsssJ
0

)()( µ  meaning that 
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)(
)( . The predictable variation process of )(tW  is easily found 

using formulas developed for stochastic integrals: 
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3.1.4.1 Some asymptotic results 

Let ( ) ( )∫∫∫ ⋅=
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µµµα
=⋅=

⋅
⋅=⋅≈  

According to the law of large numbers, the random variation of 
n
tY )(  should be small 

for large n . In other words )(
)(

ty
n
tY

→  when ∞→n  where )(ty  is a deterministic 

function. 

So ( ) ( ) ∫≈⇔≈ −

t
n

t
n

sy
dss

tZ
ty
dtt

FtdZVar
0

)()(

)(
)(

)(
)(

)(
µµ  for large samples. 

 
Further on, ( )tWi  and ( )tW j  are orthogonal as a consequence of ( )tM i  and ( )tM j  
being orthogonal. This implies uncorrelated increments for the processes ( )tWi , 

ni ,...,2,1=  as well as ( )tWi  and ( )sW j  for any st,  and ji ≠ .  
 
Another property of large samples is that )()( tZ n  will have many jumps but all of 

these will be of order 
n

1 .  

 
These characteristics; a deterministic predictable variation process and continuous 
sample paths are encountered in only one limiting process ( ) )(tZ ∞  and that is the 
continuous Gaussian martingale. Other characteristics are independent increments18 
and normally distributed finite-dimensional distributions19. This basic convergence 
allows determining the confidence intervals since )()( tZ n  will have an approximate 
normal distribution with mean 0 and variance: 
 

( )( ) ( )
( )∫=∞

t

sy
dss

tZ
0

2 )(
µ

σ  

 
An estimate of the variance is obtained from: 
 

( ) ∫ ⋅=
t

dss
sY
sJ

tW
0

)(
)(
)(

µ  

                                                 
18 For any set of disjunctive intervals ( ) kitt ii ,...,2,1,,1 =−  the random variables ( ) ( ) ( ) ( )1−

∞∞ − ii tZtZ  are 
independent.  
19 Joint distribution of ( )( ) ( )( )[ ]ktZtZ ∞∞ ,...,1  is multivariate normal for any value of k . 
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Letting  ( )
( )tY

tdN
dtt =)(µ  gives: 
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And the difference: 
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Evidently difference produces a martingale which implies that ( )tŴ  is an unbiased 

estimator of ( )tW . It is calculated as a single sum. To see that let ...321 <<< τττ  be 
successive jump-times for )(tN  implying that )(tdN  is equal to one when t  equals 

any of the jumps-times and zero otherwise. Hence ( )
( )

( )∫
t

sdN
sY

sJ

0
2

 can be rewritten as 

∑
≤ ):(

2 )(
1

ti ii
Yτ τ

. 

3.2 The parametric method 

The parametric method used to estimate the termination function is called G84. It is 
based on another parametric method known as G73. Development of these methods, 
i.e. estimation of coefficients in the equations, is based on long-term experience of 
health insurance. G84 takes two parameters, x -age at which the policyholder got ill 
and t -illness duration. Formulas presented next differ somewhat among the 
insurance companies but the overall structure is (hopefully) preserved.  
 
G84: 
                   ( )txG ,73λ                      if ( )xJt ≤  

( ) =txG ,84λ  

                   ( )( ) ( )
( )( )xJ
t

xJxG λ
λ

λ ⋅,73  if ( )xJt >  

 
G73: 
 

( ) ( ) ( ) ( ) ( )( )ttttt
G eexdexcexbexatx 04.03.05.11380

73 85.015.0, −−−−− ++++=λ  
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Where: 
 

( ) ( ) ( ) ( )xdxcxbxa −−−= 1  
( ) 12.0=xb  
( ) xexc 04.0006.0=  
( ) xexd 13.0000011.0001.0 +=  

 
G73 and consequently G84 distinguish between genders:  
 
 Men: 
 
           5.2                             if 300 <≤ x                           

( ) ( )3007.05.2 −⋅−= xxJ    if 5530 <≤ x  
           75.0                          if 55≥x   
 
And: 
 

( ) tt eet 03.03.0 85.015.0 −− +=λ  
Women: 
 
           25.2                            if 300 <≤ x                           

( ) ( )3006.025.2 −⋅−= xxJ   if 5530 <≤ x  
           75.0                          if 55≥x  
 
And: 
 

( ) tt eet 015.03.0 85.015.0 −− +=λ  

4 The results 

As mentioned earlier the purpose of this paper is to compare the non-parametric with 
the parametric method and if possible draw some conclusions. Unfortunately 
although highly comprehensible, the participating companies were not enthusiastic 
about presenting the obtained results. In order to present anything of significance it 
was agreed that the diagrams presented would not contain scales on axes. Although a 
constant is added to each of the curves their mutual relationship is preserved. Black 
lines represent the non-parametric whereas grey the parametric estimation of the 
termination function.  
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Termination functions for men: 
 

 
 
Termination functions for women: 
 

 
 
The termination functions in the diagrams are based on a sample accumulated 
through the filtration according to gender, age of disablement and a waiting period 
implying that the curves presented are just functions of one variable namely t .  
 
The termination function is a continuous, monotonically decreasing function. As it 
represents the probability of getting and remaining ill for a certain period of time it 
could be neither larger than one nor less then zero. 
 
There are considerable differences between the curves. By definition both start at one 
but depart shortly afterwards. The largest discrepancy seems to occur for both men 
and women who had a waiting period of 1 month. The discrepancy for those who 
had a waiting period of 3 months, both men and women, is slightly less than for those 
who had a waiting period of 1 month. The peak of the discrepancies for those with a 
waiting period of 3 months is shifted to the left of the peak for those with a waiting 
period of 1 month. For men with a waiting period of 9 months the discrepancy almost 

Age of getting ill [35,44] with 
a waiting period of 1 month 

Age of getting ill [45,54] with 
 a waiting period of 1 month 

Age of getting ill [45,54] with  
a waiting period 3 months 

Age of getting ill [45,54] with  
a waiting period 9 months 

Age of getting ill [55,64] with 
a  waiting period 1 month 

Age of getting ill [55,64] with  
a waiting period 3 months 

Age of getting ill [55,64] with  
a waiting period 9 months 

Age of getting ill [35,44] with 
a waiting period 3 months 

Age of getting ill [35,44] and
a waitiong period of 1 month

Age of getting ill [35,44] and 
a waiting period of 3 months

Age of getting ill [55,64] and
a waitiong period of 1 month

Age of getting ill [45,54] and 
a waiting period of 3 months

Age of getting ill [55,64] and 
a waiting period of 3 months

Age of getting ill [45,54] and
a waitiong period of 1 month
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vanishes. In all cases the termination function estimated by Nelson-Aalen is greater 
than G84 implying that calculated premiums for policyholders who form the basis for 
this analysis are to low as well as the sickness reserves necessary to cover all the 
claims. 
 
However, caution is well-found in analysing these results. Unfortunately, the number 
of observations is another issue not to be discussed. It is however appropriate to 
mention that the number of observations would not (necessarily) imply statistical 
significance.  
 

5 Conclusion 

Examination of the results affirms the notion that the parametric method needs an 
adjustment. As the non-parametric method gave consistently greater estimates than 
the parametric method used in most insurance companies, adjustments to be made 
will certainly lead to higher premiums for the policyholders and larger sickness 
reserves for the insurance companies. 
 
Modelling the parametric method to fit the observation was outside the scope of this 
project. However, there are several methods to do that and some are examined in 
resent dissertations at the Department of Mathematics, Division Mathematical 
statistics at Stockholm University. 
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