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Abstract

In commuting research, it is common to model choices as opti-

mization over a discrete number of random variables. In this paper

we extend this theory from the discrete to the continuous case, and

consider the limiting distribution of the location of the best o�er as

the number of o�ers tends to in�nity.

Given a set Ω ⊂ Rd of possible o�ers we seek a distribution over Ω,

the argmax measure of the best o�er. It depends on Λ, the sampling

distribution of o�er locations, and a measure index µ, which assigns

to each point x ∈ Ω a probability distribution of o�ers.

This problem is closely related to argmax theory of marked point

processes, altough we consider deterministic sequences of points in

space, to allow for greater generality. We �rst de�ne a �nite sample

argmax measure and then give conditions under which it converges as

the number of o�ers tends to in�nity.

To this end, we introduce a max-�eld of best o�ers and use con-

tinuity properties of this �eld to calculate the argmax measure. We

demonstrate the usefulness of the method by giving explicit formulas

for the limiting argmax distribution for a large class of models, in-

cluding exponential independent o�ers with a deterministic, additive

disturbance term. Finally, we illustrate the theory by simulations.

Key words: Argmax distribution, commuting, extreme value theory,

exponential o�ers, marked point processes, max �eld.
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1 Introduction

In commuting research, choices are o�ered at various points in space and
are assumed to have random value. It is of interest to determine which o�er
is optimal as well as deriving the statistical properties of the choice, both
in terms of the value of the o�er and its position in space. This is related
to random utility theory, the the branch of economics that has dealt most
with commuting decisions, and the theory postulates that we value options
according to a deterministic component and a stochastic disturbance term,
see Manski and McFadden (1981).

In this paper, we focus in particular on the positional distribution of the best
o�er, continuing studies initiated in Malmberg (2011, 2012). To this end, we
create a mathematical formalism of maximization over a potentially in�nite
number of random o�ers. To put it more formally, let Ω ⊆ Rk be a Borel
measurable set, and let PR denote the set of probability measures on R. We
index a set of distributions by µ : Ω → PR, where µ(x) is the distribution
of o�ers at location x ∈ Ω. Such an indexation can for example state that
the distribution of o�ers become shifted to the left the further away from
the origin we are, due to travelling costs. Secondly, we have a population
distribution Λ on Ω, giving us the relative number of o�ers we can expect
from di�erent locations.

The task is to de�ne the probability distribution of the location of the best
o�er when the relative intensity of o�ers is provided by Λ, and the relative
quality of o�ers by µ. We build the theory by �rst de�ning the probability
distribution of the location of the best o�er for �nite samples and then de�ne
a limiting distribution when the number of o�ers tends to in�nity.

It turns out that the distribution has very interesting mathematical proper-
ties, and that for particular choices of µ, including exponential distributions
with deterministic additive disturbances, this limit is also very explicit and
interpretable. In the process of answering our posed question, some the-
oretical tools are developed and results are derived that are interesting in
their own right. In the end, we show that that the theory can potentially be
extended in a number of interesting directions.

There is quite an extensive literature on ranom utility theory for �nite choice
sets, see for instance Marley and Colonius (1992), Mattsson et al. (2011) and
references therein. Our paper represents a generalization non-�nite choice
sets. In this, it has similar aims as Ben-Akiva et al. (1985), Resnick and Roy
(1989), and Dagsvik (1994). The main di�erence is that our approach does
not depend on the "independence of irrelevant alternatives" assumption on
the �nal distribution of choices. Instead, we let the numbers of alternatives
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grow where each alternative has a random utility with arbitrary distribution.
In our case, the continuous logit model is a special case when this arbitrary
distribution is an exponential distribution with determinstic, spatially vary-
ing, shifts.

The location of o�ers can be viewed as the realization of a point process,
cf. Cox and Isham (1980) and Diggle (2003). The value associated to each
o�er is a mark, and hence the joint sequence of locations and values of all
o�ers becomes a marked point process (Jacobsen, 2006). Our results are
closely related to an asymptotic theory for the argmax (or the position of
the largest record) of a marked point processes as the intensity of the point
process tends to in�nity. The limiting argmax distribution coincides with
Λ when the o�er distribution µ(x) ≡ H is independent of location. On
the other hand, when µ(x) varies with x we get a non-stationary sequence
of marks, which, under certain conditions, yields an associated non-trivial
limiting argmax distribution.

The theory which is most closely related mathematically to the one presented
in this paper is the theory of concomitants of extreme order statistics, see
for example Ledford and Tawn (1998) and the references therein. The main
di�erence is that we consider limits of deterministic point processes in con-
trast to large samples from explicitly bivariate distributions. Moreover, we
treat the case when µ corresponds to homoscedastic regression in particular
detail. To the best of our knowledge ours is the �rst attempt to apply an ap-
proach using random �elds to the analysis of concomitants of extreme order
statistics.

2 De�ning the argmax measure

In this section, we provide the de�nition of the argmax measure with respect
to µ and Λ. We will �rst introduce some relevant concepts needed to state
the de�nition.

De�nition 1 Let Ω ⊆ Rk and let

µ : Ω→ PR

where PR is the space of probability measures on on R. Then µ is called

an absolutely continuous measure index on Ω if, for each x ∈ Ω, µ(x) is

an absolutely continuous probability measure on R with respect to Lebesgue

measure.
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Unless otherwise stated, µ refers to an absolutely continuous measure index
and Ω is a subset of Rk.

We will now introduce the basic building block of our theory: the argmax
measure associated with a deterministic set of points. Throughout the discus-
sion, elements of point sequences Nn = {xn1, xn2, ..., xnn} will be multi-sets,
i.e. the xn,i's are not necessarily distinct for identical n.

De�nition 2 An indexed random vector Y Nn
with respect to µ is a ran-

dom vector on Rn with independent components, where each component has

marginal distribution µ(xni).

Unless there is ambiguity, we omit the superscript Nn.

De�nition 3 The point process argmax-measure T̃N
n

µ is de�ned as

T̃N
n

µ (A) = P
(

max
1≤i≤n:xni∈Nn∩A

Yni ≥ max
1≤i≤n

Yni

)
= P(Xn ∈ A), (1)

for all Borel measurable sets A ⊆ Ω, and

Xn = arg max
xni∈Nn

Yni (2)

is the almost surely unique argmax of {Yni}.

We use the convention of putting a ∼ on top of objects having (deterministic)
empirical distributions as arguments, and drop∼ for their large sample limits.
We will write QΩ to denote the set of �nite multisets on Ω. With this
notation, T̃µ is a function from QΩ to RB(Ω)

+ , the family of non-negative set
functions on the Borel sigma algebra on Ω. We use the family of non-negative
set functions as we want to be able to consider mappings which possibly take
values which are not probability measures.
Even though Nn is a deterministic set of points, it can typically be thought of
as the realization of a point process. If so, we condition on the randomness
associated with that process. In any case, it is convenient to de�ne the
empirical distribution function

PNn

(A) =
#{A ∩Nn}

n

for all Borel sets A ⊂ Ω.
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De�nition 4 For a probability distribution Λ, we de�ne the point sequence

domain of convergence as

N Λ =
{
{Nn} : PNn ⇒ Λ

}
i.e. the class of point sequences whose empirical distributions converge to Λ.

We have now introduced the concepts needed to de�ne the argmax measure.

De�nition 5 (Limiting argmax measure.) A probability measure TΛ
µ such

that

T̃N
n

µ ⇒ TΛ
µ (3)

for all {Nn}n∈N ∈ NΛ will be called an argmax measure with respect to µ and

Λ. Here (and everywhere else in the paper), ⇒ refers to weak convergence.

3 Calculating the argmax measure

In this section, we will develop a method for calculating the argmax measure.
For each Nn, we attach a particular random �eld M̃Nn

. Thereafter, we
derive asymptotic properties of T̃N

n
by considering the asymptotic behavior

of M̃Nn
. We will �rst introduce random �elds and de�ne the relevant terms.

Thereafter, a notion of convergence in random �elds is introduced, and we
prove a result connecting this convergence with the convergence to an argmax
measure.

3.1 Random �elds in an argmax context

We write a random �eld over the sigma algebra of Ω as

M : S × B(Ω)→ R

where S is a generic sample space and B(Ω) denotes the Borel σ-algebra on
Ω. Thus, for �xed s,M(s, ·) is a set function on B(Ω) and for �xed A ∈ B(Ω),
M(·, A) is a random variable taking values in R. We sometimes write M(A)
as short-hand for M(·, A) and we write M(s, A) for a particular realization
of the random variable M(·, A). We will write MB(Ω) to denote the set of
all random �elds over B(Ω). See for instance Khoshnevisan (2002) for more
details on random �elds.
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Our most important random �eld will be

M̃Nn

=
{
M̃Nn

(A) = max
1≤i≤n:xni∈Nn∩A

Yni, A ∈ B(Ω)
}

(4)

with the convention that the maximum over the empty set is −∞. We note
that this is a function from QΩ toMB(Ω). The following operator on random
�elds is also important.

De�nition 6 The pseudo-argmax measure F :MB(Ω) → RB(Ω)
+ is de�ned by

F (A,M) = P (M(A) ≥M(Ω))

for all A ∈ B(Ω)

We note that F (·,M) is a set function in RB(Ω)
+ . It is clear from our de�nitions

that
F (·; M̃Nn

) = T̃N
n

which is illustrated in the following commutative diagram.

QΩ M̃
-MB(Ω)

RB(Ω)
+

F

?

T̃
-

We will use this commutative property to derive convergence in T̃ in De�ni-
tion 3 from convergence in M̃ .

3.2 Max-�elds

When considering the asymptotic properties of M̃Nn
, we have to worry about

two things. Firstly, although we know that F (·, M̃Nn
) is a probability mea-

sure on Ω, we do not know that this is true for a any candidate limiting
random �eld. Thus, we need a set of conditions onM to ensure that F (·;M)

is a probability measure. Secondly, to discuss limiting behavior we need a
notion of convergence, and it should have the property that F is continuous
under this de�nition with respect to the weak topology on RB(Ω)

+ .

De�nition 7 Let M : S × B(Ω)→ R be a random �eld over B(Ω). We call

M an (independence) max-�eld if the following seven properties hold:
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1. M(A) and M(B) are independent random variables whenever A∩B =

∅;

2. If I = A ∪B then M(I) = max{M(A),M(B)};

3. |M(A)| <∞ almost surely or M(A) = −∞ almost surely;

4. If A1 ⊇ A2 . . . , and
⋂
nAn = ∅, then M(An)→ −∞ almost surely;

5. If M(∅) = −∞;

6. If M(A) = −∞ almost surely, M(Ω \ A) > −∞ almost surely;

7. If M(A) > −∞ almost surely, M(·, A) is an absolutely continuous

probability measure on R with respect to Lebesgue measure

The assumptions in De�nition 7 have been chosen to enable us to prove the
following lemma.

Lemma 1 If the random �eld M is a max-�eld, then the pseudo argmax

measure F (·;M) is a probability measure over B(Ω).

Proof. To prove that F (. . . ;M) is a probability measure, we �rst note that

F (A;M) ∈ [0, 1]

for all A ∈ B(Ω). Furthermore, M(∅) = −∞ and M(Ω) > −∞ by property
6 and 7. Hence,

F (Ω;M) = P (M(Ω) > M(∅)) = 1.

We need to demonstrate countable additivity. As a �rst step, we establish
�nite additivity. We introduce a new notation for the residual set An+1 =
Ω \ ⋃ni=1Ai, and the events

Bi = {M(Ai) > M (Ω \ Ai)} for i = 1, 2, ..., n+ 1.

It is evident that F (Ai;M) = 0 if M(Ai) = −∞ so let us assume they are
not. By absolute continuity, the Bi's are almost surely disjoint. Hence,

F (A;M) = P (
⋃n
i=1Bi)

=
∑n
i=1 P(Bi)

=
∑n
i=1 F (Ai;M)
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For countable additivity, it su�ces to show that if A1 ⊇ A2 ⊇ A3 . . . such
that ∩nAn = ∅, then F (An;M) → 0. However, by De�nition 7, M(An) →
−∞ almost surely. Furthermore,

max{M(An),M(Ω \ An)} = M(Ω) > −∞

almost surely. Hence,

F (An;M) = P (M(An) > M(Ω \ An))→ 0,

and the proof is complete. 2

3.3 Derivation of calculation methods

We de�ne a notion of convergence onMB(Ω) under which the pseudo argmax-
measure map

F :MB(Ω) → RB(Ω)

is continuous with respect to the weak topology on RB(Ω). This gives us a
method to calculate the argmax measure.

De�nition 8 A sequence of max-�elds Mn on B(Ω) is said to m-converge to

the max-�eld M (Mn
m→M) if there exists a sequence gn : R→ R of strictly

increasing functions such that

gn(Mn(A))⇒M(A). (5)

for all A with

F (∂A,M) = 0

Theorem 1 Let {Mn} and M be max-�elds such that

Mn
m→M

Then

F (·,Mn)⇒ F (·,M)

where F (·,M) is the pseudo argmax-measure.

Before proving the theorem, we state an important corollary illustrating how
it can be used.
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Corollary 1 Suppose there exists a max-�eld MΛ such that for all Nn ∈ NΛ

M̃Nn m→MΛ

Then, the argmax measure TΛ exists and is given by

TΛ = F (·;MΛ). (6)

Proof of corollary. We note that

T̃N
n

= F (·; M̃Nn

)

and apply Theorem 1 to conclude that

T̃N
n ⇒ F (·;MΛ)

for all {Nn} ∈ NΛ. By De�nition 5, TΛ is the argmax measure. 2

Proof of Theorem 1. Let A ⊆ Ω be measurable with F (∂A;M) = 0. We
seek to show that F (A;Mn)→ F (A;M), and consider three cases.

Case 1. M(A),M(Ac) > −∞ a.s.. By the assumption of m-convergence and
F (∂A;M) = 0, we can �nd a sequence of strictly increasing functions gn such
that

gn(M̃Nn

µ (A)) ⇒ M(A)

gn(M̃Nn

µ (Ac)) ⇒ M(Ac)

hold simultaneously. As gn(M̃Nn

µ (A)) and gn(M̃Nn

µ (Ac)) are independent for
all n, this means that

gn(M̃Nn

µ (A))− gn(M̃Nn

µ (Ac))⇒M(A)−M(Ac)

By De�nition 7, M(A) and M(Ac) are absolutely continuous with respect to
lesbesgue measure and independent, and therefore their di�erence is abso-
lutely continuous. Hence,

F (A;Mn) = P(M̃Nn

µ (A) > M̃Nn

µ (Ac))

= P(gn(M̃Nn

µ (A)) > gn(M̃Nn

µ (Ac)))

= P(gn(M̃Nn

µ (A))− gn(M̃Nn

µ (Ac)) > 0)
→ P(M(A)−M(Ac) > 0)
= F (A;M)

where we use absolute continuity to conclude that 0 is a point of continuity
of M(A)−M(Ac). Therefore, we get

F (A;Mn)→ F (A;M)
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Case 2. M(A) = −∞ a.s. From De�nition 7, M(Ac) > −∞ almost surely,
which means that F (A;M) = 0. Furthermore,

gn (Mn(A)) ⇒ −∞.
gn (Mn(Ac)) ⇒ M(Ac) > −∞.

We can �nd K such that P(M(Ac) > K) = 1 − ε, and n0 such that for all
n ≥ n0, P (gn (Mn(A)) < K) > 1 − ε and P (gn (Mn(Ac)) > K) > 1 − 2ε.
Then, for all n ≥ n0, P(Mn(A) > Mn(Ac)) < 3ε. As ε was arbitrary, we get

F (A;Mn)→ 0 = F (A;M).

Case 3. M(Ac) = −∞. We use F (A,Mn) = 1−F (Ac,Mn) to conclude from
Case 2 that

F (A,Mn)→ 1.

Furthermore, F (A;M) = 1 as

F (A;M) = P (M(A) > M(Ac))
= 1.

and we get that
F (A;Mn)→ F (A;M)

in this case as well

2

4 Argmax measure for homoscedastic regres-

sion models

The result in Corollary 1 shows that the tools developed in the previous
section give a method for calculating the argmax measure that is workable
insofar it is possible to �nd a max-�eld MΛ

µ to which M̃Nn

µ m-converges for
all Nn ∈ NΛ.

In this section we make a particular choice

Yni = m(xni) + εni, (7)

for i = 1, . . . , n, where m : Ω→ R is a given deterministic regression function
and {εni} are independent and identically distributed (i.i.d.) error terms with
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a common distribution functionH. This is a homoscedastic regression model,
corresponding to a measure index

µ(x) = H(· −m(x)). (8)

In order to to �nd the limiting behavior of the empirical max-�eld M̃Nn

µ

de�ned in (4), we note that for all A with Λ(A) > 0, |A∩Nn| → ∞ as n→∞,
which means that maximum is taken over a large number of independent
random variables. Thus, the natural choice is to apply extreme value theory.

We will divide the exposition into four subsections. First we state a classical
result in extreme value theory for m ≡ 0, and its speci�c counterpart related
to o�ers H ∼ Exp(s) having an exponential distribution with mean s. The
second subsection develops the extreme value theory for exponential o�ers
with varying m(x), in order to calculate a max-�eld MΛ

µ to which M̃Nn

µ

m-converges for an appropriate sequence gn of monotone transformations.
Then Corollary 1 is applied in order to calculate the argmax measure TΛ

µ .
The fourth subsection considers more brie�y other distributions H than the
exponential.

4.1 Some extreme value theory

The following theorem is a key result in extreme value theory, see for instance
Fisher and Tippett (1928), Gnedenko (1943), Leadbetter et al. (1983), Gum-
bel (2004) and Resnick (2008).

Theorem 2 (Fisher-Tippet-Gnedenko Theorem.) Let {Yn} be a sequence
of independent and identically distributed (i.i.d.) random variables and let

Mn = max{Y1, Y2, . . . , Yn}. If there exist sequences {an} and {bn} with

an > 0 such that

lim
n→∞

P
(
Mn − bn

an
≤ x

)
= G(x)

for all x ∈ R, then G belongs to either the Gumbel, the Frechet, or the Weibull

family.

Under a wide range of distributions of Yn, convergence does occur, and
for most common distributions the convergence is to the Gumbel(γ, β) law,
whose distribution function has the form

G(x; γ, β) = exp

(
− exp(−x− γ

β
)

)
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for some parameters γ and β and x ∈ R. We can give a more precise
statement of Gumbel convergence with an = 1 and bn = log(n) when the
random variables Yi have a standard exponential distribution, see for instance
Resnick (2008) for a proof.

Proposition 1 Let {Yi}ni=1 be a sequence of i.i.d. random variables with

Yi ∼ Exp(s). Then

max
1≤i≤n

Yi − s log(n)⇒ Gumbel(0, s).

4.2 Exponential o�ers

It turns out that the argmax theory for homoscedastic regression models de-
pends crucially on the error distribution H, and the exponential distribution
is an important boundary between more light and heavy tailed distributions.
Therefore, we treat H ∼ Exp(s) separately in this subsection.

4.2.1 Limiting max-�eld with varying m(x)

Ordinary extreme value theory assumes that random variables are indepen-
dently and identically distributed. However, in our case we do not have
identically distributed random variables, as the additive term m(x) varies
over space (for references on the theory of extremes with non-identically
distributed random variables, see for example Weissman (1975), Horowitz
(1980) and Hüsler (1986)). Thus, we prove a result characterizing the max-
�eld with H ∼ Exp(s) and m(x) varying.

Theorem 3 Let M̃Nn

µ (A) be as de�ned in (4), with Yni −m(xni) ∼ Exp(s)

independently for i = 1, . . . , n and s > 0. Suppose Λ is a probability measure

on the Borel σ-algebra on Ω and that the following properties hold:

1. m is bounded

2. {Nn}n≥1 ∈ NΛ

3. Λ(D̄m) = 0, where Dm = {x ∈ Ω : m(x) is discontinuous at x} and

D̄m = closure(Dm).

Then (5) holds with gn(y) = y/s− log(n), i.e.

M̃
′Nn

µ (A) = M̃Nn

µ (A)/s− log(n)⇒MΛ
µ (A)
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for all A with Λ(∂A) = 0, where

MΛ
µ (A) = log

(∫
A
em(x)/sΛ(dx)

)
+ Gumbel(A). (9)

The notation Gumbel(A) refers to a standard Gumbel(0,1) random variable,
with Gumbel(A) and Gumbel(B) independent for all A ∩B = ∅.
Proof. After a standardization Yni ← Yni/s, we may without loss of gener-
ality assume s = 1.

Let A ⊂ Ω with Λ(∂A) = 0. We note that we have weak convergence of PNn

to Λ when both measures are restricted to A∩ D̄c
m, and that on this set m is

a continuous bounded function. Thus, by the properties of weak convergence
(cf. e.g. Billingsley 1999), we get

1
n

∑
1≤i≤n:xin∈A em(xin)

=
∫
A∩D̄cm e

m(x)dPNn
(x) + 1

n

∑
1≤i≤n:xin∈A∩D̄m e

m(xin)

→
∫
A∩D̄cm e

m(x)dΛ(x) + 0

=
∫
A e

m(x)dΛ(x)

(10)

The last sum on the �rst line tends to 0 as we can write

m̄ = sup
x∈Ω

m(x) (11)

and get

1
n

∑
1≤i≤n:xin∈A∩D̄m e

m(xin) ≤ 1
n

∑
1≤i≤n:xin∈A∩D̄m e

m̄

= 1
n
nPNn

(A ∩ D̄m)em̄

→ Λ(A ∩ D̄m)em̄

≤ Λ(D̄m)em̄

= 0,

where in the second last step we utilized that

Λ
(
∂(A ∩ D̄m)

)
≤ Λ(∂A) + Λ(∂D̄m) ≤ Λ(∂A) + Λ(D̄m) = 0 + 0 = 0,

since D̄m is a closed set. We can use (10) to derive the max-�eld directly.
With gn(y) = y − log(n) we get that if Zn = log(P(gn

(
M̃Nn

µ (A)
)
≤ y)) it

holds that

Zn = log(P(M̃Nn

µ (A) ≤ y + log(n)))
=

∑
1≤i≤n;xni∈A log(1− exp(−y − log(n) +m(xni)))

= − exp(−y) 1
n

∑
1≤i≤n;xni∈A exp(m(xni) + e(n)

→ − exp(−y)
∫
A exp(m(x))Λ(dx)

= − exp(−y + log (
∫
A exp(m(x))Λ(dx)))

13



where we recognize the last line as the logarithm of a Gumbel distribu-
tion function with an additive term log (

∫
A exp(m(x))Λ(dx)) as required.

Thus, we have proved our result provided we can verify that the error term
e(n)→ 0.

To show this we note that

e(n) =
∑

1≤i≤n;xni∈A
log(1−exp(−y−log(n)+m(xni)))+exp(−y−log(n)+m(xni))

Indeed, using the well-known result that

|log(1− x) + x| ≤ x2

1− x

we get that

|e(n)| ≤
∑

1≤i≤n;xni∈A

exp(−2y − 2 log(n) + 2m(xni))

1− exp(−y − log(n) +m(xni))
→ 0

and we have proved our result. 2

Proposition 2 The random �eld de�ned by

M(A) = log
(∫

A
em(x)/sΛ(dx)

)
+ Gumbel(A)

is a max-�eld in the sense of De�nition 7 when m and Λ satisfy the conditions

of Theorem 3.

Proof. We note that property 1 clearly holds as the M(A) and M(B) are
measurable with respect to independent σ-algebras. Property 2 can be shown
to hold by the properties of the Gumbel distribution. Property 3 holds as m
is bounded. Property 4Â and 5Â hold as limx→0 log(x) = −∞. Property 6
can be veri�ed directly from the expression of M, and Property 7 is true as
the Gumbel distribution is absolutely continuous. 2

4.2.2 Argmax distribution

In Corollary 1, it was shown that the limiting behavior of M̃Nn

µ determines the
argmax measure. Thus, we can use the limit derived in Theorem 3 together
with Proposition 2 and Corollary 1 to derive the argmax measure associated
with µ and Λ.
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Theorem 4 Let µ(x) = m(x) + Exp(s) and let Λ be a probability measure

on Ω. Suppose that Λ and m jointly satisfy the conditions in Theorem 3.

Then the argmax measure TΛ
µ exists and is given by the exponentially tilted

distribution

TΛ
µ (A) = C

∫
A
em(x)/sΛ(dx), (12)

where

C =
(∫

Ω
em(x)/sΛ(dx)

)−1

(13)

is a normalizing constant. In particular, if Λ has a density function λ with

respect to Lebesgue measure ν on Ω, then TΛ
µ has the density function

tΛµ(x) = Cλ(x) exp(m(x)/s) (14)

for x ∈ Ω, i.e. TΛ
µ (A) =

∫
A t

Λ
µ(x)ν(dx) for all Borel sets A ⊂ Ω.

Proof. After standardizing data Yni ← Yni/s, we may, without loss of
generality, assume that s = 1. Proposition 2 states that MΛ

µ , de�ned as in
Theorem 3. is a max-�eld, and in order to �nd its pseudo argmax measure we
let G(x) = G(x; 0, 1) = e−e

−x
denote the distribution function of a standard

Gumbel distribution and put L(A) = log
(∫
A e

m(x)dΛ(x)
)
. Then

F (A;MΛ
µ ) = P

(
MΛ

µ (A) > MΛ
µ (Ω \ A)

)
=

∫∞
−∞ P (M(A) ∈ dr)P (M(Ω \ A) < r)

=
∫∞
−∞G

′ (r − L(A))G (r − L(Ω \ A)) dr

=
∫∞
−∞ e

−r+L(A)e−e
−r+L(A)

e−e
−r+L(Ω\A)

dr

= eL(A)
∫∞
−∞ exp(−r) exp

(
−e−r+L(Ω)

)
dr

= C
∫
A e

m(x)Λ(dx)

for all Borel sets A.

Then note that Theorem 3 implies that

M̃Nn

µ (A)− log(n)⇒MΛ
µ (A) (15)

holds for {Nn}n≥1 ∈ N Λ and all Borel sets A with Λ(∂A) = 0. It can be
shown that if Λ(∂A) > 0, we have F (∂A,MΛ

µ ) > 0. Consequently, M̃Nn

µ
m→

MΛ
µ . Finally, Corollary 1 implies that the argmax measure TΛ

µ = F (·;MΛ
µ )

exists and is given by (12) 2

Theorem 4 is remarkably simple and explicit. It turns out that this is due
to the memoryless property of the exponential distribution. Indeed, suppose
{xni}ni=1 is an i.i.d. sample from Λ, with n large. Recall de�nition (11) of

15



m̄, put I = arg max1≤i≤n Yni and assume for simplicity s = 1. Then, for any
i = 1, . . . , n,

P(I = i) ≈ P(Yni ≥ m̄)P(I = i|Yni ≥ m̄)
≈ e−(m̄−m(xni))/ (nP(m(X) + ε ≥ m̄))

∝ em(xni)/
(
n
∫

Ω e
m(x)PNn(dx)

)
≈ em(xni)/

(
n
∫

Ω e
m(x)Λ(dx)

)
.

In the �rst step we utilized that max1≤i≤n Yni ≥ m̄ holds with probability
close to 1 when n is large, and in the second step approximated the number
of i for which Yni = m(xni) + εni ≥ m̄ as

n∑
i=1

1{m(xni)+εni≥m̄} ≈ nP(m(X) + ε ≥ m̄),

where {xni, εni}ni=1 is an i.i.d. sample from Λ × Exp(1). Finally, we used
the memoryless property of the exponential distribution to deduce that all
indeces i with Yni ≥ m̄ have the same conditional probability of being the
argmax, i.e. I = i.

4.3 Non-exponential o�ers

In the previous subsection, we found that with m �xed, exponentially dis-
tributed o�ers gave us a one-parameter family of argmax distributions, in-
dexed by s > 0. We will now provide arguments for other error distributions
and �nd that the exponential case provides the borderline between more
light- and heavy-tailed distributions. Loosely speaking, for light-tailed distri-
bution, it is only the extremal behavior of m that determines the asymptotic
argmax distribution, whereas m has no asymptotic impact for heavy-tailed
distributions.

4.3.1 Light-tailed error distributions

Formally, the light-tailed case corresponds to the class of distribution for
which the moment generating function of the disturbance function is �nite
for the whole real line. For simplicity, we assume that the support of the
continuous distribution H has an upper bound

K = sup{x; H(x) < 1} <∞,

and that m is not constant. Applying the identity transformation gn(y) = y,
we deduce that

M̃Nn

µ (A)⇒MΛ
µ (A) = K + sup

x∈A
m(x).

16



The limiting max �eldMΛ
µ is a degenerate in the sense thatMΛ

µ (A) has a one
point distribution, so that the absolute continuity Property 7 of De�nition
7 is violated. Therefore we cannot use Theorem 1 in order to deduce the
argmax measure, but have to employ a more direct argument.

Given any ε > 0, we let h(x) = H ′(x) and de�ne the measure

Λε(A) = C
∫
A

h (K − ε+ m̄−m(x))

H[K − ε+ m̄−m(x), K]
Λ(dx),

with h(x) = 0 if x > K, m̄ as in (11), the convention H([K ′, K]) = 0 when
K ′ > K, and C = C(ε) a normalizing constant chosen so that Λε(Ω) = 1.
Assume further that a limit measure Λmax exists, supported on the set

Ωmax = {x ∈ Ω;m(x) = m̄}

where m is maximal, such that

Λε ⇒ Λmax as ε→ 0. (16)

It is reasonable to assume that Λε should approximate the conditional distri-
bution of Xn given that Yn:n = max1≤i≤n Yni = m̄ + K − ε. (A more formal
argument is provided below).Hence (16) suggests that

TΛ
µ = Λmax, (17)

since Yn:n tends in probability to m̄ + K as n grows. In order to establish
(17) according to De�ntion 5, we need a slightly stronger condition though
than (16), as the following theorem reveals:

Theorem 5 For any ε > 0, put

PNn

ε (A) = Cn

∫
A

h (K − ε+ m̄−m(x))

H[K − ε+ m̄−m(x), K]
PNn

(dx),

where Cn = Cn(ε) is a normalizing constant assuring that PNn

ε (Ω) = 1, and

Qn(ε) =
∫ ε

0

dε′

Cn(ε′)
=
∫

Ω
H ([K − ε+ m̄−m(x), K])PNn

(dx).

Assume that

PNn

Q−1
n (c/n)

⇒ Λmax as n→∞ (18)

uniformly for all c ∈ (0, c̄], for any c̄ > 0, with Q−1
n the inverse function of

Qn. Then (17) holds.

17



Proof: According to De�nition 5, we need to prove T̃N
n

µ ⇒ Λmax for any
{Nn}n≥1 ∈ NΛ. Let Zn = m̄+K − Yn:n. We �rst note that

P (Xn = xni|Zn) = h(m̄+K −m(xni)− Zn)
∏
j 6=iH(m̄+K −m(xnj)− Zn)

∝ h(m̄+K−m(xni)−Zn)
H(m̄+K−m(xni)−Zn)

where Xn is de�ned as in (2). By conditioning on Zn we notice that

T̃N
n

µ (A) =
∫ ∞

0
PNn

ε (A)FZn(dε). (19)

Zn furthermore has the property that

nQn(Zn)⇒ Exp(1)

Indeed, for x > 0, we can use the monotonicity of Qn to deduce that

P (nQn(Zn) ≤ x) = P (Zn ≤ Q−1
n (x/n))

= 1−∏n
i=1(1−H[K + m̄−m(xni −Q−1

n (x/n), K])
→ 1− e−x

where the last step uses the well known fact
n∏
i=1

(1− an,i)→ e−a

if

lim
n→∞

n∑
i=1

an,i = a

and limn→∞max an,i = 0. These conditions hold in our case as∑n
i=1H[K + m̄−m(xni −Q−1

n (x/n), K] = nQn(Q−1
n (x/n))

= x

and limn→∞maxH[K+ m̄−m(xni−Q−1
n (x/n), K] = 0 assuming that H has

no point mass on K.
Thus, nQn(Zn)⇒ Exp(1), and we conclude the proof by performing a change
of variable c = nQn(ε) on (19) to get

T̃N
n

µ (A) =
∫ ∞

0
PNn

Q−1
n (c/n)

(A)FnQn(Zn)(dc). (20)

Letting e(c, n) = |Λmax(A) − PNn

Q−1
n (c/n)

(A)| which tends uniformly to 0 on
[0, c̄) for any c̄, we get that

|T̃Nn

µ (A)−Λmax(A)| ≤ sup
c∈[0,c̄)

e(c, n)P (nQn(Zn) ∈ [0, c̄))+P (nQn(Zn) /∈ [0, c̄))

which can be made arbitrarily small. Thus, our proof is completed.

2
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4.3.2 Heavy-tailed error distributions

It can be shown that the class of heavy-tailed distributions corresponds to
those for which the moment-generating function is unde�ned for positive
values. For simplicity, we consider the class of Pareto distributions with
shape parameter α > 0 and scale parameter 1, i.e.

H(x) = Pareto(x;α, 1) = 1− x−α

for x ≥ 1. Then Theorem 2 holds with bn = 0, an = n1/α, and

G(x) = Frechet(x;α, 1, 0) = exp(−x−α)

for x > 0 has a Frechet distribution with shape parameter α, scale parameter
1 and location parameter 0. Since an increases with n at polynomial rate, it
turns out that any local variation of the bounded function m has no impact
on the asymptotic max �eld, as the following result reveals:

Theorem 6 Let M̃Nn

µ (A) be as de�ned in (4), with Yni−m(xni) ∼ Pareto(α, 1)

independently for i = 1, . . . , n. Suppose Λ is a probability measure on the

Borel σ-algebra on Ω and that properties 1-3 of Theorem 3 hold.

Then (5) holds with gn(y) = y/n1/α, i.e.

M̃Nn

µ (A)/n1/α ⇒MΛ
µ (A) = Λ(A)1/αFrechetα(A) (21)

for all A with Λ(∂A) = 0. Moreover the argmax measure exists and is given

by

TΛ
µ = Λ. (22)

In the notation, Frechetα(A) refers to a Frechet(α, 1, 0) distributed random
variable for any Borel set A ⊂ Ω, which is independent of Frechetα(B) for B
such that A ∩B = ∅.

Proof. We begin by (21). Let A be a measurable set with Λ(∂A) = 0. Then,
if Fn,A is the distribution function of M̃Nn

µ (A)/n1/α we have

logFn,A(y) = log
(∏

xn,i∈A P (Yn,i +m(xn,i) ≤ n1/αy)
)

=
∑

1≤i≤n,xn,i∈A log
(
1− (n1/αy −m(xn,i))

−α
)

=
∑

1≤i≤n log
(

1− (y−n−1/αm(xn,i))
−α

n

)n
I(xn,i∈A)

n

=
∑

1≤i≤n f(n, i)h(n, i)

(23)
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As m is bounded, f(n, i)→ −y−α uniformly over i. Therefore, we get

limn→∞ logFn,A(y) = limn→∞
∑

1≤i≤n f(n, i)h(n, i)

= −y−α limn→∞
∑

1≤i≤n
I(xn,i∈A)

n

= −y−αΛ(A)

(24)

where the last step uses weak convergence of PNn
to Λ. After exponentiation

we recognize the right-hand side, as required, as the distribution function of
Λ(A)1/αFrechetα(A).

It remains to prove (22). To this end, we notice that pseudo argmax measure
of MΛ

µ equals

F (A;MΛ
µ ) = P

(
Λ(A)1/αFrechetα(A) > Λ(Ac)1/αFrechetα(Ac)

)
= P (Λ(A)Frechet1(A) > Λ(Ac)Frechet1(Ac))
= Λ(A),

(25)

where the last line follows from the properties of the Frechet distribution.
Indeed, if X, Y ∼ Frechet1 independently,

P (Λ(A)X > Λ(Ac)Y ) =
∫∞

0
Λ(A)
y2 Exp(−Λ(A)y−1)Exp (−Λ(Ac)y−1) dy

= Λ(A)
∫∞

0 1/y2 exp(−y−1)dy
= Λ(A),

(26)
Since F (·;MΛ

µ ) = Λ, it follows from (21) that M̃Nn

µ
m→ MΛ

µ . Hence, by
Corollary 1, TΛ

µ = F (·;MΛ
µ ) = Λ exists. 2

5 Examples

We will investigate the accuracy of the asymptotic results for the homoscedas-
tic regression model by simulation, generating n random points xi on R or
R2 according to some probability distribution Λ. Then we generate

Yi = m(xi) + εi, i = 1, . . . , n,

for some prede�ned functionm, where {εi}ni=1 are i.i.d. random variabels with
distribution H. We then return the max M = Yn:n = max1≤i≤n Yi and the
argmax X = xn:n. We repeat the procedure 10, 000 times and draw either
histograms or QQ-plots for X and/or M together with their theoretically
predicted densities. In the �rst two examples we consider exponential o�ers
with H ∼ Exp(1).
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Example 1 (Optimal exponential o�ers in one dimension.) We display
density plots of X for three one-dimensional examples, when either Λ ∼
U(−1, 1) and m(x) = |x| (Figure 1), Λ ∼ Weibull(2, 1) and m(x) =

√
x+ 1

(Figure 2) and Λ ∼ LogN(0, 1) and m(x) = −x2 (Figure 3). In all cases our
theoretical prediction (14) bears out. This illustrates the generality of the
results proved in Section 4. 2
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Figure 1: Histogram of argmax distribution when the sampling distribution
is Λ ∼ Weibull(2, 1), m(x) =

√
x+ 1, s = 1 and n = 1000. The solid curve

is the asymptotic density (14).

Example 2 (Commuting with exponential o�ers.) The second illustra-
tion is the commuting example that motivated this work, as discussed in
the introduction. We sample from a uniform distribution over a disc Ω =

B100(0, 0) ⊂ R2 of radius 100, i.e.

λ(x) =
1

1002π
1{||x||<100},

with ||x|| =
√
x2

1 + x2
2 the Euclidean distance. We let

m(x) = −0.05× ||x||

be a function that describes travel costs and record the distance ||X|| to the
origin of the best o�er, see Figure 4. We note that the argmax density (14)
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Figure 2: Histogram of argmax distribution when the sampling distribution
Λ is a standard lognormal distribution, m(x) = −x2, s = 1 and n = 1000.
The solid curve is the asymptotic density (14).

of X is
tΛµ(x) = Cλ(x) exp(−cr)1{||x||<100}

for c = 0.05 and a normalizing constant C. By integrating, we get a truncated
gamma density

f||X||(r) = 2πrtΛµ(x) =
2r exp(−cr)

1002
1{0<r<100} (27)

for the distance to the best o�er. We also plot the density of the best valueM
in Figure 5, corresponding to the distribution MΛ

µ (Ω) in (9), which simpli�es
to

Gumbel

(
log

(∫ 100

0

2re−cr

1002
dr

)
, 1

)
, (28)

using the fact that
∫
Ω λ(x)em(x)dν(x) = C−1 = 100−2

∫ 100
0 2r exp(−cr)dr. It is

seen that the �nite sample distributions of ‖X‖ andM are well approximated
by their asymptotic limits. 2

Example 3 (General o�er distributions.) We will now consider more
general error distributions H. In particular, we will contrast the behav-
ior when H is light-tailed and heavy-tailed respectively. In both cases we let
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Figure 3: Histogram of distance to origin ||X|| for argmax of a uniform
sample on B100(0, 0) when m(x) = −0.05 × ||x||, s = 1 and n = 1000. The
solid curve is the asymptotic truncated gamma density (27).
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Figure 4: Histogram of best valueM onB100(0, 0), whenm(x) = −0.05×||x||,
s = 1 and n = 1000. The solid curve is the asymptotic density corresponding
to (28).

Ω = [0, 1] and Λ the uniform distribution on [0, 1]. For the light-tailed case
we consider a uniform H ∼ U(0, s) for various choices of s and

m(x) = 1{x∈[0.5,1]}. (29)
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According to the theory for light-tailed distribution, the limiting argmax
distribution (17) should be uniformly distributed on [0.5, 1].

For the heavy-tailed case we consider H ∼ Pareto(α, 1) and m(x) = 0.5x.
In this case the theory (22) predicts that despite the varying m, the limiting
argmax distribution should equal Λ ∼ U(0, 1).

The results are displayed in Figures 5 and 6, with di�erent plots for di�erent
n. The various colors show di�erent parameters of the H-distribution and
illustrate that the rate of convergence depends negatively on the spread of
the distribution H.

2

Example 4 (A counterxample.) Let Ω = {0, 1}, µ(0) ∼ U(−1, 0), µ(1) ∼
U(0, 1) and Λ = δ0, the point mass at 0. In this case an argmax distribution
TΛ
µ does not exist. Indeed, consider two di�erent multi-sets Nn and N̄n, with

empirical distributions

PNn
=

(
1− 1√

n

)
δ0 + 1√

n
δ1,

P N̄n
= δ0

respectively that both converge weakly to Λ. However, it is easy to see, either
directly, or through max �elds, that T̃N

n

µ = δ1 and T̃ N̄
n

µ = δ0 for all n. Hence,
according to De�nition 5, TΛ

µ does not exist. The problem arises since µ(0)

and µ(1) have disjoint supports. More generally, it su�ces that µ(0) and
µ(1) have di�erent supports to the right for De�nition 5 to fail. 2

6 Discussion and Extensions

In this paper we set out to de�ne and prove limit results about the concept of
an argmax measure over a continuous index of probability distributions. A
reasonable de�nition has been provided, and we have expanded the toolbox
available to address these types of problems by introducing the max-�eld
concept. The usefulness of the developed method is shown when applied to a
regression model with homoscedastic error terms. We found that the limiting
argmax distribution is nontrivial for exponential white noise, which provides
a borderline between more light- and heavy distributions.

There are plenty of potential generalizations and extensions of the theory
available on the basis of the work done in this paper, as discussed in Malm-
berg (2012). Firstly, it is possible to construct a theory where the locations
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Figure 5: QQ-plots for varying n when Λ ∼ U [0, 1], m(x) is given by (29) and
H ∼ U [0, s], with s = 1 green, s = 2 blue, and s = 5 red. The asymptotic
argmax distribution, given by (17), equals U(0.5, 1).

xni of o�ers are not deterministic, but rather allow there to be stochasticity
in the selection of points, leading to a doubly stochastic problem. When
{xni}ni=1 is a point process, this yields an argmax theory of marked point
process as the intensity of the underlying point process tends to in�nity. In
particular, when (xni, Yni) = (xi, Yi) is an i.i.d. sequence of pairs of random
variables, the argmax distribution for a sample of size n is the concomitant
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Figure 6: QQ-plots for varying n when Λ ∼ U [0, 1], m(x) = 0.5x and H ∼
Pareto(α, 1), with α = 0.5 green, α = 1 blue, and α = 5 red. The asymptotic
argmax distribution (22) thus equals U(0, 1).

of the extreme order statistic among Y1, . . . , Yn.

Secondly, it is of interest to derive explicit argmax limits for other measure
indeces µ than homoscedastic regression models. Generally, if all {µ(x)}x∈Ω

are similar enough, their di�erence will asymptotically have no impact, so
that TΛ

µ = Λ, as in (22). On the other hand, if {µ(x)}x∈Ω di�er a lot and can
be linearly stochastically ordered, only the stochastically largest distributions
will contribute to the limiting argmax distribution, i.e. TΛ

µ (A) = Λmax, a
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measure supported on the set

Ωmax = {x ∈ Ω;µ(x) stochastically largest},

as in (17). The challenge is to �nd other non-trivial argmax distributions
between these two extremes. One such argmax distribution is provided by
(12). Another example is derived from a mixture class

µ(x) = (1− p(x))U(−1, 0) + p(x)U(0, 1) (30)

of probability measures, where p : Ω → [0, 1] gives the location dependent
mixture between two uniform distributions. It can be seen, when {xni}ni=1 is
an i.i.d. sample from Λ, that bn = 1, an = 1/n and gn(y) = n(y − 1) gives a
max �eld

MΛ
µ (A) ∼ −Exp

(
(
∫
A
p(x)Λ(dx))−1

)
and argmax law

TΛ
µ (A) = C

∫
A
p(x)Λ(dx)

that is a weighted distribution with weight function p, cf. Patil (2002).

Thirdly, it would be interesting to generalize the point process approach
described in Chapter 4 of Resnick (2008) for d = 1 and stationary mark
distributions (µ(x) ≡ H for some H). This entails establishing weak conver-
gence of the sequence of point processes ξn =

∑n
i=1 δ(xni,gn(Yni)) as n→∞ to

an appropriate Poisson Random Measure ξ =
∑∞
i=1 δ(xi,Yi) on Ω × R. Once

this is done, the limiting max �eld and argmax distributions are

MΛ
µ (A) = max

i;xi∈A
Yi.

and
TΛ
µ (A) = P(X ∈ A),

respectively, with X = arg maxxi Yi.

Fourthly, the max �elds are related to extremal processes, as described for
instance in Chapter 4 of Resnick (2008). Indeed, when d = 1 and Ω = (0, 1],
we may de�ne

MΛ
µ(t) = MΛ

µ ((0, t])

and
M̃′Nn

µ (t) = gn
(
M̃Nn

µ ((0, t])
)

for 0 < t ≤ 1. Suppose o�er locations are equispaced (xni = i/n), marks
stationary (µ(x) ≡ H) and gn(y) = (y − bn)/an, with an and bn the nor-
malizing constants of Theorem 2 when Yi ∼ H. Then MΛ

µ is an extremal
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process generated by H and functional weak convergence M̃′Nn
µ ⇒MΛ

µ can
be established on D(0, 1], the space of right continuous functions on (0, 1]
with left hand limits, embedded with the Skorohood topology. Theorem 1
can be viewed as an analogous (marginal) convergence result for max �elds
corresponding to more general sampling dimensions d, sampling distributions
Λ and possibly nonstationary measure indeces with varying µ(x).

Fifthly, it is possible to allow for dependent o�ers. For instance, one may
consider a triangular array

Yni = m(xni) + Z(xni) + εni, i = 1, . . . , n,

of o�ers, with m a deterministic mean function, Z : Ω → R a zero mean
random �eld and {εni}ni=1 zero or constant mean white noise. Such models
are are frequently encountered in spatial statistics (Cressie, 1993). In this
paper we have focused on models with Z ≡ 0 and homoscedastic error terms
εni ∼ H, although (30) is another possible choice, with m(x) = p(x) − 1/2
and heteroscedasticity, since the variance of (30) depends on x. Conversely,
Z 6= 0 and εni ≡ 0 leads to models with no nugget e�ect and an argmax
theory or random �elds, since, as n→∞, the distribution of the argmax Xn

should be close to that of

X∞ := arg max
x∈Ω

(m(x) + Z(x)) ,

provided supp(Λ) = Ω and that m + Z is su�ciently regular (for instance
continuous), with a unique maximum almost surely.
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