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Abstract

Respondent-driven sampling (RDS) is frequently used when sampling
hard-to-reach and/or stigmatized communities. RDS utilizes a peer-driven
recruitment mechanism where sampled individuals pass on participation
coupons to at most c of their acquaintances in the community (c = 3 being
a common choice), who then in turn pass on to their acquaintances if they
choose to participate, and so on. This process of distributing coupons is
shown to behave like a new Reed-Frost type network epidemic model, in
which becoming infected corresponds to receiving a coupon. The difference
from existing network epidemic models is that an infected individual can
not infect (i.e. sample) all of its contacts, but only at most c of them. We
calculate R0, the probability of a major “outbreak”, and the relative size
of a major outbreak in the limit of infinite population size and evaluate
their adequacy in finite populations. We study the effect of varying c and
compare RDS to the corresponding usual epidemic models, i.e. the case of
c = ∞. Our results suggest that the number of coupons has a large effect
on RDS recruitment. Additionally, we use our findings to explain previous
empirical observations.
Key words: Respondent-driven sampling; Epidemic model; Configuration
model; Reed-Frost.
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1 Introduction

Hidden populations are groups of individuals which i) have strong privacy
concerns due to illicit or stigmatized behaviour, and ii) lack a sampling
frame, i.e., their size and composition are unknown. Examples of hidden
populations include several groups that are at high risk for contracting and
spreading HIV, e.g., men who have sex with men, sex workers, and injecting
drug users [1, 2, 3]; it is therefore of great importance to obtain reliable
sampling methods for hidden populations in order to plan and evaluate
interventions in the global HIV epidemic [4, 5].

Respondent-driven sampling (RDS) [6, 7] is a sampling methodology
that utilizes the relationships between individuals in order to sample from
the population. By combining an effective sampling scheme and the ability
to produce unbiased population estimates, RDS has become the perhaps
most preferred method when sampling from hidden populations. A typical
RDS study starts with the selection of a group of seed individuals. Each seed
is provided with a number of coupons, typically between three to five, to
distribute to his or her peers in the population. An individual is eligible for
participation upon presenting a coupon at the study site. Because recruit-
ment takes place by coupons, participants remain anonymous throughout
the study, but each coupon is numbered with a unique ID to keep track of
who recruited whom. Incentives are given both for the participation of an
individual as well as for the participation of those to whom he or she passed
coupons. After participation, which commonly includes survey questions
and possibly being tested for diseases, newly recruited individuals (i.e., re-
spondents) are also given coupons to disperse among their contacts in the
population. This procedure is then repeated until the desired sample size
has been reached. The sampled individuals form a tree-like structure which
is obtained from tracing the coupons. Recently, online based RDS methods
(webRDS), where recruitment takes place via email and a survey is filled out
at a designated web site, have also been put into use [8, 9, 10]. There are
several procedures available for estimating population characteristics from
RDS data, most of which use a Markov model in order to approximate the
actual recruitment process [11, 12, 13, 14, 15, 16]; this is not the focus of
the present paper.

A frequent problem in RDS studies is the inability of the recruitment
process to reach the desired sample size due to premature failure of the
recruitment chains started by the seeds [17]. This is often mitigated by ad-
ditional seeds that enter the study as the rate of recruitment declines; e.g.,
in [17], 43% of reviewed RDS studies with available data reported that addi-
tional seeds were used. Relatedly, it has been observed in webRDS studies,
where recruitment is allowed to go on until it stops by itself, that the re-
cruitment process fails to reach a large proportion of the population despite
additional seeds joining in at a later time [10, 18]. While there are most
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likely several reasons behind recruitment chain failure, such as community
structure in the population causing chains to become stuck in a sub-network
and/or clustering that has a similar effect, but more locally, an important
reason is the limited number of coupons in the RDS recruitment process.
This is the main focus of this paper. Furthermore, recruitment chain failure
is highly associated with the ability of the recruitment process to start suc-
cessful recruitment chains, the probability of such chains occurring, and the
relative size of the population that is reached by an RDS study, all of which
are related to quantities typically studied in epidemic modelling. As it turns
out, it is possible to use models of infectious disease spread on social net-
works to describe coupon distribution in RDS, where the disease is defined
as “participation in the study” and spreads by the RDS coupon distribution
mechanism.

The simplest model of infectious disease spread is the Reed-Frost model,
see e.g. [19, p. 11-18], where in each generation i, each infectious individual
independently infects each susceptible individual with the same probability.
The individuals that were infected by the individuals in generation i make
up generation i + 1 of infectious individuals in the epidemic. After spread-
ing the disease, the individuals in generation i are considered recovered (or
dead) from the disease and are removed from the process. In the original
version of the model, an infectious individual attempts to infect all suscep-
tible individuals in the population. The model is however easily modified to
the more realistic case when the structure of the population is described by
a social network, hence imposing the restriction that an infectious individual
only may spread the disease to his or her contacts in the social network in-
dependently of each other with the same probability. Infectious diseases are
usually able to spread to all contacts of an individual, and consequently, the
Reed-Frost model and other epidemic models defined on social networks do
not impose any restrictions on the number of individuals that an infectious
individual can infect other than those given by population structure. The
RDS recruitment process differs from infectious diseases in that its spread is
restricted by the limited number of coupons. Consequently, individuals with
more population contacts than the number of coupons distributed to them
have less capability of recruiting than if RDS recruitment were to spread in
the usual manner of an epidemic, i.e. without any limitations. Depending
on how the number of contacts (i.e, degrees) of population members are
distributed, this may have a large effect on the capability of the RDS re-
cruitment process to sustain and initiate recruitment. Furthermore, it may
affect the ability of the recruitment process to reach a substantial proportion
of the population, as the sampling procedure can limit recruitment to parts
of the population.

In this paper, we model RDS as an epidemic taking place on a social
network by defining a Reed-Frost type model which has an upper limit on
the number of individuals that an infectious individual could infect. We will
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use both infectious disease terminology and RDS terminology when refer-
ring to this model. In order to be able to specify the degree distribution
of the social network, we use the configuration model [20, 21] to describe
the structure of the population. We calculate the basic reproduction num-
ber, i.e., the number of individuals that are infected by a typical infectious
individual during the early stages of the epidemic. This is often denoted
by R0. We say that there is a major outbreak if a non-negligible propor-
tion of the population is infected and calculate the probability τ of such
outbreaks occurring. If R0 ≤ 1, it is not possible for a major outbreak to
occur, while if R0 > 1, a major outbreak may occur. The critical value of
R0 = 1 is often referred to as the epidemic threshold. We also calculate the
relative size of an outbreak in case of a major outbreak z using so-called
susceptibility sets [22, 23]. Note that τ and z are positive only if R0 is larger
than the epidemic threshold. We compare the RDS recruitment process to
corresponding epidemics with unrestricted spread and investigate the effect
of varying the number of coupons and the coupon transfer probability. To
our knowledge, there are no previous studies of epidemics on networks that
describes behaviour similar to the present one, although the model in [24]
allows for a restriction on the number of individuals that an infectious indi-
vidual can infect in a homogeneously mixing population (i.e. a population
without network structure).

2 Models

2.1 Network model

We consider a configuration model network consisting of n vertices. In later
calculations, we will assume that n→∞. Each individual i, i = 1, . . . , n, is
assigned an i.i.d. number of stubs (half-edges) di from a prescribed distri-
bution D having support on the non-negative integers. The network is then
formed by pairing stubs together uniformly at random. If

∑n
i=1 di is odd,

an edge is added to the n:th vertex (this does not influence our results in
the limit of infinite population size). This construction allows the formation
of multiple edges and self-loops; it is however well known that the fraction
of these is small if D has finite second moment. Specifically, the probability
of the resulting graph being simple is bounded away from 0 as n → ∞;
see [25, Theorem 7.8] and [26, Lemma 5.3]. Hence we can condition on the
graph being simple given that E(D2) < ∞. Alternatively, we may proceed
by removing multiple edges and self-loops from the generated graph since
asymptotically this does not change the degree distribution if D has finite
second moment; see [25, Theorem 7.9]. Hence, we will from now on assume
that the resulting graph is simple. Moreover, the graph is locally tree-like
when E(D2) < ∞, meaning that it with high probability does not contain
short cycles [26]. Hence, we can take advantage of the branching process
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[e.g., 27] approximations that are often used for epidemics, see e.g. [19, ch.
3]. In what follows, we will assume that the degree distributions considered
have finite second moment.

2.2 Epidemic model

On this graph, describing the social structure in a community, we define an
epidemic model mimicking the RDS recruitment process. In this model, be-
coming infected corresponds to participating in the RDS study. Initially, all
members of the population (vertices) are susceptible. The epidemic starts
with one randomly selected individual (vertex), the index case, being in-
fected from the outside. The infected individual uniformly selects c of his
or her neighbours in the population and infects them independently of each
other with the same probability p. The parameter c corresponds to the
number of coupons in RDS and the parameter p to the probability of being
successfully recruited to the RDS study. If the infected individual has less
than c contacts, he or she infects all his or her contacts independently of each
other with probability p. The newly infected individuals make up the first
generation of the epidemic. After spreading the disease, the initially infected
individual recovers and becomes immune (or dies) and has no further role
in the epidemic. The individuals in the first generation each in turn select
c of their neighbours excluding the one who infected them (which for the
first generation is the index case), regardless of whether they are susceptible
or not. If an individual has less than c neighbours excluding the one who
infected him or her, he or she selects all of his or her neighbours. Then,
they infect the selected contacts that are susceptible, independently of each
other with probability p, and then recover; contacts with already infected
individuals have no effect. The now infected individuals form the second
generation of the epidemic. The disease continues to spread in the same
fashion from the second generation and onward until there are no newly
infected individuals in a generation. The individuals that were infected dur-
ing the course of the epidemic make up the outbreak, and the number of
ultimately infected individuals is the final size of the outbreak. Note that if
we let c =∞, we get the standard Reed-Frost epidemic taking place on the
configuration model network [26].

Because an individual only tries to infect those he or she selected, the
spread of the disease, or coupon distribution mechanism, in our model is
more similar to that of webRDS than physical RDS. We discuss this further
and present other possible coupon distribution mechanisms in Section 5.
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3 Calculations

3.1 The basic reproduction number R0

Assume that we have a configuration model graph G of size n, where n is
large, and let the degree distribution of G be D, where P (D = k) = pk. The
degree of a given neighbour of an individual follow the size-biased degree
distribution D̃, where P (D̃ = k) = p̃k = kpk/E(D). Assume that we have an
epidemic spreading on this graph according to the description in Subsection
2.2. The degree of the index case is then distributed as D, and the degree
of infected individuals in later generations during the early stages of an
outbreak is distributed as D̃. As previously mentioned in Subsection 2.1,
the graphs generated by the configuration model will with high probability
not contain short cycles, meaning that we can approximate the spread of
the epidemic with a (forward) branching process. Let X and X̃ be the
offspring of the ancestor (i.e., the index case) and of the later generations in
this branching process, respectively. Given that the index case has degree
k ≤ c, he or she can at most infect k neighbours. If the index case has
degree larger than or equal to c+ 1, he or she infects at most c neighbours.
Because infections happens independently with the same probability p, we
have that, conditionally on the degree, the probability that the index case
infects j neighbours is

P (X = j|D = k) =

(
c ∧ k
j

)
pj(1− p)(c∧k)−j , (1)

where j = 0, . . . , c ∧ k. Infectious individuals in later generations have one
less contact available for infection (the one that infected them). Hence,
we get that, conditionally on the degree, the probability that an infectious
individual in later generations infects j neighbours is

P (X̃ = j|D̃ = k) =

(
c ∧ (k − 1)

j

)
pj(1− p)(c∧(k−1))−j , (2)

where j = 0, . . . , c ∧ (k − 1).
Because the ability of an individual to spread the disease will depend on

its degree, the offspring distributions are obtained by conditioning on the
degree:

P (X = j) =
∞∑

k=j

P (X = j|D = k)pk; (3)

P (X̃ = j) =
∞∑

k=j+1

P (X̃ = j|D̃ = k)p̃k, (4)

where j = 0, . . . , c, and the probabilities P (X = j|D = K) and P (X̃ =
j|D̃ = k) come from Eqs. (1) and (2), respectively. From standard branch-
ing process theory [27] we have that R0 is the expected number of individuals
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that get infected by an infectious individual in the second and later genera-
tions; hence

R0 = E(X̃) =
c∑

j=0

j
∞∑

k=1

P (X̃ = j|D̃ = k)p̃k (5)

=

c∑

j=0

j



c−1∑

k=j

(
k

j

)
pj(1− p)k−j p̃k +

(
c

j

)
pj(1− p)c−j

(
1−

c∑

k=1

p̃k

)
 .

The obtainedR0 is increasing in p and c, and for a fixed p, R0 → R
(unrestricted)
0

as c → ∞, where R
(unrestricted)
0 is the R0 value for the standard Reed-Frost

epidemic on a configuration model network, given by [26]

R
(unrestricted)
0 =

(
E(D) +

Var(D)− E(D)

E(D)

)
.

3.2 Probability of major outbreak

When R0 > 1, it is possible for a major outbreak to occur. The probability
τ of such an outbreak occurring is given by the survival probability of the
approximating branching process, which we get by standard techniques. We
first consider a branching process with offspring distribution X̃ for all indi-
viduals, i.e. also for the index case. Let the extinction probability of this
process be π̃. For the process to die out, all the branching processes initiated
by the offspring of the ancestor must die out; hence by conditioning on the
number of offspring in the first generation of the process, we get

π̃ =
c∑

j=0

π̃jP (X̃ = j) = ρ̃(π̃), (6)

where ρ̃ is the probability generating function of X̃. The solution to Equa-
tion (6) is obtained numerically. In our original branching process the an-
cestor has offspring distribution X and later generations have offspring dis-
tribution X̃. Again by conditioning on the number of individuals in the first
generation, we get that the extinction probability π of the original branching
process is

π = ρ(π̃), (7)

where π̃ is the solution to Equation (6) and ρ is the probability generating
function of X. The solution to Equation (7) is given by numerical calcula-
tions, and we obtain the probability of a major outbreak τ = 1− π.

Note that if we have 1 < s < ∞ initially infected individuals in the
epidemic, the probability of a major outbreak is 1 − πs, which approaches
1 as s becomes large. The number of initially infected individuals does not
affect R0 or the relative size of a major outbreak calculated in Subsection 3.3.
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3.3 Relative size of a major outbreak

The relative size of a major outbreak in case of a major outbreak z can be
obtained using susceptibility sets, constructed as follows. For each individual
i, we can obtain a random list of which neighbours that i would infect given
that it were to be infected. By combining the lists from all individuals in
the population, it is possible to construct a directed graph with all vertices
(individuals) in which there is an arc from vertex i to vertex j if j is in i:s
list. The susceptibility set of an individual j consists of all individuals in
this directed graph, including j itself, from which there is a directed path
to j. Hence, j:s susceptibility set is such that the infection of any individual
in the set would result in the ultimate infection of j. Note that j will be
infected in the epidemic if and only if the initially infected individual is in
j:s susceptibility set.

The susceptibility set of a randomly chosen individual, i0 say, can be
approximated with a (backward) branching process in which i0 is the only
member of the zeroth generation. We consider the number of neighbours
that, if they were to be infected, would infect i0 (as opposed to previously
when we considered the number of neighbours that an individual would in-
fect were it to be infected). Suppose that i0 have degree d. Because all
neighbours of i0 contact him or her with the same probability θ indepen-
dently of each other, the number of neighbours that contact him or her is
Bin(d, θ)-distributed; hence, the unconditional distribution of the number
of neighbours that contact him or her is a mixed binomial distribution with
parameters D and θ. We now derive an equation for the contact probability
θ. The degree distribution of the neighbouring individuals is D̃, so we obtain

θ =
∞∑

k=0

θkp̃k, (8)

where θk is the probability that a neighbour with degree k contacts i0.
Because a neighbour of i0 with degree k has to be contacted first in order
to become infected, only k − 1 edges are available for him or her to spread
the disease. Therefore, a neighbour must have at least degree two in order
to first become infected and then contact i0. If a neighbour has degree
k ≥ c + 2, he or she first selects c of the available k − 1 contacts and then
attempts to spread the disease to them. Hence, the contact probabilities are

θk =





0, k = 0, 1;
p, k = 2, . . . , c+ 1;
c

k−1p, k = c+ 2, c+ 3, . . . .
(9)

The probability that a neighbour makes contact with i0 depends on his or her
degree. Hence, the degree distribution of individuals in the first generation,
i.e. those neighbours of i0 that makes contact with i0, and of individuals in
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later generations in the backward branching process is altered by the fact
that they have contacted another individual. Conditionally on the event
that a contact has been made, call it C, the distribution of the degree D∗

of an individual in the first and later generations of the susceptibility set
process is given by

P (D∗ = k) = P (D̃ = k|C)

=
P (C|D̃ = k)P (D̃ = k)∑∞
k=0 P (C|D̃ = k)P (D̃ = k)

=
θkp̃k
θ

, (10)

so

P (D∗ = k) =





0, k = 0, 1;
pp̃k
θ , k = 2, . . . , c+ 1;
cpp̃k

(k−1)θ , k = c+ 2, c+ 3, . . . .
(11)

An individual in later generations of the process will be contacted by any of
his or her neighbours independently of other neighbours with the same prob-
ability θ. Given that this individual has degree k, the number of neighbours
that contact him or her is binomially distributed with parameters k− 1 and
θ. Hence, the unconditional distribution of the number of neighbours that
contact an individual in later generations is mixed binomial with parameters
D∗ − 1 and θ.

If the approximating backward branching process contains few individ-
uals, it is unlikely that i0 will be infected, whereas if the process reaches
a large number of individuals (i.e. grows infinitely large), there is a pos-
itive probability that i0 will not escape infection. More specifically, the
probability that i0 will be infected during a major outbreak is given by
the survival probability of the backward branching process. Because i0 is
chosen randomly, we also have that the relative size of an outbreak in case
of a major outbreak is given by the survival probability of the backward
branching process. Let Y be the number of offspring of the ancestor and
Y ∗ the number of offspring of individuals in later generations in the ap-
proximating branching process, respectively. Hence, Y ∼ MixBin(D, θ) and
Y ∗ ∼ MixBin(D∗ − 1, θ). We obtain the survival probability of the process
similarly as in Subsection 3.2. Let the extinction probability of a branching
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process with offspring distribution Y ∗ be π∗. We have

π∗ =
∞∑

j=0

(π∗)jP (Y ∗ = j) = E((π∗)Y
∗
)

= E(E((π∗)Y
∗ |D∗)) = E(1− θ + θπ∗)D

∗−1

=
∞∑

k=2

(1− θ + θπ∗)k−1P (D∗ = k)

=
p

θ

c+1∑

k=2

(1− θ + θπ∗)k−1p̃k +
cp

θ

∞∑

k=c+2

(1− θ + θπ∗)k−1
p̃k
k − 1

. (12)

The solution to Equation (12) for π∗ is obtained numerically. Let the ex-
tinction probability of the approximating branching process be π′. Then,

π′ =
∞∑

j=0

(π∗)jP (Y = j) = E((π∗)Y )

= E(E((π∗)Y |D)) = E(1− θ + θπ∗)D

= fD(1− θ + θπ∗), (13)

where fD(·) is the probability generating function of D and π∗ is the solution
to Equation (12). The solutions to Equation (13) is obtained numerically,
and the relative final size of the epidemic in case of a major outbreak is
z = 1− π′.

A rigorous proof of that z = 1 − π′ is beyond the scope of this paper.
It has been proved that for Reed-Frost epidemics on random intersection
graphs [28] and Reed-Frost epidemics on configuration model graphs [29]
that the proportion of infected during the epidemic converges in probabil-
ity to the survival probability of the backward branching process. Similar
arguments could also be used for our process to provide a formal proof. Ad-
ditionally, we believe that the techniques described in [30] could be used to
obtain stronger results for the whole epidemic process.

4 Numerical results and simulations

We now numerically examine the analytical results obtained in Section 3.
In particular, we examine the relation between R0, τ , and z and the param-
eters c and p, and compare the RDS recruitment process with unrestricted
epidemics. We use two different degree distributions in our calculations, the
Poisson degree distribution and a variant of the power-law degree distribu-
tion with exponential cut-off given by pk ∝ k−α exp(−k/κ), k = 1, 2, . . .,
where α is the power-law exponent and κ refers to the exponential cut-
off [e.g. 31].
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(a) D~Po(8)
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Figure 1: Comparison of R0 for unrestricted epidemics and RDS recruitment
processes with 10, 5, and 3 coupons and p ∈ [0, 1]. Plot (a) show the results
for the Poisson degree distribution with parameter λ = 8 and plots (b) show
the results for the power-law degree distribution with parameters α = 2 and
κ = 100. The dashed horizontal lines shows the threshold value R0 = 1.

In Figure 1, we show the R0 values for the RDS recruitment process
with c = 3, 5, 10 and the unrestricted epidemic for p ∈ [0, 1]. Figure 1 (a)
shows the results for the Poisson degree distribution with parameter λ = 8
and Figure 1 (b) shows the results for the power-law degree distribution
with parameters α = 2 and κ = 100. For both degree distributions and
a fixed value of p, the limitation imposed by the number of coupons on
disease spread yields smaller R0 values for the RDS recruitment process
when compared to the unrestricted epidemic for all values of c. Especially
for the power-law degree distribution, all values of c give much smaller R0

values than those of the unrestricted epidemic, and the value of p for which
R0 becomes larger than 1 (i.e., the epidemic threshold) is larger than that
of the unrestricted epidemic for all values of c.

Figure 2 shows the values of τ and z for the RDS recruitment process
with c = 3, 5, 10 and the unrestricted epidemic for p ∈ [0, 1]. Figures 2 (a)
and 2 (b) show the results for τ and z, respectively, for the Poisson de-
gree distribution with parameter λ = 8 and Figures 2 (c) and 2 (d) show
the results for τ and z, respectively, for the power-law degree distribution
with parameters α = 2 and κ = 100. The relative size of a major out-
break is always smaller than the probability of a major outbreak for both
degree distributions. For both degree distributions, the probability of a ma-
jor outbreak for the RDS recruitment process is smaller than that of the
unrestricted epidemic for small values of p and approaches that of the un-
restricted epidemic when p → 1. For the power-law degree distribution,
the size of a major outbreak is much smaller than that of the unrestricted
epidemic for all values of c and p.
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(d) D~PL(2,100)
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Figure 2: Comparison of the asymptotic probability of a major outbreak
and relative size of a major outbreak for unrestricted epidemics and RDS
recruitment processes with 10, 5, and 3 coupons and p ∈ [0, 1]. Plots (a) and
(b) show the results for the Poisson degree distribution with parameter λ = 8
and plots (c) and (d) show the results for the power-law degree distribution
with parameters α = 2 and κ = 100.
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We also make a brief evaluation of the adequacy of our asymptotic results
in finite populations by means of simulations. From simulated RDS recruit-
ment processes (as described by the model), we estimate the probability of a
major outbreak and the relative size of a major outbreak in case of a major
outbreak by the relative proportion of major outbreaks and the mean rela-
tive size of major outbreaks, respectively. Given a degree distribution and
number of coupons c, let pc be the smallest value of p for which the process
is above the epidemic threshold. Each simulation run consists of generat-
ing a network of size 5000 by an erased configuration model approach [32],
for which we make use of the iGraph R package [33]. Then, RDS recruit-
ment processes are run on the generated network for values of p ∈ [pc, 1].
In Figure 3, we show the estimated probability of a major outbreak τ̂ and
estimated relative size of a major outbreak in case of a major outbreak ẑ for
varying p and the corresponding asymptotic results. Figure 3 (a) shows the
results for the Poisson degree distribution with parameter λ = 12 from 5000
simulations runs of RDS recruitment processes with 3 coupons. Figure 3
(b) shows the results for the power-law degree distribution with parameters
α = 2.5 and κ = 50 from 5000 simulation runs of RDS recruitment processes
with 10 coupons. In both Figures 3 (a) and (b), we show error bars for the
estimates based on ±2 standard errors, where the standard error for τ̂ is
estimated as SE(τ̂) = (τ̂(1 − τ̂)/m))1/2, where m is the number of simula-
tions, and the standard error for ẑ is estimated as SE(ẑ) = (σ̂2/mmaj)

1/2,
where σ̂2 is the sample variance of the relative final sizes of major outbreaks
and mmaj is the number of simulations resulting in a major outbreak.

Note that it is not well defined what constitutes a major outbreak in
small, finite populations. Usually, the threshold for when an outbreak con-
stitutes a major outbreak is determined by inspecting the distribution of
outbreak sizes. Typically, this distribution is bimodal with modes at 0 and
z, corresponding to small and major outbreaks. In our model, outbreak
sizes will depend on p. For p close to pc, where “close” depends on the
degree distribution, small and major outbreaks are indistinguishable. Con-
sequently, it is difficult to estimate τ and z for such values of p. In Figure 3,
we have chosen to set the (relatively small) threshold for major outbreaks
to 2% of the population over the whole interval [pc, 1]. This yields fairly
correct estimates for p close to pc and does not affect estimates for p further
away from pc.

We see that both the estimated probability of a major outbreak and the
estimated relative size of major outbreak in case of a major outbreak are very
well approximated by the asymptotic results for both the evaluated degree
distributions. As pointed out in [34], the relative size of the epidemic is more
efficiently estimated than the probability of a major outbreak because each
simulation yields many (correlated) observations of the backward process
and only one observation of the forward process.
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(a) D~Po(12), 3 coupons
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(b) D~PL(2.5,50), 10 coupons
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Figure 3: Comparison of results from simulations of RDS recruitment pro-
cesses and the asymptotic probability and relative size of a major outbreak.
Plot (a) shows the results for the Poisson degree distribution with param-
eter λ = 12 for processes with c = 3 and plot (b) shows the results for
the power-law degree distribution with parameters α = 2.5 and κ = 50 for
processes with c = 10. Note that the error bars for the simulated relative
size are very narrow and not visible for most simulated values. Also note
that the horizontal scales are different.

5 Discussion and conclusions

When the RDS recruitment process is compared to the corresponding unre-
stricted epidemic, it is clear that the limited number of coupons has a large
impact on R0 and the value of pc corresponding to the epidemic threshold,
the probability of a major outbreak, and the relative size of a major out-
break in case of a major outbreak. This is especially true for the power-law
degree distribution, for which in particular R0 and z is much smaller than for
the corresponding unrestricted epidemic. In social networks with power-law
degree distribution, the vast majority of individuals will have small degrees.
For these individuals, the probability of being infected in an epidemic will be
small. Also, such an individual will, once infected, have few or no contacts
to spread the disease to. Hence, the spread of an epidemic in such networks
will be highly dependent on a few individuals with very large degrees that
have the capacity to infect many of their (small degree) neighbours. Because
of the relatively small value of c, the potential of large degree individuals
to spread the disease is much impaired in RDS compared to an unrestricted
epidemic with the same p, hence impairing the spread of the epidemic as a
whole.

The impact of the number of coupons on the RDS recruitment process
may in part explain why some RDS studies experience difficulties in obtain-
ing the desired sample size and/or recruiting a substantial proportion of the
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study population. Given p, the number of coupons will be crucial to whether
R0 is above or below the epidemic threshold for the recruitment process; in
the latter case all recruitment chains will eventually fail. Moreover, the pro-
portion of the population recruited by the RDS recruitment process may be
small even given that p is relatively large and a major outbreak occurs. For
some parameter combinations, the proportion reached can be very small;
this is especially important to consider in webRDS. We illustrate this by
considering the webRDS studies in [10] and [18]. In both studies, each re-
spondent were allowed to make 4 recruitments. In the latter study, 66% of
started recruitment chains had a depth of one generation (i.e. index case and
one generation of recruitments) and 11% had a depth of three generations
or more. This indicates that R0 is below the epidemic threshold for this
study and therefore, recruitment never takes off. In the former study, the
majority of recruitments come from long recruitment chains, implying that
R0 is above the epidemic threshold. Still, recruitment eventually declined
and stopped completely before reaching a large part of the population de-
spite additional seeds joining the study. As we see in Section 4 however,
relatively many parameter combinations with R0 > 1 yields small z values,
which could explain the observed behaviour. For both studies, heterogeneity
in network structure, such that, locally R0 < 1, may also be an explanation.
It would be of interest to find proper inference procedures for our model
to be used in further evaluation of actual RDS studies with respect to the
quantities studied in this paper.

One might consider other ways to distribute coupons. The coupon dis-
tribution mechanism in our model, where a respondent selects some of his
or her neighbours for attempted coupon transfer while ignoring those neigh-
bours that were not selected, is most similar to a webRDS process. In a
physical RDS study where coupons are handed over from person to person,
a respondent may attempt to distribute a coupon to another neighbour if
the originally intended recipient declines (here, distributing a coupon implies
study participation). This modified mechanism is given as follows. A respon-
dent first attempts to give a coupon to a randomly chosen neighbour. If the
coupon is rejected, the respondent may try to distribute the same coupon to
another neighbour, randomly chosen among those who previously have not
been offered a coupon. When the coupon is accepted, the procedure is re-
peated starting by randomly selecting among those neighbours that have not
been offered a coupon. When there are no more neighbours and/or coupons
left, no further distribution attempts are made. The offspring probabilities
in the branching process are the same as previously for individuals with de-
gree less than the number of coupons, but the distribution of the number of
coupons given out by an individual with degree larger than c will be tilted
towards larger values compared to the previous model. The probabilities in
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(a) D~Po(8)
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(b) D~PL(2,100)
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Figure 4: Comparison of R0 for unrestricted epidemics and RDS recruitment
processes where a recruiter tries to distribute a coupon until success. Plot
(a) shows the results for the Poisson degree distribution with parameter
λ = 8 and plot (b) shows the results for the power-law degree distribution
with parameters α = 2 and κ = 100.

Eq. (1) now become

P (X = j|D = k) =

{ (
k
j

)
pj(1− p)k−j , j < c;∑k
i=c

(
k
i

)
pi(1− p)k−i, j = c.

(14)

It is straightforward to calculate R0 and τ using the same techniques
as in Sections 3.1 and 3.2. Figure 4 shows the R0 values for the modified
RDS recruitment process with c = 3, 5, 10 and the unrestricted epidemic
for p ∈ [0, 1]. In Figure 4 (a), we show the results for the Poisson degree
distribution with λ = 8 and in Figure 4 (b) we show the results for the
power-law degree distribution with parameters α = 2 and κ = 100. It is clear
that R0 is larger for the modified recruitment process for all p compared to
the process described in Subsection 2.2 and the p value corresponding to
the epidemic threshold is considerably smaller. When p→ 1, the R0 values
converges to those seen in Figure 1. Because the modified process has similar
epidemic threshold values in terms of p for different c, the corresponding τ
values (not shown) are close to those for the unrestricted epidemic when
R0 > 1. For the final size of the epidemic, the calculations are much harder
to derive and is thus out of the scope of this paper. There are several
other complications that could be considered in terms of coupon distribution.
E.g., it is not likely that all coupon distribution attempts of a respondent
will have the same success probability, both because the respondent may
act differently depending on how many attempts he or she has previously
made and because the relations to his or her neighbours may be different.
Other complications include different respondent behaviour depending on
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(measurable) individual characteristics, geographical variations, and time
dependence.

Overall, our results indicate that RDS studies which experience difficul-
ties with respect to recruitment chain failure could benefit from an increased
number of coupons, which would reduce the number of additional seeds
needed. Furthermore, the longer recruitment chains obtained as a result of
an increased number of coupons are more likely to reach remote parts of the
population and meet equilibrium criteria for inference. As the recruitment
potential of RDS increases from an increased number of coupons, the time
to reach the desired sample size is shortened. Additionally, the study time is
not subject to unexpected prolongation due to the addition of seeds. Hence,
an increased number of coupons may result in lower and more predictable
study costs. For webRDS studies in particular, the increase in the propor-
tion of the population reached due to increasing the number of coupons
facilitates larger sample sizes. We therefore advise that the recruitment po-
tential of a planned RDS study should be considered beforehand so that
the number of coupons could be chosen large enough to facilitate sustained
recruitment and an acceptable sample size. Other factors may also increase
recruitment potential. The coupon transfer probability p could be increased
by e.g. larger incentives or improved information about the study; this has
an immediate effect on R0, τ , and z. Additionally, the selection of seeds
could also affect recruitment capability, see e.g. [35] where different seed se-
lection methods produce very different recruitment scenarios. In general, it
is of interest to further study why certain RDS studies are more successful
in reaching the desired sample size with a modest number of seeds.

The presented epidemic model is a novel contribution to the area of
stochastic epidemic models and although many results from Reed-Frost epi-
demics on configuration model networks are expected to hold for this model,
several properties of it remain to be studied. There are a number of exten-
sions that can be considered, e.g. different recruitment probabilities through
unequally weighted edges, controlling for network structural properties, e.g.
clustering, and modifying the coupon distribution mechanism as previously
described.
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