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Abstract

The probability that an observed infection has been transmitted
from a particular member of a set of potential infectors is calculated.
The calculations only use knowledge of the infection times. It is shown
that the probabilities depend on the variability of individual infectiv-
ity. The analyses are based on different background information and
different assumptions on the progress of infectivity. The results are
illustrated by numerical calculations and simulations.
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1. Introduction

When analyzing the spread of an infectious disease it is often of interest to identify the
infector of an infected person. This can seldom be done with complete certainty. However,
it may be possible to calculate the probability that a certain member of a set of potential
infectors is the true transmitter. How this can be done, using only observations of the times
of infection, is the topic of the present paper.

One reason to calculate probabilities is to better understand the transmission dynamics.
In a study of SARS outbreaks Wallinga and Teunis (2004) analysed the possible impact of
control measures by following the expected number of secondary cases during the course of
the epidemic. Given times of infection, they could by adding the probabilities that a certain
infector was responsible for future infections, estimate the expected number of secondary
infections.

As in all statistical and probabilistic analysis we have to carefully consider how the
observed data are generated. In section 3 we assume that the histories of the potential
infectors are unrelated, and in section 4 that the candidates form a transmission tree, i.e.,
the set of possible infectors consists of one original infected and a sequence of persons that
have infected each other. Cauchemez and Ferguson (2012) also study the related, and more
complex, problem of how to find the most probable transmission chain. In their analysis
variations in infectivity of potential infectors were related to observable quantities.

The probabilities, that we are interested in will depend on generation times, i.e. the
times between a primary infection and its corresponding secondary infections. Individual
random variations in infectivity will have substantial impact. In the examples used in this
paper the variations are assumed to be generated by a SEIR model with random latent
and infectious periods. Basic assumptions also concern homogeneous mixing, and constant
infectivity during the infectious period. Of course, it is possible to analyze more complicated
models, but our main purpose here is to illustrate the problem and to highlight possibilities
to perform the calculations. For this reason we use a simple setting. The models and the
notation are presented in section 2.
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Section 5 gives numerical examples that illustrate that the assumptions underlying the
analysis are crucial. In the simulated examples, as will certainly be the case for observations
from real epidemics, the probabilities found, do in general not give a very precise indication
of who was the infector for a specific case. Thus other information than the times of infection
is required to precisely indicate the infector.

It is difficult to find general analytic expressions for the interplay between infection times
and the underlying stochastic model. In section 6 it is discussed how the findings in the
numerical examples may be generalized.

2. Basic model and notation

We will study a situation where v infections are observed to occur at times τ1 < τ2 < . . . <
τν . Without loss of generality we may assume that τ1 = 0.

2.1. Infectivity and generation times
It is assumed that an infected person spreads the infection according to an intensity process
that depends on the time after the infection, i.e. the age of the infection. The intensity
processes may be individual and random, but the random intensity functions for different
individuals are assumed to be independent. We consider spread in a closed population that
is assumed to be homogeneously mixing. The victim for a new infection is a randomly
chosen member of the population.

The intensity process for the i’th infected is denoted by κi. The interpretation is that
the infected person has potentially infectious contacts according to a Poisson process with
time-varying intensity κi(a), where a is the age of the infection. The contact will lead to
a transmission if the contacted is susceptible. If there exists immunity in the population
the occurrence of new infections will be influenced by this. Let s(t) be the proportion of
susceptible persons in the population at time t. If the i’th infected is infected at time τi

secondary infections will occur according to a Poisson process with intensity s(t)κi(t − τi).
In this model the total infectivity that individual i spreads is

λi =

∫ ∞

0

κi(a)da (1)

The parameter λi can be interpreted as the mean number of possible infectious contacts
this infected individual takes.

The basic reproduction number, i.e. the expected number of secondary infections in a
totally susceptible population, is then

R0 = E(λi) =

∞
∫

0

g(a)da, (2)

where
g(a) = E(κi(a)). (3)

The cohort (or basic) generation time density, k (cf Svensson (2007) and Tomba et al.
(2010)), corresponds to g normalized to have total mass 1, i.e.,

k(a) =
E(κi(a))

R0
=

g(a)

R0
. (4)
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The mean generation time is defined as

∞
∫

0

ak(a)da. (5)

2.2. Models for individual variations
In order to illustrate the effects of individual variability we will use a model of the type
generally referred to as a SEIR model. An infection is assumed to be followed by a latent
period, during which the infection is not transmitted. After the latent period follows an
infectious period. We will here, for simplicity, assume that a person takes infectious contacts
with a constant non-random rate γ, that is the same for all infected. If an infectious person
takes such a contact with a susceptible person the infection is transmitted.

The duration of the latent and infectious periods may vary between individuals. Let Li

be the duration of the latent period and Xi the duration of the infectious period. Further-
more let Ii(a) be the indicator function that the i’th infected is infectious at time a after
the infection, i.e.,

Ii(a) =

{

1 if Li ≤ a ≤ Li + Xi,
0 otherwise.

Then
κi(a) = γIi(a). (6)

Obviously λi = γXi and R0 = γE(X).
Assume that the pairs Li and Xi are independent and that their respective distribution

functions are HL and HI , with densities hI and hL, then

k(a) =

HL(a) −
a
∫

0

HL(a − s)hI(s)ds

E(X)
. (7)

If there is no latent period, i.e. when the infectious period starts immediately after infection,

k(a) =
1 − HI(a)

E(X)
. (8)

Furthermore
p(a) = Pr(Ii(a) = 1) = E(X)k(a), (9)

and the probability that the i’th infected is infectious at time t is

p(t − τi) = E(X)k(t − τi).

As examples we will use three different cases where the latent and infectious periods are
gamma-distributed. To make the cases comparable we will choose parameter values so that
the mean length of the latent and the mean generation times in each case are approximately
what is assumed for seasonal influenza (cf Carrat et al. (2008)). In the first case both the
latent and the infectious periods are assumed to be exponentially distributed. This implies
a large individual variation. In the second case the variation is smaller, and in the third
case the times are assumed to be constant.
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Case 1: Li is exponential distributed with intensity µL, and Xi is exponential dis-
tributed with intensity µI . If µL 6= µI

k(a) =
µLµI

µI − µL

(exp(−µLa) − exp(−µIa)),

and
p(a) =

µL

µI − µL

(exp(−µLa) − exp(−µIa)).

If µ = µL = µI then
k(a) = µ2a exp(−µa),

and
p(a) = µa exp(−µa).

The mean generation time is 1/µL +1/µI . In the calculations we have choosen µL = 1, and
µI = 1/2. This gives the mean generation time 3.

Case 2: Li is gamma distributed with shape parameter α and rate parameter µLα,
and Xi is also gamma distributed with shape parameter β and rate parameter µIβ. The
means of the latent and infectious periods are 1/µL and 1/µI . The mean generation time
is 1/µL + 1/µI

1+β
2β

(cf Svensson (2007)). In the calculations we have choosen α = β = 8,

µL = 1, and µL = 9/32. This gives the mean generation time 3.

Case 3: Li and Xi are constant. This corresponds to α = β = ∞. To obtain the same
mean latent and generation times as in the two previous cases we chose Li ≡ 1 and Xi ≡ 4.

Figure 2.2 illustrates the cohort generation time density for the three cases.

3. Unrelated potential infectors

In this section we will assume that the first ν − 1 infections are unrelated and derive the
probability that the i’th infected infects the v’th. Let t = τν .

3.1. Non-random infectivity
Suppose that ν − 1 Poisson process are running in parallel and that they have non-random
intensity functions v1(t), ...vν−1(t). Given that an event happens in one of these processes
at time t the probability that it occurs in the i’th process is

vi(t)
∑

j vj(t)
.

(The summation is for j = 1, . . . , ν − 1).
In case all individuals have the same, non-random, infectivity intensity the probability

that the i’t infector is the responsible for the ν’th infection, at time t = τν , can be calculated
as

P a
i =

s(t)k(t − τi)
∑

j s(t)k(t − τj)
. (10)
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Fig. 1. k(a), for case 1 (solid), case 2 (dashed), and case 3 (dotted).

or equivalently (according to (9))

P a
i =

p(t − τi)
∑

j p(t − τj)
= wp(t − τi), (11)

where w is a constant such that
∑

P a
i = 1.

As will be clear from the following discussion the expression is not valid if the intensity
functions are random. In such cases the probabilities (10) and (11) can, at best, be regarded
as approximations.

3.2. Random infectivity
We will now consider the possibility that the infectious processes are random.

Due to the assumption of homogeneous mixing and the assumption that all infectious
individuals are equally infectious during their infectious periods

Zi =
Ii(t − τi)
∑

j

Ij(t − τj)
(12)

is, conditional on the latent and infectious times, the probability that the infection is trans-
mitted from infector i. Without the conditioning Zi should be regarded as a random
variable.

Since there has to be at least one infector it is a necessary restriction that

∑

j

Ij(t − τj) > 0.
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If there is no other relation between the potential infectors this is the only restriction that
has to be considered.

The probability that the i’th infected is the infector can be expressed as:

Pu
i = E



Zi |
∑

j

Ij(t − τj) > 0





=

ν−1
∑

r=1

1
r
Pr

(

Ii(t − τi) = 1,
∑

j 6=i,

Ij(t − τj) = r − 1

)

P (
∑

j

Ij(t − τj) > 0)
(13)

= p(t − τi)

E( 1
1+

P

j 6=i

Ij(t−τj)
)

Pr(
∑

j

Ij(t − τj) > 0)

= p(t − τi)wi.

Comparing the probabilities Pu
i and P a

i we find that

Pu
i

P a
i

∼ wi. (14)

Since the factors wi depend on i the probabilities will differ from those given by (11).
Note that

∑

j 6=i Ij(t − τj) is the sum of ν − 2 independent random variables. These ran-
dom variables are stochastically ordered according to the probabilities p(t − τj), which are
proportional to k(t − τj). Thus, the sum tends to be large when k(t − τi) is small.

If there is no latent time the ordering of the τi’s imply that k(t − τi) decreases and wi

increases with i (cf (8)). As a consequence the probabilities P a
i are, in this case, too large

for long generation times.

There exist an explicit version of the expression (13):

Pu
i = p(t − τi)

(

ν−2
∑

j=0

(−1)j 1
1+j

∑

yi=0,|y|=j

ν−1
∏

r=1
(p(t − τr))

yr

)

1 −
ν−1
∏

j=1

(1 − p(t − τj))

, (15)

where y = (y1, . . . , yν) is a vector of zeros and ones and | y |=
∑

yj . (See appendix for a
proof).

4. Spread in a transmission tree

A possible scenario is that we know that the infected and the transmission links form a
tree with its root at the first infected. This can be the case if the observations come from
an study of infectious spread within a family, a school class, or some other small closed
population.
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If we observe a transmission tree we know that there is at least one of the candidates
that is infectious at any time of infection τ2, . . . , τν . This means that

∑

j<m

Ij(τm − τj) > 0.

for all 2 ≤ m ≤ ν.
A transmission tree may be a part of a larger transmission chain. In order to have a well

defined situation we will assume that the observed infections are the first emerging from an
initial infector. We will then have another restriction, namely that the potential infectors
represent all infections before time t. If this is the case we can also calculate the susceptible
proportion of the population. If the population has n susceptible members at the time of
the initial infection the assumption of that contacts are taken at random in the population
leads to that s(t) = 1 − (i − 1)/n when τi ≤ t < τi+1.

In this setting it is of interest to calculate the probability that the i’th infected infects
the j’th. Let

Zij =
Ii(τj − τi)

∑

m

Im(τj − τm)
. (16)

The probabilities are

P c
ij = E(Zij |

∑

j<m

Ij(τm − τj) > 0 if m ≤ ν and only ν infected up to τν). (17)

We have not been able to find any simple closed version. In the following section we
suggest a simulation procedure to do the calculations. It turns out that the probabilities
(17) will depend on R0 (via γ). Since the actual infectivity in a population also depends
on the proportion, s(t), of susceptible individuals the probabilities will also depend on the
population size.

4.1. A simulation procedure
We first assume that the infectivity functions, (κ1, . . . , κν−1) for the first ν − 1 infected in
the chain are known. The total infectious force at time τ ≤ τν is

U(τ) = γs(τ)

ν−1
∑

i=1

κi(τ − τi).

We start by deriving a density for ξ = (τ2, . . . , τν). Infections occur according to a
Poisson process with the random intensity process U . It is random because it depends
dynamically on when previous infections occured. In fact, the process that counts the
number of infections from the initiation and forwards is a martingale. From general theory,
(cf Bremaud (1981), pg 226) it follows that the density (related to a standard Poisson
process) of the random vector ξ is

ν
∏

i=2

U(τi) exp(

τν
∫

0

(1 − U(τ)) dτ).
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The probability that it is the i’th infector that causes the j’th infection is

γs(τj)κi(τj − τi)

U(τj)
=

κi(τj − τi)
∑

m κm(τj − τm)
.

If we take into consideration that the infectivity functions are random we find that the
conditional expectations can be expressed as

P c
ij =

E

(

γs(τj)κi(τj−τi)
U(τj)

ν
∏

k=2

U(τk)exp(−
τν
∫

0

U(τ)dτ)

)

E

(

ν
∏

i=2

U(τi)exp(−
τν
∫

0

U(τ)dτ)

) .

Let (κr
1, . . . , κ

r
ν−1), r = 1, . . . , m be m sets of simulated infectivity force functions, and

let U r be the corresponding total infectivity functions. We can estimate P c
ij with

P̂ c
ij =

m
∑

r=1

γs(τj)κ
r
i (τj−τi)

Ur(τj)

ν
∏

k=2

U r(τk)exp(−
τν
∫

0

U r(τ)dτ)

m
∑

r=1

ν
∏

i=2

U r(τi)exp(−
τν
∫

0

U r(τ)dτ)

.

Observe that if some U r(τj) = 0, j = 2, . . . , ν then there can not (with probability 1) exists
a chain with the given times of infection. Simulated values of the infectivity force function
that leads to this will not give any contribution to the estimate.

For the models described in section 2 it is enough to know the latent and infectious
times to find the infectivity functions. Let W = (L1, X1, . . . , Lν−1, Xν−1). Furthermore let
Ji(τ, W ) equal 1 if the i’th infected is infectious at time τ , which it is when τi + Li ≤ τ <
τi + Li + Xi, and 0 otherwise. The number of the potential infectors that are infectious at
time τ is J(τ, W ) =

∑

Ji(τ, W ), and U(τ) = γs(τ)J(τ, W ).

Let aij be the total time the i’th infector is infectious before the j’th infection, then

aij = max(min(τj − Li − τi, Xi), 0).

Of course aij can only be positive if i < j. Since s(τj) = 1 − (j − 2)/n it follows that the
sum of all infectious times up till time τν can be calculated as

T (W ) =
ν−1
∑

i=1

ν−1
∑

j=1

(1 −
j − 1

n
)(ai,j+1 − ai,j).

Now let W 1, . . . Wm be a sequence of independent simulated random elements reflecting
ν − 1 latent and infectious times. An estimate of the probability that the i’th infector is
the one who infects the j’th at time τj is then estimated by

m
∑

r=1

Ji(τj ,W r)
J(τj ,W r)

v
∏

k=2

J(τk, W r)) exp(−γT (W r))

m
∑

r=1

v
∏

k=2

J(τk, W r)) exp(−γT (W r))
.
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In the following calculations we have chosen to make sufficiently many simulation so
that

m
∑

i=1

I(
ν
∏

j=2

J(τj) > 0) = km,

where km is a predesigned number. Thus the simulations have to produce km possible
chains.

5. Numerical examples

The expressions P a
i , Pu

i and P c
ij depend on ν and (τ1, . . . , τν) as well as on the assumed

cohort generation time. P c
ij also depends on γ or equivalently on R0.

To illustrate this we first consider a situation where there are only three infected. The
second example illustrates a more complicated situation with a longer observed transmission
tree.

5.1. Two possible infectors
The probability that the first infected is the true infected will depend both on τ3 = t, i.e.,
the time when the third infected was infected and τ2 = s, the time for the second infection.

The calculations are simple if there is no latency time and the infectious times are
exponentially distributed with mean µI . In this case explicit expression of the probabilities
that the initial infected infects the third are

P a
1 =

1

1 + exp(µIs)
,

Pu
1 =

1 − exp(−µI(t − s))/2

1 + exp(µIs) − exp(−µI(t − s))
,

and

P c
13 = 1/2.

These three probabilities are concerned with the same event but calculated under dif-
ferent assumptions. Observe that they are all different and ordered as Pu

1 ≤ P a
1 ≤ P c

13.

If there is latent periods the calculations are more complicated. We will consider the
three cases defined in section 2. We assume that the population is large, so that the fact
that one person is infected do not influence the probability of further infections. The
probabilities, P a

1 and Pu
1 are illustrated in figure 2. The difference between P a

1 and Pu
1

is relatively small but depends heavily on the generation time model used. If there is no
individual variability P a

1 = Pu
1 .

Figures 3 and 4 illustrate the probabilities in case the infections form a tree. It is seen
that the influence of R0 is considerable in cases where there is a substantial individual
variability. As can be expected it is less in case 2 than in case 1. In case 2 the relation
is illustrated only for τ2 > 0.4. The probability for smaller time distance between the
first and second infection will be small. If there is no individual variability, as in case 3,
P a

1 = Pu
1 = P c

13.
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Fig. 2. Probability that the first infected has infected the third infected as a function of the time of
infection for the second infected when the third infection occurs at time t = 3. P a

1 case 1 (solid) and
case 2 (dashed). P u

1 case 1 (dotted) and case 2 (dotdashed). For case 3 P a

1 = P u

1 (longdash).

Fig. 3. Probability that the first infected has infected the third infected as a function of the time of
infection for the second infected (s > 0.4) when the third infection occurs at time t = 3. P c

13 for
R0 = 1.2 (solid), 2 (dashed) and 4 (dotted). Model as in case 1.
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Fig. 4. Probability that the first infected has infected the third infected as a function of the time of
infection for the second infected (s > 0.4) when the third infection occurs at time t = 3. P c

13 for
R0 = 1.2 (solid), 2 (dashed) and 4 (dotted). Model as in case 2.

5.2. Observation of a transmission tree

To illustrate the use of the calculations in a more complicated situation we will use a
simulated example. The simulated epidemic takes place in a large population. The spread
is simulated with a model as in case 2 described above and with R0 = 2. The times of
infection are

(τ1, . . . , τ10, τ11)

= (0, 0.751, 1.622, 3.009, 3.248, 3.290, 3, 527, 3.963, 4.158, 4.371, 4.425).

In sequence the infectors were (the first infection comes from outside the population)

(−, 1, 2, 3, 3, 3, 4, 7, 4, 8, 4).

This means that the eleventh infection occured at t = 4.425 and that the real infector in
this simulated example was the fourth infected.

We can now calculate the probabilities that the i’th infected infected the j’th infected
(i < j) given that the eleven observed infections form a tree. The probabilities for case 1
are presented in table 1, for case 2 in table 2, and for case 3 in table 3. The values of P c

ij

are derived from simulations as described above with km = 5.000 and with R0 = 2.

In order to illustrate the importance of R0 for the probabilities table 4 gives the estimates
of the expected number of infections due to the different infected under the different models
and for different values of R0. These numbers are the sums of the probabilities related to
the i’th infected.
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Table 1. Estimated probabilites that the i’th infected infected the j’th in-
fected, using the model as in case 1 with R0 = 2.

j
i 2 3 4 5 6 7 8 9 10 11

1 1 0.66 0.27 0.22 0.21 0.17 0.11 0.09 0.08 0.07
2 - 0.34 0.36 0.30 0.29 0.23 0.16 0.13 0.11 0.11
3 - - 0.37 0.34 0.33 0.28 0.20 0.17 0.14 0.13
4 - - - 0.14 0.15 0.17 0.17 0.16 0.15 0.14
5 - - - - 0.02 0.08 0.13 0.14 0.14 0.13
6 - - - - - 0.07 0.13 0.14 0.14 0.13
7 - - - - - - 0.10 0.12 0.12 0.12
8 - - - - - - - 0.05 0.08 0.09
9 - - - - - - - - 0.05 0.06
10 - - - - - - - - - 0.01

Table 2. Estimated probabilites that the i’th infected infected the j’th in-
fected, using the model as in case 2 with R0 = 2.

j
i 2 3 4 5 6 7 8 9 10 11

1 1 0.77 0.33 0.31 0.31 0.28 0.19 0.14 0.11 0.10
2 - 0.23 0.36 0.35 0.35 0.34 0.26 0.21 0.16 0.15
3 - - 0.31 0.34 0.35 0.35 0.28 0.23 0.19 0.18
4 - - - 0.00 0.00 0.02 0.14 0.17 0.18 0.18
5 - - - - 0.00 0.00 0.07 0.11 0.15 0.15
6 - - - - - 0.00 0.05 0.10 0.14 0.14
7 - - - - - - 0.01 0.04 0.08 0.09
8 - - - - - - - 0.00 0.00 0.01
9 - - - - - - - - 0.00 0.00
10 - - - - - - - - - 0.00

Table 3. Estimated probabilites that the i’th infected infected the
j’th infected, using the model as in case 3.

j
i 2 3 4 5 6 7 8 9 10 11

1 1 1 1/3 1/3 1/3 1/3 1/3 1/4 1/6 1/6
2 - 0 1/3 1/3 1/3 1/3 1/3 1/4 1/6 1/6
3 - - 1/3 1/3 1/3 1/3 1/3 1/4 1/6 1/6
4 - - - 0 0 0 0 1/4 1/6 1/6
5 - - - - 0 0 0 0 1/6 1/6
6 - - - - - 0 0 0 1/6 1/6
7 - - - - - - 0 0 0 0
8 - - - - - - - 0 0 0
9 - - - - - - - - 0 0
10 - - - - - - - - - 0
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Table 4. Estimated expected number of secondary infections due to i’th infected infected
infector

model R0 1 2 3 4 5 6 7 8 9 10

1 1.2 3.13 2.01 1.86 1.02 0.61 0.61 0.44 0.20 0.10 0.01
1 2 2.88 2.03 1.94 1.08 0.64 0.61 0.46 0.22 0.10 0.01
1 4 2.23 2.02 1.40 1.18 0.66 0.66 0.48 0.25 0.11 0.02

2 1.2 3.59 2.39 2.20 0.68 0.48 0.43 0.22 0.01 0.00 0.00
2 2 3.54 2.40 2.23 0.68 0.48 0.43 0.22 0.01 0.00 0.00
2 4 3.38 2.49 2.34 0.68 0.46 0.43 0.20 0.01 0.00 0.00

3 - 4.25 2.25 2.25 0.58 0.33 0.33 0 0 0 0

Table 5. Estimated probabilites
that the i’th infected infected the
j’th infected, using the model as
in case 1 with R0 = 2

j
i 2 3 4

1 1 0.61 0.24
2 - 0.39 0.34
3 - - 0.41

5.2.1. The importance of the length of the observed chain

It should be observed that we when calculating the probabilities P v
ij have condition on the

event that there is a transmission chain of at least length ν. If we only wish to calculate the
probabilities for the ν1 < ν first infections and only condition on the event that at least ν1

infections have been observed we will get other probabilities. The same is of course true if
we know more infections occur after time τν . To illustrate this we will reanalyze the same
situation as in section 5.2 using only the four first infections. The estimated probabilities
are given in table 5

If there is no individual variations, as in case 3, the probabilities can be read from the
upper left-hand corner of table 3.

5.2.2. Simultaneous probabilities

We have calculated marginal probabilities that the i’th infected infects the j’th. The events
that the i’th infected infects both the j’th and the i∗’th infected infects the j∗’th are not
independent. Thus the simultaneous probability is in general not equal to the product of
the corresponding marginal probabilities. However, this will be true if there is no individual
variation, as in case 3. To illustrate this we have calculated the probabilities for the six
possible chains in the example treated in the previous section with four infected in the tree.
These probabilities are given in table 6

For trees with more observations the number of possibilities will soon get overwhelmingly
large. For the chain with ν = 11 there are 10! possible trees to consider, most of them with
very small probabilities.

Observe that the expected number of secondary infections depends on the marginal
probabilities only.
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Table 6. Estimated probabilities
for possible chains with four in-
fected using the model as in case
1 with R0 = 2

chain prob

(-,1,1,1) 0.20
(-,1,1,2) 0.18
(-,1,1,3) 0.23
(-,1,2,1) 0.05
(-,1,2,2) 0.16
(-,1,2,3) 0.18

6. Discussion

There are several sources of randomness involved in a model for epidemic spread. It is
necessary to understand how different sources can influence the probability that an infection
is transmitted from a particular infective person.

An important issue is how the observed infections are obtained. We have considered
two very different situations. In the first we investigate from where an infection was trans-
mitted under the assumption that there is no connection between the potential infectors.
In the second situation we consider that we have a tree of infections and try to calculate
the (marginal) probabilities for different transmission links. In both situations we have
conditioned on the assumed observation scheme. The conditioning have consequences. It
is shown in the numerical examples that if we that the length of the observed transmission
tree influences the probability. This is reasonable, since if we know that many individuals
in a population eventually are infected we can conclude the early infectors will probably
have been powerful transmitters. If they were not there should have been a large chance
that the infection tree stopped early.

We have throughout assumed homogeneous mixing, in the sense that there are no prior
differentiation between transmission links, i.e., all possible pairs of persons can be involved
in a transmission. This also implies that the only information that can be used is the times
of infections. In real cases other information may be available, such as family connections
or spatial closeness.

Since the analysis is based only on infection times generation times will be essential. By
analyzing a special and very simple model we have illustrated that individual variations in
how infectivity varies over time play an important part. This will also be the case in more
complicated and realistic models. The effect will be larger the more individual variation
there is.

A more surprising results may be that in a transmission tree not only the timing of
infections but also the strength of infectivity measured by e.g. R0 is important. This is the
case if there is individual variations in infectivity. Heuristically we can understand this as
an effect of the conditioning. If the infections are sparse and R0 is high it can be explained
by short infectious times.
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Appendix A

Let J1, . . . , Jv be independent Bernoulli variables with P(Ji = 1) = zi, i = 1, . . . , v, then

E

(

1

1 +
∑

Ji

)

=

v
∑

r=0

1

1 + r

∑

|y|=r

v
∏

i=1

(zi)
yi(1 − zi)

1−yi .

The right-hand side is a first degree polynomial in z1, . . . , zv. Elementary algebra shows
that the expression can be rewritten as

E

(

1

1 +
∑

Ji

)

=

v
∑

r=0

mr

∑

|y|=r

v
∏

i=1

zyi

i .

In this formula the coefficients, mr, may be identified by sequentially inserting Zi = 1 when
i ≤ r and 0 otherwise for r = 0, . . . , v. It is found that

mr =
(−1)r

1 + r
.

Appendix B

In the model referred to as case 1 the progress from infection to end of latent time and
to the end of infectious time is described by independent exponential distributed random
variables. Also time between infections are exponentially distributed. If we describe the
progress of the epidemic in terms of such events we find that the inter event times are
the smallest of a number of exponentially distributed times and thus also exponentially
distributed with intensities that is the sum of the intensities of the ongoing processes.

We will need some notation. Let E denote the event of a new infection, Li the end of the
latent period for infector i, and Ii the end of the infectious period for infector i. Suppose
that we now that the first infector infects the second person at time τ2. It follows that
the first infector is in an infectious period and the remaining distribution of that period is
exponentially distributed. The time till a new possible infectious contact is exponentially
distributed with intensity γ. We also know that the second infector is in a latent state. The
time till the end of the latency period is exponentially distributed with mean 1/µL and the
following infectious period is exponentially distributed with mean 1/µI .

In order that a third infection occurs at time τ3 = t + τ2 one of the following sequence
of events will have take place: (E), (L2, E), (L2, I1, E), (L2, I2, E), or (I1, L2, E).

Simple, but tedious, calculations yield that the likelihoods of these events are (in order)

G1(t) = γ exp(−(γ + µL + µI)t),

G2(t) =
γµL

µL − γ − µI

(exp(−2(γ + µI)t) − exp(−(γ + µL + µI)t)),

G3(t) = G4(t) =
1

2
(

γµI

γ + µI

exp(−(γ + µI)t)

−
γµIµL

(γ + µI)(µL − γ − µI)
exp(−2(γ + µI)t)

+
γµI

µL − γ − µI

exp(−(γ + µL + µI)t)),
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and

G5(t) =
γµI

µL − γ − µI

exp(−(γ + µI)t) −
γµIµL

(γ + µI)(µL − γ − µI)
exp(−µLt)

+
γµI

γ + µI

exp(−(γ + µL + µI)t).

The first infected person causes the third infections with probability 1 in the first and
fourth cases and with probability 1/2 in the second case. Thus the probability that the first
infected infects the third if this infection happens time t after τ2 can be calculated as

Z(t) =
G1(t) + G2(t)/2 + G4(t)

G1(t) + G2(t) + G3(t) + G4(t) + G5(t)
.

The probabilities P c
i illustrated in figures 6.1-6.4 can be calculated as Z(τ3 − τ2).

This kind of argument can be generalized to more than 3 infections in the chain and
to models with gamma distributed latent and infectious times. However, the complexity of
the calculations soon gets overwhelming.


