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Abstract

Lattice approximation methods based on binomial, trinomial and
skeleton approximations for rewards of American type options are
studied. Pay-off functions are general possibly discontinuous func-
tions. Underlying log-price processes are assumed to be random walks.
These processes are approximated by log-price processes given by ran-
dom walks with discrete distributions of jumps. Backward recurrence
algorithms for computing of reward functions for approximating log-
price processes are given. Conditions of convergence for reward func-
tions of approximating log-price process to the corresponding limit-
ing reward functions are presented. These approximation algorithms
and their rates of convergence are numerically tested for log-price
processes represented by Gaussian and compound Gaussian random
walks. Comparison of the above approximation methods is made.
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1. Introduction

The standard binomial approximation was introduced by Cox, Ross, and
Rubinstein (1979) for European options and has won widespread acceptance
by its simplicity and efficiency.

As well known, closed-form formulas for rewards of American type op-
tions exist only in some special cases. We refer to works by Kim (1990),
Dayanik and Karatzas (2003), Detemple (2005), Peskir and Shiryaev (2006),
Zhang and Li (2010), Zhao and Wong (2012), where one can also find further
references.

Approximation methods are usually used by researchers and practitioners
for computing rewards and prices for American type options. These meth-
ods can mainly be subdivided into the categories of stochastic approximation
lattice methods, integro-differential approximations and Monte Carlo based
approximation methods. We refer here to books, surveys and papers con-
taining results of comparison studies for American type contingent claims
such as Broadie and Detemple (1996, 2004), Glasserman (2003), Higham
(2004), Achdou and Pironneau (2005), Detemple (2005), Jiang (2005), Ben-
der, Kolodko, and Schoenmakers (2006), Pressacco, Gaudenzi, Zanette, and
Ziani (2008), Ahn, Bae, Koo, and Lee (2011), Pascucci (2011), and Zhu
(2011).

The subject of the present paper relates to stochastic approximation lat-
tice methods for American type options.

Results of convergence studies for reward approximations for American
options can be found in Amin and Khanna (1994), Broadie and Detemple
(1996), Leisen and Reimer (1996), Cutland, Kopp, Willinger, and Wyman
(1997), Lamberton (1998), Leisen (1998), Mulinacci and Pratelli (1998),
Jiang and Dai (1999, 2004), Prigent (2003), Nieuwenhuis and Vellekoop
(2004), Dupuis and Wang (2005), Jönsson (2005), Qian, Xu, Jiang, and Bian
(2005), Maller, Solomon, and Szimayer (2006), Silvestrov, Jönsson, and Sten-
berg (2006, 2008, 2009), Stenberg (2006), Coquet and Toldo (2007), Lund-
gren, Silvestrov, and Kukush (2008), Joshi (2009), Vellekoop and Nieuwen-
huis (2009), Lundgren (2010), Lundgren and Silvestrov (2011), Li and Xing
(2011), Silvetsrov and Lundgren (2011), and Zhang and Wang (2011).

Some results on rate of convergence for reward approximations for Eu-
ropean and American options are given in Broadie and Detemple (1996),
Leisen and Reimer (1996), Lamberton (1998), Leisen (1998), Jiang and Dai
(1999), Heston and Zhou (2000), Kukush and Silvestrov (2001), Liang, Hu,
Jiang, and Bian (2007), Liang (2008), Liang, Hu, and Jiang (2010), Dolinsky
(2011), and Kwon and Lee (2011).

This paper continues the line of research realised in Jönsson, Kukush, and
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Silvestrov (2002, 2004, 2005), Jönsson (2005), Silvestrov, Jönsson, and Sten-
berg (2006, 2008, 2009), Stenberg (2006), Lundgren, Silvestrov, and Kukush
(2008), Silvestrov, Jönsson, and Stenberg (2008, 2009), Lundgren and Silve-
strov (2009, 2010), Lundgren (2010), Silvestrov and Lundgren (2011), and
Silvestrov (2013).

We present some new results on convergence of lattice approximations for
rewards for American type options with general possibly discontinuous pay-
off functions for log-price processes represented by inhomogeneous in time
random walks, as well as results of experimental studies of rates of conver-
gence for the corresponding approximation algorithms.

2. Approximation and Convergence for American Type Options

Let’s consider a family of log-price processes, which depend on some per-
turbation parameter ε ≥ 0 and are defined by the following stochastic tran-
sition dynamic relation,

Yε,n+1 = Yε,n +Wε,n+1, n = 0, 1, . . . , (1)

where: (a) Wε,n, n = 1, 2, . . . is a sequence of real-valued, independent
random variables, and (b) Yε,0 = y0 is a real-valued constant.

We do prefer to operate with the log-price processes, which have simpler
additive structure of increments, in comparison with the corresponding price
processes Xε,n = eYε,n , n = 0, 1, . . ., which have more complicated multiplica-
tive structure of increments.

Let Fε,n = σ[Yε,0, . . . , Yε,n], n = 0, 1, . . . be a natural filtration generated
by the log-price process Yε,n.

Let us also denote by Mε,n,N the class of all Markov stopping times τε,n
for the process Yε,n such that n ≤ τε,n ≤ N .

We also introduce a pay-off function g(n, y), which is a real-valued Borel
measurable function defined for (n, y) ∈ N× R, where N = {0, 1, . . . }.

An American type option is a contract, in which an option holder has
the right, but not the obligation, to execute the contract at any stopping
time τε,0 ∈Mε,0,N and to receive, in this case, the pay-off g(τε,0, Yε,τε,0). The
parameter N is called the maturity of the option.

One of the goals for an option holder is to find so called reward functions
φε,n(y) for the option contract defined by the following relation, for n =
0, . . . , N ,

φε,n(y) = sup
τε,n∈Mε,n,N

Ey,ng(τε,n, Yε,τε,n), y ∈ R. (2)

Here and henceforth, Py,n and Ey,n denote, respectively, conditional prob-
ability and expectation under condition Yε,n = y.
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Let us assume that the following condition holds for the log-price pro-
cesses, for some β ≥ 0:

A[β]: limε→0 max1≤n≤N Ee±βWε,n < K, for some 1 < K <∞.

Condition A[β] guarantees that there exists ε0 > 0 such that the expres-
sion under sign of lim is less than K, for every ε ∈ (0, ε0].

We also impose the following condition on the pay-off function g(n, y),
which is assumed to hold for some γ ≥ 0:

B[γ]: max0≤n≤N supy∈R
|g(n, y)|

1+L′′eγ|y|
< L′, where 0 < L′ <∞ and 0 ≤ L′′ <∞.

Standard examples of pay-off functions for call and put option contracts
are, respectively, g(n, y) = e−rn max(0, ey−S) = e−rn[ey−S]+ and g(n, y) =
e−rn max(0, S − ey) = e−rn[S − ey]+. Here, S, r > 0 are positive constants,
which are a strike price and a risk-free interest rate respectively.

Condition B[γ] means that we study options with pay-off functions which
have not more than polynomial rate of growth in argument of e|y|. For
example, in the case of the standard call option, condition B[1] holds. In the
case of the standard put option contract, the pay-off function is bounded in
y and condition B[0] holds.

The following theorem guarantees, under the above conditions, that the
reward functions defined in relation (2) are finite for any ε small enough.

Theorem 1. Let conditions A[β] and B[γ] hold for some parameters
0 ≤ γ ≤ β < ∞. Then there exist constants 0 ≤ M ′,M ′′ < ∞ such that the
following inequalities hold for ε ∈ [0, ε0] and any y ∈ R, n = 0, . . . , N ,

|φε,n(y)| = sup
τε,n∈Mε,n,N

Ey,n|g(τε,n, Yτε,n)|

≤ Ey,n max
n≤r≤N

|g(r, Yε,r)| ≤M ′ +M ′′eγ|y|. (3)

The above theorem is a slight modification of the corresponding result
given in Silvestrov, Jönsson, and Stenberg (2009, 2010) and Silvestrov (2013),
where one can find the explicit expressions for constants M ′,M ′′.

Let us now impose the following condition of convergence in distribution
for jumps of log-price processes:

C: Wε,n
d−→ W0,n as ε→ 0, for n = 1, . . . , N .

We do not assume that the pay-off function g(n, y) is continuous in the
argument y. Let us denote by Yg,n the set of continuity for function g(n, y)
in y, for every n = 0, 1, . . ..

Finally, let us assume that the following condition holds:
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D: P{y +W0,n ∈ Yg,n} = 0, for y ∈ R, n = 1, . . . , N .

Note that in the case, where function g(n, y) is continuous in y for every
n = 1, . . . , N , and, thus, sets Yg,n = ∅, n = 1, . . . , N , condition D auto-
matically holds. Also, if the sets Yg,n, n = 1, . . . , N are at most countable,
condition D holds if the distributions of random variables W0,n, n = 1, . . . , N
have no atoms. Finally, if L(Yg,n) = 0, n = 1, . . . , N , where L(A) is the
Lebesgue measure on real line, then condition D holds if distributions of
random variables W0,n, n = 1, . . . , N are absolutely continuous with respect
to the Lebesgue measure.

Note that condition D admits discontinuous and very irregular pay-off
functions.

The following theorem is a direct corollary of results given in Silvestrov,
Jönsson, and Stenberg (2009, 2010), Lundgren and Silvestrov (2009, 2010),
Silvestrov and Lundgren (2011), and Silvestrov (2013).

Theorem 2. Let conditions A[β] and B[γ] hold for some parameters
0 < γ < β <∞ or γ = β = 0, and also conditions C and D hold. Then, the
following relation holds for any y ∈ Yg,n, n = 0, . . . , N ,

φε,n(y)→ φ0,n(y) as ε→ 0. (4)

It is worth to point out a natural generalisation of Theorem 2 for the case,
where the initial state of the log-price processes Yε,0 is a random variable in-
dependent of jump sequence Wε,n, n = 1, 2, . . .. In such case, conditions of
Theorem 2, plus analogous to A[β] and C conditions imposed on random
variables Yε,0, plus condition D0: P{Y0,n ∈ Yg,0} = 0, imply the following
convergence relation, φε = Eφε,n(Yε,0)→ φ0 = Eφ0,n(Y0,0) as ε→ 0.

3. Lattice Approximations for American Type Options

Let’s assume now that the following condition holds:

E: Wε,n, n = 1, 2, . . . are, for every ε ∈ (0, ε0], independent discrete random
variables taking, respectively, values lδε, l = −rε,n,−rε,n + 1, . . . , rε,n,
for n = 1, 2, . . ., where δε are positive real numbers and rε,n, n = 1, 2, . . .
are positive integer numbers.

In this case, the conditional distribution of the random variable Yε,m, un-
der condition Yε,n = y, is concentrated in points y+lδε, l = −rε,n,m,−rε,n,m+
1, . . . , rε,n,m, for every 0 ≤ n ≤ m ≤ N , where rε,n,m =

∑m
k=n+1 rε,k, 0 ≤ n ≤

m ≤ N .
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Using condition E, we get

|φε,n(y)| ≤ sup
τε,n∈Mε,n,N

Ey,n|g(τε,n, Yτε,n)|

≤ Ey,n max
n≤m≤N

|g(m,Yε,m)|

=
N∑

m=n

rε,n,m∑
lm=−rε,n,m

max
n≤m≤N

|g(m, y + lmδε)|

× P{Yε,m = y + lmδε, n ≤ m ≤ N} <∞. (5)

In this case, the reward functions φε,n(y) take finite values without any
additional assumptions.

The following theorem is a variant of the corresponding results from
Chow, Robbins and Siegmund (1971) and Shiryaev (1976).

Theorem 3. Let log-price processes Yε,n satisfy condition E. Then, the
following recurrence backward relations hold, for every y ∈ R, 0 ≤ n ≤ N
and ε ∈ (0, ε0],

φε,N(y + lδε) = g(N, y + lδε), l = −rε,n,N , . . . , rε,n,N ,
φε,m(y + lδε) = max

(
g(m, y + lδε),∑rε,m+1

k=−rε,m+1
φε,m+1(y + lδε + kδε)P{Wε,m+1 = kδε}

)
,

l = −rε,n,m, . . . , rε,n,m, where m = N − 1, . . . , n.

(6)

Note that we assume that parameter δε representing the step of the greed,
where the distributions of random jumps Wε,n are concentrated, does not
depend on n. This implies that the so-called recombining condition holds for
process Yε,n. Due to this condition, if Yε,n = y then, for every 0 ≤ n ≤ m <
∞, the random variable Yε,m take values y + lδε, l = −rε,n,m, . . . , rε,n,m.

If, for example, parameters rε,n ≤ rε, then the random variable Yε,m has
the number of possible values Lε,n,m ≤ 2mrε + 1, with not more than linear
rate of growth in m.

If the recombining condition would not hold (that could be the case,
if parameter δe would depend on n), then the random variable Yε,m could
possess a very large number of possible values, up to the extreme one,
Lε,n,m =

∏m
k=n+1(2rε,k + 1). In this case, Lε,n,m ≥ em ln 3 would have the

exponential rate of growth in m.
In the recombining case, the above reward backward recurrence algorithm

is computationally very effective even for very large values of parameter N .
In the non-recombining case, the algorithm is computationally not effective
even for moderate values of parameter N .
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We would also like to mention some transformations that let one to sim-
plify the above backward algorithm presented in Theorem 3. These are elim-
ination of the deterministic trend and standardisation of the initial value for
the log-price process Yε,n.

The process Yε,n can be represented in the following form Yε,n = yε,n +
Ỹε,n, n = 0, 1, . . ., where (a) yε,n = y0 +wε,1 + · · ·+wε,n, n = 0, 1, . . . is a non-
random trend function; (b) Ỹε,n+1 = Ỹε,n + W̃ε,n+1, n = 0, 1, . . . is a random
walk with the initial value Ỹε,0 = 0 and independent centred random jumps
W̃ε,n = Wε,n − wε,n, n = 1, 2, . . ..

It is obvious that both price processes Yε,n and Ỹε,n generate the same
natural filtration Fε,n = σ[Yε,n, . . . , Yε,N ] = σ[Ỹε,n, . . . , Ỹε,N ], n = 0, 1, . . .
and, therefore, they have the same classes of stopping timesMε,n,N , 0 ≤ n ≤
N .

In this case, one can use the following transformation formula for the
reward functions φε,n(y), y ∈ R, n = 0, 1, . . . , N ,

φε,n(y) = sup
τε,n∈Mε,n,N

Ey,ng(τε,n, Yε,τε,n)

= sup
τε,n∈Mε,n,N

Ey,ng(τε,n, yε,n + Ỹε,τε,n)

= φ̃ε,n(y) = sup
τε,n∈Mε,n,N

Ey,ng̃(τε,n, Ỹε,τε,n). (7)

where g̃ε(n, y) is a new pay-off function defined for y ∈ R, n = 0, 1, . . . by the
following formula,

g̃ε(n, y) = g(n, yε,n + y). (8)

Now, the backward algorithm given in Theorem 3 can be applied. In
this case, the log-price processes Yε,n, n = 0, 1, . . . should be replaced by the
log-price process Ỹε,n and the pay-off function g(n, y) should be replaced by
the transformed pay-off function g̃ε(n, y). According relation (7) the corre-
sponding reward functions φε,n(y) are invariant with respect to the above
transformation. We use the above elimination transformation in what fol-
lows.

4. A basic approximation algorithm

The following theorem is a corollary of Theorem 2.

Theorem 4. Let conditions A[β] and B[γ] hold for parameters 0 < γ <
β < ∞ or γ = β = 0, and also conditions C, D, and E hold. Then, the
following relation holds for any y ∈ Yn,g n = 0, . . . , N ,

φε,n(y)→ φ0,n(y) as ε→ 0. (9)
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It is worth to note that condition C usually imposes some natural ad-
ditional conditions on parameters penetrating condition E: (a) δε → 0 as
ε→ 0, and (b) δεrε,n →∞ as ε→ 0, for n = 1, 2, . . ..

The following two steps approximation algorithm for computing the re-
ward functions φ0,n(y) can be designed by using Theorems 3 and 4.

At the first step, based on application of Theorem 3, one should compute
the reward function φε,n(y) at points y+ lδε, l = −rε,n,m, . . . , rε,n,m, n ≤ m ≤
N using backward recurrence algorithm given in Theorem 3.

At the second step, based on Theorem 4, one should repeat computing
of values φεk,n(y) for sequential values ε1 > · · · > εk → 0 as k → ∞, until
the values φεk,n(y) become stabilised with appropriate small relative errors

∆k(n, y) = |φεk,n(y)−φεk−1,n
(y)

φεk,n(y)
| for reasonably long subsequence of values for

parameter k.
It would be nice to have upper bounds for rates of convergence in the

asymptotical relation (9). In principle, such bound in the form of O(·) can
be obtained. In practice, such bounds would have rather psychological than
a real value. The bounds with explicit constants would be required for the
practical use. However, the reward functions have very nonlinear character.
It should be expected to be difficult to get values for such constants admissible
for the practical use. Thus, one should accept the using of usual engineering
approach described above, in the use of convergence relations of type (9).

We would like also to point out that backward computational algorithms
let one also investigate approximative structure of optimal stopping time-
space domains. Indeed, the backward algorithm presented in Theorem 3
includes computing of maxima of stopping pay-off and optimal expected con-
tinuation reward in points y + lδε, l = −rε,n,m, . . . , rε,n,m, 0 ≤ n ≤ m ≤ N
and, thus, classify these points as points, which do or do not belong to the
corresponding optimal stopping domains for approximating log-price process
Yε,n.

The question about convergence of the optimal stopping time-space do-
mains for the log-price processes Yε,n to the optimal stopping time-space
domains for the log-price process Y0,n as ε→ 0 do require separate studies.

We just refer here to works by Lamberton (1993, 1998), Leisen (1998),
Jiang and Dai (1999), Kukush and Silvestrov (2000, 2004), Jönsson, Kukush,
and Silvestrov (2002, 2004, 2005), Prigent (2003), Dupuis and Wang (2005),
Jönsson (2005), Lundgren (2010).

5. Binomial and trinomial approximation models

Let us assume that the log-price process Y0,n defined by the stochastic
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transition dynamic relation (1) is a Gaussian random walk, i.e., W0,n, n =
1, 2, . . . are independent Gaussian random variables with EW0,n = µn and
V arW0,n = σ2

n > 0, for n = 1, 2, . . ..
In the trinomial approximation model, the log-price process Yε,n, defined

for every ε > 0 by the stochastic transition dynamic relation (1), is a tri-
nomial random walk, i.e., Wε,n = Xε,n,1 + · · · + Xε,n,rε,n , n = 1, 2, . . ., where
Xε,n,k, n, k = 1, 2, . . . are independent random variables taking, for every
n = 1, 2, . . . values δε, 0 and −δε with probabilities, respectively, pε,n,+, pε,n,◦
and pε,n,−. Here, jump values δε > 0, probabilities pε,n,+, pε,n,◦, pε,n,− ≥ 0
and pε,n,+ + pε,n,◦ + pε,n,− = 1, and parameters rε,n, n = 1, 2, . . . are positive
integer numbers.

Note that the above approximation trinomial model reduces to the ap-
proximation binomial model if we choose probabilities pε,n,◦ ≡ 0, n = 1, 2, . . ..
That is why the binomial model do not require a separate consideration.

By the definition, random variables Wε,n, n = 1, 2, . . . are, for every ε > 0,
trinomial random variables taking values lδε, l = −rε,n, . . . , rε,n with proba-
bilities,

P{Wε,n = lδε} =
∑

l+−l−= l, l◦= rε,n−l, l+,l◦,l−≥0

rε,n!

l+!l◦!l−!
p
l+
ε,n,+ p

l◦
ε,n,◦ p

l−
ε,n,−. (10)

Taking into account the elimination transformation described in Section
4, we assume, in what follows, that µn = 0, n = 1, . . . , N .

In order to fit parameters, we should provide the asymptotic fitting of
the moments for random variables Wε,n and W0,n, for every n = 1, . . . , N ,

EWε,n = rε,n(δεpε,n,+ − δεpε,n,−)→ 0 as ε→ 0,

EW 2
ε,n = rε,nδ

2
ε(1− pε,n,◦)→ σ2

n as ε→ 0,

n = 1, 2, . . . , N.

(11)

It is readily seen that the asymptotic fitting relations (11) are satisfied if
we chose parameters δε and rε,n, n = 1, . . . , N in the following form,

δε =
1
√
rε
, 0 < pε,n,◦ = pn,◦ < 1, pε,n,± =

1− pn,◦
2

, rε,n = [
rεσ

2
n

1− pn,◦
], (12)

where rε is a positive real numbers such that rε →∞ as ε→ 0.
Indeed, in this case the following relation holds, for n = 1, . . . , N ,

EW 2
ε,n = rε,nδ

2
ε(1− pn,◦) = [

rεσ
2
n

1− pn,◦
]
1

rε
(1− pn,◦)→ σ2

n, as ε→ 0. (13)

Condition D can be replaced in this case by the following condition:
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D′: L(Yg,n) = 0, n = 1, . . . , N .

The following theorem follows from Theorem 2.

Theorem 5. Let the log-price processes Yε,n be constructed by using the
trinomial approximation scheme described above and with parameters given
by relation (12). Also, let condition B[γ] holds for some parameter γ ≥ 0 and
condition D′ holds. Then, the following relation holds for any y ∈ Yg,n, n =
0, . . . , N ,

φε,n(y)→ φ0,n(y) as ε→ 0. (14)

Proof. The random variable W0,n has the normal distribution with pa-

rameters 0 and σ2
n, and, thus, Ee±βW0,n = e

β2σ2n
2 <∞ for any n = 1, . . . , N .

Also, random variableWε,n has the trinomial distribution with parameters
given in relation (12), for every ε > 0 and n = 1, . . . , N . Thus, for any
n = 1, . . . , N and β ≥ 0, we get using Taylor expansion for the corresponding
moment generating function,

Ee±βWε,n =
(
e
±β 1√

rε
1− pn,◦

2
+ pn,◦ + e

∓β 1√
rε

1− pn,◦
2

)[
rεσ

2
n

1−pn,◦
]

=
(

1 +
(1− pn,◦)β2

2rε
+ o

(
1

rε

))[
rεσ

2
n

1−pn,◦
]

→ e
β2σ2n

2 <∞ as ε→ 0. (15)

By continuity theorem for moment generating functions, relation (15) also
implies that condition C holds.

Relation (15) implies that condition A[β] holds for any parameter β ≥ 0.
Therefore, one can always chose β > γ if γ > 0 or β = γ if γ = 0.

Condition D′ implies condition D to hold, since random variablesW0,n, n =
1, 2, . . . are Gaussian. �.

Now, approximation algorithm based on application of Theorems 3 and
5 can be applied for approximative computing of reward functions φ0,n(y).

Note that, in this case, trinomial probabilities given by relation (10)
should be used in the backward recurrence relations (6). These probabilities
can be effectively computed with the use of well-known numerical procedures.

6. A skeleton approximation model

Let us assume that the log-price process Y0,n is a random walk given by
the stochastic transition dynamic relation (1).
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Let hε,n(y) be, for every ε > 0 and n = 0, 1, . . . so-called skeleton func-
tions defined by the following relation,

hε,n(y) =
rε,n∑

l=−rε,n
lδεI(y ∈ Aε,n,l), (16)

where

Aε,n,l =


(−∞, δε(−rε,n + 1

2
)] if l = −rε,n,

(δε(l − 1
2
), δε(l + 1

2
)] if − rε,n < l < rε,n,

(δε(rε,n − 1
2
), ∞) if l = rε,n.

(17)

where (a) δε > 0 are positive real numbers; (b) rε,n, n = 1, . . . are positive
integer numbers.

As before, the log-price process Yε,n is given, for every ε ≥ 0, by the
transition dynamic relation (1), but here we assume W0,n, n = 1, . . . are
independent random variables, while Wε,n, n = 1, . . . are, for every ε > 0,
discrete random variables with distributions defined by the following relation,

Wε,n = hε,n(W0,n), n = 1, 2, . . . . (18)

By the definition, random variables Wε,n, n = 1, . . . , N are, for every ε >
0, random variables taking values lδε, l = −rε,n, . . . , rε,n with probabilities,
which are interval probabilities for random variables W0,n, n = 1, . . . , N ,

P{Wε,n = lδε} = P{W0,n ∈ Aε,n,l}. (19)

Finally, let us assume that parameters δε and rε,n, n = 1, . . . , N are cho-
sen, for every ε > 0 according the following formula,

δε =
1
√
rε
, rε,n = [rεσ

2
n], (20)

where σn > 0, n = 1, . . . , N are some scaling parameters, and 0 < rε → ∞
as ε→ 0.

Condition A[β] can be replaced in this case by the following condition,
assumed to hold for some β ≥ 0:

A′[β]: max0≤n≤N Ee±βW0,n < K ′, where 1 < K ′ <∞.

The following theorem presents the version of Theorem 2 for the skeleton
approximation model.

Theorem 6. Let the log-price processes Yε,n be constructed as in the
skeleton approximation model described above and with parameters given by
relation (20). Also, let conditions A′[β] and B[γ] hold, for some parameters
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0 < γ < β < ∞ or γ = β = 0, and also condition D holds. Then, the
following relation holds for any y ∈ Yg,n, n = 0, . . . , N ,

φε,n(y)→ φ0,n(y) as ε→ 0. (21)

Proof. Let us define intervals Aε,n = [(−rε,n + 1
2
)δε, (rε,n − 1

2
)δε].

The following inequality takes place, for every ε > 0 and y ∈ R, n =
0, 1, . . . , N ,

|hε,n(y)| ≤ |y|I(y /∈ Aε,n) + (|y|+ δε)I(y ∈ Aε,n) ≤ |y|+ δε. (22)

Using this inequality, we get, for every ε > 0, n = 0, 1, . . . , N and β ≥ 0
penetrating condition A′[β],

Ee±βWε,n = Ee±βhε,n(W0,n) ≤ eβδεEeβ|W0,n|

≤ eβδε(EeβW0,n + Ee−βW0,n) <∞. (23)

Relation (23) and condition A′[β] imply that condition A[β] holds.
Also, the following inequality takes place, for every ε > 0, y ∈ R, n =

0, 1, . . . , N ,

|hε,n(y)− y| ≤ ((−rε,n +
1

2
)δε − y)I(y ≤ (−rε,n +

1

2
)δε)

+ δεI(y ∈ Aε,n) + (y − (rε,n −
1

2
)δε)I((rε,n −

1

2
)δε ≤ y). (24)

Inequality (24) implies that |hε,n(y) − y| → 0 as ε → 0, for every
y ∈ R, n = 0, 1, . . . , N . It follows from this relation that, for every n =
0, 1, . . . , N ,

Wε,n = hε,n(W0,n)
a.s.−→ W0,n as ε→ 0. (25)

Relation (25) implies that condition C holds.
Therefore, Theorem 2 can be applied that yields relation (21). �.

Now, approximation algorithm based on sequential application of Theo-
rems 3 and 6 can be applied for approximative computing of reward functions
φ0,n(y).

Note that, in this case, probabilities given by relation (19) should be used
in the backward recurrence relations (6). These probabilities can be effec-
tively computed not only for the case, where Y0,n is a Gaussian random walk.
For example, it can be done for various models, where Y0,n is a Lévy ran-
dom walk, in particular, for many discrete time analogues of jump diffusion
processes.

In this paper, we consider two examples of skeleton approximations, for
log-price processes represented by Gaussian and compound Gaussian random
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walks. In both cases, random variables W0,n, n = 1, 2, . . . have distributions
absolutely continuous with respect to the Lebesgue measure on real line,
and, thus, condition D can be replaced by simpler condition D′, in Theorem
6 applied to these models.

In the Gaussian case, the above skeleton approximation can be compared
with the binomial and trinomial approximations presented in Section 5.

7. Rate of convergence for binomial and trinomial approxima-
tions for log-price processes represented by Gaussian random walk

In this section, we test the rate of convergence for the binomial and
trinomial approximation models.

We assume that the log-price process Y0,n is a homogeneous in time Gaus-
sian random walk with parameters of jumps µ and σ.

Figure 1: The binomial approximation for a Gaussian model

The pay-off function is a standard pay-off function for call option, g(n, y)
= e−rn[ey − S]+.

We choose option parameters in ”year” units, such that the maturity
time T = 0.25 corresponds to a quarter of a year. We imbed the model in
discrete time assuming that the option can be executed at moments lT

N
, l =

0, 1, . . . , N . This means, in fact, that we consider a Bermudian option, if the
continuous time framework is used.

We take the initial value of the price process as x0 = 10, which corre-
sponds to the initial value y0 = ln 10 for the log-price process. We also take
the yearly values for the trend, µY = −20%, and for the volatility, σY = 30%.

We also take the risk free yearly interest rate rY = 5% and the strike
price S = 10.
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We perform numerical experiments for two models with two different
values of maturity parameter N = 100 and N = 1000, which approximately
correspond in calendar time, respectively, to one day and one hour, for one
time period T

N
.

According the above remarks, the one-period parameters µ, r and σ2

should be re-calculated from the corresponding yearly values by multiply-
ing the values µY , rY and σ2

Y respectively by factor TN−1, respectively, for
N = 100 and N = 1000.

Computations have been performed with double precision in MATLAB
R07B, on a laptop with moderate characteristics that are 1.3 GHZ Intel Mo-
bile Core 2 Duo SU7300 CPU and 4 GB of internal memory. The operation
system is Windows 7 Home Premium 64 bit.

We would also like to point out that the execution speed is improved
significantly, by using vectors and matrix calculation in MATLAB computa-
tions, similar to those presented in Desmond (2002).

Let us first present the results of numerical experiments for the binomial
approximation model. Figure 1 summarises the results of computations for
this model, for the case N = 100.

This figure shows how the reward value changes with an increasing pa-
rameter rε. Y-axle shows the values of the reward function φε = φε,0(y0),
and on X-axle shows the values of rε in the log-scale log10 rε. In this way we
can get better overview of convergence for φε.

We choose the sequence of ε1 > ε2 > · · · > εk > · · · such that the
corresponding sequence of parameters 1000 = rε0 < rε1 < · · · < rεk < · · ·
has the step ∆rεk = rεk − rεk−1

= 1000, k = 1, 2, . . .. The neighbour points in
the sequence (rεk , φεk,0(y0)), k = 1, 2, . . . have been connected by intercepts
of strait lines in order to improve visualisation of graphics.

N; Precision 100; 5% 100; 1% BAV for φ0,0(y0)
Reward value 0.463035 0.454129 0.451404
rε 3× 104 1.41× 105 2.0× 106

rε,n 7 32 450
Time (sec) 0.08 0.17 11.9
N; Precision 1000; 5% 1000; 1% BAV for φ0,0(y0)
Reward value 0.466016 0.454962 0.451609
rε 3.4× 105 1.54× 106 1.0× 107

rε,n 8 35 225
Time (sec) 1.06 8.86 517

Table 1: Computing time for 5% and 1% precision in the binomial approxi-
mation for a Gaussian model
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The benchmark approximative value (BAV) for φ0,0(y0) is achieved by
taking the large value of rε = 2× 106. This benchmark approximative value,
0.451404, is shown with 6 digits after point that reduces the rounding error to
the negligible level of 0.05 %. As shown in the Figure 1, values of rε roughly
larger, respectively, than 3.0×104 or 1.41×105 guarantee that the deviation
of computed reward values from the benchmark approximative value are
less than, respectively, ±5% or ±1% of the benchmark approximative value.
Finally, when rε moves toward 106, the reward values are stabilised near the
above benchmark approximative value with the deviation within the ±0.1%
limits. This is consistent with the convergence relation given in Theorem 5.

Table 1 shows the real computational times needed to get the correspond-
ing reward values, with 5% and 1% precision in the binomial approximation
model, respectively, with parameters N = 100 and N = 1000.

Let us also explain the choice of trend parameter µY . In this case, the
risk neutral value of trend, satisfying risk neutral condition µ∗Y = rY −σ2

Y /2,
is µ∗Y = 0.5%.

It is well known that for values of µY ≥ µ∗Y the optimal stopping strategy
will be τ ≡ N .

µY % BAV for φ0,0(y0) BAV for Eg(N, eY0,N ) ∆ ∆%

0.5 0.658308 0.658308 0.000000 0.00
0.0 0.651294 0.651294 0.000000 0.00

- 10.0 0.534689 0.521423 0.013266 2.49
- 20.0 0.451396 0.410706 0.040690 9.01
- 30.0 0.385771 0.318020 0.067751 17.56

Table 2: American and European type expected rewards for the binomial
model

Table 2 shows the difference between the benchmark approximative values
for the reward function φ0,0(y0) and the expected reward Eg(N, eY0,N ) (for the
simplest European type stopping time τ ≡ N), for a series of values µY ≤ µ∗Y .
In this case parameter N = 100.

The coresponding benchmark approximative values are computed for the
value of parameter rε = 2 × 106, which stabilise the reward values φε,0(y0)
and Eg(N, eYε,N ) near the corresponding benchmark approximative values
with deviations within the ±0.05% limits.

It is worth to note that the expected rewards Eg(N, eYε,N ) corresponding
to the stopping time τ ≡ N are computed with the use of the backward
recurrence algorithm for American reward functions presented in Theorem
3, but with the modified pay-off function ĝ(n, ey) = g(n, ey)I(n = N).
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The results presented in Table 2 show that the early execution, which
makes difference between American and European type options, begins to
play a meaningful role for negative values of µY about −10%.

In particular, the benchmark approximative value for the reward func-
tion φ0,0(y0) exceeds the benchmark approximative value for the expected
reward Eg(N, eY0,N ), in the case where µY = −20%, for about 10%. This is
about twice larger than the 5% lower accuracy limit used in our numerical
experiments.

It is not out of the picture to note that negative values of the trend
parameter have the similar effects as could be caused by implementation
dividends in the underlying model.

The value µY = −20% chosen as the basic value for the trend parameter
in presentation of results of our numerical experimental studies. The results
are analogous for other values of µY .

Figure 2: The trinomial approximation for a Gaussian model

Let us now present the results of numerical experiments for the trinomial
approximation model.

Figure 2 summarise the results of computations for the case N = 100 for
the trinomial approximation model in the same way as in Figure 1 for the
binomial approximation model.

Below, we show results for the standard case with probability of zero-
jump equal to 0.666666. Calculations we did show that variation of this
parameter in the limits separated of extreme values 0 and 1, for example in
the interval [0.1, 0.9] does not affect significantly the results of computations.

Table 3 shows the real computational times used for computing of the
corresponding reward values, with 5% and 1% precision in the trinomial
approximation model, respectively, with parameters N = 100 and N = 1000.
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N; Precision 100; 5% 100; 1% BAV for φ0,0(y0)
Reward value 0.447541 0.447541 0.451408
rε 9.0× 103 3.6× 104 7.2× 105

rε,n 6 24 474
Time (sec) 0.22 0.36 78.5
N; Precision 1000; 5% 1000; 1% BAV for φ0,0(y0)
Reward value 0.447926 0.447936 0.451714
rε 9× 104 3.6× 105 2.0× 106

rε,n 6 24 135
Time (sec) 1.81 15 810

Table 3: Computing time for 5% and 1% precision in the trinomial approxi-
mation for a Gaussian model

We also evaluated, at which level computational rounding errors can pen-
etrate the computed reward values. MATLAB can perform computations
with double or single precision, i.e., respectively, with 16 or 8 floating digits.
The computations described above have been performed with the double pre-
cision. We repeated the same computations with the single precision. The
result was that at least six digits after point were the same in both cases,
even for the model with N = 1000. This means that the rounding errors were
at the level less than 0.01% that is at the negligible level for computations
of rewards with 1% precision.

8. Rate of convergence for skeleton approximations for log-price
processes represented by Gaussian random walk

N; Precision 100; 5% 100; 1% BAV for φ0,0(y0)
Reward value 0.440469 0.452112 0.451451
rε 1.6× 104 2.9× 104 2.0× 106

rε,n 4 7 450
Time (sec) 0.11 0.16 62.3
N; Precision 1000; 5% 1000; 1% BAV for φ0,0(y0)
Reward value 0.433613 0.448058 0.451925
rε 1.8× 105 2.7× 105 1.0× 107

rε,n 4 6 225
Time (sec) 1.6 2.42 2.26× 103

Table 4: Computing time for 5% and 1% precision in the skeleton approxi-
mation for a Gaussian model
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Figure 3: The skeleton approximation for a Gaussian model

Let us now present the results of numerical experiments for the skeleton
approximation model.

In order to compare the computational results for skeleton approximation
model with those for binomial-trinomial approximations we consider the same
model of log-price process represented by Gaussian random walk with the
same parameters µ and σ as for the binomial-trinomial model. We also choose
the scale parameters σn = σ, n = 1, 2, . . . in the skeleton approximation
model.

Figure 3 summarise the results of computations for the case N = 100 for
the skeleton approximation model in the same way, as Figure 1 makes this
for the binomial approximation model.

Table 4 shows the real computational times needed to get the correspond-
ing reward values, with 5% and 1% precision in the skeleton approximation
model, respectively, with parameters N = 100 and N = 1000.

9. Rate of convergence for skeleton approximations for log-price
processes represented by compound Gaussian random walks

The great advantage of skeleton approximations is their universality in
comparison with binomial–trinomial approximations. The latter approxima-
tions can be used only for Gaussian models, while the skeleton approximation
can also be used for wide classes of non-Gaussian models.

In this section, we test the rate of convergence for the skeleton approx-
imation model for the case, where the underlying log-price process Y0,n is
a compound Gaussian random walk. This means that the random jumps
W0,n, n = 1, 2, . . . are independent random variables that can be represented
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in the following form,

W0,n = W ′
0,n +

Nn∑
k=1

W ′′
0,n,k, n = 1, 2, . . . , (26)

where: (a) W ′
0,n,W

′′
0,n,k, Nn, n, k = 1, 2, . . . are independent random variables;

(b) W ′
0,n is a normal random variable with a mean value µ′n and a variance

σ′2n , for n = 1, 2, . . .; (c) W ′′
0,n,k, k = 1, 2, . . . are normal random variables with

a mean value µ′n and a variance σ′′2n , for n = 1, 2, . . .; (d) Nn is a Poisson
random variable with parameter λn, for n = 1, 2, . . ..

In this case the random variables Wε,n = hε,n(W0,n), n = 1, . . . are, for
every ε > 0, random variables taking values lδε, l = −rε,n, . . . , rε,n with
probabilities, which are compound Gaussian interval probabilities for random
variables W0,n, n = 1, . . . given by the following formula,

P{Wε,n = lδε} = P{W0,n ∈ Aε,n,l}

=
∞∑
k=0

λkn
k!
e−λnP{y0 + µ′n + kµ′′n +

√
σ′2n + kσ′′2n ·W ∈ Aε,n,l}, (27)

where W is a standard normal random variable with parameters 0 and 1.

Figure 4: The skeleton approximation for a compound Gaussian model

An usual assumption is that the mean value µ′n and the variance σ′2n for
the Gaussian jump component W ′

0,n are comparable by values, respectively,
with the mean value λµ′′n and the variance λσ′′2n for the compound Gaussian
component

∑Nn
k=1W

′′
0,n,k and also that the intensity of jumps λn is compara-

tively small.
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N; Precision 100; 5% 100; 1% BAV for φ0,0(y0)
Reward value 0.315473 0.327509 0.330528
rε 7.4× 104 1.45× 105 2.0× 106

rε,n 17 33 450
Time (sec) 0.25 0.3 68.5
N; Precision 1000; 5% 1000; 1% BAV for φ0,0(y0)
Reward value 0.319221 0.330769 0.333658
rε 7.8× 105 1.54× 106 1.0× 107

rε,n 18 35 225
Time (sec) 10.6 37.9 2.38× 103

Table 5: Computing time for 5% and 1% precision in the skeleton approxi-
mation for a compound Gaussian model

µY % BAV for φ0,0(y0) BAV for Eg(N, eY0,N ) ∆ ∆%

0.5 0.663645 0.663645 0.000000 0.00
0.0 0.649564 0.649564 0.000000 0.00

- 10.0 0.448729 0.408980 0.039749 8.86
- 20.0 0.33053 0.240423 0.090107 27.26
- 30.0 0.252259 0.131195 0.121064 47.99

Table 6: American and European type expected rewards for a compound
Gaussian model

We perform numerical experiments for two models with the values of
maturity parameter N = 100 and N = 1000.

In order to be able to compare the results of numerical computations
we choose the same standard pay-off functions g(n, y) = e−rn[ey − S]+ and
parameters µY , σ

2
Y , y0 and T, S, rY , as in Sections 7 and 8, then re-calculate

the one-period parameters µ, r and σ2 from the corresponding yearly values
by multiplying the values µY , rY and σ2

Y by factor TN−1, respectively, for
N = 100 and N = 1000.

Finally, we take parameters µ′n = µ′, σ′2n = σ′2, n = 1, 2, . . ., µ′′n =
µ′′, σ′′2n = σ′′2, n = 1, 2, . . ., and λn = λ, n = 1, 2, . . ., such that

µ′ = λµ′′ =
µ

2
, σ′2 = λσ′′2 =

σ2

2
. (28)

We also choose the value of parameter λ = 1
10

that automatically implies
the relations µ′′ = 10µ′ and σ′′2 = 10σ′2.

Finally, we choose scale parameters σn = σ, n = 1, 2, . . . in the above
skeleton approximation model.
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We omit the details connected with truncation of series in formula (27)
and mention only that the truncation of all terms for k ≥ 5 cause changes in
the corresponding reward values at the negligible level of 0.01%.

Figure 4 summarise the results of computations for the case N = 100 for
the skeleton approximation model in the same way, as Figure 1 makes this
for the binomial approximation model.

Table 5 shows the real computational times needed to get the correspond-
ing reward values, with 5% and 1% precision in the skeleton approximation
model, respectively, with parameters N = 100 and N = 1000.

Both Figure 4 and Table 5 present results obtained for parameter µY =
−20%.

Table 6 shows, how this parameter impacts the benchmark approximative
values for the reward function φ0,0(y0) and the expected reward Eg(N, eY0,N )
for the simplest European type stopping time τ ≡ N , in the case of com-
pound Gaussian model. Here, parameter N = 100.

10. Comparison of numerical results and conclusion

Numerical results analogous to those described above have been also ob-
tained for other values of parameters for log-price processes represented by
Gaussian and compound Gaussian random walks and parameters of call and
put type options.

We refer to the Appendix where one can find the MATLAB programs
used in our experimental studies.

Let us make some short concluding remarks.
The lattice approximation models possess very good smoothing proper-

ties. As show the results presented in the paper, these approximations well
converge even for very irregular discontinuous pay-off functions.

The approximation algorithms based on these models also well converge
for much more general discrete and continuous time multivariate modulated
Markov type log-price processes. Here, we just refer to recent works by Sil-
vestrov, Jönsson and Stenberg (2009, 2010), Lundgren and Silvestrov (2009,
2010), Silvestrov and Lundgren (2011), and Silvestrov (2013).

Comparison of binomial–trinomial and skeleton approximations based on
numerical experiments show that all approximations have appropriate com-
puting times. The binomial model has slightly shorter computing times for
computing reward values with given precision.

However, we would like to mention that trinomial approximations also can
be useful, for example, for multivariate and inhomogeneous in time models.
In such models, binomial approximations may possess not enough free param-
eters required for exact or asymptotic fitting of parameters. One can find the
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corresponding examples in Lundgren (2010), Lundgren and Silvestrov (2009,
2010), Silvestrov and Lundgren (2011), and Silvestrov (2013).

We can also conclude that the skeleton approximations have better sta-
bilisation properties than others.

As mentioned above, skeleton approximations have a principal advantage
in comparison with binomial–trinomial approximations. The latter approx-
imations can be used only for Gaussian models, while the skeleton approxi-
mation can also be used for wide classes of non-Gaussian models.

Theoretical results presented in Sections 2 – 6 show that the above stochas-
tic approximations possess good convergence properties even for discontin-
uous and very irregular pay-off functions. We shall present the results of
experimental studies for the corresponding convergence rates in future pub-
lications.

11. Appendix: MATLAB codes

Here we present the core functional MATLAB programs used in our ex-
perimental studies. These functional programs are:

• ProbMatrixBinoFuc

• ProbMatrixTrioFuc

• BinoSumCallFuc

• TriSumCallFuc

• SkeletonCallFuc

• Skeleton model for compound Gaussian

• ProbMatrixBinoFuc:

function PMatrix = ProbMatrixBinoFuc(P,N)

% P=1/2, N is the time steps

% \delta_t= T/N;

P_Plus = P;

P_Minus = P;

PMatrix{1,1} = 1; % To build a Probability Cell Array

for i = 2:(N+1)
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tempMatrix = PMatrix{i-1,1};

tempMatrixPlus = [tempMatrix 0]*P_Plus;

tempMatrixMinus = [0 tempMatrix]*P_Minus;

PMatrix{i,1} = tempMatrixPlus + tempMatrixMinus;

end

PMatrix(1,:) = []; % To get rid of the first row of the

% Pmatrix cell arry, which constains

% just numberal 1.

• ProbMatrixTrioFuc:

function PMatrix = ProbMatrixTrioFuc(P,N)

% P_0=2/3, the probability of no changing;

% N is the time steps, \delta_t= T/N.

P_0 = P; % Probability for no-changing.

P_Minus = (1-P_0)/2; % Probability for "down" movement.

P_Plus = (1-P_0)/2; % Probability for "up" movement.

PMatrix{1,1} = 1; % To build a Probability Cell Array

for i = 2:(N+1)

tempMatrix = PMatrix{i-1,1};

tempMatrixPlus = [tempMatrix 0 0]*P_Plus;

tempMatrix0 = [0 tempMatrix 0]*P_0;

tempMatrixMinus = [0 0 tempMatrix]*P_Minus;

PMatrix{i,1} = tempMatrixPlus + tempMatrix0 + tempMatrixMinus;

end

PMatrix(1,:) = []; % To get rid of the first row of the

% Pmatrix cell arry, which constains

% just numberal 1.
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• BinoSumCallFuc:

function OptionPrice = BinoSumCallFuc(gamma,N,Stock_0,strikeP,...

mu,sigma,alfa,PMatrix)

s0 = Stock_0; % The Initial Stock Price.

K = strikeP; % Strike Price.

delta = 1/sqrt(gamma); % Jump magnitude.

muM = (mu)*ones(N,1); % Trend for Stock Price Process.

sigmaM = (sigma)*ones(N,1); % Volatility of Stock Price.

alfaM = (alfa)*ones(N,1); % Risk Free Interest Rate.

%% Changing Probilities for every time interval.

gamma_n = round(sigmaM.*sigmaM.*gamma); % Num. of Nodes in

% one Changing Unit.

for i = 1:N

SubProbability{i,1} = PMatrix{gamma_n(i),1};

end

%% Total Possible Jumping Numbers.

M = sum(gamma_n);

dpowers = -delta*((0:M)’);

upowers = delta*((M:-1:0)’);

%%Option Price at maturity, ’N’.

priceN = max(s0*exp(dpowers+upowers+sum(muM))-K,0); %Call Option

%% Re-trace to get option value at time zero

for i = N:-1:1

expPrice = 0;

prob = SubProbability{i,1};

% to calculation exp. value of Option Price at moment ’i-1’.

for j = 1:(gamma_n(i)+1)

expPrice = expPrice+prob(j)*priceN(j:(M-gamma_n(i)+j));

end
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% to calculation Stock-price at moment ’i-1’.

M = sum(gamma_n(1:(i-1)));

dpowers = -delta*((0:M)’);

upowers = delta*((M:-1:0)’);

Si = s0*exp(dpowers+upowers+(i-1)*muM(i));

% max(excercised option price at moment (i-1), present value

% of expected option value at moment (i-1)). So this is

% option price at moment ’i-1’.

priceN = max(max(Si-K,0),expPrice*exp(-alfaM(i)));

end

OptionPrice = priceN;

• TriSumCallFuc:

function OptionPrice = TriSumCallFuc(gamma,N,Stock_0,StrikeP,mu,...

sigma,alfa,PMatrix,P_2)

s0 = Stock_0; % The Initial Stock Price.

K = StrikeP; % Strike price.

PP = PMatrix;

delta = sqrt(1/gamma); % Jump magnitude.

muM = (mu)*ones(N,1); % Trend for Stock Price Process.

sigmaM = (sigma)*ones(N,1); % Volatility of Stock Price.

alfaM = (alfa)*ones(N,1); % Risk Free Interest Rate.

%% Changing Probilities for every time interval.

gamma_n = round(sigmaM.*sigmaM.*gamma/(1-P_2));

for i = 1:N

SubProbability{i,1} = PP{gamma_n(i),1};

end

%% Total Possible Jumping Numbers.

M = sum(gamma_n);
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powers = delta*((M:-1:-M)’);

%%Option Price at maturity, ’N’.

priceN = max(s0*exp(powers+sum(muM))-K,0);

%% Re-trace to get option value at time zero

for i = N:-1:1

expPrice = 0;

prob = SubProbability{i,1}’;

% to calculation exp. value of Option Price at moment ’i-1’.

for j = 1:(2*gamma_n(i)+1)

expPrice = expPrice+prob(j)*priceN(j:(2*M-2*gamma_n(i)+j));

end

% to calculation Stock-price at moment ’i-1’.

M = sum(gamma_n(1:(i-1)));

powers = delta*((M:-1:-M)’);

Si = s0*exp(powers+sum(muM(1:(i-1))));

% max(excercised option price at moment (i-1), present value

% of expected option value at moment (i-1)). So this is

% option price at moment ’i-1’.

priceN = max(max(Si-K,0),expPrice*exp(-alfaM(i)));

end

OptionPrice = priceN;

• SkeletonCallFuc:

function OptionPrice = SkeletonCallFuc(gamma,N,Stock_0,strikeP,...

mu,sigma,alfa)

s0 = Stock_0; % The Initial Stock Price.

K = strikeP; % Strike price
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endPlus = inf;

endMinus = -inf;

delta = 1/sqrt(gamma); % Jump magnitude.

muM = (mu)*ones(N,1); % Trend for Stock Price Process.

sigmaM = (sigma)*ones(N,1); % Volatility of Stock Price.

alfaM = (alfa)*ones(N,1); % Risk Free Interest Rate.

%% Changing Probilities for every time interval.

gamma_n = round(sigmaM.*sigmaM.*gamma);

for i = 1:N

A = (gamma_n(i)-0.5):-1:(-gamma_n(i)+0.5);

D = [endPlus A endMinus];

for j = 1:(2*gamma_n(i)+1)

temp1 = D(j)*delta/sigmaM(i);

temp2 = D(j+1)*delta/sigmaM(i);

temp3 = normcdf([temp1 temp2]);

Prob(j) = temp3(1)-temp3(2);

end

SubProbability{i,1} = Prob;

end

%% Total Possible Jumping Numbers.

M = sum(gamma_n);

powers = delta*((M:-1:-M)’);

%%Option Price at maturity, ’N’.

priceN = max(s0*exp(powers+sum(muM))-K,0);

%% Re-trace to get option value at time zero

for i = N:-1:1

expPrice = 0;

prob = SubProbability{i,1}’;

% to calculation exp. value of Option Price at moment ’i-1’.
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for j = 1:(2*gamma_n(i)+1)

expPrice = expPrice+prob(j)*priceN(j:(2*M-2*gamma_n(i)+j));

end

% to calculation Stock-price at moment ’i-1’.

M = sum(gamma_n(1:(i-1)));

powers = delta*((M:-1:-M)’);

Si = s0*exp(powers+sum(muM(1:(i-1))));

% max(excercised option price at moment (i-1), present value

% of expected option value at moment (i-1)). So this is

% option price at moment ’i-1’.

priceN = max(max(Si-K,0),expPrice*exp(-alfaM(i)));

end

OptionPrice = priceN;

• Skeleton model for compound Gaussian:

function OptionPrice=SkePoisCallFuc(gamma,N,Stock_0,strikeP,mu,

sigma,alfa,muV,sigmaV,itemPower)

s0=Stock_0;

K=strikeP;

gamma_n=round(sigma^2*gamma);

gamma_N=(gamma_n)*ones(N,1);

muM=(mu)*ones(N,1);

sigmaM=(sigma)*ones(N,1);

alfaM=(alfa)*ones(N,1);

delta=1/sqrt(gamma);

temp5=[];

A=(gamma_n-0.5):-1:(-gamma_n+0.5);

D=[inf A -inf];

28



for j=1:(2*gamma_n+1)

temp5=[];

temp1=D(j)*delta;

temp2=D(j+1)*delta;

temp3=normcdf(temp1*ones(1,length(muV)), muV, sigmaV);

temp4=normcdf(temp2*ones(1,length(muV)), muV, sigmaV);

temp5=itemPower.*(temp3-temp4);

Prob(j)= sum(temp5);

end

for i=1:N

SubProbability{i,1}=Prob;

end

%% Total jumps

M=sum(gamma_N);

powers = delta*((M:-1:-M)’);

%%Reward Value at N, maturity

priceN =max(s0*exp(powers+sum(muM))-K,0);

%% Re-trace to get option value at time zero

for i = N:-1:1

expPrice=0;

prob=SubProbability{i,1}’;

% to calculation expected value at moment n

for j=1:(2*gamma_N(i)+1)

expPrice=expPrice+prob(j)*priceN(j:(2*M-2*gamma_N(i)+j));

end

% to calculation Stock-price at moment (n-1)

M=sum(gamma_N(1:(i-1)));

powers = delta*((M:-1:-M)’);
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Si=s0*exp(powers+sum(muM(1:(i-1))));

% max(excercised option price at moment (n-1), present value

% of expected option value at moment n

priceN = max(max(Si-K,0),expPrice*exp(-alfaM(i)));

end

OptionPrice=priceN;
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oriya Ĭmovirn. Mat. Stat., 72, 42–53. (English translation in Theory
Probab. Math. Statist., 72, 47–58).

• Joshi, M.S. (2009), The convergence of binomial trees for pricing the
American put. J. Risk, 11, no. 4, 87–108.

• Kim, I. J. (1990), The analytic valuation of American options. Rev.
Finan. Studies, 3, 547–572.

• Kukush, A.G., Silvestrov, D.S. (2000), Structure of optimal stopping
strategies for American type options. In: S. Uryasev (ed) Probabilistic
Constrained Optimization: Methodology and Applications. Nonconvex
Optim. Appl., 49, Kluwer, Dordrecht, 173–185.

• Kukush, A.G., Silvestrov, D.S. (2001), Skeleton approximation of op-
timal stopping strategies for American type options with continuous
time. Theory Stoch. Proces., 7(23), 1-2, 215–230.

• Kukush, A.G., Silvestrov, D.S. (2004), Optimal pricing of American
type options with discrete time. Theory Stoch. Process., 10(26), 1-2,
72–96.

• Kwon, Y., Lee, Y. (2011), A second-order tridiagonal method for Amer-
ican options under jump-diffusion models. SIAM J. Sci. Comput., 33,
no. 4, 1860–1872.

• Lamberton, D. (1993), Convergence of the critical price in the approx-
imation of American options. Math. Finance, 3, 179–190.

32



• Lamberton, D. (1998), Error estimates for the binomial approximation
of American put option. Ann. Appl. Probab., 8, no. 1, 206–233.

• Leisen, D.P. (1998). Pricing the American put option, a detailed con-
vergence analysis for binomial models. J. Econom. Dynam. Contr.,
22, 1419–1444.

• Leisen, D., Reimer, M. (1996), Binomial models for option valuation –
examining and improving convergence. Appl. Math. Finance, 3, no.
4, 319–346.

• Li, W., Xing, M. (2011), Weak convergence for approximation of Amer-
ican option prices. Commun. Stoch. Anal., 5, no. 3, 505–525.

• Liang, J. (2008), On the convergence rate of the binomial tree scheme
for an American option with jump-diffusion. Numer. Math. J. Chinese
Univ., 30, no. 1, 76–96.

• Liang, J., Hu, B., Jiang, L. (2010), Optimal convergence rate of the
binomial tree scheme for American options with jump diffusion and
their free boundaries. SIAM J. Financ. Math. 1, 30–65.

• Liang, J., Hu, B., Jiang, L., Bian, B. (2007), On the rate of convergence
of the binomial tree scheme for American options. Numer. Math., 107,
no. 2, 333–352.

• Lundgren, R. (2010), Convergence of Option Rewards. Doctoral Dis-
sertation, No. 22, Mälardalen University.

• Lundgren, R., Silvestrov, D. (2009), Convergence of option rewards for
multivariate price processes. Research Report 2009:10, Department of
Mathematics, Stockholm University, Sweden, 53 pages.

• Lundgren, R., Silvestrov, D. (2011), Optimal stopping and reselling of
European options. In: V. Rykov, N. Balakrishan, M. Nikulin (eds)
Mathematical and Statistical Models and Methods in Reliability. Birk-
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