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Abstract

We formulate a random utility model where we choose from n op-
tions 1, · · · , n. The options have associated independent and identi-
cally distributed (i.i.d) random variables {Xi, Ui}ni=1, where Xi are
the characteristics of option i and Ui is its associated utility.

We use the connection between point processes and extreme value
theory to analyze the statistical properties of choice characteristics X

of the object with the highest utility as n → ∞. We derive analytic
expressions of the asymptotic distribution of choice characteristics for
a range of distributional assumptions on the utilities Ui.

In our discussion section, we suggest an extension of our method to
allow us to further relax our distributional assumptions. We also show
how our theoretical model can be used to explain empirical patterns
relating to commuting time distributions.
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1 Introduction

This paper deals with statistical models of choice behavior. First, it shows
that if we model choice characteristics as stochastic, random utility models
from economics can be understood in terms of the statistical theory of con-
comitant statistics of extremes. Secondly, the paper makes a contribution to
the analysis of the concomitant of extremes by showing how point process
theory can be used to derive tractable results for a range of distributional
assumptions.

The economic and psychological theory of choice was initiated by Luce (1959)
who posited a number of axioms for probabilistic choice, from which he de-
rived the logit model for choice probabilities. The axiomatic approach was
later partially subsumed under an approach based on utility maximization
with unobservable characteristics/preferences (McFadden, 1980). In this lit-
erature, subjects are assumed to value choice options according to

Ui = h(xi) + εi, (1)

where xi is a vector of (non-random) choice characteristics of option i =

1, · · · , n0. It can be shown that in this model, the probability of selecting
alternative i is eh(xi)/

∑n0
j=1 e

h(xj) if the εi’s are Gumbel distributed. This
approach is called the random utility approach to probabilistic choice and
has been extended to more functional forms, distributional assumptions and
applications since McFadden’s initial contribution (Ben-Akiva and Lerman,
1985, Anderson et al., 1992, Train, 2009).

Mathematically, random utility theory is closely related to the theory of con-
comitants of extreme order statistics (David and Galambos, 1974, Nagaraja
and David, 1994, Ledford and Tawn, 1998). This theory deals with the
asymptotic behavior of the object

X[n:n] = XIn

where (X1, U1), · · · (Xn, Un) is a sequence of i.i.d. random variables where the
Ui’s are real-valued, theXi’s belong to a general space, and In = arg max1≤i≤n Ui.
The main difference difference from (1) is that not only Ui, but also Xi, is
random.

In this paper we use the theory of point process to analyze concomitant
extreme order statistics. For more information on point processes in general,
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see for example Cox and Isham (1980) and Jacobsen (2005). In particular,
we modify the methodologies presented in Resnick (2007), where the general
connection between point processes and extreme value theory is analyzed.

We focus on the problem for a range of specifications of the distribution of
U |X = x. We treat the problem when X[n:n] converges weakly to a specified
non-degenerate distribution (not all mass at one point mass or infinity), but
we also show in the discussion section how we can use the same theory to
analyze the convergence rates to different types of degenerate distributions.

By extending the theory of concomitants, the results in this paper provide
a framework for looking at random utility models in the limiting case when
the number of alternatives tends to infinity.

The paper is similar in aim to Malmberg (2012) and Malmberg and Hössjer
(2012). However, those papers used asymptotic properties of determinis-
tic point process, and analyzed the problem using continuity properties of
random fields. The novel approach in this paper is to instead use point pro-
cess theory to analyze the question, and this method turns out to allow a
simplification of the theory compared to our previous papers.

2 Model

Consider a sequence of independent and identically distributed pairs of ran-
dom variables {(Xi, Ui)}∞i=1, where Xi ∈ Ω ⊆ Rd and Ui ∈ R. We define Un:i

as the ith order statistic of {U1, · · · , Un}. For each n, we define the location
X[n:i] to be the X-value associated with Un:i for a sample of size n.

As mentioned in Section 1, we can think of Ui as the utility of alternative
i and Xi as its observable characteristics. We are interested in the limiting
properties of the optimal choice, and thus we study the asymptotic behavior
of the sequence of probability measures

Cn(·) = P
(
X[n:n] ∈ ·

)
. (2)

We will represent the distribution of (X, Y ) as

P ((X,U) ∈ A×B) =
∫
A
µ(x;B)dΛ(x),

where FX = Λ is the marginal distribution of X over Ω, and µ(x; ·) is the
conditional probability measure of Ui given Xi = x. We make the following
assumption on µ:
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Assumption 1 For the collection µ = {µ(x; ·);x ∈ Ω}, there exists a func-
tion

p : Ω→ (0,∞),

and a one-dimensional family of probability measures {Q(s; ·) : s ∈ R, s > 0}
with such that

µ(x; ·) = Q(p(x); ·).

Q(s; ·) is monotonic, i.e. Q(t; ·) stochastically dominates Q(s; ·) whenever
t > s. Furthermore, there exist sequences an, bn, independent of x, and a
distribution function Gα with α ∈ R, such that

Q(s; (−∞, u− bn
an

))n → Gα(u)s (3)

as n→∞, where Gα is a distribution function of one of the following three
forms:

Gα(u) =


exp(−(−u)−α)

{I(u<0)}
, α < 0,

exp(− exp(−u)), α = 0,

I(u > 0) exp(−u−α), α > 0,

and I(·) is the indicator function.

In effect, our assumption is an assertion that all µ(x; ·) belong to the same
extreme value family α, and that their relative size can be described by the
one dimensional parameter p(x).

2.1 Method

The sequence {(Xi, Ui)}ni=1 may be viewed as a random collection of points in
Ω×R, and described as a sequence of point processes ξn. We will show that
after a suitable transformation, this sequence of point processes ξn converges
to a Poisson point process ξ in a sense which will be specified later. As

Cn(A) = P (X[n:n] ∈ A) = P

(
sup
i:Xi∈A

Ui > sup
i:Xi /∈A

Ui

)

is a functional on our point process ξn, the problem reduces to determining
whether this functional is continuous. In this case, we can use the limiting
point process ξ to calculate our results.

We will start with an introduction to point processes – in particular sufficient
conditions for convergence. After this, we will apply the point process ma-
chinery to our setup, and characterize the limit of our point process. Once
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this is done, we will define random fields taking point processes as inputs,
and derive the asymptotic behavior of Cn from continuity properties of these
random fields.

3 Extremal Point Process Convergence

3.1 Background on Point Processes and Convergence
Results

This section contains background results and a notational machinery for point
processes. See Chapter 3 of Resnick (2007) for a more detailed treatment.

Throughout this discussion, the generic point process will take values in a
set E, with an associated σ-algebra E . For the purpose of our discussion, we
will take E to be a subset of a d + 1-dimensional Euclidean space with the
associated Borel σ-algebra B(Ω). A point mass is a set function, defined by

δz(F ) =

{
1 if z ∈ F
0 if z /∈ F ,

where F ⊆ E, F ∈ E . A point measure is a measure m(·) such that there
exists a countable collections of points {zk} and numbers {wk} ≥ 0, such
that

m(·) =
∑
zk

wkδzk(·).

We will confine our attention to the case wk ≡ 1.

LetMP (E) be the set of point measures on E, and let it have the minimal
σ-algebra which makes

{m ∈MP (E) : m(F ) ∈ B}

measurable for all F ∈ E , B ⊆ B(R) where m(F ) is the point measure m
evaluated at the set F and B(R) is the Borel σ-algebra on R. We define a
point process to be a probability distribution overMP (E).

If N is an arbitrary point process, we define the Laplace transform ψ associ-
ated with N as

ψN(f) = E exp

{
−
∑
z∈N

f(z)

}
=
∫
N ′∈M+

P (E)
exp

− ∑
z∈N ′

.f(z)

 dP.
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Here P is a probability measure over the set MP (E). Moreover, the class
of functions f for which we are interested in ψN is usually the continuous
non-negative functions on E with a compact support. We write C+

K(E) to
denote this set.

Definition 1 If we have a sequence of point processes Nn, n ≥ 0, we say
that Nn converges weakly to N0, written Nn ⇒p N0, if

ψNn(f)→ ψN0(f)

for all f ∈ C+
K(E).

We use the notation =⇒ for weak convergence of vector valued random vari-
ables in Euclidean space, in contrast to ⇒p for point process convergence.

Definition 2 Let X be a metric space. We call F ⊆ X relatively compact if
its closure F̄ in X is compact.

Definition 3 Let µ be a measure on a metric space X. We say that a se-
quence of measures µn converges vaguely to µ, written

µn ⇒v µ

if
µn(F )→ µ(F )

for all relatively compact F with µ(∂F ) = 0, where ∂F is the boundary of the
set F .

Definition 4 A Poisson random measure N on E with intensity measure µ
is a point process with Laplace functional

ΨN(f) = e−
∫
E
(1−e−f(x))dµ(x)

The following two results are known from point process theory (see, for ex-
ample Resnick, 2007).

Proposition 1 Definition 4 uniquely defines a point process N . This point
process has the property that for any F ∈ E, and any non-negative integer k,
we have

P (N(F ) = k) =

{
e−µ(F )(µ(F ))k/k! if µ(F ) <∞

0 if µ(F ) =∞ ,
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and that for any k ≥ 1, if F1, · · · , Fk are mutually disjoint sets in E, then
{N(Fi)} are independent random variables.

Proposition 2 For each n, suppose {Zn,j : 1 ≤ j ≤ n} are i.i.d. random
variables and that

nP (Zn,1 ∈ ·)⇒v µ.

Then
Nn =

n∑
i=1

δZn,j ⇒p N

where N is a Poisson random measure on E with intensity µ.

3.2 Point Process Convergence in our Setup

We will consider a sequence of transformations

gn(u) = (u− bn)/an

of offer values, where gn is chosen to ensure extreme value convergence for
all x as in Assumption 1.

Let δ(x,u) denote a one point distribution at (x, u) and define the extremal
marked point process (cf. Resnick 2007)

ξn =
n∑
i=1

δ(Xi,gn(Ui)) (4)

for a sample of size n. This is a random measure on (Ω× R,B(Ω× R)).

Before stating our theorem, we prove a preliminary lemma on boundary sets
of product spaces.

Lemma 1 If (X×U,Λ×ν) is a product measure space of two metric spaces,
and if F ⊆ X × U satisfies

(Λ× ν)(∂F ) = 0,

then
ν(∂Fx) = 0 Λ− a.e.

where Fx = {u ∈ U : (x, u) ∈ F} is the cross-section of F at the point x.
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Proof. We note that if we write

X × ∂FX = {(x, u) ∈ X × U : u ∈ ∂Fx},

we have
X × ∂FX ⊆ ∂F

(as each ball around a point (x, u) ∈ X × ∂FX contains both a point within
and outside F ). Thus, as

(Λ× ν)(X × ∂FX) =
∫
X
ν(∂Fx)dΛ(x) ≤ Λ(∂F ) = 0

we get that ν(δFx) = 0 Λ-almost everywhere. 2

We can now formulate our main result:

Theorem 1 Let Gα and p be as in Assumption 1. Suppose that the image
of every compact set under p : Ω → (0,∞) is bounded. Then, as n → ∞, it
holds that

ξn ⇒p ξ,

where ξn is given by (4), and ξ is a Poisson Random Measure on (Ω ×
R,B(Ω× R)) with mean intensity Λp × να, where

Λp(A) =
∫
A
p(x)Λ(dx)

for all A ∈ B(Ω) and

να([u,∞)) = − log(Gα(u)) =


I(u < 0)(−u)−α, if α < 0 and u < 0 ,

exp(−u), if α = 0,

u−α, if α > 0 and u > 0.

This theorem is similar to Proposition 3.21 in Resnick’s book. The difference
is that he considers a sequence of point processes ξn =

∑
j=1 δ(jn−1,gn(Xj))

where {Xj} is a sequence of independent and identically distributed random
variables. Thus, the difference is that we model the first coordinate as a
random variable, and let the distribution of the second coordinate depend on
this first coordinate. This creates some technical issues, which however turn
out not to affect the main result.
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Proof. Before starting, we note that we have Gα(u) = 0 for α > 0 and
u ≤ 0. Whenever α > 0, it is implicit in the proof that u > 0. Using the
proof of Proposition 2, it suffices to show that

nP ((X1, gn(U1)) ∈ ·)⇒v Λp × να,

i.e. that
nP ((X1, gn(U1)) ∈ F )→ (Λp × να)(F ),

for all F ⊆ Ω×R which are relatively compact sets with respect to B(Ω×R)

and satisfy
(Λp × να)(∂F ) = 0.

Henceforth, let F be an arbitrary set with these properties. Now, we note
that

nP ((X1, gn(U1)) ∈ F ) =
∫

Ω
nP (gn(U1) ∈ Fx|X1 = x)dΛ(x),

where Fx is the x-cross section of F . Thus, our task is to show that∫
Ω
nP (gn(U1) ∈ Fx|X1 = x)dΛ(x)→

∫
Ω
p(x)να(Fx)dΛ(x).

We do this first by showing that the integrand converges almost everywhere
to the desired quantity, and then we show that the sequence of integrands
satisfy regularity conditions allowing us to infer convergence of integrals from
pointwise convergence.

We observe that for every x,

nP (gn(Y1) ∈ ·|X1 = x)⇒v p(x)να(·). (5)

Indeed, it is true that if
xnn → a, (6)

we have
n(1− xn)→ − log(a). (7)

Thus, by the reasoning above and Assumption (1), we have

nP (gn(U1) ≥ u|X1 = x)→ −p(x) log(Gα(u)) = p(x)να ([u,∞)) . (8)

In order to deduce (5) from (8), we can note that if we have a measure γ
with

γ([u,∞)) < +∞
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for some u, then vague convergence of γn to γ is equivalent to

γn([u,∞))→ γ([u,∞)), (9)

for all u such that γ({u}) = 0. This can be seen by noting that if (9) is
true, then the sequence Pnu(·) = γn(· ∩ [u,∞))/γn([u,∞)) of probability
measures converges weakly for all continuity points u of γ([u,∞)) to Pu(·) =

γ(·∩ [u,∞))/γ[u,∞)), and hence Pnu(F )→ Pu(F ) for all such u, from which
(5) follows.

Now, using Lemma 1, we know that

να(∂Fx) = 0 Λp − a.e.

which means that
p(x)να(∂Fx) = 0 Λp − a.e

as p(x) > 0 implies that p(x)να and να are equivalent for all x ∈ Ω. Thus,
we can use (5) to conclude that

nP (gn(U1) ∈ Fx|X1 = x)→ p(x)να(Fx) Λp − a.e.

Therefore, we have established pointwise convergence of the integrand almost
everywhere.

Now, we seek to show that nP (gn(U1) ∈ Fx|X1 = x) is uniformly bounded
over n and Ω to ensure that pointwise convergence almost everywhere implies
convergence in integrals. To do so, we try to define a maximal random
variable which dominates nP (gn(U1) ∈ Fx|X1 = x) for all n and x.

This works as p(x) indexes the distributions by stochastic dominance. We
write

πΩ : (x, u) 7→ x

and
πU : (x, u) 7→ u

for the projection on Ω and R respectively. In this case, we know that πΩ(F )

and πU(F ) are relatively compact sets of Ω and R respectively, and we define

p̄ = sup
x∈πΩ(F )

p(x).

We can now define the maximum random variable as having the law

Ū(F ) ∼ Qα(p̄; ·).
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By the monotonicity assumption of Qα made in Assumption (1), we know
that Ū(F ) stochastically dominates U1|X1 = x for all x ∈ πΩ(F ).

Furthermore, we can define u as the smallest u-value attained on the whole
set πU(F ), which again is finite by the assumption of F being relatively
compact. Combining these two definitions gives us

nP (gn(U1) ∈ Fx|X1 = x) ≤ nP (gn(U1) ≥ u|X1 = x)

≤ nP (gn(Ū(F )) ≥ u|X1 = x)

= nP (gn(Ū(F )) ≥ u)

→ maxx∈Px(F ) p(x)να([u,∞))

< +∞

which means that nP (gn(U1) ∈ Fx|X1 = x) is uniformly bounded. Using the
bounded convergence theorem, we get

nP ((X1, gn(U1)) ∈ F ) =
∫

Ω nP (gn(U1) ∈ Fx|X1 = x)dΛ(x)

→
∫

Ω να(Fx)p(x)dΛ(x)

= (Λp × να)(F )

which completes the proof. 2

4 Convergence of Functionals of Random Fields

Recall that our task is to study the limiting behavior of Cn as defined in (2).
The key to connect this limit to point processes is the observation that as as
gn is strictly increasing for all n, we have:

Cn(A) = P (X[n:n] ∈ A)

= P (Mξn(A) > Mξn(A))

where Mξn is the random field defined as

Mξn(A) = max
Xi∈A
1≤i≤n

gn(Ui), A ∈ B(Ω),

where B(Ω) is the Borel sigma algebra over Ω, and ξn is the point process from
(4). This formulation of the argmax-measure Cn in terms of random fields
defined over point processes allows us to generalize the notion of argmax to
the limiting case where the number of offers goes to infinity. We will study
the limiting behaviour of finite dimensional distributions ofMξn and this will
allow us to calculate the limit of Cn.
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Write
ξ =

∞∑
i=1

δ(X∞i ,U∞i )

for a realization of the limiting Poisson point process ξ derived in Theorem
1. We then can define,

Mξ(A) = max
i;X∞i ∈A

Y ∞i ,

and
C(A) = P (Mξ(A) > Mξ(A

c)).

Proposition 3 If Λp(Ω) <∞, we have

C(A) = Λp(A)/Λp(Ω).

Proof: Suppose first that Λp(A
c) = 0 or Λp(A) = 0. In this case, it is clear

that we have C(A) = 1 or C(A) = 0 respectively as required by the formula
for A ∈ B(Ω). Indeed, using the convention that the supremum of an empty
set is minus infinity, if Λp(A) = 0, then Mξ(A) = −∞ almost surely. As
Mξ(A

c) > −∞ almost surely, we will get C(A) = 0. A similar reasoning
applies to Ac.

Furthermore, since ξ is a Poisson random measure with mean measure Λp ×
να, we note that if Λp(Ω) < ∞ we have that Mξ(A) and Mξ(A

c) are two
independent, proper random variables with

P (Mξ(A) ≤ y) = P (ξ(A× [y,∞)) = 0) = e−Λp(A)να([y,∞)) (10)

P (Mξ(A
c) ≤ y) = P (ξ(Ac × [y,∞)) = 0) = e−Λp(Ac)να([y,∞)). (11)

Using standard results from proportional hazards theory (Cox and Oakes,
1984, Fleming and Harrington, 1991), we get that

P (Mξ(A) > Mξ(A
c)) =

Λp(A)

Λp(A) + Λp(Ac)
= Λp(A)/Λp(Ω)

and our proof is complete. 2

From this result, we automatically get that C is a probability measure as it
is a normalized version of Λp which is a finite measure.

In order to prove weak convegence of Cn, we need some additional results
and notation. We will use that

ν1 � µ1 and ν2 << µ2 ⇒ ν1 × ν2 � µ1 × µ2, (12)
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where � means "absolutely continuous with respect to".

We will also use that if ξn are point processes, ξ is a Poisson process, and

ξn ⇒p ξ,

then
P (ξn(F ) = 0)→ P (ξ(F ) = 0) (13)

for all F ∈ E with µ(∂F ) = 0, where µ is the intensity measure of ξ.

Lastly, we recall that if Sn is any sequence of random variables taking values
in Rk, we have that Sn ⇒ S if and only if

GSn(s1, · · · , sk)→ GS(s1, · · · , sk) (14)

for all points of continuity of GS where GS denotes the distribution function
of the random variable S.

Theorem 2 If Λp(Ω) <∞, we have

Cn(·)⇒ C(·) =
Λp(·)
Λp(Ω)

. (15)

Proof: Assume we have A with C(∂A) = 0. We aim to prove that Cn(A)→
C(A). By Proposition 3, C and Λp are equivalent, and we have Λp(∂A) = 0.
Noting that the result is clearly true whenever Λp(A) = 0 or Λp(A

c) = 0, we
can assume that both are different from 0. By (10) and (11), this means that
(Mξ(A),Mξ(A

c)) is a proper random variable on R2, and we will show that
(Mξn(A),Mξn(Ac)) jointly converge weakly to this random variable. Indeed,
consider

P (Mξn(A) ≤ x1,Mξn(Ac) ≤ x2) = P (ξn(A× (x1,∞) ∪ Ac × (x2,∞)) = 0)

→ P (ξ(A× (x1,∞) ∪ Ac × (x2,∞)) = 0)

= P (Mξ(A) ≤ x1,Mξ(A
c) ≤ x2)

= FMξ(A),Mξ(Ac)(x1, x2).

The convergence step uses (13) and that

∂ (A× (x1,∞) ∪ Ac × (x2,∞)) ⊂ ∂A× (min(x1, x2),∞) = F

and we have (Λp× να)(F ) = 0 as Λp(∂A) = 0, where Λp× να is the intensity
measure of ξ.
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Hence, it follows from (14) that

(Mξn(A),Mξn(Ac))⇒ (Mξ(A),Mξ(A
c)).

Defining
D = {(a, b) ∈ R2 : a > b}

and using (12) , with ν1 ∼Mξ(A), ν2 ∼Mξ(A
c), and µ1, µ2 Lebesgue measure

in R, to conclude that.

P ((Mξ(A)Mξ(A
c)) ∈ ∂D) = 0

we get
Cn(A) = P (Mξn(A) > Mξn(Ac))

= P ((Mξn(A),Mξn(Ac)) ∈ D)

→ P ((Mξ(A)Mξ(A
c)) ∈ D)

= C(A)

and the proof is complete. 2

5 Examples

Here we provide some examples to illustrate our theory.

Example 1 (Exponential and mixture models.) A class of distributions
that satisfy Assumption 1 are

µα(x; ·) ∼


P
(
(2× 1{V1<p(x)} − 1)(1− V −1/α

2 ) ∈ ·
)

α < 0,

P (log(p(x)/V1 ∈ ·) , α = 0,

P
(
(2× 1{V1<p(x)} − 1)V

−1/α
2 ∈ ·

)
, α > 0,

where V1, V2 ∼ U(0, 1) are two independent and uniformly distributed ran-
dom variables on (0, 1). A bit less formal, we may write

µα(x) ∼


−(1− p(x))Beta(1,−α) + p(x)Beta(1,−α) α < 0,

Exp(log(p(x)), 1), α = 0,

−(1− p(x))Pareto(α, 1) + p(x)Pareto(α, 1), α > 0,

where Beta(a, b) refers to a Beta distribution with density Cxa−1(1−x)b−1 on
(0, 1), Exp(a, b) is a shifted exponential distribution with location paramter
a and scale parameter b, having distribution function 1 − e−(x−a)/b for x ≥

14



a, Pareto(α, b) is a Pareto distribution with shape parameter α and scale
parameter b, corresponding to a distribution function 1− (x/b)−α for x ≥ b.
We have chosen the parameter α for the distributions µα in a way so that
they lie in the domain of convergence of Gα in (1).

Example 2 (An example from the commuting literature) Focusing on
α = 0 in the previous example, we have an interesting special case. Suppose
that the population is distributed uniformly on B(0, R), a disk in R2. The
utility associated with each point is

U |X = x ∼ Exp(−c||x||, 1),

where ||x|| is the Euclidean distance from the origin. This is a good bench-
mark model for commuting choices. In this case, Λ has a uniform distribution
on B(0, R), and p(x) = Exp(−c||x||). Thus, we get

C(A) =

∫
A e
−c||x||dx∫

B(0,R) e
−c||x||dx

.

The particular direction of commuting is often not as interesting as the dis-
tribution of distances. The probability that we commute less than r is given
by

C({x : ||x|| ≤ r) =

∫ r
0 se

−csds∫ R
0 se−csds

,

which we recognize as a truncated Gamma(1, 1)-distribution.

There is suggestive evidence that commuting patterns follow a gamma dis-
tribution over short distances. We provide an example in Figure 1 with a
histogram over commuting distances with a super-imposed gamma distribu-
tion with parameters provided by moment fitting. The moment-fitted density
provides a reasonable fit for the left half of the data.

Example 3 (The logit model: a special case) Let Λ be uniformly dis-
tributed on the finite support {x1, .., xn0}. Let utilities be given by

Uj|Xj = Exp(−c‖Xj‖, 1) (16)

This corresponds to p(xi) = eh(xi) and we get

C({xi}) =
eh(xi)∑n0
j=1 e

h(xj)
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Figure 1: Histogram over commuting distances in Kungsholmen, Stockholm
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just as in the logit model (1). We interpret the offers in (1) as standardized
maximal offers:

max
j:1≤j≤n,Xj=xi

Uj − log(n) (17)

derived from (16) as n → ∞. From extreme value theory, we deduce that
(17) has an asymptotic Gumbel distribution plus h(xi), and this provides
additional justification of (1).

6 Discussion

6.1 Mathematical extensions

We have derived a way to calculate the asymptotic behavior of Cn = X[n:n],
and have done so for a number of assumptions on the joint distribution of
(Xi, Ui). However, in order to extend our results to a wider class of dis-
tributional assumptions, we must relax our requirement that X[n:n] should
converge to a non-degenerate distribution. For example, when X and U are
distributed bivariate normally with positive correlation, X[n:n] → ∞ almost
surely.

In these cases, it can nevertheless be possible to find a sequence of functions
hn such that

hn(X[n:n])⇒ S

for a non-degenerate random variable S. In this case, we would have

X[n:n]
d≈ h−1

n (S)

for large n, where
d≈means that the two random variables have approximately

the same distribution.

This would extend the empirical application of our results. Of course, we
will not know the exact n in practice, but if S belongs to a class of distribu-
tions invariant under n, we know which distribution class our result can be
expected to belong to. Furthermore, the asymptotic behaviour of hn can be
used to assess how different moments of X[n:n] will develop as n → ∞, thus
giving us a way of predicting the effect of for example increased population
density on commuting choices.
We have done some exploratory studies on this extension, and there are
indications that for a much larger class of distribution than studied in the
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paper, it is possible to find sequences hn and gn such that

n∑
i=1

δ(hn(Xi),gn(Ui)) ⇒p ξ

for some non-degenerate Poisson process ξ. With this result, it is possible
to apply analogous result to those in this paper to analyze the asymptotic
behavior of X[n:n] more generally.

6.2 Empirical applications

In Example 2, we showed that with linear transport costs and uniform popu-
lation distribution on a two-dimensional disc, the resulting distribution of the
distance from the origin of the optimal choice is asymptotically a truncated
gamma distribution when utilities are exponentially distributed and have a
deterministic additive term.
This is agreement with an observed empirical regularity that commuting
distances seem to follow a gamma distribution for short distances. The ex-
tension outlined in Section 6.1 seeks to show that this result is true not only
for exponentially distributed utilities, but whenever utilities belong to the
Gumbel domain of attraction (i.e. that their extreme values converge to a
Gumbel distribution). If this can be shown, the empirical regularity with
gamma distributed commuting distances will have a foundation in utility
maximization and probabilistic choice.
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