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Abstract

We present a general method for joint computation of the variance e�ec-

tive sizeNeV , the �xation index FST and the coe�cient of gene di�erentiation

GST for a class of structured populations with very general migration and

reproduction properties, where the size of each particular subpopulation is

constant in time. Our approach is relevant when migration rates are of larger

magnitude than mutation rates, so that new mutations can be ignored before

quasi equilibrium between genetic drift and migration is obtained. The vec-

tor valued time series of subpopulation allele frequencies is divided into two

parts; one corresponding to genetic drift of the whole population and one

corresponding to the dynamics of �uctuations of allele frequencies between

subpopulations. After a simple standardization, the latter is shown to be

in equilibrium, conditional on that no allele is �xed in the population. This

enables us to compute quasi equilibrium approximations of NeV , FST and

GST .

Our �ndings are illustrated for several reproduction and migration sce-

narios, including the island model, stepping stone models and a model where

one subpopulation acts as a genetic reservoir. We also discuss overlapping

generations and extensions to randomly varying subpopulation sizes.
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1 Introduction

Most populations exhibit some degree of spatial, age, size, social or ethnic
heterogeneity. This structure is often quite complicated and in�uences the
dynamics of the population. From a genetic point of view, a few summary
statistics of the population are often extracted that broadly characterize its
main properties. The e�ective population size was introduced by Wright
(1931, 1938). It is the size of an ideal population exhibiting the same rate
of genetic drift as the studied one. For models with spatial substructure,
the �xation index of Wright (1951) quanti�es the degree of heterogeneity
between subpopulations.

Many closely related de�nitions of the e�ective population size and �xation
index exist, see for instance Orrive (1993), Caballero (1994), Wang and Ca-
ballero (1999), Waples (2002), Ewens (2004), Ryman and Leimar (2008) and
Hössjer et al. (2012). We will focus on de�nitions in terms of variance of allele
frequency di�erences, over time and space respectively. Once a mutation has
occurred at a given locus, we will disregard the occurrence of new mutations
at the same locus before equilibrium is attained. Consequently, in absence of
new mutations, the e�ective size of the population quanti�es the rate of loss
of heterozygosity or rate of increased inbreeding. It is therefore important to
assess this size and prevent it from getting too low, see Palstra and Ruzzante
(2008) and Hare et al. (2011) for recent reviews for wildlife populations, in
particular marine species.

Equilibrium values of the �xation index can be derived, for the in�nite is-
land model, from results of Sved and Latter (1977). For �nite populations,
no equilibrium value exists in absence of new mutations, since some allele
will eventually get �xed at any locus. However, Hössjer et al. (2012) derived
quasi equilibrium values of the �xation index for the �nite island model, con-
ditionally on no �xation. We now extend this approach to joint computation
of the �xation index and e�ective population size at quasi equilibrium, for a
large class of �nite population models. This class includes general migration
schemes between and reproduction schemes within subpopulations, subject
only to the constraint of constant subpopulation sizes over time.

The paper is organized as follows: In Sections 2 and 3 we de�ne the dynamics
of how genes are passed on from one time point to the next in the context
of one biallelic locus. In particular, we de�ne the e�ective population size,
the �xation index and the vector valued and time inhomogeneous process
of subpopulation allele frequencies. In Section 4 we demonstrate how this
process can be decomposed into two parts, one corresponding to genetic drift
of the whole population and the other to �uctuations of allele frequencies
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between subpopulations. After a simple standardization, the latter becomes
a (quasi) stationary process. Based on this, we present in Section 5 a general
algorithm for computing the quasi equilibrium e�ective population size and
�xation index. To illustrate the generality of our approach, several examples
of reproduction and spatial migration are presented in Sections 6 and 7.
In Section 8 we consider multiallelic and multilocus extensions and show
that the coe�cient of gene di�erentiation of Nei (1973) has the same quasi
equilibrium value as the �xation index. Numerical results are presented in
Section 9 and possible extensions are brie�y discussed in Section 10. Finally,
the more technical derivations are presented in the appendix.

2 Migration Model

Consider a population with N diploid individuals, each one having two copies
of a particular genetic marker, i.e. a �xed portion of DNA. We will simply
refer to this marker as a gene, so that the population consists of 2N genes. We
further assume that the population can be divided into s ≥ 2 subpopulations.
These may refer to geographical sites, age classes, social or ethnic groups of
combinations thereof, see for instance Nordborg and Krone (2002), Sagitov
and Jagers (2005), Hössjer (2011) and references therein. Let ai refer to the
relative size of subpopulation i, so that

s∑
i=1

ai = 1. (1)

We further assume that the population evolves in discrete time t = 0, 1, . . .
with relative subpopulation sizes that remain constant. Hence the number
of diploid individuals of subpopulation i is Nai in any generation.

Consider a �xed generation t and number the genes of each subpopulation
k as l = 1, . . . , 2Nak. In order to describe how genes of generation t are
passed on to the next generation t+1, we introduce νlt,ki = νlki as the number
of copies of a particular gene l of subpopulation k in generation t that are
passed on to subpopulation i in the next generation. Passing on should here
be interpreted broadly, either as being transmitted to o�spring individuals,
or that the individual carrying the gene survives to the next generation and
migrates from k to i. In order to keep subpopulation sizes constant, we
require

s∑
k=1

2Nak∑
l=1

νlki = 2Nai, i = 1, . . . , s. (2)
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We will also introduce the migration rate mki between subpopulations k and
i, by assuming

2Nak∑
l=1

νlki = 2Nakmki(1 + o(1)), (3)

where o(1) is a remainder term that tends to zero as N grows. If {νlki}
2Nak
l=1

are exchangeable random variables, it follows from (3) that

E(νlki) = mki(1 + o(1)).

Hence, mki is essentially the average number of copies that the genes of
subpopulation k pass on to subpopulation i in the next generation.

Combining (2) and (3), we �nd that

s∑
k=1

akmki = ai (4)

for all i = 1, . . . , s. This implies that a = (a1, . . . , as) is a left eigenvector
of the migration matrix M = (mki) with eigenvalue 1 (Caswell, 2001). Re-
versing time, the probability that the parent of a gene of subpopulation i
originates from subpopulation k is of the order

bik =
akmki

ai
. (5)

Because of (4), it is easy to see that B = (bik) is the transition matrix of
a Markov chain, having row sums 1. This Markov chain is assumed to be
irreducible and aperiodic, with asymptotic distribution γ = (γ1, . . . , γs). In
general γ di�ers from a, although they agree for many well known migration
models, see Nagylaki (1980) and Subsection 7.1 for further details. The global
migration rate

m′ = 1−
s∑
i=1

aimii = 1−
s∑
i=1

aibii (6)

is de�ned as the fraction of o�spring of the whole population that in each
generation migrates to another subpopulation. Complementary to m′, it is
also important to know whether migration in one step is local or global. To
this end, we de�ne the one step neighborhood Nk = {i; i 6= k,mki > 0} of
each subpopulation k as well as their average relative size

|N | = 1

s− 1

s∑
k=1

ak|Nk|, (7)

which is a di�erent concept than the neighborhood size NS of Wright (1946),
developed for continuous spatial isolation by distance models.

Table 1 contains a list of the most important symbols used in the paper.
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3 E�ective Population Size and Fixation Index

Assuming a biallelic gene, we let Pti denote the fraction of subpopulation i
at generation t with a given allele, so that

pt =
s∑
i=1

aiPti (8)

refers to the frequency of the same allele in the whole population at time t.
In order to describe the time dynamics of the allele frequencies, we notice
that pt+1,i would equal

∑s
k=1 bikPtk if individuals of subpopulation i received

genes in exact proportions bi1, . . . , bis from the subpopulations of the parental
generation, and in addition the allele frequencies of genetic material trans-
mitted from subpopulation k to i was identical to Ptk, the allele frequency
of the parental subpopulation k. However, the subpopulation proportions
of parental origin as well as transmitted allele frequencies from the various
subpopulations will exhibit some random variation, motivating the recursion
formula

P t+1 = BP t + εt+1 (9)

for the vector P t = (Pt1, . . . , Pts)
T of subpopulation allele frequencies, with

T denoting matrix transposition. The random error term εt+1 is assumed to
satisfy

E(εt+1|P t) = 0, (10)

corresponding to a selectively neutral allele, with covariance matrix

Cov(εt+1|P t) = Σ(P t), (11)

the form of which will depend on the reproduction model. Hence P t is
a multivariate autoregressive time series (Brockwell and Davis, 1987) with
some degree of heteroscedasticity, since Σ(P t) depends on P t.

The two quantities of main interest for us are the variance e�ective population
size

NeV,t =
pt(1− pt)

2Var(pt+1 − pt|pt)
(12)

and �xation index

FST,t =

∑s
i=1 ai(Pti − pt)2

pt(1− pt)
, (13)

see for instance equation (12.13) in Nei and Kumar (2000).
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4 Quasi Equilibrium

We will study the long run behaviour of NeV,t and FST,t before one allele gets
�xed in all subpopulations, so called quasi equilibrium. This means that con-
ditionally no �xation, the joint distribution of NeV,t and FST,t will converge,
so that they exhibit �uctuations around means F eq

ST and N eq

eV , referred to as
the quasi equilibrium values of the �xation index and e�ective population
size.

Our �ndings will depend crucially on the properties of the vector valued
time series of allele frequencies P t. Since B has largest eigenvalue 1, this
time series is non-stationary, and therefore no equilibrium solution exists.
However, for large enough populations, P t can be decomposed into a sum of
two parts;

P t = Pt1 + P 0
t , (14)

where 1 = (1, . . . , 1)T and

Pt =
s∑
i=1

γiPti = γP t. (15)

The �rst term on the right hand side of (14) is non-stationary. It describes
how the average allele frequency drifts with time. Subpopulation allele fre-
quencies are weighted together according to γ rather than a, and therefore
Pt typically di�ers slightly from pt, unless a = γ. The second term P 0

t of
(14) is also non-stationary, and it corresponds to local subpopulation allele
frequency �uctuations around Pt. However, we will see below that a simple
normalization by (Pt(1−Pt))−1/2 makes this process stationary, thus enabling
computation of N eq

eV and F eq

ST .

Interestingly, the decomposition (14) has some resemblance with cointegra-
tion of time series in econometrics (Granger, 1981, Engel and Granger, 1987).
In our case there are s non-stationary time series Pti, one for each subpop-
ulation. If they are combined by means of a linear combination, the re-
sulting cointegrated time series is stationary provided the vector of weights
v = (v1, . . . , vs) is orthogonal to 1 (see the appendix) and that the above
mentioned normalization (Pt(1− Pt))−1/2 is applied.

Analogously to (14), we decompose the error term of (9) as εt = εt1 + ε0
t ,

with εt =
∑s
i=1 γiεti = γεt. The recursion formula (9) is then reformulated

as
Pt+1 = Pt + εt+1,
P 0
t+1 = BP 0

t + ε0
t+1 = B0P 0

t + ε0
t+1,

(16)

6



where in the second equation we utilized that (BP t)
0 = BP 0

t and intro-
duced the matrix B0, that di�ers from B in that the eigenvalue of the right
eigenvector 1 has been changed from 1 to 0, see the appendix for more details.
The �rst part of (16) describes the dynamics of the genetic drift of the allele
frequency of the whole population, whereas the second part describes the
dynamics of the spatial subpopulation �uctuations of the allele frequencies.

For our purposes, it is enough to know the �rst and second moment properties
of the quasi equilibrium distribution. To this end, in addition to (10) and
(11), we assume that

E(P 0
t |Pt) = 0, (17)

corresponding to a selectively neutral allele. Moreover, in the appendix we
motivate that

Λt =
Cov(P 0

t |Pt)
Pt(1− Pt)

→ Λ (18)

and

Σt =
Cov(εt+1|Pt)
Pt(1− Pt)

=
E(Σ(Pt1 + P 0

t )|Pt)
Pt(1− Pt)

→ Σ (19)

as t grows if the population is a large enough, so that Pt drifts slowly enough,
using (10) in the second equality of (19).

Once Σ and Λ have been found, the quasi equilibrium values of the e�ective
population size and �xation index satisfy the approximations

N eq

eV ≈
1− (a− γ)Λ(a− γ)T

2 (a(B − I)Λ(B − I)TaT + aΣaT )
(20)

and

F eq

ST ≈
∑s
i=1 ai

(
(I − 1a)Λ(I − 1a)T

)
ii

1− (a− γ)Λ(a− γ)T
(21)

respectively, with I the identity matrix of order s, see the appendix for
details.

5 Computational algorithm

Explicit expressions of N eq

eV and F eq

ST can be obtained for some very simple
models. In general this is not possible though. Instead, we present an al-
gorithm for evaluating (20) and (21) that is applicable for a wide range of
models.

Let vech denote the half vectorization that transforms the lower part of a
symmetric matrix of order s to a column vector of length s(s + 1)/2. It is
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shown in the appendix that vech(Σ) and vech(Λ) satisfy the linear system
of equations

vech(Σ) = f − F vech(Λ),
vech(Λ) = Gvech(Σ),

(22)

for some square matrices F and G of order s(s+ 1)/2 and column vector f
of length s(s + 1)/2. This gives an algorithm for computing N eq

eV and F eq

ST

that involves the following steps:

1. Select total population size N and spatial structure, i.e. number of
subpopulations s and migration matrixM .

2. Compute a as the left eigenvector of M corresponding to the largest
eigenvalue λ, normalized so that

∑s
i=1 ai = 1, where λ = 1 because of

(4). If not, replaceM byM/λ.

3. Compute the transition matrix B of the backward Markov chain from
(5) and evaluate its equilibrium distribution γ.

4. Compute G in (22) from (68)-(75) in the appendix.

5. Select reproduction scenario and compute f and F in (22) from (56)
and (57) in the appendix. This is exempli�ed in (84), (86) and (88).

6. Find Σ and Λ by solving (22), i.e. evaluating vech(Σ) = (J +FG)−1f
and vech(Λ) = Gvech(Σ), where J is the identity matrix of order
s(s+ 1)/2.

7. Evaluate N eq

eV and F eq

ST from (20) and (21).

The only input parameters of this algorithm are N , s and M of step 1 and
the reproduction scenario (which may involve additional parameters) of step
5.

In the following two sections, we will illustrate the usefulness of (20) and (21)
for several reproduction and migration models.

6 Reproduction scenarios

Reproduction scenario 1 (Exact migration proportions.) Suppose (3)

holds exactly, so that 2Nakmki of the genes of subpopulation k are trans-

ferred to subpopulation i in the next generation. Assume further that {ν lk =

(νlk1, . . . , ν
l
ks)}

2Nak
l=1 for each k is a collection of exchangeable random vectors.
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We can then, without loss of generality, assume that genes l = 1, . . . , 2NakPtk
of subpopulation k have one of the alleles in generation t. The allele frequency

of the genes that are passed on to subpopulation i is then

P ∗tki =
1

2Nakmki

2NakPtk∑
l=1

νlki. (23)

Combining the contribution to i from all subpopulations k = 1, . . . , s, we

thus have

Pt+1,i =
s∑

k=1

bikP
∗
tki. (24)

It turns out that the only further properties of νlki needed in order to compute

Σ (see (86) in the appendix) are independence of {ν lk}
2Nak
l=1 for di�erent k and

the covariances

Vkij = Cov(νlki, ν
l
kj), (25)

which do not depend on l because of the exchangeability assumption. 2

Reproduction scenario 2 (Fertilization precedes migration.) Assume

that an in�nitely large gamete pool is constructed from gametes of individu-

als of subpopulation k and generation t, with allele frequency P̃tk. We allow

P̃tk to di�er from Ptk to account for varying reproductive rate among the indi-

viduals of subpopulation k and model this by selecting Nek ≤ Nak breeders,

which represents the local e�ective size of subpopulation k (see Hössjer et

al., 2011). We assume that all 2Nek breeding genes contribute in equal pro-

portions to the gamete pool. If the genetic marker is selectively neutral, the

allele frequency of the gamete pool has a hypergeometric distribution;

P̃tk|Pkt ∼ Hyp(2Nak, 2Nek, Pkt)/(2Nek). (26)

Then 2Nakmki genes are drawn independently (between genes and subpop-

ulations i) from the gamete pool (26), with allele frequency

P ∗tki|P̃tk ∼ Bin(2Nakmki, P̃tk)/(2Nakmki).

It is shown in the appendix that this is a special case of (23) with

Vkij ∼ 1{i=j}mki +mkimkj

(
Nak
Nek

− 1
)
. (27)
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Notice that νlki and νlkj, i 6= j, are uncorrelated (and in fact independent)

when Nek = Nak, i.e. when all genes of subpopulation k become breeding

genes. 2

Reproduction scenario 3 (Migration precedes fertilization.) For pol-

lination of plants, it is of interest to reverse the order of migration and repro-

duction, so that gametes rather than individuals migrate. After migration,

the new gamete pool of subpopulation i has allele frequency

P̌ti =
s∑

k=1

BikP̃tk, (28)

with P̃tk as in (26). Then 2Nai genes are drawn randomly from the post-

migration gamete pool, yielding an allele frequency

Pt+1,i|P̌ti ∼ Bin(2Nai, P̌ti)/(2Nai) (29)

of subpopulation i in the next generation t+ 1. When Bik = bik the gamete

pools mix in exact proportions. More generally, we can allow for random

mixing, where the rows

(Bi1, . . . , Bis) ∼ Dir (αi(bi1, . . . , bis)) (30)

have independent Dirichlet distributions for i = 1, . . . , s, so that E(Bik) = bik
and

Cov(Bij, Bik) =

{
bik(1− bik)/(αi + 1), j = k,

−bijbik/(αi + 1), j 6= k.
(31)

The parameter αi ≥ 0 quanti�es the amount of random variability of the

mixing proportions when the contents of gamete pools from various subpop-

ulations k migrate to subpopulation i. When αi = 0, all parents of subpop-

ulation i are selected from the same randomly chosen subpopulation, with

probabilities bik, whereas αi =∞ gives exact mixing proportions Bik = bik.

Notice that this model is not a special case of (25), since the remainder term

of (3) is not zero, although it is asymptotically negligible when N and αi
are both large. However, exact mixing proportions alone (αi = ∞) are not

su�cient for a vanishing remainder term in (3). 2
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7 Spatial Structures

7.1 Equal reproductivity of all subpopulations.

The productivity of subpopulation k is de�ned as the average number of
o�spring

mk· =
s∑
i=1

mki

of its members. It follows from (4) that the average productivity of all
populations, weighted according to their sizes, is

s∑
k=1

akmk· =
s∑

k=1

ak
s∑
i=1

mki =
s∑
i=1

ai = 1, (32)

a consequence of the constant total population size.

If all subpopulations are to be equally productive, it follows from (32) that
mk· = 1 for all k. Then there is no systematic drift due to migration, i.e.
E(pt+1|pt) = pt, and γ = a, see for instance Hössjer (2011). Since a(B−I) =
γ(B − I) = 0, it follows that (20) simpli�es to

N eq

eV =
1

2aΣaT
. (33)

Moreover, the de�nition of Λ implies aΛ = γΛ = 0, and therefore (21)
simpli�es to

F eq

ST =
s∑
i=1

aiΛii. (34)

For reproduction scenario 2, if all local e�ective sizes equal the local census
sizes (Nek = Nak), it follows from calculations in the appendix (cf. (84)) that
Σ is a diagonal matrix with entries

Σii =
1

2Nai

(
1−

s∑
k=1

bikΛkk

)
(35)

Inserting this expression into (33) and using
∑s
i=1 aibik = ak, since a = γ,

we obtain

N eq

eV =
1

2
∑
i=1 a

2
iΣii

=
N

1−∑s
k=1 akΛkk

=
N

1− F eq

ST

, (36)

the well known formula originally derived by Wright (1951) for the island
model. Wang and Caballero (1999, eqn. 15) showed the validity of (36) more
generally when fertilization precedes migration.
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For reproduction scenario 3, a similar calculation when Nek = Nak (see (88))
yields

N eq

eV =
N

1−∑s
i=1 ai(BΛB)ii +

∑s
k=1 Λkk

∑s
i=1

a2i
1+αi

bik −
∑s
i=1

a2i
1+αi

(BΛB)ii
.

(37)
However, neither (36) nor (37) hold when Nek 6= Nak, since Σ is then no
longer diagonal.

Spatial structure 1 (Island model.) The most well known population

genetic model with spatial structure is the island model (Wright, 1943,

Maruyama, 1970b). All subpopulations (or islands) have equal size, ak = 1/s,

and migration is symmetric, so that a fraction m of the o�spring select island

uniformly (including its present island), and the remaining fraction 1−m of

o�spring never migrate. This corresponds to

M = B = (1−m)I +
m

s
11T , (38)

an overall migration rate m′ = m(s − 1)/s (cf. (6)) and an average relative

size |N | = 1 of the one-step neighborhood in (7). In general it is not possible

to �nd explicit expressions for N eq

eV and F eq

ST . However, due its symmetry, the

island model is an exception.

Consider reproduction scenario 2, with a constant local e�ective population

size Nek = Ne for all islands. Then, it is shown in the appendix that (20)

and (21) simplify to

N eq

eV =
sNe

1− F eq

ST

(39)

and

F eq

ST =
1

s
s−1

2Ñ (1− (1−m)2) + 1
(40)

respectively, with
1

Ñ
=

(1−m)2

Ne

+
2m−m2

N/s
(41)

a weighted harmonic average of Ne and N/s. Formula (40) was derived in

Hössjer et al. (2011) by other methods, exploiting that FST,t is a univariate

autoregressive time series for the island model. Related expressions for F eq

ST

can also be found in Wright (1943), Nei (1975), Takahata (1983), Takahata

and Nei (1984) and Ryman and Leimar (2008).
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For reproduction scenario 3, with Nek = Ne and αi = α, the corresponding

formulas

N eq

eV =
sNe

1− F eq

ST +
(
Ne

N/s
+ 2Ne

α+1

)
(1− (1−m)2)F eq

ST

(42)

and

F eq

ST =
1

( s
s−1
− 1

α+1
)2Ñ (1− (1−m)2) + Ñ

Ne
(1−m)2

(43)

are valid when α is large or Ne = N/s. Formula (42) is, to the best of our

knowledge, new, and (43) extends a formula of Hössjer et al. (2011) to α 6= 0.

2

Spatial structure 2 (Stepping stone models.) In natural populations,

migration is often restricted to neighbouring subpopulations. Kimura (1953)

proposed a class of stepping stone models that re�ect this behaviour. Its �rst

mathematical treatment appeared in Kimura and Weiss (1964) and Weiss

and Kimura (1965). When s ≥ 3, the one-dimensional circular version of the

stepping stone model has all subpopulations distributed on a circle with

mki =


1−m, i = k,

m/2, i = k + 1 or k − 1 modulo s,

0, otherwise.

(44)

When s = 2, the nonzero o�diagonal elements are instead m12 = m21 = m,

since k + 1 = k − 1 modulo 2. Maruyama (1970a) considered the eigenvalue

e�ective population size N eq

eE when either m → 0 or N → ∞. Based on his

asymptotic results, Wang and Caballero (1999) suggested the approximation

N eq

eE ≈ sNe +
s2

2mπ2
, (45)

for all values of m, when Nek = Ne = N/s and s is an even integer.

A linear stepping stone model can be de�ned when s ≥ 3 that di�ers from

(44) in that no direct communication occurs between the end populations 1

and s, i.e. m1s = ms1 = 0. All other o�-diagonal elements of M are given

by (44), whereas the diagonal elements satisfy m11 = mss = 1 − m/2 and

mii = 1−m for 2 ≤ i ≤ s− 1.

A two-dimensional stepping stone model has s = s1s2 subpopulations {i =

(i1, i2); 1 ≤ i1 ≤ s1, 1 ≤ i2 ≤ s2} positioned on a rectangular grid, with
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s1 ≥ 2 and s2 ≥ 2. In order to avoid edge e�ects we identify islands along the

left edge as neighbours to those along the right edge, provided their second

coordinates agree. Similarly, we identify islands along the bottom and top

edges as neighbours whenever their �rst coordinates agree. Consequently,

the islands can be thought of as uniformly positioned along a torus with

migration intensities

m(k1,k2),(i1,i2) =


1−m, (i1, i2) = (k1, k2),

m/4, i2 = k2 and i1 = k1 + 1 or k1 − 1 modulo s1,

m/4, i1 = k1 and i2 = k2 + 1 or k2 − 1 modulo s2,

0, otherwise,
(46)

when s1 ≥ 3 and s2 ≥ 3. When s1 and/or s2 equals 2, the o�-diagonal

entries m(k1,k2),(i1,i2) are added for those (i1, i2) that correspond to the same

subpopulation.

When s1 ≥ 3 and s2 ≥ 3, a rectangular version without edge e�ects is de�ned

by putting those o�-diagonal elements in M that correspond to transitions

between opposite edges. Hence, the diagonal elements are 1−m for interior

subpopulations, 1− 3m/4 along edges and 1−m/2 at corners.

It is easily veri�ed that B = M , a = γ = 1T/s for all four stepping stone

models. After some computation, this implies that the average relative size

of the one step neighborhood in increasing order is |N | = min(1, 2/(s − 1))

for the linear model, |N | = 2/s for the circular model, |N | = (4 − 2(s−1
1 +

s−1
2 ))/(s−1) for the rectangular model and |N | = (4−1{|s1|=2}−1{|s2|=2})/(s−

1) for the torus model. The overall migration rate is m′ = m for the circular

and torus models, m′ = m(s− 1)/s for the linear model and m(1− 0.5(s−1
1 +

s−1
2 )) for the rectangular model. See Durrett (2008) for more results on

stepping stone models. 2

7.2 Varying reproductivity of subpopulations

In general the reproductivity mk· varies between members of di�erent sub-
populations k. The migration matrix may then be expressed as

M = RF , (47)

with R = diag(m1·, . . . ,ms·) a diagonal matrix of reproductivities, F =
(fki)

s
k,i=1 the transition matrix of a forward Markov chain and fki the prob-

ability that a copy of a subpopulation k gene that is passed on to the next
generation ends up in subpopulation i.
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Spatial structure 3 (Genetic reservoir.) Suppose s ≥ 2 and that one

subpopulation s acts a genetic reservoir for the other subpopulations 1, . . . , s−
1. The reservoir is located in the center of a circle and the other subpopu-

lations symmetrically along its perimeter. We assume that the productivities

m1· = . . . = ms−1,· and sizes a1 = . . . = as−1 of the perimeter populations

are identical, with

0 < m1· < 1 < ms· (48)

determining how much more productive the reservoir is compared to the

other subpopulations. It follows from (1) and (32) that

a1 =
1

s− 1

ms· − 1

ms· −m1·
and as =

1−m1·

ms· −m1·
.

When s ≥ 4, the entries of the forward transition matrix are speci�ed as

fki =



β, k = s, i = 1, . . . , s− 1,

1− (s− 1)β, k = i = s,

γ, k = 1, . . . , s− 1, i = s,

δ/2, k = 1, . . . , s− 1, i = k − 1 or k + 1 modulo s− 1,

1− γ − δ, k = i = 1, . . . , s− 1,

0, otherwise.

When s = 3, the migration rates for i = k − 1 and i = k + 1 modulo

s−1 are added together, since they correspond to the same subpopulation i.

When s = 2, we put δ = 0. The perimeter islands act as a circular stepping

stone model with migration from the reservoir and internal probability δ

that any gene migrates to a neighbouring perimeter island. The other two

parameters γ and β control the degree of gene �ow between the reservoir and

the perimeter populations. It turns out that in order for (4) to hold, β and

γ must be related as

(s− 1)asms·β = as(ms· − 1) + (s− 1)a1m1·γ,

where the left hand side is the total migration rate from the reservoir to

the perimeter, the �rst term on the right hand side is the migration rate

from the reservoir needed to keep its population size constant in absence of

immigration, and the last term is the total migration rate from the perimeter

to the reservoir.

Hence there are four parameters; m1·, ms·, δ and γ that can be varied in this

model subject to constraints (48), 0 ≤ δ ≤ 1 and 0 < γ ≤ min(1 − δ, (1 −
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m1·)/(m1·(ms· − 1))). Given δ, the upper bound on γ gives the maximal

possible gene �ow between the reservoir and perimeter, and it assures that

all diagonal elements of F are non-negative. The total migration rate (6) is

m′ = (s− 1) (a1m1·(γ + δ) + asms·β) .

Because of (48), we typically have E(pt+1|pt) 6= pt and γ 6= a. 2

8 Multilocus and multiallelic extension

Assume there are L genetic markers, with the l:th marker having alleles
q = 1, . . . , nl for l = 1, . . . , L. Let P lq

ti and plqt =
∑s
i=1 aiP

lq
ti refer to the

frequency of allele q at marker l in subpopulation i and the whole popula-
tion respectively. If there was no di�erentiation among subpopulations, the
fraction of heterozygots in generation t would be

HTt =
1

L

L∑
l=1

1−
nl∑
q=1

(plqt )2

 ,
whereas the expected fraction of heterozygots, averaged over all subpopula-
tions, in generation t, is

HSt =
s∑
i=1

ai
1

L

L∑
l=1

1−
nl∑
q=1

(P lq
ti )2

 .
The coe�cient of gene di�erentiation

GST,t =
HTt −HSt

HTt

=

∑
lq

∑s
i=1 ai(P

lq
ti − p

lq
t )2∑

lq p
lq
t (1− plqt )

(49)

is a multiallelic and multilocus extension of FST,t. In the appendix, it is
shown that (21) is a valid quasi equilibrium formula for GST,t as well, i.e.

Geq

ST ≈
∑s
i=1 ai

(
(I − 1a)Λ(I − 1a)T

)
ii

1− (a− γ)Λ(a− γ)T
. (50)

Indeed, we argue that the the approximation (50) is increasingly accurate
the larger the number of loci L is.
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9 Numerical Results

In Figure 1 we display N eq

eV and F eq

ST as functions of the migration rate m′

in (6) for the island and various stepping stone models when fertilization
precedes migration. In general, the larger the average relative size |N | of the
one step neighborhood (cf. (7)) is, the smaller N eq

eV and F eq

ST are. However,
N eq

eV varies very little between the linear stepping stone model (with smallest
|N |) and the island model (with largest |N |). The �xation index F eq

ST varies
somewhat more, at least in relative terms. We also notice that although N eq

eV

and F eq

ST vary not only with the local e�ective size Ne, but also with the local
census size Nak, the dependence on the latter is very small (see also Hössjer
et al., 2011).

When migration precedes fertilization, the impact of the Dirichlet parameter
αi = α in (30) is quite dramatical, as shown in Figure 2. Even though sub-
population sizes are kept �xed, a larger variability of migration proportions
(a smaller α) implies a substantially decreased N eq

eV as well as a lowered F eq

ST .
As in Figure 1 we conclude that the migration structure (island or stepping
stone) has less e�ect.

In Figure 3 we compare N eq

eV with the eigenvalue e�ective population size
N eq

eE in (45) for the circular stepping stone model. The agreement is quite
good, although for small migration rates N eq

eE is somewhat larger.

Quasi equilibrium is approached at a rate determined by the eigenvalue of
the matrix B0 in (16) with largest modulus. In the appendix, it is shown
that this so called spectral radius of B0 equals |λ2| < 1, the second largest
modulus of the eigenvalue of B. It is close to 1 for moderate amounts of
migration and − log(|λ2|) ≈ 1 − |λ2| is the rate at which quasi equilibrium

is attained, which takes time O
(
(1− |λ2|)−1

)
. In Figure 4 it is shown that

1 − |λ2| is proportional to the migration rate m′ for the island and several
stepping stone models. However, the proportionality constant varies quite a
lot between models. The larger |N | is, the faster is the convergence to quasi
equilibrium.

Figure 5 shows, for the genetic reservoir model, that N eq

eV and F eq

ST are both
very sensitive to varying reproductivity between subpopulations. The larger
the migration rate ms· of the reservoir, the smaller are N eq

eV and F eq

ST . For
instance, when ms· = 20, the reservoir occupies as = 4.76% of the total
population. Still, almost all genes are inherited from the reservoir, so that
N eq

eV approximately equals the number of individuals Nas in it. On the other
hand, the migration rate δ between the perimeter islands and the migration
rate γ from the perimeter to the reservoir e�ect N eq

eV and F eq

ST very little.
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10 Discussion

In this paper, we have developed a general methodology for joint computation
of the �xation index and variance e�ective size of a large class of populations
exhibiting substructure. Conditioning on that no allele gets �xed in the pop-
ulation, we decompose the vector valued time series of subpopulation allele
frequencies into two parts, corresponding to genetic drift of the whole popu-
lation and genetic di�erentiation between subpopulations respectively. The
latter is stationary modulo a simple standardization, and it enables the quasi
equilibrium values of the �xation index and variance e�ective population size
to be computed as functions of the standardized covariance matrices of the
genetic drift (Σ) and the spatial allele frequency �uctuations (Λ).

The numerical illustrations reveal thatN eq

eV and F eq

ST are both very sensitive to
systematic variation of reproductivities between subpopulations, or random
variation of migration proportions between subpopulations. Apart from that,
a few parameters (such as s, m′ and Ne) seem to characterize N eq

eV and F eq

ST

quite well, whereas the exact spatial pattern and neighborhood structure is
less important.

Our approach relies on two approximations. First, once a mutation has oc-
curred at a given locus, we ignore the possibility of new mutations before
quasi equilibrium is attained. Thus the mutation rate has to be smaller than
the convergence rate 1 − |λ2| to quasi equilibrium, where |λ2| is the second
largest modulus of the possibly complex eigenvalues of B. For the island
model, this entails a mutation rate smaller than 1− |λ2| = m = sm′/(s− 1).
For other models, with smaller average relative size |N | of the one step neigh-
borhoods, 1−|λ2| is typically smaller but still of the same order of magnitude
as the migration rate m′. In any case, since mutation rates are thought to be
of the order of 10−4−10−3 for highly polymorphic markers such as microsat-
tellites and 10−7 − 10−6 for allozymes and single nucleotide polymorphisms
(Waples and Gaggiotti 2006; Allendorf and Luikart 2007), this puts very
mild restrictions on the migration rates. Secondly, we have simpli�ed the
algorithm for computing Σ and Λ by means of the large population approx-
imation

NeV (1− |λ2|)� 1, (51)

which implies that the amount of genetic drift or loss of heterozygosity is
small during the time it takes for quasi equilibrium to be attained. This
seems reasonable for most migration models unless the migration rate and
number of subpopulations are both very small. In principle, more compli-
cated expressions can be worked out for Σ and Λ by dropping (51). For the
island model, this has been done by Hössjer et al. (2012).
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A number of extensions are possible. Firstly, we could apply our approach
to populations that simultaneously accommodate spatial substructure and
overlapping generations. If the population consists of s = s1s2 subpopula-
tions {i = (i1, i2); 1 ≤ i1 ≤ s1, 1 ≤ i2 ≤ s2}, with geographic sites i1 and age
groups i2,

FST,t =

∑s1
i1=1 ai1·(Pti1· − pt)2

pt(1− pt)
is a more natural de�nition of the �xation index than (13), with ai1· =∑s2
i2=1 a(i1,i2) and Pti1· =

∑s2
i2=1 Pt,(i1,i2). The �xation index F eq

ST is still a func-
tion of the standardized covariance matrices Σ and Λ, although a di�erent
one than (21). The variance e�ective size N eq

eV is either computed from (20),
as the loss of genetic heterogeneity per time unit. Alternatively, to obtain
the genetic loss per generation, one has to multiply the denominator of (20)
by the mean generation time, see Engen et al. (2005a).

Secondly, (2) could be dropped, allowing the local as well as the total pop-
ulation sizes to �uctuate in time. For instance, Whitlock and Baron (1997)
and Nunney (1999) derive inbreeding e�ective population sizes under such
assumptions. In our setting of a variance e�ective population size, one could
allow N t = (Nt1, . . . , Nts), the vector of subpopulation sizes at time t, to
satisfy a recursion

N t+1 = N tM t

where M t is a stochastic Leslie matrix with E(M t) = M involving demo-
graphic, genetic as well as environmental e�ects, see Engen et al. (2005a,b).
The corresponding recursion

P t+1 = BtP t + εt+1

= BP t + εt+1,
(52)

of the subpopulation allele frequencies is slightly more complicated than (9).
The �rst error term εt involves the reproduction scheme, and is assumed
to satisfy E(εt) = 0 for a selectively neutral allele. The second error term
εt+1 = (Bt −B)P t + εt+1 involves both reproduction and stochastic migra-
tion rates. The entries of the backward Markov transition matrix Bt are
de�ned similarly to (5), but as functions ofM t and N t rather thanM and
a. Under small perturbations M t −M , we should have E(Bt) ≈ B and
hence E(εt+1) ≈ 0. If so, one can proceed as before, computing jointly the
covariance matrices of εt+1 and P

0
t conditional on Pt, and, �nally, expressions

for F eq

ST and N eq

eV .

Thirdly, the numerical algorithm in Section 5 involves solving the linear sys-
tem (22) of equations with s(s+ 1) unknown variables. For this reason, it is
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computationally feasible only for small s. Although the number of unknown
variables can be reduced to s(s + 1)/2 + s when Σ is diagonal (as in (35)),
the complexity is still of the same order of magnitude. Therefore, faster al-
gorithms would be of great use. If the entries of Σ and Λ only depend on
the distance between subpopulations (as for the circular and torus stepping
stone models), the number of parameters in (22) is reduced to s.

Fourthly, the spatial covariance matrix Λ is interesting in its own right, since
it enables quasi equilibrium autocorrelations

ρij =
Λij√
ΛiiΛjj

(53)

to be computed analytically between all pairs of subpopulations i and j. It
would be of great interest to compare (53) with simulation based tools for
spatial correlation, see Hardy and Vekemans (2002).

Appendix.

Jordan decomposition of B and motivation of (16). LetB = V DV −1

be the Jordan canonical form of B, with

D =


D1 . . .

0
. . .

...
...

...
0 . . . 0 Dr


a block diagonal matrix containing the (possibly complex-valued) eigenvalues
ofB along the diagonal. For each l = 1, . . . , r, the square matrixDl occupies
rows and columns jl−1 + 1, . . . , jl of D, with diagonal entries equal to λl, all
entries along the superdiagonal equal to 1 and all other entries of Dl equal
0. Hence λl is an eigenvalue of B of multiplicity jl − jl−1, with 0 = j0 <
j1 < . . . < jr = s. In particular, D is diagonal when all egienvalues of B are
distinct and r = s. Then the rows of V −1 contain the left eigenvectors of B
and the columns v1, . . . ,vs of V the right eigenvectors. See for instance Cox
and Miller (1965).

In any case, regardless of whetherD is diagonal or not, sinceB is a transition
matrix of a Markov chain, v1 = 1 is a right eigenvector with eigenvalue
λ1 = 1. By the assumed irreducibility and aperiodicity of this Markov chain,
it follows from the Perron Frobenius Theorem that |λj| < 1 for j = 2, . . . , r,
and without loss of generality, we may assume |λ2| ≥ |λ3| ≥ . . . ≥ |λr| ≥ 0.
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Introduce the scalar product (u,v) =
∑s
i=1 γiūivi for possibly complex-valued

column vectors u = (ui) and v = (vi) of length s, with ūi the complex
conjugate of ui. It can be shown that v2, . . . ,vs are all orthogonal to v1 with
respect to (·, ·). Indeed, if j = jl−1 + 1 and l = 2, . . . , r, we have Bvj = λlvj,
so that

λl(v1,vj) = (v1,Bvj)
=

∑s
i=1 γiv̄1i(Bvj)i

=
∑s
i=1 γi

∑s
k=1 bikvjk

=
∑s
k=1 vjk

∑s
i=1 γibik

=
∑s
k=1 γkvjk

= (v1,vj),

and hence (v1,vj) = 0 since λl 6= 1. In the second last step we used that
γ is the asymptotic distribution of B. If jl−1 + 2 ≤ j ≤ jl, we have Bvj =
λlvj + vj−1, and a similar calculation yields

(v1,vj) = (v1,Bvj) = (v1,vj−1) + λl(v1,vj) = λl(v1,vj),

using induction with respect to j in the last step. Since λl 6= 1, we conclude
again that (v1,vj) = 0.

It follows that
Bv = B(v1 + v0) = v1 +Bv0,

for any vector v, with v = (v,1). Since v0 is a linear combination of
v2, . . . ,vs, so is Bv0, and hence orthogonal to 1. Consequently, Bv0 =
(Bv)0.

De�ne D0 = diag(λ0
1, λ2, . . . , λs) by replacing the eigenvalue λ1 = 1 in D by

λ0
1 = 0 (or any other value −|λ2| ≤ λ0

1 ≤ |λ2|), and put

B0 = V D0V −1. (54)

Denote by ei = (0, . . . , 0, 1, 0, . . . , 0) the unit vector with 1 in position i and
zeros elsewhere. Since V −1v0 is linear combination of eT2 , . . . , e

T
s , it follows

that DV −1v0 = D0V −1v0, and hence Bv0 = B0v. 2

Motivating (18), (19) and (22). We will assume that the covariance
matrix (11) of the genetic drift is a quadratic form

Σij(P t) = fijPt(1− Pt)−
∑

1≤u≤v
Fij,uvP

0
tuP

0
tv +

s∑
u=1

Dij,uP
0
tu (55)

in P t, where P
0
t = (P 0

t1, . . . , P
0
ts). Indeed, (55) is satis�ed for all reproduction

scenarios studied in this paper (see below). Conditioning on Pt and taking
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expectation with respect to P 0
t , (55) and (19) imply

Σt,ij = fij −
∑

1≤v≤u
Fij,uvΛt,uv. (56)

or, using vector notation,

vech(Σt) = f − F vech(Λt), (57)

where Σt,ij refers to component number (j− 1)s+ i− j(j− 1)/2 of vech(Σt),
assuming i ≥ j and that the elements of Σt are listed columnwise from
column 1 (with s entries) to column s (with one entry). The elements of
the column vectors f = (fij) and vech(Λt) are listed in the same way, and
F = (Fij,uv) a square matrix of order s(s+ 1)/2, cf. the upper part of (22).

Next we derive a recursion formula for Λt. As a preliminary, we start by
introducing the e�ective population size

NeV,t =
Pt(1− Pt)

2Var(Pt+1 − Pt|Pt)
=

1

2γΣtγT
.

that is based on the drift of Pt rather than pt, as in (12). It can be motivated
that the drift backwards in time satis�es

E(Pt−1 − Pt|Pt) = O
(
N−1
eV,t−1

)
(58)

and

E
(
(Pt−1 − Pt)2|Pt

)
=
Pt(1− Pt)
2NeV,t−1

(
1 +O(N−1

eV,t−1)
)
. (59)

Indeed, by the central limit theorem, we can justify that εt|Pt−1 has an
approximately normal distribution N(0, σ2Pt−1(1 − Pt−1)) for small σ2 =
(2NeV,t−1)−1. Denoting the prior density of Pt−1 by fPt−1 , Bayes' formula
implies

f(Pt−1−Pt)/σ|Pt(y) =
g(Pt + σy)

C(σ)
exp

(
− y2

2(Pt + σy)(1− Pt − σy)

)
,

where g(x) = fPt−1(x)/(
√

2πx(1− x)) and C(σ) is a normalizing constant
assuring that f(Pt−1−Pt)/σ|Pt integrates to 1. By a Taylor series expansion
with respect to σ, it then follows that

C(σ) = C(0) +O(σ2),∫
yf(Pt−1−Pt)/σ|Pt(y)dy = O(σ),∫
y2f(Pt−1−Pt)/σ|Pt(y)dy = Pt(1− Pt)(1 +O(σ2)),
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thus motivating (58) and (59).

We then plug the lower part of (16) into (18) and obtain

Λt = Cov(B0P 0
t−1 + ε0

t |Pt)/(Pt(1− Pt))
=

(
B0Cov(P 0

t−1|Pt)(B0)T + Cov(ε0
t |Pt)

)
/(Pt(1− Pt)),

(60)

where

Cov(P 0
t−1|Pt) = E

(
Cov(P 0

t−1|Pt−1, Pt)|Pt
)

+ Cov
(
E(P 0

t−1|Pt−1, Pt)|Pt
)

= E
(
Cov(P 0

t−1|Pt−1)|Pt
)

+ Cov
(
E(P 0

t−1|Pt−1)|Pt
)

= E (Pt−1(1− Pt−1)|Pt) Λt−1

= Pt(1− Pt)(1 +O(N−1
eV,t−1))Λt−1

(61)
using conditional independence of P 0

t−1 and εt given Pt−1 in the second step,
(17) in the third step and (58)-(59) in the last step.

After some computations, it follows from (19) that

Cov
(
(εt, ε

0
t )|Pt−1

)
= Pt−1(1− Pt−1)

(
γΣt−1γ

T σTt−1

σt−1 Σ0
t−1

)
, (62)

where
σt−1 := Σt−1γ

T − (γΣt−1γ
T )1

and
Σ0
t−1 := Σt−1 − (Σt−1γ

T )1T − 1(γΣt−1) + (γΣt−1γ
T )11T . (63)

By the multivariate central limit theorem, for large populations, we can jus-
tify that (εt, ε

0
t )|Pt−1 approximately has a multivariate normal distribution,

with covariance matrix as in (62). This implies

E(ε0
t |Pt−1, εt) = σt−1εt/(γΣt−1γ

T ),

Cov(ε0
t |Pt−1, εt) = Pt−1(1− Pt−1)

(
Σ0
t−1 − σt−1σ

T
t−1/(γΣt−1γ

T )
)
,

and hence

Cov(ε0
t |Pt) = E (Cov(ε0

t |Pt−1, εt)|Pt) + Cov (E(ε0
t |Pt−1, εt)|Pt)

= E (Pt−1(1− Pt−1)|Pt)
(
Σ0
t−1 − σt−1σ

T
t−1/(γΣt−1γ

T )
)

+ σt−1σ
T
t−1Var(εt|Pt)/(γΣt−1γ

T )2

= Pt(1− Pt)
(
Σ0
t−1 − σt−1σ

T
t−1/(γΣt−1γ

T )
)

+ σt−1σ
T
t−1Pt(1− Pt)/(γΣt−1γ

T ) +O(N−1
eV,t−1)

= Pt(1− Pt)Σ0
t−1 +O(N−1

eV,t−1),
(64)
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using (58)-(59) in the third equality. Combining (60), (61) and (64), we thus
get

Λt = B0Λt−1(B0)T + Σ0
t−1 +Rt, (65)

where Rt = O(N−1
eV,t−1) is a remainder term matrix. Repeated application of

(65) gives

Λt =
∞∑
r=0

(B0)r(Σ0
t−r−1 +Rt−r)((B

0)r)T , (66)

which converges since all eigenvalues of B0 have modulus less than one.
Moreover, since |λ2| is the maximal modulus of the eigenvalues of B0, it
follows from (51), (57) and (66) that Σt → Σ and Λt → Λ, where Σ satis�es
the upper part of (22) and

Λ =
∑∞
r=0(B0)rΣ0((B0)r)T

= V
(∑∞

r=0(D0)rV −1Σ0V −T ((D0)r)T
)
V T .

(67)

In formula (67), V T refers to transposition and complex conjugation and
(54) is used in the second step. The matrix

Σ0 := Σ− (ΣγT )1T − 1(γΣ) + (γΣγT )11T

is de�ned as in (63), but without index t − 1 on the right hand side. To
summarize, we have motivated the convergence in (18) and (19).

It remains to motivate the lower part of (22) by rewriting (67) in the appro-
priate way. To this end, it will be convenient to �rst �nd a square matrix
H of order s2 such that vec(Λ) = Hvec(Σ), where vec is the vectorization
operator that transforms a square matrix of order s to a column vector of
length s2 by listing the columns of Λ from left to right. For simplicity of no-
tation we write vec(Λ)ij = Λij for component number i+ s(j − 1) of vec(Λ)
and H = (Huv,ij), so that the componentwise relation between Λ and Σ can
be written as

Λuv =
s∑

i,j=1

Huv,ijΣij. (68)

It follows from (67) and (63) that

H = H(4)H(3)H(2)H(1), (69)

where vec(Σ0) = H(1)vec(Σ), i.e.

H
(1)
uv,ij = 1{(u,v)=(i,j)} − γj1{u=i} − γi1{v=j} + γiγj, (70)
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vec(V −1XV −T ) = H(2)vec(X) and V −1 = (V
(−1)
ij ), i.e.

H
(2)
uv,ij = V

(−1)
ui V

(−1)
vj , (71)

vec
(∑∞

r=0(D0)rX((D0)r)T
)

= H(3)X, i.e.

H
(3)
uv,ij =

1{(u,v)=(i,j)}

1−D(0)
uuD

(0)
vv

(72)

in the special case when D is diagonal (otherwise H(3) gets more compli-
cated), and vec(V XV T ) = H(4)vec(X), i.e.

H
(4)
uv,ij = VuiVvj. (73)

Analogously to (68), we write G = (Guv,ij) for u ≥ v and i ≥ j, with

Λuv =
∑

1≤j≤i≤s
Guv,ijΣij. (74)

Since Σ is symmetric, we may compute the elements of G from those of H
according to

Guv,ij =

{
Huv,ij +Huv,ji, if i 6= j,
Huv,ii, if i = j.

(75)

Summarizing, the lower part of (22) is deduced from (68)-(75). 2

Motivating (20), (21) and (50). Assume that quasi equilibrium has
been attained, so that Λt and Σt can be replaced by Λ and Σ in (18) and
(19) respectively. We start by motivating (20), using the approximation
E(Y/X) ≈ E(Y )/E(X) to conclude that

N eq

eV = E(NeV,t) ≈
E (pt(1− pt))

2E (E ((pt+1 − pt)2|pt))
, (76)

where expectation is with respect to the quasi equilibrium distribution. For
the numerator of (76), we �rst condition on Pt, and notice that

E (pt(1− pt)|Pt) = Pt(1− Pt)− E ((pt − Pt)2|Pt)
= Pt(1− Pt)− E

(
((a− γ)P 0

t )
2|Pt

)
= Pt(1− Pt)

(
1− (a− γ)Λ(a− γ)T

)
,

(77)

where in the second equality we used

pt − Pt = (a− γ)P t = (a− γ)P 0
t = aP 0

t .
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Then averaging (77) with respect to Pt we get

E (pt(1− pt)) = E (E (pt(1− pt)|Pt))
= E (Pt(1− Pt))

(
1− (a− γ)Λ(a− γ)T

)
.

(78)

For the denominator of (76) we use (14) and (B − I)1 = 0 to deduce that

pt+1 = aP t+1

= aBP t + aεt+1

= pt + a(B − I)P t + aεt+1

= pt + a(B − I)P 0
t + aεt+1.

Hence

E (E ((pt+1 − pt)2|pt)) = E (E ((pt+1 − pt)2|pt, Pt))
= a(B − I)E

(
E
(
P 0
t (P

0
t )
T |pt, Pt

))
(B − I)TaT + aE

(
E
(
εt+1ε

T
t+1|pt, Pt

))
aT

= a(B − I)E
(
E
(
P 0
t (P

0
t )
T |aP 0

t = pt − Pt
))

(B − I)TaT + aE
(
E
(
εt+1ε

T
t+1|Pt

))
aT

= a(B − I)E
(
P 0
t (P

0
t )
T
)

(B − I)TaT + E (Pt(1− Pt))aΣaT

= E (Pt(1− Pt))
(
a(B − I)Λ(B − I)TaT + aΣaT

)
,

where the outer expectation is with the respect to pt and Pt under the quasi
equilibrium distribution. Taking the ratio of (78) and the last equation and
inserting into (76), we arrive at (20).

In order to verify (21), we we notice that

F eq

ST = E(FST,t) ≈
∑s
i=1 aiE ((Pti − pt)2)

E (pt(1− pt))
, (79)

using again the approximation E(Y/X) ≈ E(Y )/E(X) in the second step.
In order to further expand the right hand side of (79), we write

P t − pt1 = (I − 1a)P t = (I − 1a)P 0
t ,

which leads to

E ((Pti − pt)2) = E (E ((Pti − pt)2|Pt))
= E (Pt(1− Pt))

(
(I − 1a)Λ(I − 1a)T

)
ii
.

(80)

Inserting (78) and (80) into (79) and dividing the numerator and denominator
of (79) by E (Pt(1− Pt)), we arrive at (21).
In order to verify (50), we write

GST,t ≈
∑
lq

∑s
i=1 aiE

(
P lq
ti − p

lq
t )2

)
∑
lq E

(
plqt (1− plqt )

) =
∑
lq

ωlq

∑s
i=1 aiE

(
P lq
ti − p

lq
t )2

)
E
(
plqt (1− plqt )

) . (81)
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The approximation E(Y/X) ≈ E(Y )/E(X) is increasingly accurate the
larger L is. Indeed, as L grows, both X and Y get more concentrated around
their expected values, with coe�cients of variation inversely proportional to√
L when the loci are in linkage equilibrium. Notice that the right hand side

of (81) is written as a weighted average of terms of the same type as used for

the approximation in (79), with weights ωlq proportional to E
(
plqt (1− plqt )

)
summing to one. Applying (21) to each of these terms, we deduce (50).

In an analogous manner, the approximation in (20) for the e�ective popu-
lation size can be motivated for multiple loci and markers by �rst rewriting
(12) as

NeV =

∑
lq p

lq
t (1− plqt )∑

lq 2E
(
(plqt+1 − p

lq
t )2|plqt

) ≈ ∑
lq E

(
plqt (1− plqt )

)
∑
lq 2E

(
E
(
(plqt+1 − p

lq
t )2|plqt

)) , (82)

where in the last step we use a coe�cient of variation argument separately for
the numerator and denominator. The right hand side of (82) can be written
as a weighted average of terms identical to the right hand side of (76), which
in turn equals (20). 2

Reproduction scenario 2. We will verify (55) (and hence also (56)) sep-
arately for reproduction scenarios 2, 1 and 3. Starting with reproduction
scenario 2, we write

P ∗tki = Ptk + (P̃tk − Ptk) + (P ∗tki − P̃tk).

It follows from (9) and (24) that

εt+1,i =
s∑

k=1

bik(P̃tk − Ptk) +
s∑

k=1

bik(P
∗
tki − P̃tk).

We further have that

Var(P̃tk − Ptk|P t) = Ptk(1− Ptk)
(

1

2Nek

− 1

2Nak

)
(1 + o(1)) (83)

and

Var(P ∗tki − P̃tk|P t) =
Ptk(1− Ptk)

2Nakmki

(1 + o(1)).

From this it follows that

Σ(P t)ij =
s∑

k=1

bikbjkPtk(1−Ptk)
(

1

2Nek

− 1

2Nak

)
+ 1{i=j}

s∑
k=1

b2
ik

Ptk(1− Ptk)
2Nakmki

.
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Conditioning on Pt, taking expectation with respect to P 0
t (cf. (19)) and

using the fact that b2
ik/(2Nakmki) = bik/(2Nai), we arrive at

Σij =
(∑s

k=1 bikbjk
(

1
2Nek
− 1

2Nak

)
+

1{i=j}
2Nai

)
− ∑s

k=1 bikbjk
(

1
2Nek
− 1

2Nak

)
Λkk −

1{i=j}
2Nai

∑s
k=1 bikΛkk

= fij −
∑s
k=1 Fij,kkΛkk,

(84)

which veri�es (56) for the breeders example. 2

Reproduction scenario 1. Turning to the more general case (23), we write

εt+1,i =
s∑

k=1

bik(P
∗
tki − Ptk). (85)

Introduce Ckij = Cov(νlki, ν
l′
kj) when l 6= l′. Because of the assumed exchange-

ability of {ν lk}
2Nak
l=1 , Ckij does not depend on (l, l′). Since (3) holds exactly,

with remainder term o(1) equal to zero, the variance of the left hand side
must be zero, and this implies Ckij = −Vkij/(2Nak−1). Therefore, it follows
from (23) that

Cov(P ∗tki, P
∗
tkj|P t) =

2NakPtkVkij+2NakPtk(2NakPtk−1)Ckij

(2Nak)2mkimkj

∼ Vkij
mkimkj

Ptk(1−Ptk)
2Nak

.

Combining this with (85), we can �rst compute the conditional covariance
matrix Σ(P t), then condition on Pt and take expectation with respect to
P 0
t , as above, to deduce

Σij =
∑s
k=1 bikbjk

Vkij
mkimkj

1
2Nak

−∑s
k=1 bikbjk

Vkij
mkimkj

1
2Nak

Λkk

=
∑s
k=1

Vkijak
aiaj

1
2N
−∑s

k=1
Vkijak
aiaj

1
2N

Λkk

= fij −
∑s
k=1 Fij,kkΛkk.

(86)

We �nd that (84) and (86) agree if Vkij is chosen as in (25). 2

Reproduction scenario 3. In order to verify (56), we �rst notice from (9)
and (28) that

εt+1,i = (Pt+1,i − P̌ti) +
s∑

k=1

bik(P̃tk − Ptk) +
s∑

k=1

(Bik − bik)Ptk + rem, (87)

with rem =
∑s
k=1(Bik − bik)(P̃tk −Ptk) a remainder term that vanishes when

Nek = Nak for all k and which is otherwise asymptotically negligible when
αi →∞ as N →∞. It follows from (28) and (31) that

Var(Pt+1,i − P̌ti|P t) ∼
(BP t)i(1− (BP t)i)

2Nai
(1 + o(1)).
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and

Var (
∑s
k=1(Bik − bik)Ptk|P t) = 1

αi+1

∑s
k=1 P

2
tkbik − 1

αi+1

∑s
j,k=1 PtjPtkbijbik

= 1
αi+1

∑s
k=1 (Ptk − (BP t)i)

2 bik.

In conjunction with (83) and (87), this implies

Σ(P )ij =
1{i=j}
2Nai

(BP t)i(1− (BP t)i)

+
∑s
k=1 bikbjkPtk(1− Ptk)

(
1

2Nek
− 1

2Nak

)
+

1{i=j}
αi+1

∑s
k=1 (Ptk − (BP t)i)

2 bik.

Conditioning on Pt and taking expectation with respect to P 0
t , we obtain

Σij =
∑s
k=1 bikbjk

(
1

2Nek
− 1

2Nak

)
+

1{i=j}
2Nai

− ∑s
k=1 bikbjk

(
1

2Nek
− 1

2Nak

)
Λkk −

1{i=j}
2Nai

(BΛBT )ii

+
1{i=j}
αi+1

(∑s
k=1 bikΛkk − (BΛBT )ii

)
= fij −

∑
1≤v≤u Fij,uvΛuv

(88)

after some computations, thus verifying (56). 2

Deriving explicit expressions of Neq

eV and F eq

ST for the island model.
Since γ = a for the island model, we can apply (33) and (34), with a = 1T/s,
to deduce

N eq

eV =
1

21TΣ1/s2
(89)

and

F eq

ST =
1

s
tr(Λ). (90)

We will start by giving a more explicit expression for Λ. It follows from (38)
that Bv = (1 − m)v for any vector v with (v,1) = 0. Hence λ2 = . . . =
λs = 1 −m. In this case it is particularly convenient to put λ0

1 = 1 −m in
the de�nition of D0, since then, according to (54), B0 = (1 −m)I. It then
follows from (67) that

Λ =
∞∑
r=0

(1−m)2rΣ0 =
Σ0

1− (1−m)2
, (91)

with Σ0 as in (63). Consequently, (90) can be rewritten as

(
1− (1−m)2

)
F eq

ST =
1

s
tr(Σ0) =

1

s

(
tr(Σ)− 1

s
1TΣ1

)
. (92)

Hence, in view of (89), (90) and (92), it su�ces to �nd Σ.
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For reproduction scenario 2, formula (84) simpli�es to

Σij =
(

1
2Ne
− 1

2N/s

) (
2m−m2

s
+ (1−m)21{i=j}

)
+

1{i=j}
2N/s

−
(

1
2Ne
− 1

2N/s

) (
m2

s2
tr(Λ) + Λii+Λjj

2

(
2m
s

(1−m) + 1{i=j}(1−m)2
))

− 1{i=j}
2N/s

(
m
s
tr(Λ) + (1−m)Λii

)
(93)

for the island model, so that

2

s2
1TΣ1 =

1

sNe

(
1− 1

s
tr(Λ)

)
=

1

sNe

(1− F eq

ST ) (94)

and
1

s
tr(Σ0) =

s− 1

s

1

2Ñ
(1− F eq

ST ). (95)

Combining (89) and (94) we arrive at (39), and inserting (95) into (92) and
solving for F eq

ST we arrive at (40).

For reproduction scenario 3, a similar simpli�cation of (88) leads to

2
s2

1TΣ1 = 1
sNe
−
(

1
Ne
− 1−(1−m)2

N/s

)
1
s2
tr(Λ) +

2(1−(1−m)2)
α+1

1
s2
tr(Λ)

= 1
sNe
−
(

1
Ne
− 1−(1−m)2

N/s

)
1
s
F eq

ST +
2(1−(1−m)2)

α+1
1
s
F eq

ST .
(96)

and
1
s
tr(Σ0) = s−1

s

(
1

2Ñ
− (1−m)2

2Ne

1
s
tr(Λ) + 1−(1−m)2

α+1
1
s
tr(Λ)

)
= s−1

s

(
1

2Ñ
− (1−m)2

2Ne
F eq

ST + 1−(1−m)2

α+1
F eq

ST

)
.

(97)

Inserting (96) into (89) we arrive at (42), and plugging (97) into (92) and
solving for F eq

ST we arrive at (43). 2
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Figure 1: Plots of variance e�ective population size N eq

eV (left) and �xa-

tion index F eq

ST (right) when fertilization precedes migration for the island

model (solid), circular (dashed), linear (squares) and torus (dotted and cir-

cles) stepping stone models. Upper: The migration rate m′ in (6) is var-

ied, whereas the number of subpopulations s = 9, the total population size

N = 450, the relative subpopulation sizes ak = 1/9, local e�ective popula-

tion sizes Nek = Ne = N/9 = 50 and (for the torus model) the grid sizes are

s1 = s2 = 3. Middle: Local census size Nak = N/9 is varied, whereas s = 9,

m′ = 0.4 and Nek = Ne = 50. Lower: s is varied, whereas N = 450, m′ = 0.4

and Nek = Ne = Nak = 50. For the torus stepping stone model (circles), the

upper circles correspond to s1 = 2, . . . , 8 and s2 = 2, the middle circles to

s1 = 3, 4, 5 and s2 = 3, and the lower right circle to s1 = s2 = 4.
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Table 1: Notation used in the paper.

Symbol De�nition

s Number of subpopulations.

N Total census size.

ai Relative size of subpopulation i.

Nai Local census size of subpopulation i.

νlki Nr. of o�spring in subpopulation i of l:th gene of subpopulation k.

mki Migration rate from subpopulation k to i.

m′ Overall migration rate.

bik Backward transition probability from subpopulation i to k.

γi Equilibrium prob. of distant ancestor to come from subpop. i.

|N | Average relative size of one step neighborhood.

Nei Local e�ective size of subpopulation i.

Ne Local e�ective size of all subpopulations (if constant).

NeV,t Variance e�ective size of population in generation t.

N eq

eV Quasi equilibrium value of NeV .

FST,t Fixation index of population in generation t.

F eq

ST Quasi equilibrium value of FST .

Pti Allele frequency of subpopulation i and generation t.

pt Overall allele frequency (weights ai) in generation t.

Pt Overall allele frequency (weights γi) in generation t.

εti Random drift of allele frequency, subpopulation i and generation t.

Σ Standardized cov. matrix of random drift of allele frequencies.

Λ Standardized cov. matrix of spatial allele frequency �uctuations.
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Figure 2: Plots of N eq

eV (left) and F eq

ST (right) as functions of m′ when migra-

tion precedes fertilization with Dirichlet parameters αk = α (cf. (30)). For

all curves s = 9, N = 450, ak = 1/9 and Nek = Ne = N/9 = 50. Upper:

Plots for the island model with α = ∞ (solid), α = 100 (dashed), α = 10

(dash-dotted) and α = 1 (dotted). Lower: Plots, with α = 10, for the island

(dash-dotted) and circular stepping stone models (solid).
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Figure 3: Plots of variance and eigenvalue e�ective population sizes N eq

eV

(dots) and N eq

eE (solid lines, cf. (45)), as functions of the migration rate m′

for the circular stepping stone model. The plots are on a log-log scale and

the number of subpopulations is s = 16 (upper), s = 8 (middle) and s = 4

(lower). Fertilization precedes migration, with population size N = 50s. For

all subpopulations k, ak = 1/s and Nek = Ne = Nak = 50.
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Figure 4: Plots of 1− |λ2| as function of the migration rate m′ for a number

of models with s = 9, N = 450, ak = 1/9, Ne = Nek = N/9 = 50 and

di�erent average one step neighbourhood sizes |N |: The island model (dash-

dotted, |N | = 1), the torus stepping stone model (dotted, |N | = 1/2), the

rectangular stepping stone model (circles, |N | = 1/3), the circular stepping

stone model (solid, |N | = 1/4) and the linear stepping stone model (squares,

|N | = 2/9). For the two-dimensional (rectangular and torus) stepping stone

models s1 = s2 = 3.
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Figure 5: Plots, for the genetic reservoir model, of N eq

eV (left), F eq

ST (middle)

and relative sizes (right) a1 = . . . = as−1 for the s− 1 perimeter populations

(dotted) and as for the reservoir population (solid), when fertilization pre-

cedes migration, s = 9, N = 450 and Nek = Nak for k = 1, . . . , 9. Upper:

The reproductivities ms· and m1· = . . . = ms−1,· = 1/ms· of the reservoir

and perimeter populations are varied, whereas δ = 0.2 and γ = 0 are kept

�xed. Middle: Migration from perimeter to reservoir, 0 ≤ γ ≤ 0.8, is varied,

whereas m1· = 0.5, ms· = 2 and δ = 0.2 are kept �xed. Lower: Migration

rate between perimeter populations, 0 ≤ δ ≤ 1, is varied, whereas m1· = 0.5,

ms· = 2 and γ = 0 are kept �xed.
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