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Abstract

First passage percolation on Z? is a model for describing the spread of an infection
on the sites of the square lattice. The infection is spread via nearest neighbor sites
and the time dynamic is specified by random passage times attached to the edges.
In this paper, the speed of the growth and the shape of the infected set is studied
by aid of large-scale computer simulations, with focus on continuous passage time
distributions. It is found that the most important quantity for determining the value
of the time constant, which indicates the inverse asymptotic speed of the growth, is
E[min{ry,...,74}], where 71, ..., 74 are i.i.d. passage time variables. The relation is
linear for a large class of passage time distributions. Furthermore, the directional
time constants are seen to be increasing when moving from the axis towards the
diagonal, so that the limiting shape is contained in a circle with radius defined by
the speed along the axes. The shape comes closer to the circle for distributions with
larger variability.
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1 Introduction

First passage percolation was introduced by Hammersley and Welsh in [14] and can be
viewed as a model for the spread of an infecion on a graph structure. The term ’in-
fection’ can have different meanings depending on the context, and may refer e.g. to a
fluid spreading through a porous medium, information transfer or a virus spreading in a
structured population. The original and most studied case is when the underlying graph
is the Z< lattice. Here we restrict to d = 2, and investigate the speed and shape of the
growing infected set by aid of computer simulations. The theoretical results involve quan-
tities that have turned out to be very difficult to characterize analytically and simulation
studies may therefore be of interest to shed light on qualitative behavior and as guidelines
for further theoretical investigations. The total CPU time for our simulations amounts to
more than 19 years, which make them the most extensive ones so far for the model.

To specify the model, let Z? denote the set of integer points in the plane and write
E for the set of neareast neighbor edges of Z2. Each edge e € E is equipped with a non-
negative random variable 7(e) interpreted as the time it takes for the infection to traverse
the edge e. A path is a sequence of connected edges ey, ..., e, C E and the passage time
for a path I' is given by

ecl’

The passage time from a set A C Z* to a set B C Z? is defined as
T(A,B) =inf{T(T') : I is a path starting in A and ending in B}.

When A and B consist of single sites, with A = {z} and B = {y}, we write T'(A, B) =
T(x,y).

The interest revolves around dynamics and asymptotics for the growth of the infection,
starting at time 0 with the origin infected and all other sites of Z? uninfected. In order
to be able to analyze this, one has to make some assumptions on the joint distribution
of the set of edge passage times {7(e)}.cg. Usually, the passage times are assumed to be
i.i.d., but some results requiring only stationarity also appear in the literature, see e.g.
[5, 13]. Here we shall throughout assume that the passage times are i.i.d. with common
distribution function F.

Existing results basically fall in three categories: (i) results on the growth in a fixed
direction, (ii) results concerning the growth of the whole set of infected sites, and (iii)
results on properties of infinite time-minimizing paths (geodesics). Our purpose here is
to explore results of type (i) and (ii) by aid of simulations. We will not be concerned
with results in category (iii), but refer e.g. to [23, 25] for early work and conjectures, and
to [8, 15] for more recent results and proofs of some of the conjectures. We also remark
that such results are related to properties of growth processes involving several competing
infection types; see [10] and the references therein.

To characterize the growth in a fixed direction, first note that the passage times defined
above are subadditive in the sense that

T(x,y) <T(z,2)+T(z,y) foralzxy,ze 72,



Writing n = (n,0), this means that, under sufficient moment conditions on the distri-
bution F' of the edge passage times, the family {7T'(m,n)},, nen fulfills the conditions of
Liggett’s version [22] of Kingman’s subadditive ergodic theorem [20], which asserts roughly
that 7'(0,n) grows linearly in n as n — oo. In order for the theorem to be applicable, we
need that E[T(0,n)] < oo for all n > 1 and, by [28, Theorem 4.6], this is the case if and
only if

E[min{r,...,7u}] < o0, (1)

where 11, ..., 74 are i.i.d. with distribution F'. Hence (1) is the required moment condition,
and the conclusion of Liggett’s theorem then is that

T(0
7(0,n) — o as. and in L,
where E(T(0.n)]
. 7n
W= i%fl —, <o (2)

The constant p is known as the time constant. Its inverse value gives the asymptotic
speed of the growth along the axes and the fact that y < oo implies that the infection
grows at least linearly in time. In [18], it is shown that x> 0 if and only if

F(0) < 1/2. (3)

Hence the infection grows linearly in time when F'(0) < 1/2 and faster than linearly when
F(0) > 1/2. We remark that in dimensions d > 3, the bound 1/2 is replaced by the
critical value of standard bond percolation on Z.

A fundamental problem in first passage percolation is to determine the time constant
w1 and its relation to the edge passage time distribution /. This has turned out to be a
difficult task: the value of p is so far not known for any non-degenerate distribution F'.
Existing results and bounds are quite weak and are described in Section 2. One of the aims
of this paper is to investigate by simulations how p is related to various characteristics of
F.

In addition to studying asymptotics for passage times along the axes, it is of course
also of interest to study passage times in other directions. For x € R2, we interpret
T(0,z) as the time when the closest point of z in Z? is infected. With & = z/|z|, the
subadditivity arguments outlined above can then be adapted to establish the existence of
a directional time constant p(z) such that im7'(0,nz)/n = p(z) a.s. (some extra work
is required for z with non-rational coordinates). Here, pu(1) = u, where p is the time
constant along the axes. An interesting question is of course if and how p(Z) changes as
the direction of & varies. This is closely related to the nature of the asymptotic shape of
the infected set, which is our next topic.

We now proceed to study the growth of the whole infected set. To this end, write
B(t) = {x € Z* : T(0,z) < t}, let C, denote a unit cube centered at z € R? and
define B(t) = Uzep)Cy. The main result is a shape theorem, which asserts that B(t)/t
converges almost surely to a deterministic shape A. The following version is due to Cox
and Durrett [6]. Kesten [18] has proved that the conclusion is true also in dimension d > 3
under stronger moment conditions.



Theorem 1.1. Let 7y, ...,74 be i.i.d. with distribution F and assume that
E[min{r},...,7}] < cc. (4)

(a) If F(0) < 1/2, then there exists a non-random compact convex set A C R? with
non-empty interior such that, for all € > 0, we have a.s. that

(1—-e)AC @ C(1+¢e)A for large t.

(b) If F(0) > 1/2, then for all m > 0 we have a.s. that

B(t)

—~ O {x e R?: x| <m} forlarget.

If (4) fails, then lim sup, 02 5 o a.s.

The last statement implies that (4) is a necessary condition for the linear growth of
B(t), since otherwise the infected region will have uninfected points in its interior that are
visible on a linear scale. We refer to Section 3.2 for pictures illustrating this. Furthermore,
part (b) of the theorem asserts that, if F'(0) > 1/2, then the scaled infected set contains
any bounded region of R? eventually a.s. We will be interested in the case when F'(0) < 1/2
and (4) holds, so that the growth is linear and the scaled infected set converges to a
compact shape A. Apart from the symmetries inherited from the Z? lattice, not much is
known about A, and the difficulties with characterizing A analytically basically stem from
lattice effects caused by Z2?. We will instead study A by aid of simulations. Questions
that we will try to answer include: How does the shape deviate from a circle? How is it
affected by the passage time distribution? What about the fluctuations of the shape around
its mean?

The rest of the paper is organized so that Section 2 contains a survey of known results
on the time constant and the asymptotic shape, in Section 3 the results of the simulations
are described and Section 4 contains conclusions and directions for further work.

2 Theoretical results

We begin with a short survey of known results that are relevant to our studies. We also
define the quantities that will be investigated and describe the aims of the simulations in
more detail. The material is organized in two sections, one on growth in a fixed direction
and one on the asymptotic shape.

2.1 Growth in a fixed direction

As mentioned in the previous section, the time constant u has turned out to be diffi-
cult to determine. As for rigorous bounds, it follows from the characterization (2) that
p < E[r(e)], and in [14] it is shown that this inequality is strict for all non-degenerate
distributions F. Methods for computing better rigorous upper bounds can be found in



[1, 28], and lower bounds are derived in [1, 16]. Both the upper and the lower bounds in
general require computer assistance for obtaining numerical values. The precision varies
with the distribution F', but the bounds tend to be quite crude. For instance, the methods
n [1] give 0.30 < pu < 0.503 for Exp(1) passage times and 0.243 < p < 0.403 for U(0, 1)
passage times, while the estimates (from computer simulations) given in [1] are 0.402 and
0.312, respectively.

Write p” for the time constant associated with the edge passage time distribution F'.
An interesting question is how p” behaves as a functional of F'. Cox and Kesten [7] show
that ™ is continuous in F' in the sense that, if F;, converges weakly to F', then pu™ — p”.
Another natural property, confirmed in [28], is that, if F'(z) < F(x) for all z € R, then

pt <t (5)

In [2], it is shown that (5) holds also under the weaker assumption that

/¢ VdE (z /¢ )dF(z

for every concave increasing function ¢ for which the above integrals are absolutely con-
vergent. If this holds, then F is said to be more variable than F. Furthermore, if F is
more variable than F and F =% F, then F is said to be strictly more variable than F'. The
main result in [2] is that the inequality in (5) is strict if F' is strictly more variable than
F and if (3) holds (an additional assumption for distributions with inf supp(F’) > 0 was
later removed in [24], where supp(F’) denotes the support of F').

One way of transforming a given distribution into a strictly more variable one is by
pushing mass away from some point &; for further details see the criterion by Karlin and
Novikoff in [29]. A simple example is when F' is uniform on [a,b] and F' is uniform on
[a —e1,b+ &9 for €1,e9 > 0. This example demonstrates that two distributions with the
same mean do not necessarily give rise to the same time constant. For the particular case
of uniform distributions centered at a given mean, the time constant is instead strictly
decreasing as the variance increases. An interesting question is of course what properties
of F' that are important in determining p” in general. This largely remains unknown,
and is one of the questions that we will investigate here. Is it true in general that, for
distributions with the same mean, the time constant is decreasing in the variance? Can
we find another quantity than the mean that determines the time constant?

We continue by exploring passage times to lines rather than to single points. To this
end, write L, for the vertical line that crosses the z-axis at n. It turns out that the
passage time 7'(0, L,,) to the line L,, behaves asymptotically the same as 7'(0,n), that is,

T(0,L,)
n

— u as. and in L'

A first proof of this appeared in [30], but it can also be derived from the asymptotic shape
result, stated below as Theorem 1.1; see [18, pp.166-167]. The observation that u appears
also as the limit of the scaled passage times to the line L,, has advantages when estimating
i by aid of simulations: The passage time of the infection to the single point n may be
substantially increased if all edges incident to n happen to have very large passage times,

4



Figure 1: The region €p,,.

and keeping track of the whole growth process during this time requires a lot of computer
power. This problem arises in particular for heavy-tailed edge passage time distributions
F, but is avoided by working with passage times to lines rather than points.

To define passage times to lines in an arbitrary direction, fix an angle 6 € [0, 7/4] and
write @ = tan 6. Furthermore, let Qy,, = {(z1,72) € R? : 21 + aze > n/cosf}, that is,
Q.. is the part of R? to the right of the line that is orthogonal to the line y = ax and
intersects this line at distance n from the origin; see Figure 1. Assuming (1), it follows
from subadditivity that

70,8, .
70, %) — e a.s. and in L',
n
where EIT(0.Q
ftg := inf —[ (©, 9’">].
n>1 n

Here iy is the time constant in the direction € based on passage times to lines. The
arguments for § = 0 (referred to above) can easily be adapted to show that the constant
coincides with the one based on passage times to points, that is, uy = p(Zy), where
g = (1, ).

Clearly po = p, where p is the time constant along the axes, described above. An
interesting question is of course if and how puy changes as 6 increases. However, just as
for @ = 0, obtaining information about py for § > 0 is difficult. The methods in [1, 16]
for calculating rigorous bounds are applicable in any direction, but there is no systematic
study on how the resulting bounds depend on the direction: As mentioned above, the
bounds tend to be quite crude and this means that they will most likely not allow for
rigorous conclusions on how gy changes with #. We will instead study this by aid of
simulations. The behavior of py as a function of € is closely related to the nature of the
asymptotic shape of the infected set, which is our next topic.

2.2 Asymptotic shape

Recall that p(z) = lim, T(0,nz)/n. Tt can be shown that pu(x) is a norm on R? when
F(0) < 1/2, and the shape A is the unit ball in this norm, that is, A = {z € R? :
p(x) < 1}. Clearly A inherits all symmetries of Z2?. Furthermore, the fact that A is
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convex (which follows from subadditivity) implies that its boundary must fall somewhere
between the diamond {z = (z1,22) € R? : |z1| + |2z2] = p~'} and the cube with side 2!
centered at the origin. Constant passage times give the diamond as asymptotic shape,
but characterizing A for non-trivial distributions has turned out to be very difficult. Early
simulations for exponentially distributed passage times indicated that A was a circle; see
e.g. [12, 27]. Kesten [18] however shows that, for a certain class of distributions including
the exponential, A is not a ball in sufficiently high dimension (where ”sufficiently high*
means d > 10° for the exponential distribution), and this of course speaks against a
circle in two dimensions. Furthermore, due to the underlying lattice structure there is no
theoretical basis for a rotationally invariant shape.

In [11] it is shown that A has a flat edge (that is, its boundary contains a straight line
segment) when F is a shifted geometric distribution with P(7(e) = k) = p(1 — p)*~* for
k > 1 and p sufficiently close to 1. Marchand [24] generalizes this by showing that any
distribution F* with inf supp(F) = r > 0 and F(r) > pa" gives rise to a flat edge, where
p¥ denotes the critical value for directed bond percolation on Z?. Tt is believed that A is
strictly convex (and hence does not have flat edges) as soon as

r=0or F(r) < pa, (6)

but so far strict convexity has not been proved for any distribution. In [9] however,
distributions (with atoms) are constructed that give non-polygonal shapes, that is, shapes
where the boundary does not consist only of flat edges. N

As for comparing shapes for different distributions, the fact that u* < u* when F
is more variable than F' can be generalized to any direction for distributions with inf
supp(F')=0. This means that the asymptotic shape for F is then strictly smaller than for
F. When inf supp(F') = r > 0, the shape contains flat edges if F'(r) is large, as mentioned
above. If in this case also inf supp(ﬁ ) = r, then the shapes coincide along the flat edges,
but otherwise and in other directions the shape for Fis strictly larger than the shape for
F; see [24] for detalils.

We will investigate the growing shape from a number of different aspects: For constant
passage times, the time constant py increases with 6 so that the shape is smallest along
the diagonals. Is this true in general? How does the shape depend on properties of the
passage time distribution? Can we quantify the deviations from a circle?

The asymptotic shape of first passage percolation has received attention also in sta-
tistical physics. There the focus has been on the fluctuations of B(t) around its mean
shape. First passage percolation is conjectured to belong to a class of growth models
analyzed by Kardar, Parisi and Zhang in [17]. This means that the fluctuations of the
interface between B(t) and its complement is believed to be of the order tX with y = 1/3,
so that hence Var(7T(0,n)) is of the order n?3. The analysis also involves an exponent
¢ such that the fluctuations of the location where B(t) hits a line at distance s from the
origin is of the order s¢. Heuristical arguments suggest that the exponents y and ¢ are
related in that x = 2¢ — 1, which implies that £ = 2/3. Both exponents are believed to
be independent of the direction and of the passage time distribution F'. Our simulations
give support for this, and the predicted values of the exponents (see also references below
to earlier simulations).



Rigorous results related to the above conjectures concern Var(7'(0,n)) but are quite
weak. In [19], it is shown that, if F* has finite second moment, then ¢; < Var(7T'(0,n)) <
con. As for upper bounds, the best bound to date is Var(7'(0,n)) = O(n/logn), which is
proved for uniform distributions in [4] and for a larger class of (non-atomic) distributions
in [3]. As for lower bounds, the best result is that Var(7'(0,n)) is at least of the order
log n for distributions F' that satisfy (6); see [26].

Previous simulation studies on first passage percolation are limited, both in number
and in scope. The early references [12, 27] have already been mentioned. There the shape
is simulated for exponentially distributed passage times and is seen to be reminiscent
of a circle. These simulations however were substantially restricted by limitations in
computer power. In the theoretical physics literature, the so called Eden growth model
[12] has received a lot of attention and one version of the model is equivalent to first
passage percolation with exponential passage times. The interest mainly revolves around
the scaling properties of the boundary of the growing infected set, see e.g. [21], and the
model has also been subject to simulation studies from this aspect. The results confirm
the conjecture for the exponents y and £ described above; see e.g. [31]. The simulations are
not performed on the version of the model that is equivalent to first passage percolation,
but the different versions are closely related and all belong to the universality class defined
in [17], so the conclusions are still relevant in this context.

3 Simulations

Our simulations are designed so that, in each run, we keep track of the infected set until
all lines at distance x,., from the origin have been hit. Here z,,,, varies between 10.000
and 20.000 depending on the distribution of the passage times, see Table 1. We record
all hitting times to lines in five symmetry directions, including the axis and the diagonal,
and, for each such direction, we calculate average hitting times over all symmetries (the
averages are hence based on four values in the axis direction and along the diagonal,
and on eight values for the other directions). The directions in between the axis and the
diagonal are, in the first octant, defined by the lines 4z +y = ¢, 2z+y = cand 4x+3y = ¢
for increasing values of ¢, and the corresponding directional angles with the z-axis are
approximately 14, 27 and 37 degrees, respectively. The lines run through integer points,
which makes it slightly easier to record the hitting times. We also keep track of the hitting
points on the lines. The simulations are performed on a cluster of 28 Linux machines,
each with 12 kernels, running at 2 GHz.

We study several different continuous passage time distributions. Note that all dis-
tributions are scalable in the sense that multiplication by a constant (which allows us to
tune e.g. the mean) gives rise to a distribution in the same distribution class.

1. The exponential distribution with mean 1. Because of the memoryless property of
the exponential distribution, the simulations here are much faster than for other
distributions and are therefore more extensive. For comparison, we mention that
one simulation with z,,,, = 20.000 takes 22 minutes for the exponential distribution
and 37 hours for the uniform distribution on [0,1] — the times hence differ roughly
by a factor 100.



Toae | # runs | E[7] | Var(r) | E4lr] | E4[7?
Exp(1) | 20.000 | 20.000 | 1 1 025 |0.125
(2,2) 20.000 | 5000 | 1 0.5 0.4023 | 0.2256
I(3,3) 20.000 | 5000 | 1 0.333 | 0.4887 | 0.2957
T'(4,4) 18.000 | 5000 | 1 0.25 | 0.5457 | 0.3480
U(0,1) 20.000 500 | 0.5 0.0833 | 0.2 0.0667
U(0.1,0.9) | 20.000 500 | 0.5 0.0533 | 0.26 | 0.0847
Fi(1) 10.000 | 1000 | - - 0.3333 | 0.3333
Fi(2) 10.000 | 1000 | 1 - 0.1429 | 0.0476
Fi(3) 10.000 | 1000 | 0.5 0.75 | 0.0909 | 0.0182
Fi(4) 10.000 | 1000 | 0.3333 | 0.2222 | 0.0667 | 0.0095

Table 1: Summary of simulated passage time distributions.

2. Gamma distributions, I'(k, k), with k£ = 2, 3,4. The mean value is 1 for all &, but the
variance decreases as k increases. Since these Gamma distributions are convolutions
of exponential distributions, we can exploit the memoryless property also here to
speed up the simulations.

3. Uniform distributions on [0, 1] and on [0.1,0.9].

4. Power-law distributions with support on (0,00) and tail exponent v = 1,2,3,4.
More specifically, the passage times are sampled from a scaled Fisher distribution
defined by Fi(y) = Fi(2,2v)/y. We then have 1 — F(z) = (1 +2)7".

Let 7,71,...,74 be ii.d. with distribution F' and define E4[r] = E[min{r, ..., 74}]
and E4[7?] = E[min{7?,...,72}]. We recall from Section 1 that E,[r] < oo guarantees
the existence of a time constant and Ey[7?] < oo the existence of an asymptotic shape.
Table 1 contains the values of these quantities along with the mean and the variance of
the distributions and a summary of the scope of the performed simulations. Based on
the findings for these large-scale simulations, we have also performed additional smaller
simulations for translated versions of the distributions; see below for further details.

3.1 Time constants

Here we first describe the estimation procedure for the time constants and then the results
of the simulations.

Estimation

We first estimate the time constants in the directions described above. The simplest
estimation procedure would be to take the scaled average passage times at distance z,,,,
from the origin. However, in order to increase the accuracy, we extrapolate to infinity as
follows: Take 6 = 0 (the procedure is the same in all directions, so we describe it for the
axis direction) and let fi,, denote the average passage time to the line x = n divided by



n. To estimate p, we use a weighted regression model with
Eljtn] = p+ e,

where the weight of each [, is given by the inverse standard deviation. We pick the
sample points at distance 500 starting at n = 1000 (since the observation at n = 500 is
seen to be an outlier). In view of the predictions for the variance of the passage times,
the factor n=%/3 is a natural choice. It also produces a very good fit with data, as can be
seen from Figure 2, which shows a fitted regression line for the exponential distribution
(the other distributions give rise to similar pictures). The coefficients of determination
for our regressions are throughout very high, with values ranging between 0.9974 and 1.
In Table 2, we summarize the obtained estimates.

To calculate the standard errors of the estimates, we note that the values at different
observation points in the regression are positively correlated and the resulting estimate of
the standard deviation is therefore likely to be too small. To get more conservative values,
we proceed as follows: For each distribution, the data is stored in a number of files, each
one containing average passage times over a number of runs (the number of files and the
number of runs in each file varies between the distributions). We do one extrapolation
per file, as described above, and then calculate the standard deviation in the resulting set
of estimates. Comparing with the standard errors based on one single extrapolation, the
obtained values are roughly a factor 10 larger. As this second method does not use all
information optimally, the true values most likely lie somewhere in between the obtained
values. Table 2 contains the conservative estimates based on repeated extrapolations. We
could of course also base our estimates of p on the repeated extrapolations by calculating
the average estimate, but this makes little difference — the resulting estimates generally
coincide up to the sixth decimal.

Results

We first study the time constant in a fixed direction, e.g. the axis direction. Can we find
a quantity that determines its value? As pointed out in Section 2.1, two distributions
with the same mean does not necessarily give rise to the same time constant and, scaling
the simulated distributions so that they all have mean 0.5, we see that the corresponding
values of = p, are indeed very different. Does the variance play a role? Figure 3 shows
a plot of the time constants against the variance for the scaled distributions (with mean
0.5) and there does seem to be a tendency that a larger variance implies a smaller time
constant (i.e. faster growth of the infection), but the relation is far from linear and does
not explain all variation in the time constant. Comparing e.g. U(0,1) and I'(3,3)/2, that
both have mean 0.5 and variance 1/12, we see that the corresponding time constants are
quite different — 0.3131 and 0.3563, respectively. Hence also the mean and the variance
together are not sufficient for determining the value of .

We next turn to E4[7], which is a natural quantity to look at since finiteness of this
expectation guarantees the existence of a time constant. For U(0,1) and I'(3,3)/2, this
equals 0.2 and 0.2444, respectively, which indeed offers a possible explanation of the
difference between the time constants. In Figure 4, the time constants along the axis and
along the diagonal are plotted against E4[7] for all simulated distributions (the distibutions
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=0 0 =14 0 =27 0 =37 0 =45

Fxp(1) e | 0.4041702 | 0.4052820 | 0.4074979 | 0.4090543 | 0.4095065
se | 0.0000027 | 0.0000018 | 0.0000017 | 0.0000019 | 0.0000021

r'(2,2) e | 0.6134115 | 0.6176678 | 0.6265413 | 0.6332689 | 0.6352802
’ se | 0.0000034 | 0.0000039 | 0.0000038 | 0.0000036 | 0.0000051
r'(3,3) e | 0.7125932 | 0.7198929 | 0.7358333 | 0.7487188 | 0.7527526
’ se | 0.0000055 | 0.0000037 | 0.0000027 | 0.0000029 | 0.0000034
T'(4,4) e | 0.7706122 | 0.7804740 | 0.8026975 | 0.8216638 | 0.8278508
’ se | 0.0000050 | 0.0000036 | 0.0000041 | 0.0000034 | 0.0000045
U(0,1) e | 0.3131102 | 0.3147531 | 0.3180768 | 0.3204898 | 0.3212093
’ se | 0.0000109 | 0.0000079 | 0.0000068 | 0.0000087 | 0.0000010
U(0.1,0.9) e | 0.3796196 | 0.3836337 | 0.3923484 | 0.3993590 | 0.4015409
S se | 0.0000087 | 0.0000047 | 0.0000056 | 0.0000058 | 0.0000076
151(1) e | 0.5257341 | 0.5265118 | 0.5281133 | 0.5291650 | 0.5294726
se | 0.0000286 | 0.0000207 | 0.0000205 | 0.0000192 | 0.0000266

PN‘i(Q) e | 0.2301307 | 0.2305824 | 0.2314898 | 0.2321377 | 0.2323273
se | 0.0000106 | 0.0000080 | 0.0000081 | 0.0000077 | 0.0000116

151(3) Lo | 0.1468621 | 0.1471894 | 0.1478335 | 0.1482962 | 0.1484319
se | 0.0000070 | 0.0000046 | 0.0000049 | 0.0000054 | 0.0000073

151(4) e | 0.1077790 | 0.1080357 | 0.1085429 | 0.1088943 | 0.1089969
se | 0.0000062 | 0.0000033 | 0.0000036 | 0.0000036 | 0.0000048

Table 2: Estimates of directional time constants and corresponding conservative standard
errors for the simulated distributions. Estimates for scaled distributions are obtained by
scaling the estimates analogously.

are not scaled to have the same mean) and in both directions we observe an almost perfect
linear relation. Pictures in the other directions look similar. We note that the observation
for U(0.1,0.9) slightly deviates from the linear pattern. Removing this observation and
fitting regression lines through the origin to the other observations gives po = 1.5 - Ey[7]
and g5 = 1.56 - E4[7], respectively, with increasing values between 1.5 and 1.56 for the
slopes at the intermediate angles.

Our findings indicate that the time constant is closely related to the quantity Eyu[r]. A
Gamma distribution and a Fisher distribution have very different properties and therefore
it seems reasonable to believe that the above approximate relation between the time
constant and Ey[7] is valid for a quite large class of distributions, e.g. absolutely continuous
distributions F' with inf supp(F') = 0 that are not too concentrated. If the distribution is
very concentrated, e.g. with mass 1 — ¢ on the interval [a — £, a + €] for some a > 0 and
the rest of the mass smeared out over the positive axis, then the time constant and E,[7]
will both be close to a and their ratio close to 1 (rather than 1.5) so it is clear that the
relation is not completely universal. Figure 5 is analogous to Figure 4 (with U(0.1,0.9)
excluded), but we have included estimates also for I'(10, 10) and I'(20, 20) based on smaller
simulations (500 runs with z,,,, = 10.000). These distributions have variance 1/10? and
1/20?, respectively, and we note that, for @ = 0, their values indeed fall below a line fitted
to the other distributions while, for § = 45, they still comply quite well with the other
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distributions (see below for some further comments on this). As for theoretical bounds,
we believe that p > E4[7] is true in great generality — perhaps as soon as F'(0) < 1/2 so
that p > 0, and most likely when F(0) = 0 — but we do not have a proof of this.

Figure 4 revealed that U(0.1,0.9) deviates slightly from the pattern for the distributions
with inf supp(F') = 0. What happens in general to the time constant when the support of
the distribution is bounded away from 07 In order to investigate this, we have performed
additional simulations for translated versions of our distributions, more specifically, we
have simulated passage times distributed as C' + 7, where C' € {0.1,0.2,0.5,1,2,4} and
7 has one the the distributions in Table 1 (excluding U(0.1,0.9)). These simulations are
smaller and consist of 100 runs to ,,,, = 10.000 for each translated distribution. Plotting
the time constants against E4[7] indicates that the relation becomes (i) less linear when
C' increases for a given angle # and (ii) more linear when 6 increases for a given value of
C'. This is illustrated with pictures for # = 0 and 6 = 45 in Figure 6 (C' = 0.5) and Figure
7(C=4).

The fact that very concentrated distributions and translated distributions deviate
from the pattern observed for more spread out distributions with inf supp(F') = 0 may be
explained in that, in both these cases, the model is regularized, meaning roughly that it
contains less randomness relative to the average passage time. Thereby it comes closer to
the situation with constant passage time. In both cases, there will be a tendency that the
shortest paths are also the fastest, so that there is a stronger tendency for the infection
to hit a point via the neighbor on the shortest path. Using E4[7] as an explaining factor
however is based on the assumption that the infection may invade a point via any of
its four neighbors. The regularizing effect is most evident along the axis, where there is
a unique shortest path, while it takes longer to set in along the diagonal, where there
are more paths of optimal length. Quantifying what happens in the transition from the
regime where E4[7] explains the time constant to the case with constant passage times
seems difficult.

How does the time constant depend on the direction? From Table 2 we see that, for
each given distribution, the estimated time constant increases with §. Comparing two
consecutive angles, the differences are of the order 1073, while the standard deviations
are of the order 107°, and the differences are hence statistically significant. We conclude
that the growth is fastest along the axis and slowest along the diagonal. The conclusion
is the same for the additional simulations for translated distributions.

3.2 Asymptotic shape

We now turn to the asymptotic shape. The last paragraph in the previous section indicates
that, for all simulated distributions, the asymptotic shape is contained in a circle with
radius given by the speed p~! of the growth along the axes. Figure 8 shows the boundary
of the infected sets (in single realizations) for I'(k, k)-distributions with k£ = 1,2,3,4.
We have first checked roughly how long the simulations have to run to reach the point
(20.000,0) and the pictures are then based on realizations up to such fixed times (which
hence may be different for different pictures). A circle with radius given by the estimated
asymptotic speed of the growth along the axes is included for comparison. Figure 9 shows
corresponding pictures for Fi(vy) distributions with v = 1,2,3,4, and Figure 10 for the

11



uniform distribution U(0,1). From the pictures we see that the shape seems to be closer to
a circle for distributions with larger variability. Indeed, for the Gamma distributions, the
variance increases as k decreases, the Fi distributions are more heavy-tailed for smaller
values of 7. Comparing the different distribution types, we also see that the shapes for
the heavy-tailed Fisher type distributions are the most circle-like.

One possible quantification of the deviation from a circle is the ratio puys/po — if 1o
is indeed increasing as 6 € [0, 45] increases, the difference between the shape and a circle
is maximal for # = 45. In Figure 11, estimated values of these ratios are plotted against
the squared coefficients of variation CV3 = E4[72]/E3[7] for the distributions in Table 1
(recall that E4[7?] < oo is a necessary condition for convergence to an asymptotic shape).
Here, CV, measures the standard deviation of min{r,..., 74} as a fraction of the mean.
We see that there indeed seems to be a relation in that a larger value of CV? tends to
imply a smaller value of ju45/ 0.

Figures 12 and 13 show pictures of the shape for the translated exponential and ﬁi(?)
distributions, with pictures for the non-translated distributions included for comparison
(also with x4, = 10.000). As described above, translating the passage time distribution
brings the model closer to a situation with constant passage times and indeed we see that
the shape comes closer to a diamond — the asymptotic shape for constant passage times
— as the translation increases. The pictures are similar for other translated distributions.
Figure 14 shows that, when the parameter increases in the Gamma distribution, so that
the variance decreases, then the shape also comes closer to a diamond.

When E4[7%] = 0o, the conclusions of the shape theorem are not true. As pointed out
after Theorem 1.1, the infected region will then have uninfected points in its interior that
are visible on a linear scale. This is illustrated in Figure 15, with pictures of the boundary
of the infected set for Fi(0.5) and Fi(0.3). Note that we still have E4[7] < oo, so that the
time constants do exist.

Recall from Section 2.2 that the fluctuations of the interface between the infected set
B(t) and its complement is believed to be of the order tX with y = 1/3, so that the
standard deviation of the hitting time 7'(0,n) is of the order n'/3, and the fluctuations
of the location where B(t) hits a line at distance n from the origin is conjectured to
be of the order n® with & = 2/3. We close this section by referring to Figure 16 for
some support of this. Let H, denote the distance to the z-axis from the hitting point
on the vertical line L, at distance n from the origin. Fitting a regression model with
E[H,] = cn® based on sample points at distance 500, gives ¢ = 0.6670786 with standard
deviation 0.0005222. Due to the observation points being positively correlated, the stan-
dard deviation is likely to be too small, but the predicted value 2/3 is still contained in
the 95% confidence interval. Figure 16(a) shows a plot of log(H,,) against logn and we
see that the observations indeed fit very well with the regression line. Similarly we have
fitted an analogous regression model for the standard deviation of T'(0, L,,), which gives
x = 0.3223056 with standard deviation 0.0006056. Although the estimate is fairly close
to the predicted 1/3, it is somewhat smaller and the 95% confidence interval does not
contain 1/3. Recall however that the standard deviation is likely to be too small so that
the confidence interval shold in fact be wider. A contributing factor may also be that we
have recorded hitting times to lines rather than to points and such hitting times of course
have smaller variance. Figure 16(b) shows the observations along with the regression line.
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4 Summary

We have studied the speed and shape of first passage percolation on Z? by aid of computer
simulations. Focusing on continuous passage time distributions, the simulated distribu-
tions include the Exponential distribution, Gamma distributions, uniform distributions
and power-law distributions. We refer to Table 1 for numerical estimates of time constants
and to Section 5 for simulation pictures.

For the time constant, we have found that the most important quantity for determining
its value is E4[7]|. Indeed, Figure 4 reveals a close to linear relation for the simulated
distributions. For translated versions of the distributions, the relation is less clear along
the axis, but becomes more linear closer to the diagonal. For the asymptotic shape, we
have found that, for all simulated distributions, the shape is contained in a circle with
radius pp. Constant passage times give a diamond as asymptotic shape and, when the
variance decreases for a given distribution type, the shape comes closer to the diamond.
When the variance increases, on the other hand, the shape approaches the circle. In Figure
11, the deviations from the circles, quantified by the ratio p45/ 110, are plotted against the
variational coefficient E4[7%]/E2[r] for all simulated distributions and indeed we see a
negative relation. Finally, we have investigated the exponents for the standard deviation
of hitting times and for the fluctuations of hitting points on lines and our findings are in
line with the predicted values 1/3 and 2/3, respectively.

We finish with a few ideas for theoretical investigations:

1. As mentioned in Section 3.1, we believe that u > E4[7] is true in great generality.
Is it possible to find sufficient conditions on the passage time distribution for this?

2. Prove that py is increasing in 0 € [0,45], perhaps for some suitable class of passage
time distributions. This would imply that the asymptotic shape is indeed contained
in the circle.

3. Does the shape come arbitrarily close to a circle when the variational coefficient
E4[7%]/E3[r] (or some other quantification of the variability of the distribution)
becomes large? We believe that the answer may be no.
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5 Simulation pictures
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Figure 2: Regression line for estimation of
the time constant for the exponential dis-

tribution.
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Figure 3: Estimated time constant plotted
against the variance for scaled distributions
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Figure 4: Estimated time constants plotted against E4[7] for the distributions in Table 1.
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Figure 5: Estimated time constants plotted against E4[7] for the distributions in Table
1, except U(0.1,0.9), (stars) and I'(k, k) for k = 10,20 (circles). Regression lines fitted to

the distributions in Table 1, except U(0.1,0.9).
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Figure 6: Estimated time constants for translated passage times 0.5 + 7 plotted against
E,[7] for the distributions in Table 1, except U(0.1,0.9).
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Figure 12: Boundary of the infected set for translated exponential distribution.
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Figure 13: Boundary of the infected set for translated ﬁi(?) distribution.
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Figure 16: Regressions for the exponents x and & for exponential passage times.
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