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Abstract

For populations with geographic substructure and selectively neu-

tral genetic data, the short term dynamics is a balance between migra-

tion and genetic drift. Before �xation of any allele, the system enters

into a quasi equilibrium (QE) state. Hössjer and Ryman (2012) de-

veloped a general QE methodology for computing approximations of

spatial autocorrelations between subpopulations, subpopulation di�er-

entiation (�xation indexes) and variance e�ective population sizes. In

this paper we treat a class of models with translationally invariant mi-

gration and use Fourier transforms for computing these quantities. We

show how the QE approach is related to other methods based on con-

ditional kinship coe�cients between subpopulations under mutation-

migration-drift equilibrium. We also verify that QE autocorrelations

are closely related to the expected value of Moran's autocorrelation

function and treat limits of continuous spatial location (isolation by

distance) and in�nite gitters of subpopulations. The theory is illus-

trated with several examples including island models, circular and

torus stepping stone models, von Mises models, hierarchical island

models and Gaussian models. It is well known that the �xation index

contains information about the e�ective number of migrants. The spa-

tial autocorrelations is complementary and typically reveal the type of

migration (local or global).
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quasi equilibrium, spatial autocorrelations, translationally invariant
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1 Introduction

It is often the case that genetic variables of a population exhibit geographic
variation. This can either be modeled by dividing the population into a
discrete set of subpopulations, or treating spatial location as a continuous
variable. In either case, models for the subsequent microevolution of the
population involve four sources of variation; genetic drift due to random
fertilization, migration between geographic sites, mutation and selection, see
for instance Nei (1977) or Durrett (2008).

Genetic data involves markers at a number of loci along the genome, sampled
for individuals at a number of geographic sites at di�erent points in time.
In this paper we are interested the relatively short time scales encountered
in consvervational biology (see for instance Palstra and Ruzzante, 2008, and
Hare et al., 2011). We focus on neutral genetic markers and disregard the
occurrence of new mutations. The dynamics of the system is then a balance
between genetic drift and migration. In absence of new mutations, one of
the alleles of each marker will eventually become �xed. However, before this
happens the population converges to a state of quasi equilibrium between
genetic drift and migration, as formalized by Hössjer et al. (2012) for the
island model and more generally in Hössjer and Ryman (2012).

In order to assess the nature and magnitude of genetic drift and migration,
it is customary to compute a few summary statistics from data, from which
a genetic model is �tted. This includes the e�ective population size (Wright,
1931, 1938) that quanti�es the amount of genetic drift, the �xation index
(Wright, 1951) that quanti�es the amount of spatial genetic variation, and
spatial autocorrelation functions (Sokal and Oden, 1978, Slatkin and Arter,
1991, Sokal et al., 1997, Rousset, 2001, Hardy and Vekemans, 2002).

Hössjer and Ryman (2012) derived formulas for approximations of so called
standardized genetic drift and spatial covariance matrices. This was used
in order to approximate the variance e�ective size, the �xation index and
spatial autocorrelations of the population at quasi equilibrium. In this paper,
we treat populations with spatial symmetry and translationally invariant
migration and use Fourier analysis in order to derive fast algorithms for
computing these quantities, with special attention to spatial autocorrelation.
This is of interest, for instance, in plant genetics, since the �ne-scale genetic
structure indicates the amount of inbreeding and sel�ng in the population
(Vekemans and Hardy, 2004, Zhao et al., 2009).

In more detail, the paper is organized as follows: The models of migration
and reproduction are de�ned in Section 2 and the standardized genetic drift
and spatial covariance matrices in Section 3. In particular, we show that
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the entries of the latter can be interpreted as conditional kinship coe�cients
between subpopulations. The quasi equilibrium approach is introduced in
Section 4, and in Section 5 we treat the special case of translationally invari-
ant migration. In particular, we derive explicit formulas for quasi equilibrium
approximations of the �xation index, variance e�ective size and spatial au-
tocorrelation. We also show that the latter is closely related to the expected
value of Moran's autocorrelation function. In Section 6 we consider the tradi-
tional approach based on kinship coe�cients between subpopulations under
migration-mutation-drift equilibrium. We extend this approach by allowing
the local e�ective size of each subpopulation to be di�erent from the local
census size, and we also assume that genes are drawn with replacement when
computing kinship coe�cients. When the mutation probability tends to zero,
it turns out that this methodology is similar but not identical to the quasi
equilibrium approach. In Section 7 we consider models with in�nitely many
subpopulations; either continuous spatial location (isolation by distance) or
in�nite gitters. In Section 8 we illustrate the theory for several models and
in Section 9 we present algorithms and numerical results. A summary and
discussion is provided in Section 10 and proofs are collected in the appendix.

2 Migration and Reproduction Model

Consider a population of N diploid individuals divided into a set G of s
subpopulations. For each generation t = 1, 2, . . ., these subpopulations have
sizes Nuj, j ∈ G. We will focus on a polymorphic biallelic region of DNA,
which, for simplicity, we refer to as a gene, although it is typically a Single
Nucleotide Polymorphism (SNP) or some other genetic marker. Hence there
are 2Nuj genes in subpopulation j, and Ptj is the fraction of these having
one of the two alleles. The overall frequency of this allele is

Pwt =
∑
j∈G

wjPtj,

when subpopulations are assigned non-negative weights w = (wj; j ∈ G),
with

∑
j∈G wj = 1. In particular, all genes in the population are assigned

the same weight if w equals u = (uj; j ∈ G), so that subpopulations are
weighted proportionally to their sizes. The vector

P t = (Ptj; j ∈ G)T (1)

summarizes how the allele frequency is spatially distributed over subpopula-
tions, with T the Hermitian or conjugate transpose operator.
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We assume that the migration rate from subpopulation k to j isMkj, loosely
de�ned as the expected number of o�spring genes in subpopulation j that
each subpopulation k gene passes on to the next generation. The constant
subpopulation sizes require that

uj =
∑
k∈G

ukMkj (2)

holds for all j ∈ G. This can also be formulated as u being a left eigenvector
of the migration matrixM = (Mkj)k,j∈G with eigenvalue 1. In order to study
the dynamics of P t, it is more relevant to consider the backward migration
matrix B = (Bjk) rather thanM , where

Bjk =
ukMkj

uj
(3)

is the fraction of genes of subpopulation j that originate from subpopulation k
in the previous generation. It follows from (2)-(3) thatB has row sums equal
to one, and hence it is the transition matrix of a Markov chain, assumed to be
irreducible and aperiodic with a unique stationary distribution γ = (γj; j ∈
G).

It is shown in Hössjer and Ryman (2012) that

P t+1 = BP t + εt+1

evolves as vector valued time inhomogeneous autoregressive process for a
large class of reproduction models and migration schemes, with error term
εt+1 satisfying E(εt+1|P t) = 0 for a selectively neutral allele. The exact
distributional properties of εt depends on the chosen reproduction model.

We will assume that Nej is the variance e�ective size of subpopulation j and
use one of the reproduction models considered by Hössjer et al. (2012) and
Hössjer and Ryman (2012), with fertilization preceding migration (FM). It
can be summarized as follows:

FM1 Gamete formation: In each subpopulation k, the reproduction cycle
from generation t to t + 1 starts by randomly selecting 2Nek breeding
genes without replacement from the set of all 2Nuk genes. The 2Nek

breeding genes of subpopulation k generate an in�nite gamete pool,
with equal contribution from each gene.

FM2 Fertilization: For each pair k, j of subpopulations, draw 2NukMkj

gametes binomially from gamete pool k.

FM3 Migration: The 2NukMkj genes of the previous step migrate from k
to j. This is repeated for all pairs k, j.
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3 Measures of Spatial and Temporal Allele Fre-

quency Change

The allele frequency vector can be divided into two orthogonal components,

P t = Pt1 + P 0
t , (4)

where
Pt = P γt =

∑
j∈G

γjPtj

is the global allele frequency of generation t when subpopulations are weighted
as

w = γ, (5)

and 1 = (1, . . . , 1)T is an s × 1 column vector of ones. Hence the �rst term
Pt1 of (4) gives the overall genetic drift whereas the second term P 0

t describes
spatio-temporal �uctuations of the allele frequencies around the overall mean.

The dynamics of the time series {P t}t≥1 is well characterized by the stan-
dardized genetic drift covariance matrix

Σt =
Cov(εt+1|Pt)
Pt(1− Pt)

and the standardized spatial covariance matrix

V t =
E(P 0

t (P
0
t )
T |Pt)

Pt(1− Pt)
. (6)

It turns out that V t = (Vtjk) can be characterized in terms of kinship co-
e�cients (Malécot, 1948). De�ne, for each pair j, k of subpopulations, the
kinship coe�cient ft,jk of generation t as the probability that two randomly
drawn (with replacement if j = k) genes are identical by descent (IBD). In
the same way, ft, the apriori kinship, is taken to be the probability that
two genes in generation t are IBD when drawn with replacement from the
whole population. Assuming an in�nite alleles model, it follows that IBD is
equivalent to having the same allele, i.e. being identical by state. Hence

ft,jk = PtjPtk + (1− Ptj)(1− Ptk),
ft = P 2

t + (1− Pt)2.
(7)

Yet another de�nition

f̃t,jk =
(Ptj − Pt)(Ptk − Pt)

Pt(1− Pt)
(8)
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of the kinship coe�cient between subpopulations j and k is given by Bar-
bujani (1987). The following result shows that (7) and (8) are both closely
related to Vtjk:

Proposition 1 The j, k entry of the standardized spatial covariance matrix

equals

Vtjk = E(f̃t,jk|Pt) (9)

and

Vtjk =
E(ft,jk|Pt)− ft + (1− 2Pt)E(Ptj + Ptk − 2Pt|Pt)

1− ft
(10)

respectively. In particular, if the components of P t in (1) are exchangeable,

it follows that E(P 0
t |Pt) = 0 and (10) simpli�es to

Vtjk =
E(ftjk|Pt)− ft

1− ft
. (11)

The right hand side of (11) is sometimes referred to as a conditional kinship
coe�cient (Morton, 1973, Hardy and Vekemans, 1999, Rousset, 2002), and
E(ftjk|Pt) as the average kinship coe�cient (7) between subpopulations j and
k. Even without the exchangeability condition on P t, we expect E(P 0

t |Pt)
to be close to 0, so that (10) holds approximately.

In this paper, we will mainly focus on the spatial autocorrelation function

ρwtjk = Corr(Ptj, Ptk|Pwt )
w=γ

= Corr(Ptj, Ptk|Pt)
E(P 0

t |Pt)=0
=

Vtjk√
Vtjj
√
Vtkk

(12)

between all pairs j, k of subpopulations in generation t, when local allele
frequencies are weighted according to w. It is shown by Hössjer and Ryman
(2012) that (5) weights genes proportionally to their reproductive values. We
will refer to it as the canonical weighting scheme, and it has been advocated
e.g. by Felsenstein (1971) and Waples and Yokota (2007). Whenever this
scheme is used, we will drop superscript w for any quantity that involves w.

Nei (1973) considered a distance

Dtjk = − log

 ft,jk√
ft,jj

√
ft,jj


between subpopulations j and k. It can be seen that the multilocus general-
ization of this distance is somewhat related to

D∗tjk = − log

 E(ft,jk|Pt)√
E(ft,jj|Pt)

√
E(ft,jj|Pt)

 . (13)
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The following result shows that D∗tjk is well approximated by − log (ρtjk)
whenever the apriori kinship coe�cient ft is small:

Proposition 2 Given that (11) holds, the generalized version (13) of Nei's

distance between subpopulations j and k at time t, can be written as

D∗tjk = − log

 Vtjk + ft(1− Vtjk)√
Vtjj + ft(1− Vtjj)

√
Vtkk + ft(1− Vtkk)

 ft≈0
≈ − log (ρtjk) .

(14)

Formula (14) can be veri�ed by combining the de�nition of D∗tjk in (13) with
(11). The ft ≈ 0 approximation follows from the de�nition of ρtjk on the
right hand side of (12).

The two other quantities we will study are the �xation index

FwST,t =

∑
j∈G wj(Ptj − Pwt )2

Pwt (1− Pwt )

w=γ
=

∑
j∈G γi(Ptj − Pt)2

Pt(1− Pt)
(15)

the variance e�ective size

Nw
eV,t =

Pwt (1− Pwt )

2Var(Pwt+1 − Pwt |Pwt )

w=γ
=

Pt(1− Pt)
2Var(Pt+1 − Pt|Pt)

(16)

of the population.

4 Quasi Equilibrium

Eventually, as t → ∞, one of the two alleles will become �xed in all sub-
population, unless new mutations take place. However, for large populations
the time for this to happen is large. Before �xation the system converges
to a quasi equilibrium mode at a rate that depends on the amount of mi-
gration between subpopulations. Hössjer and Ryman (2012) formulated this
mathematically, and proved in particular that conditionally on non-�xation
of both alleles, Σt and V t are well approximated, under quasi equilibrium,
by covariance matrices Σ = (Σjk) and V = (Vjk) for large populations and
small amounts of allele frequency �uctuations between subpopulations. They
also showed that Σ and V can be computed from a recursive set of equations,
whose �rst part is given by

V = BV BT + Σ̃, (17)
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where
Σ̃ = Cov(εt − (γεt)1) = (I − 1γ)Σ(I − 1γ)T , (18)

and I is the identity matrix of order s. The form of the second part of these
equations depends on the particular reproduction scheme. For FM1-FM3
they are given by

Σjk =
∑
l∈G

(
1

2Nel

− 1

2Nul

)
BjlBkl(1− Vll) +

1{j=k}
2Nuj

1−
∑
l∈G

BjlVll

 , (19)

for all j, k ∈ G.

By the symmetry of V and Σ, each matrix contains s(s + 1)/2 unknown
entries on or below the diagonal, and therefore (17)-(19) de�nes a linear
system of equations for the s(s + 1) unknowns {Vjk,Σjk; j ≥ k}, given that
the subpopulations in G are ordered in some way.

Quasi equilibrium values of the spatial autocorrelation function, �xation in-
dex and e�ective population size are de�ned as limits of the expected values
of (12), (15) and (16) as t → ∞, conditionally on that no allele gets �xed,
see Nei et al. (1977), Hössjer et al. (2011) and Hössjer and Ryman (2012).
Approximate expressions ρappr,wjk , F appr,w

ST and Nappr,w
eV for these quasi equi-

librium limits are computed from Σ and V for a selectively neutral allele.
They simplify considerably for the canonical weighting scheme (5) and equal

ρapprjk

E(P 0
t |Pt)=0
=

Vjk√
VjjVkk

, (20)

F appr

ST =
∑
j∈G

γjVjj (21)

and

Nappr

eV =
1

2γΣγT
(22)

respectively.

5 Spatially Invariant Migration

We assume that the subpopulations are located at geographic sites X =
{xj; j ∈ G} that form a group under +, with − the inverse operation. This
induces the corresponding (inverse) group operation + (−) on G through
xj+k = xj + xk (xj−k = xj − xk). Migration is invariant with respect +, i.e.
Mjk = Mj′k′ for all pairs j, k and j′, k′ such that (j′, k′) = (j + l, k + l) for
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some l ∈ G. Hence there exists a vector m = (mj; j ∈ G) with
∑
j∈Gmj = 1

such that
Mkj = mj−k (23)

for all j, k. From this it follows that (5) holds with

u = γ = 1T/s, (24)

and plugging (24) into (3) we �nd that B andM are both doubly stochastic
matrices, that is, they both have row and column sums equal to one, with

B = MT . (25)

For this reason, the migration rates Mkj will also be referred to as migration
probabilities. We will assume that the

s =
d∏
l=1

sl (26)

subpopulations are located as equispaced elements xj =
(
e2πij1/s1 , . . . , e2πijd/sd

)
of the d-dimensional torus. That is, X is a commutative (Abelian) group,
isomorphic to the direct product

G = Zs1 ⊕ . . .⊕ Zsd

of the d cyclic groups Zsl of order sl, so that each element of G can be written
as multiindex j = (j1, . . . , jd), with 0 ≤ jl ≤ sl − 1.

We will also assume that the reproduction model is spatially symmetric, with
a constant local e�ective size

Ne = Nej (27)

of all subpopulations j. It follows from (24) that the local census size

Nc = Nuj = N/s (28)

is also the same for all subpopulations. Equations (27)-(28), the translation-
ally invariant migration (23) and (25) imply that the Σ is also translationally
invariant. Indeed, (19) simpli�es to

Σjk =
(

1
2Ne
− 1

2Nc

)∑
l∈GMljMlk(1− Vll) +

1{j=k}
2Nc

(1−∑l∈GMljVll)

=
(

1
2Ne
− 1

2Nc

)∑
l∈Gmj−lmk−l(1− Vll) +

1{j=k}
2Nc

(1−∑l∈Gmj−lVll)

=
(

1
2Ne
− 1

2Nc

)∑
l∈Gm

−
l−jmk−l(1− v0) +

1{j=k}
2Nc

(1−∑l∈Gmj−lv0)

= σk−j,
(29)
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with m−j = m−j,

σj = (1− v0)
{(

1

2Ne

− 1

2Nc

)
(m− ∗m)j +

1{j=0}

2Nc

}
(30)

and m− ∗m the convolution operator between the vectors m and m− =
(m−j ). We interpret the elements of the vector σ = (σj; j ∈ G) as the
(approximate) covariance function of the spatially stationary random �eld

εt+1/
√
Pt(1− Pt), when quasi equilibrium has been attained.

In the third step of (29) we used (17), (18) and (24) to deduce that V is also
translationally invariant, i.e. there exists a vector v = (vj; j ∈ G) such that

Vjk = vk−j (31)

for all j, k. We interpret v as the (approximate) covariance function of the

spatially invariant random �eld P 0
t/
√
Pt(1− Pt) under quasi equilibrium.

The system of equations in (17) and (19) for computing Σ and V simpli�es
considerably under spatial invariance (23), (29) and (31). To this end, we
introduce the scalar product

(q, q′) =
∑
j∈G

qj q̄
′
j (32)

for column vectors q = (qj; j ∈ G)T and q′ = (q′j; j ∈ G)T , with q̄′j the
complex conjugate of q′j. For any r = (r1, . . . , rd) ∈ G we de�ne the unit
column vector qr = (qrj; j ∈ G)T with components

qrj = exp

(
2πi

d∑
l=1

rljl/sl

)
/
√
s.

As shown in the appendix, the translational migration invariance (23) implies
that {qr}r∈G forms an orthonormal system of right eigenvectors of B with

Bqr = m̂rqr, (33)

for all r ∈ G, where

m̂r =
∑
j∈G

mj exp(−2πi
d∑
l=1

rljl/sl) (34)

are the Fourier coe�cients of m. Notice that all m̂r are real when M is
symmetric and m−j = mj, although this need not generally be the case.
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Put 0 = (0, . . . , 0), and de�ne, for each j ∈ G,

Sj =
1

s

∑
r∈G\0

(
1

2Ne
− 1

2Nc

)
|m̂r|2 + 1

2Nc

1− |m̂r|2
cos

(
2π

d∑
l=1

rljl/sl

)
, (35)

so that in particular

S0 =
1

s

∑
r∈G\0

(
1

2Ne
− 1

2Nc

)
|m̂r|2 + 1

2Nc

1− |m̂r|2
,

and

Tj =
1

s

∑
r∈G

{(
1

2Ne

− 1

2Nc

)
|m̂r|2 +

1

2Nc

}
cos

(
2π

d∑
l=1

rljl/sl

)
. (36)

We then have the following result that is proved in the appendix:

Theorem 1 Consider a genetic model with reproduction scheme FM1-FM3

and spatially invariant migration (23). Then the entries of the standardized

genetic drift and spatial covariance matrices Σ and V in (29) and (31) can

be retrieved from

σj =
Tj

1 + S0

(37)

and

vj =
Sj

1 + S0

(38)

respectively, with Sj and Tj as de�ned in (35) and (36). Moreover, the ap-

proximations (21), (22) and (20) of the quasi equilibrium limits of the �xation

index, variance e�ective size and spatial autocorrelation function simplify to

F appr

ST = v0 =
S0

1 + S0

, (39)

Nappr

eV =
sNe

1− F appr

ST

(40)

and

ρapprj = ρapprk,k+j =
vj
v0

=
Sj
S0

(41)

respectively, for the canonical weights (5).
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We notice in particular that (40) agrees with the well known expression for
the �xation index derived by Wright (1951) for the in�nite island model, and
more generally by Wang and Caballero (1999, eqn. 15).

For spatially invariant migration schemes, it turns out that ρapprj in (41) is
related to a version of Moran's autocorrelation function

Itj =
s
∑
i,k∈G wjik(Pti − Pt)(Ptk − Pt)∑
i,k∈G wjik

∑
i∈G(Pti − Pt)2

. (42)

between subpopulations at distance j ∈ G in generation t (Moran, 1950,
Sokal and Oden, 1978). The weights wjik are binary entries of a connectivity
matrix W j = (wjik), such that wjik = 1 if k − i = ±j and 0 otherwise. We
denote the ratio of the expected values of the numerator and denominator in
(42) as

E(Itj|Pt)∗ =
s
∑
i,k∈G wjikE ((Pti − Pt)(Ptk − Pt)|Pt)∑
i,k∈G wjik

∑
i∈G E ((Pti − Pt)2|Pt)

. (43)

In general this quantity di�ers in from E(Itj|Pt), although the di�erence is
small when the number of terms 2s in the numerator and denominator of (42)
is large. This is even more true for multilocus generalizations of Itj, when
contributions from several subpopulations and loci are added over separately
in the numerator and denominator.

The connection between E(Itj|Pt)∗ and ρapprj can summarized as follows:

Proposition 3 The approximation (43) of E(Itj|Pt) satis�es

E(Itj|Pt)∗ =
s
∑
i,k∈G wjikVtik∑

i,k∈G wjik
∑
i∈G Vtii

. (44)

In particular, the quasi equilibrium approximation of (44), obtained by re-

placing Vtik by Vik, equals

Iapprj = ρapprj (45)

for spatially invariant migration schemes.

It is well known that autocorrelations need to be averaged over several alleles
or loci in order to remove noise from single locus biallelic autocorrelations,
see for instance Slatkin and Arter (1991). This indicates, in view of (45), that
{ρapprj ; j ∈ G} should be useful summary statistics for inferential purposes.
The same conclusion can be drawn from the simulation study of Sokal et al.
(1997).
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6 Equilibrium Between Mutation, Migration and

Drift

When each gene has a mutation probability µ > 0 per generation, it is
possible to attain equilibrium between mutation, migration and drift. This
approach was introduced by Malécot (1950, 1951), and has subsequently
been studied by several authors, see for instance Sawyer (1976) and Durrett
(2008). We extend this work and consider a scenario where the local census
and e�ective population sizes are separate entities. The reproduction model
is slightly di�erent from FM1-FM3, in that migration precedes fertilization
(MF), as follows:

MF1 Gamete formation: Same as FM1, but with a probability µ1 that each
gamete mutates.

MF2 Migration: The in�nitely sized gamete pools mix, so that after migra-
tion, gamete pool j contains exact proportions {Bjk}k∈G of the contents
of all pre-migration gamete pools k ∈ G.

MF3 Fertilization: In each subpopulation j, 2Nuj genes are drawn binomi-
ally from its in�nitely sized post-migration gamete pool j. The muta-
tion probability during fertilization for each gamete is µ2.

This reproduction scheme was introduced by Hössjer et al. (2012) and gen-
eralizes the stochastic migration scheme of Sved and Latter (1977) for the
island model, when Ne = Nc. Assuming that the mutation events in MF1 or
MF3 are independent, the probability is

µ = µ1 + µ2 − µ1µ2

for a gene to mutate at least once during the whole reproduction cycle.

It is shown in the appendix that MF1-MF3 facilitates computation of the kin-
ship coe�cient or IBD probability f eq

jk (µ) at equilibrium between two genes
sampled randomly from subpopulations j and k. We use µ as argument, since
it turns out that f eq

jk depends on µ1 and µ2 only through µ. Latter and Sved
(1981) studied the island model and required that when j = k, the two genes
are drawn with replacement from subpopulation j. We follow this approach,
since it o�ers additional �exibility and generality. We will also assume that
translational invariance holds, as in Section 5, so that

f eq

j (µ) = f eq

k,k+j(µ)
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independently of k ∈ G. The average equilibrium kinship coe�cient for two
randomly drawn genes from the whole population is

f eq(µ) = 1
s2
∑
j,k∈G f

eq

jk (µ)
= 1

s

∑
j∈G f

eq

j (µ),

and the conditional kinship coe�cient at equilibrium is

veqj (µ) =
f eq

j (µ)− f eq(µ)

1− f eq(µ)
. (46)

Hardy and Vekemans (1999) noticed the connection between veqj (µ) and mea-
sures of spatial autocorrelation. In view of (11), it is also of interest to
compare this quantity for small mutation probabilities with the quasi equi-
librium approximation vj of the standardized spatial covariance (38). The
following result shows that the two quantities are indeed closely related but
not identical:

Theorem 2 Assume a reproduction scheme MR1-MR3 and spatially invari-

ant migration, as described in Section 5. Let µ > 0 be the mutation probability

and veqj (µ) the conditional kinship coe�cient (46) under mutation-migration-

drift equilibrium for genes in subpopulations at distance j ∈ G. Then

veqj (µ) =
S̃j(µ)

1 + S̃0(µ)
, (47)

where

S̃j(µ) =
1

s
(
1− 1

2Nc

) ∑
r∈G\0

(1− µ)2
(

1
2Ne
− 1

2Nc

)
|m̂r|2 + 1

2Nc

1− (1− µ)2|m̂r|2
cos

(
2π

d∑
l=1

rljl
sl

)
.

(48)

Hence, in the limit of small migration probabilities,

lim
µ→0

veqj (µ) =
S̃j

1 + S̃0

, (49)

where

S̃j = limµ→0 S̃j(µ)

= 1

s(1− 1
2Nc

)
∑
r∈G\0

( 1
2Ne
− 1

2Nc
)|m̂r|2+ 1

2Nc

1−|m̂r|2 cos
(
2π
∑d
l=1

rljl
sl

)
.

(50)
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We notice that S̃j only di�ers from Sj by a term (1− 1/(2Nc))
−1. Therefore

the limit in (49) is very close to vj unless Nc is very small, and the two
quantities coincide when Nc = ∞. It follows from the proof of Theorem 2
in the appendix that Nc = ∞ is equivalent to drawing genes from the same
subpopulation without rather than with replacement.

We will refer to

F appr

ST = lim
µ→0

v0(µ) =
S̃0

1 + S̃0

, (51)

and

ρapprj = lim
µ→0

f eq

j (µ)− f eq(µ)

f eq

0 (µ)− f eq(µ)
=
S̃j

S̃0

(52)

as approximations of the �xation index and spatial autocorrelation function
at equilibrium, based on the mutation-migration-drift approach.

7 In�nite Number of Subpopulations

In this section will let the number of subpopulations grow by requiring that

min(s1, . . . , sd)→∞, (53)

in (26), so that s→∞. We will do this in two di�erent ways:

7.1 Isolation by distance models

Wright (1943, 1946) introduced isolation by distance models, where dis-
crete subpopulation membership is replaced by a continuous spatial location.
Many authors have since then studied such models, including for instance
Malécot (1948) and Rohlf and Schnell (1971).

We model isolation by distance by keeping the total e�ective population
Ne,tot = sNe �xed, and divide the population into an increasingly large num-
ber s of small subpopulations. In order to avoid a conditional genetic drift
covariance matrix (29)-(30) that converges to continuous white noise, we put
N =∞. For each subpopulation k, this corresponds to having an allele fre-
quency of genes that migrate from k to subpopulation j that equals the allele
frequency of gamete pool k, independently of j. From Theorem 2 we deduce
that the quasi equilibrium approach is equivalent to mutation-migration-
drift equilibrium for translationally invariant migration, when the mutation
probability µ tends to 0 and N =∞. Therefore, the formulas below are also
analogues of continuous location result of Malécot (1950), Maruyama (1972),
Nagylaki (1976), Sawyer (1977) and Barton et al. (2002) as µ→ 0.
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We rescale subpopulation membership j as y = (y1, . . . , yd), with yl = jl/sl,
and denote the corresponding locations x(y) = (e2πiy1 , . . . , e2πiyd). Hence, in
the limit

G∞ = [0, 1]d

and X = Sd, the d-dimensional torus, with S the unit sphere. The migration
probabilities of the vector m = (mj; j ∈ G) become a migration density
m = {m(y); y ∈ G∞} according to

smj → m(y) as s→∞. (54)

This implies

m̂r = lims→∞
∑
j∈Gmj exp(−2πi

∑d
l=1 rljl/sl)

=
∫
[0,1]dm(y) exp(−2πi

∑d
l=1 rlyl)dy

(55)

for all r ∈ Zd. Analogously we get from (35) and (36) that

Sj → S(y) =
1

2Ne,tot

∑
r∈Zd\0

|m̂r|2

1− |m̂r|2
cos

(
2π

d∑
l=1

rlyl

)
(56)

and

Tj → T (y) =
1

2Ne,tot

∑
r∈Zd
|m̂r|2 cos

(
2π

d∑
l=1

rlyl

)
, (57)

when jl, sl →∞ in such a way that yl = jl/sl are �xed, and N =∞.

When the number of components of εt+1/
√
Pt(1− Pt) and P 0

t/
√
Pt(1− Pt)

grow, they tend to spatially stationary random �elds with a continuous index
set and covariance functions {Σ(z, z + y) = σ(y); y, z ∈ G∞} and {V (z, z +
y) = v(y); y, z ∈ G∞} respectively, with

σ(y) =
T (y)

1 + S(0)
(58)

and

v(y) =
S(y)

1 + S(0)
. (59)

The variance e�ective size formula (40) holds as before, the �xation index
(39) is rewritten as

F appr

ST = v(0) =
S(0)

1 + S(0)
, (60)

and the spatial autocorrelation function of P 0
t/
√
Pt(1− Pt) becomes

ρappr(y) = ρappr(z, z + y) =
v(y)

v(0)
=
S(y)

S(0)
(61)

in the limit of large s.
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7.2 Fixed Local Population Size

We now keep the local e�ective and census subpopulation sizes Ne and Nc

(cf. (28)) �xed, whereas the total subpopulation size N grows, as a conse-
quence of (53). In the limit we get an in�nite d-dimensional gitter G∞ = Zd
of subpopulation indexes. We also keep the migration rates mj between sub-
populations k and k + j �xed. It is therefore reasonable to assume that the
pairwise distances between k and k + j are kept �xed when s→∞. This is
achieved in the limit by having geographical locations along a d-dimensional
gitter, i.e. xj = j and X∞ = Zd.
Given r and s, de�ne x = (x1, . . . , xd) through xl = rl/sl, and let the com-
ponents of r and s grow in such a way that those of x are kept �xed. Then

m̂r =
∑
j∈Gmj exp(−2πi

∑d
l=1 rljl/sl)

→ ∑
j∈G∞mj exp(−2πi

∑d
l=1 xljl)

= m̂(x)

as all sl →∞ according to (53), with m̂ : [0, 1]d → C the Fourier transform
of m = {mj; j ∈ G∞}. We can also view (35) and (36) as Riemann sums
that we would like to converge to integrals

Sj =
∫

[0,1]d

(
1

2Ne
− 1

2Nc

)
|m̂(x)|2 + 1

2Nc

1− |m̂(x)|2
cos

(
2π

d∑
l=1

xljl

)
dx, (62)

and

Tj =
∫

[0,1]d

((
1

2Ne

− 1

2Nc

)
|m̂(x)|2 +

1

2Nc

)
cos

(
2π

d∑
l=1

xljl

)
dx (63)

respectively. Once convergence is established, it follows that (37), (38), (39)
and (41) hold for the limiting in�nite population model, with Sj and Tj as
de�ned in (62) and (63).

In order to check convergence, let J = (J1, . . . , Jd) ∈ Zd denote a random
vector with distribution m. Since

m̂(x) = 1− 2πixE(J)T − (2π)2

2
xCov(J)xT + o(|x|2),

as the Euclidean norm |x| of x tends to zero, it follows that

|m̂(x)|2 = 1 +O(|x|2).

Hence, given any j ∈ Zd, the integral in (62) has a singularity at 0 in di-
mensions d = 1, 2, whereas the integral converges for d ≥ 3. If we formally
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compute the �xation index and autocorrelation function at quasi equilibrium
from (39) and (41), the conclusion is that F appr

ST = ρapprj = 1 for d = 1, 2 and
j ∈ Zd, whereas F appr

ST and ρapprj are both less then one for d ≥ 3.

This indicates that the spatial allele frequency �uctuations on Zd are locally
isolated for d = 1, 2, when there is less space for small distance migration to
reach out to remotely distant subpopulations. We can motive this in terms
of the mutation-migration-drift equilibrium approach of Section 6: Let τ be
the coalescence time between two randomly chosen genes. Slatkin (1991) has
shown that

f eq

j (µ) = Ej ((1− µ)2τ ) ≈ 1− 2µEj(τ),
f eq(µ) = E ((1− µ)2τ ) ≈ 1− 2µE(τ),

(64)

where Ej and E denote expectation given that the two genes are picked from
subpopulations 0 and j or randomly from the whole population respectively.
The approximations in (64) hold when the mutation probability µ is small.
Cox and Durrett (2002) have derived formulas for Ej(τ) and E(τ) for the
two-dimensional stepping stone model and reproductive scheme MR1-MR3
when Ne = Nc and s1 = s2 =

√
s → ∞. By inserting these expressions for

Ej(τ) and E(τ) into (64) and (46), it follows that F appr

ST and ρapprj in (51) and
(52) both equal 1 in the limit when µ → 0 and s → ∞ in such a way that
µs log(s) → 0. Somewhat related results for the one-dimensional stepping
stone model can be found in Durrett and Restrepo (2008).

8 Examples

Example 1 (Island model.) The island model (Wright 1943; Maruyama

1970; Latter 1973) is the simplest possible way of describing a subdivided

population. We assume a total migration probability 0 < m ≤ 1 from

any subpopulation, with equal probability m/(s − 1) of migrating to any

other subpopulation. Since migration probabilities are not dependent on the

distance between subpopulations, the island model can be incorporated into

any dimension d = 1, 2, . . ., with

mj = (1−m)1{j=0} + m
s−1

1{j 6=0}

= (1−m′)1{j=0} + m′

s
,

where m′ = ms/(s− 1). This yields

m̂r = (1−m′) +m′1{r=0}. (65)
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With the quasi equilibrium approach, we insert (65) into (35), (39) and (41)

in order to get

F appr

ST =
1

s
s−1

(1− (1−m′)2) 2Ñ + 1
(66)

for the �xation index and

ρapprj =

{
1, j = 0,

−1/(s− 1), j 6= 0,
(67)

for the spatial autocorrelation function. Here Ñ is a local population size,

de�ned as an harmonic mean

1

Ñ
=

(1−m′)2

Ne

+
1− (1−m′)2

Nc

of Ne and Nc. Formula (66) (and re�nements thereof) has also been derived

by other methods in Hössjer et al. (2011) and Hössjer and Ryman (2012).

The mutation-migration-drift approach yields a spatial autocorrelation func-

tion (52) identical to (67) and an expression

F appr

ST = 1
s
s−1

(1−(1−m′)2)2N̄ 2Nc−1
2Nc

+1

=


(1−m′)2

s
s−1

(1−(1−m′)2)2Ne+(1−m′)2 , Nc =∞,
1

s
s−1

(1−(1−m′)2)(2Nc−1)+1
, Nc = Ne,

(68)

for the �xation index. The lower part of (68) can also be interpreted as

having Nc = Ne and drawing genes from the same subpopulation without

replacement, see for instance Takahata (1983) and Takahata and Nei (1984).

The main advantage of drawing genes from the same subpopulation with

replacement is that F appr

ST does not tend to zero as m′ tends to 1. See Hössjer

et al. (2012) for a more detailed discussion on this topic within a quasi

equilibrium framework. 2

Example 2 (Stepping stone model.) Kimura (1953) proposed a class of

so called stepping stone models, where migration occurs to subpopulations in

a local neighbourhood of the present one. For a mathematical treatment of

these models, see for instance Kimura and Weiss (1964), Weiss and Kimura

(1965) and Durrett (2008).

In one dimension (d = 1), the circular stepping stone model is de�ned as

follows: Assume 0 < m ≤ 1 and 0 ≤ p ≤ 1. Migration is only possible to the
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closest neighbours, with a probability mp of migrating one step to the right

and probability m(1− p) of migrating one step to the left, so that

mj =


1−m, j = 0,

mp, j = 1,

m(1− p), j = −1,

0, otherwise

and

m̂r = (1−m) +m cos(2πr/s) + im(1− 2p) sin(2πr/s).

We will refer to p = 0.5 as the symmetric one-dimensional stepping stone

model.

In d = 2 dimensions, migration from (0, 0) in one generation is possible to a

neighbourhood

N = {(−1, 0), (0,−1), (0, 1), (1, 0)}

of four subpopulations, by moving one step, horizontally or vertically. De�ne

pj ≥ 0 for j ∈ N so that
∑
j∈N pj = 1. Then put

mj =


1−m, j = (0, 0),

mpj, j ∈ N ,
0, otherwise,

where m > 0 is the total migration probability, as before. Taking the Fourier

transform we get

m̂r = 1−m
+ m(p(−1,0) + p(1,0)) cos

(
2πr1
s1

)
+m(p(0,−1) + p(0,1)) cos

(
2πr2
s2

)
+ im(p(−1,0) − p(1,0)) sin

(
2πr1
s1

)
+ im(p(0,−1) − p(0,1)) sin

(
2πr2
s2

)
.

We refer to pj ≡ 0.25, j ∈ N , as the symmetric two-dimensional torus

stepping stone model. 2

Example 3 (von Mises models.) Starting with the one-dimensional (d =

1) case, we let 0 < m ≤ 1 refer to the total migration probability and put

pj =
exp (κ cos(2πj/s))∑s−1
k=1 exp (κ cos(2πk/s))

(69)
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for j = 1, . . . , s− 1, where κ ≥ 0, and

mj =

{
1−m, j = 0,

mpj, j 6= 0.
(70)

This migration distribution is symmetric, with κ an inverse variance parame-

ter quantifying the magnitude of jumps. We refer to it as the one-dimensional

discrete von Mises model. The two extreme choices are the island model

(κ = 0) and the symmetric one-dimensional circular stepping stone model

(κ =∞).

Let s → ∞, as described in Section 7.1. Both m and κ are kept �xed in

(69)-(70), and in order for (54) to hold we must therefore put m = 1. In the

limit we get a migration density

m(y) =
1

I0(κ)
exp (κ cos(2πy)) , 0 ≤ y ≤ 1, (71)

with I0(κ) =
∫ 1

0 exp (κ cos(2πy)) dy a modi�ed Bessel function of the �rst

kind of order 0 (cf. Section 9.6 of Abramowitz and Stegun, 1972). We refer

to (71) as the migration density of the continuous one-dimensional von Mises

model. Because of the symmetry of m(·) we deduce from (55) that

m̂r =
Ir(κ)

I0(κ)
, r ∈ Z,

where Ir(κ) =
∫ 1

0 exp(κ cos(2πy)) cos(2πry)dy is a modi�ed Bessel function

of the �rst kind of order r.

In d = 2 dimensions, we let κ1 and κ2 be non-negative dispersion parameters

and de�ne

pj =
exp (κ1 cos(2πj1/s1) + κ2 cos(2πj2/s2))∑

k∈G\(0,0) exp (κ1 cos(2πk1/s1) + κ2 cos(2πk2/s2))
, j 6= (0, 0).

We let 0 < m ≤ 1 refer to the total migration probability and put

mj =

{
1−m, j = (0, 0),

mpj, j 6= (0, 0).

The island model corresponds to κ1 = κ2 = 0 and the symmetric torus

stepping stone model to κ1 = κ2 = ∞. The continuous analogue, obtained
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by putting m = 1 and letting s → ∞, as described in Section 7.1, has a

migration density with two independent components (71), i.e.

m(y) =
1

I0(κ1)I0(κ2)
exp (κ1 cos(2πy1) + κ2 cos(2πy2)) , y ∈ [0, 1]2,

and the Fourier coe�cients

m̂r =
Ir1(κ1)Ir2(κ2)

I0(κ1)I0(κ2)
, r ∈ Z2,

are obtained from the modi�ed Bessel function of the �rst kind, as before.

2

Example 4 (Hierarchical island model.) Assume d = 2 and that all

subpopulations j = (j1, j2) can be divided into s1 groups of equal size s2,

so that j1 is the group number and j2 the subpopulation number within

group j1. The total migration probability 0 < m ≤ 1 is either within a

group, with total probability mw = pm, where 0 ≤ p ≤ 1, divided equally

mw/(s2 − 1) between subpopulations within the group, or with total proba-

bility mb = (1− p)m between groups, with each subpopulations outside the

group having the same probability mb/((s1 − 1)s2) of being reached. This

model has been treated by Carmelli and Cavalli-Sforza (1976), Sawyer and

Felsenstein (1983) and Slatkin and Voelm (1991), and the latter authors

referred to it as the hierarchical island model.

It will be convenient to introduce m′w = mws2/(s2− 1) and m′b = mbs1/(s1−
1). Then we can write

mj = (1−m)1{j=(0,0)} + mw
s2−1

1{j1=0,j2 6=0} + mb
(s1−1)s2

1{j1 6=0}

=
(
1−m− m′w

s2

)
1{j=(0,0)} +

(
m′w
s2
− m′b

s1s2

)
1{j1=0} +

m′b
s1s2

,

so that

m̂r =

(
1−m− m′w

s2

)
+

(
m′w −

m′b
s1

)
1{r2=0} +m′b1{r=(0,0)}.

2
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Example 5 (Spherically symmetric Gaussian models.) This is a con-

tinuous model with migration density

m(y) =
∑
r∈Zd

1

(2π)d/2(σ/
√

2)d
exp

(
−
∑d
l=1(yl + rl)

2

σ2

)
, y ∈ [0, 1]d,

so that jumps are taken independently in each direction of Rd according to

Gaussian distributions with mean 0 and variance σ2/2, and then wrapped

onto the d-dimensional torus. This model has been studied for d = 1, 2 by

Maruyama (1972). If two genes are located at the same point, their o�spring

in the next generation have diverged according to a dispersal density

d(y) =
∑
r∈Zd

1

(2π)d/2σd
exp

(
−
∑d
l=1(yl + rl)

2

2σ2

)
, y ∈ [0, 1]d,

with variance σ2 in each direction before projection onto [0, 1]d. In this case

m̂r = exp

(
−π2σ2

d∑
l=1

y2
l

)
.

2

9 Numerical Algorithm and Results

The numerical algorithm for computing F appr

ST , Nappr

eV and ρappr = (ρapprj ) can
be summarized as follows:

1. INPUT PARAMETERS: s = (s1, . . . , sd), m = (mj), N and Ne.

2. COMPUTE m̂ = (m̂r) as the d-dimensional discrete Fourier transform
of m.

3. COMPUTE Ŝ = (Ŝr), with

Ŝr = 1{r 6=0}
((2Ne)

−1 − (2Nc)
−1) |m̂r|2 + (2Nc)

−1

1− |m̂r|2
.

4. COMPUTE S = (Sj) as the inverse d-dimensional discrete Fourier

transform of Ŝ.

5. COMPUTE v = (vj) from (38).
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6. COMPUTE OUTPUT PARAMETERS F appr

ST , Nappr

eV and ρappr from
(39), (40) and (41).

The algorithm for the mutation-migration-drift equilibrium approach is com-
pletely analogous, replacing Sj by S̃j.

Since the properties of F appr

ST and Nappr

eV have been numerically studied in
Hössjer et al. (2012) and Hössjer and Ryman (2012), we mainly focus on
autocorrelations here. In Figure 1 we plot the autocorrelation function for
the circular stepping stone model with s = 25 subpopulations, for various
choices of m and p. In view of Proposition 3, we can use the terminology of
Slatkin and Arter (1991) and refer to these plots as averaged correlograms. It
is seen that ρapprj for each �xed j depends very little onm and p. An exception
is migration probabilities m close to 1, when ρapprj exhibits an oscillatory
behaviour as a function of j, with period 2. This is more pronounced the
closer to symmetric (p = 0.5) the migration scheme is.

Averaged correlograms are shown in Figure 2 for the one-dimensional von
Mises-model with s = 25. It is seen that j → ρapprj depends a lot on the
concentration parameter κ, but very little on m, Ne and Nc.

There are only two values of the autocorrelation function for the hierarchical
island model; the autocorrelation ρapprw between subpopulations within the
same group, and the autocorrelation ρapprb for subpopulations belonging to
di�erent groups. Figure 3 displays both of these quantities as well as the
�xation index F appr

ST for a grid of 5× 5 subpopulations. On the x-axis of each
plot is p, the probability of migrating to a subpopulation within the same
group. The within autocorrelations increase with p, whereas the between
autocorrelations decrease with p. The migration probability m a�ects the
�xation index a lot, but hardly at all the autocorrelations.

In Figure 4 we plot the �xation index and autocorrelations for di�erent lags
j for the torus stepping stone model when s1 = s2 = 5. As for the one-
dimensional stepping stone model, the autocorrelations depend very little on
m and (pj; j ∈ N ) except for large values of m, whereas the �xation index
varies quite a lot with m.

Figure 5 depicts convergence to an isolation by distance model, as described
in Section 7.1. More speci�cally, the plots illustrate how the one-dimensional
von Mises models with κ = 5 converge to its continuous analogue in that the
autocorrelations ρapprj approach ρappr(y) quite rapidly as s→∞ and j/s→ y,

Figure 6, on the other hand, illustrates the theory of Section 7.2 when d = 1,
for the symmetric circular stepping stone model. The autocorrelations ρapprj

converge to 1 when s→∞ while j is kept �xed.
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10 Discussion

In this paper we developed a general methodology for computing approxima-
tions of autocorrelations, �xation indexes and variance e�ective population
sizes under quasi equilibrium. We considered a class of population genetic
models with geographic substructure for which migration is translationally
invariant and developed a fast algorithm based on Fourier transforms. This
class of models includes, for instance, circular and torus stepping stone mod-
els, von Mises models, hierarchical island models and Gaussian models. We
also considered limits of continuous spatial location and in�nite gitters of sub-
populations. We established connections between our framework and condi-
tional kinship coe�cients on one hand and Moran's autocorrelation functions
on the other. Finally, we proved new results for kinship coe�cients between
subpopulations under mutation-migration-drift equilibrium, and showed how
they relate to the approximate quasi equilibrium formulas.

Spatial autocorrelation functions (or transformations thereof) can naturally
be estimated from data. Several authors have discussed the degree of infor-
mation contained in the autocorrelations, see for instance Slatkin and Arter
(1991), Rousset (1997, 2000) and Sokal et al. (1989, 1997). It follows from
the results of Barbujani (1997) and Hardy and Vekemans (1999), that the
�xation index and spatial correlation functions contain complementary in-
formation.

Theorem 1 is consistent with these �ndings, showing that both the �xation
index and autocorrelations are needed in order to compute all S = (Sj; j ∈
G) uniquely. This suggests that both should be used for improving estimates
of genetic model parameters. On the other hand, the conditional kinship
coe�cients contain no additional information for the class of models studied
in this paper, since

vj = F appr

ST ρapprj .

Our numerical results indicate that the autocorrelations are quite insensitive
to variations of the overall migration probability

m =
∑
j∈G\0

mj.

On the other hand, the averaged correlograms are useful in determining
whether migration is local or extends over larger regions. Our numerical
results for the one-dimensional von Mises model (cf. Figure 2) reveal that
the local behaviour of ρapprj around the origin contains substantially more in-
formation about the concentration parameter κ than does the genetic patch
size, i.e. the Euclidean distance |j| when ρapprj is close to zero.
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Several extensions of our work are possible. For instance, it is of interest
to study the quasi equilibrium behavior for di�erent settings, for instance
multilocus autocorrelation functions de�ned between individuals rather than
subpopulations (Smousse and Peakall, 1999), or local autocorrelations func-
tions (Sokal et al., 1998).
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Appendix

Proof of Proposition 1. Equation (9) follows immediately from the de�-
nition of Vtjk. In order to prove (10), we deduce from (7) that

E(ft,jk|Pt) = E(PtjPtk|Pt) + E ((1− Ptj)(1− Ptk)|Pt)
= P 2

t + (2Pt − 1)E(Ptj − Pt|Pt) + Cov(Ptj, Ptk)
+ (1− Pt)2 + (2Pt − 1)E(Ptk − Pt|Pt) + Cov(1− Ptj, 1− Ptk)
= ft + (2Pt − 1)E(Ptj + Ptk − 2Pt|Pt) + 2Cov(Ptj, Ptk)
= ft + (2Pt − 1)E(Ptj + Ptk − 2Pt|Pt) + 2Pt(1− Pt)Vtjk

and hence
Vtjk =

E(ft,jk|Pt)−ft+(1−2Pt)E(Ptj+Ptk−2Pt|Pt)
2Pt(1−Pt)

=
E(ft,jk|Pt)−ft+(1−2Pt)E(Ptj+Ptk−2Pt|Pt)

1−ft .

When {Ptj; j ∈ G} are exchangeable, E(P 0
tj|Pt) = E(Ptj −Pt|Pt) is indepen-

dent of j. Since

∑
j∈G

γjE(P 0
tj|Pt) = E

∑
j∈G

γjP
0
tj|Pt

 = E(0|Pt) = 0,

E(P 0
tj|Pt) = 0 must hold for all j, and so (11) follows from (10). 2

Rewriting (17) as an in�nite series. We can rewrite (17) as

V =
∞∑
l=0

BlΣ̃(BT )l = Q

( ∞∑
l=0

Λl
BQ

−1Σ̃Q−T (ΛT
B)l
)
QT , (72)
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where
B = QΛBQ

−1. (73)

If B is symmetric, we can choose ΛB = diag(λj; j ∈ G) to be diagonal in
(73), with the elements of G ordered so that the real-valued eigenvalues of B
appear along the diagonal in decreasing order

1 = λ0 > |λ1| ≥ . . . ≥ |λs−1| ≥ 0 (74)

with respect to their moduli. The �rst inequality in (74) is strict since B
corresponds to an irreducible Markov chain. In general, when B is not be
symmetric, we can use the Perron Frobenius Theorem (see for instance Cox
and Miller, 1965) and interpret (73) as the Jordan canonical form of the non-
negative matrix B, with ΛB an upper triangular matrix of order s with the
possibly complex valued eigenvalues along the diagonal satisfying (74), with
|λj| the modulus of the complex number λj. In any case, the leftmost column
of Q is proportional to a right eigenvector 1 of B, and the �rst row of Q−1 is
proportional to a left eigenvector γ of B, both with eigenvalue λ0 = 1. 2

Eigenvectors and eigenvalues of B, Σ and V . We �rst prove (33).
Indeed, for any multiindex k = (k1, . . . , kd) ∈ G,

(Bqr)k =
∑
j∈G Bkjqrj

=
∑
j∈GMjkqrj

=
∑
j∈Gmk−j exp

(
2πi

∑d
l=1 rljl/sl

)
/
√
s

= qrk
∑
j∈Gmk−j exp

(
2πi

∑d
l=1 rl(jl − kl)/sl

)
= m̂rqrk.

(75)

Therefore (73) holds with Q having columns qr and ΛB diagonal with eigen-
values λr = m̂r for all r ∈ G. It can be shown, analogously to (33), that

Σqr = σ̂rqr (76)

and
V qr = v̂rqr, (77)

for all r ∈ G, where σ̂r and v̂r are the Fourier coe�cients of σ and v, de�ned
analogously to (34). Since σ−j = σj and λ−j = λj, it follows that σ̂r and v̂r
are both real. 2

Proof of Theorem 1. In order to verify (38), we notice, since {qr}r∈G is an
orthonormal system of vectors with respect to the scalar product (32), that

v =
∑
r∈G

(v, qr)qr =
∑
r∈G

v̂rqr/
√
s, (78)
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and hence, taking the j:th coordinate of (78),

vj =
∑
r∈G v̂rqrj/

√
s

=
∑
r∈G v̂r exp

(
2πi

∑d
l=1 rljl/sl

)
/s

=
∑
r∈G v̂r cos

(
2π
∑d
l=1 rljl/sl

)
/s,

(79)

where in the last step we used that v is symmetric and hence all v̂r real-
valued. We may also deduce (79) directly, without using (78), since it is the
inverse discrete Fourier transform of {v̂r}.
The next step is to compute v̂r more explicitly as functions of m̂r and σ̂r.
We notice that (76) implies Σ = QΛΣQ

−1, with ΛΣ = diag(σ̂r). Since (18)
simpli�es to Σ̃ = Σ − σ̂0q0q

T
0 , we can write Σ̃ = QΛΣ̃Q

−1, with ΛΣ̃ =
diag(σ̂r1{r 6=0}). Analogously, it follows from (77) that V = QΛVQ

−1, with
ΛV = diag(v̂r). But Q

−1 = QT , since {qr} forms an orthonormal system of
eigenvectors, so that equation (72) implies

V = Q

( ∞∑
l=0

Λl
BΛΣ̃(ΛT

B)l
)
Q−1 =: QΛVQ

−1,

where ΛV = diag(v̂r) has elements

v̂r = 1{r 6=0}

∞∑
l=0

m̂l
rσ̂r

¯̂m
l
r = 1{r 6=0}

σ̂r
1− |m̂r|2

. (80)

On the other hand, taking the Fourier transform of (30) and using ̂(m− ∗m)r =
|m̂r|2, we �nd that

σ̂r = (1− v0)
{(

1

2Ne

− 1

2Nc

)
|m̂r|2 +

1

2Nc

}
(81)

for all r ∈ G. Inserting (80) and (81) into (79), we get

vj = (1− v0)Sj. (82)

In particular, inserting j = 0 in (82), it follows that v0 = S0/(1 + S0).
Resubstituting this result back into (82), we obtain (38).

In order to prove (37), we write

σj =
∑
r∈G

σ̂r cos

(
2π

d∑
l=1

rljl/sl

)
/s (83)

as the inverse discrete Fourier transform of {σ̂r}, analogously to (79), and
then insert (81) into (83) and use (38) with j = 0.
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Equation (39) follows directly from (21), (24) and (31), equation (41) from
(20) and (31). Finally, for equation (40) we make use of (5), (22), (24), (29)
and (81) to deduce that

Nappr

eV = 1/(2γΣγT )
= s2/(21Σ1T )
= s/(2

∑
j∈G σj)

= s/(2σ̂0)

= s/(2(1− F appr

ST )
{(

1
2Ne
− 1

2Nc

)
|m̂0|2 + 1

2Nc

}
)

= sNe/(1− F appr

ST ),

where in the last step we used that m̂0 =
∑
j∈Gmj = 1. 2

Proof of Proposition 3. Formula (44) follows from the de�nition of Vtik
in (6), and by rewriting (43) as

E(Itj|Pt)∗ =
s
∑
i,k∈G wjik

E((Pti−Pt)(Ptk−Pt)|Pt)
Pt(1−Pt)∑

i,k∈G wjik
∑
i∈G

E((Pti−Pt)2|Pt)
Pt(1−Pt)

.

We de�ne Iapprj by replacing Vtik and Vtii with Vik and Vii in the numerator
and denominator of (44) respectively. There are 2s terms in the numerator
of Iapprj with wjik = 1, and for all of them Vik = vj since k − i = ±j and
vj = v−j. (Unless j = −j, then the number of terms is s.) Moreover, there
are s terms in the denominator of Iapprj with Vii = v0. This yields

Iapprj =
s · 2s · vj
2s · s · v0

=
vj
v0

= ρapprj ,

thus proving (45). 2

Proof of Theorem 2. For simplicity of notation, we drop superscript eq
and argument µ, and write f eq

jk (µ) = fjk, f
eq

j (µ) = fj and f
eq(µ) = f . Let

γ1 = (1 − µ1)2, γ2 = (1 − µ2)2 and γ = γ1γ2 = (1 − µ)2 be the probabilities
that none of two genes mutates during gamete formation, fertilization and
the whole reproduction cycle respectively.

Consider two genes draw at random from subpopulations 0 and j, with re-
placement if j = 0. Following Malécot (1950), we can set up equilibrium
equations

fj = f0j

= 1{j 6=0}γ2

(∑
k 6=lB0kBjlγ1fl−k +

∑
k B0kBjk

(
γ1

2Ne
+ γ1(1− 1

2Ne
)
f0− 1

2Nc

1− 1
2Nc

))
+ 1{j=0}

{
1

2Nc
+ (1− 1

2Nc
)γ2

(∑
k 6=lB0kB0lγ1fl−k

+
∑
k B0kB0k

(
γ1

2Ne
+ γ1(1− 1

2Ne
)
f0− 1

2Nc

1− 1
2Nc

))}
(84)
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In order to motivate (84), we start with the j 6= 0 term. The probability
is γ2 that none of the two gametes in post-migration pools 0 and j mutates
during fertilization. Given this, the probability is B0kBjlγ1 that the parental
genes of the two gametes from post-migration pools 0 and j originate from
subpopulations k and l, and that none of them mutated during gamete for-
mation. If, so the probability for them to be IBD is fl−k, by the equilibrium
assumption. If k = l, the probability is γ1/(2Ne) that the two parental ga-
metes (which are di�erent since the gamete pools are in�nite) originate from
the same parental gene and that none of them mutated. The probability is
γ1(1 − 1/(2Ne)) that they originate from di�erent parental genes and that
none of them of them mutates. Given this, the probability is

f0 − 1
2Nc

1− 1
2Nc

, (85)

for the two parental genes to be IBD. The probability in (85) is the same as
the IBD probability of two genes that are drawn without replacement from
the same subpopulation.

When j = 0, both genes are drawn from the same subpopulation, the proba-
bility is 1/(2Nc) for them to be the same, and the probability is 1− 1/(2Nc)
for them to be di�erent. In the latter case we argue as above when j = 0.

A little algebra shows that

1

2Ne

+
(

1− 1

2Ne

) f0 − 1
2Nc

1− 1
2Nc

= f0 +
1

2Ne
− 1

2Nc

1− 1
2Nc

(1− f0) =: f0 + α(1− f0).

Hence we can rewrite (84) as

fj = γ
(∑

k,lB0kBjlfl−k + α(1− f0)
∑
k B0kBjk

)
+

A1{j=0}
2Nc

= γ ((m− ∗m ∗ f)j + α(1− f0)(m− ∗m)j) +
A1{j=0}

2Nc
,

(86)

with m− and m as de�ned in Section 5, f = (fj; j ∈ G), and

A = 1− γ
(
(m− ∗m ∗ f)0 + α(1− f0)(m− ∗m)0

)
.

Putting j = 0 in (86) and solving the resulting equation for A, we �nd that

f0 = (1− A) +
A

2Nc

⇔ A =
1− f0

1− 1
2Nc

. (87)
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Taking the Fourier transform of both sides of (84), solving for f̂r and using
the de�nitions of α and A, we then obtain

f̂r =
γ|m̂r|2α(1−f0)+ A

2Nc

1−γ|m̂r|2

= 1−f0
1− 1

2Nc

· γ|m̂r|
2( 1

2Ne
− 1

2Nc
)+ 1

2Nc

1−γ|m̂r|2
(88)

for all r ∈ G. We then use (87) and take the inverse Fourier transform of
(88) in order to get an explicit expression

fj =
1− f0

s(1− 1
2Nc

)

∑
r∈G

γ|m̂r|2
(

1
2Ne
− 1

2Nc

)
+ 1

2Nc

1− γ|m̂r|2
cos

(
2π

d∑
l=1

rljl
sl

)
(89)

for the equilibrium kinship coe�cient. By averaging (89) over j and using
m̂r = 1, we �nd that

f = 1
s

∑
j∈G fj

= 1−f0
s(1− 1

2Nc
)
· γ(

1
2Ne
− 1

2Nc
)+ 1

2Nc

1−γ .
(90)

When j = 0 is inserted into (89), we can �rst solve for f0 and then compute

1

1− f0

= 1 +
1

s(1− 1
2Nc

)

∑
r∈G

γ|m̂r|2
(

1
2Ne
− 1

2Nc

)
+ 1

2Nc

1− γ|m̂r|2
cos

(
2π

d∑
l=1

rljl
sl

)
.

(91)
Combining (89), (90) and (91) we arrive at

veqj (µ) = fj−f
1−f

=

1

s(1− 1
2Nc

)

∑
r∈G\0

γ|m̂r |2( 1
2Ne

− 1
2Nc )+ 1

2Nc
1−γ|m̂r |2

cos

(
2π
∑d

l=1

rljl
sl

)
1

1−f0
− 1

s(1− 1
2Nc

)
·
γ( 1

2Ne
− 1

2Nc )+ 1
2Nc

1−γ

= S̃j(µ)

1+S̃0(µ)
,

(92)

where

S̃j(µ) =
1

s(1− 1
2Nc

)

∑
r∈G\0

γ|m̂r|2
(

1
2Ne
− 1

2Nc

)
+ 1

2Nc

1− γ|m̂r|2
cos

(
2π

d∑
l=1

rljl
sl

)
.

But (92) is identical to (47). Formula (49) then follows easily by letting
µ→ 0. 2
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Figure 1: Plots of autocorrelation ρapprj versus j for the one-dimensional

(circular) stepping stone model and four di�erent migration rates m, with

s = 25, Ne = Nc = 50, p = 0.1 (asterisks), p = 0.3 (circles) and p = 0.5

(squares).

36



Figure 2: Plots of autocorrelation ρapprj versus j for the one-dimensional von

Mises model with s = 25 and four di�erent combinations of the migration

rate m, the local e�ective population size Ne and the local census population

size Nc. The concentration parameter κ equals 0 (squares = island model),

2 (asterisks), 5 (plus signs) and 50 (circles, close to circular stepping stone).
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Figure 3: Plots of �xation index F appr

ST (solid), autocorrelation ρapprw within

the same (dashed) and ρapprb between di�erent (dash-dotted) groups of sub-

populations, for the hierarchical island model, with s1 = s2 = 5 and various

combinations of m, Nc and Ne. The probability p of migrating to the same

group varies between 0 and 1. The island model corresponds to ρapprw = ρapprb

and p = (s1 − 1)/s = 4/24 = 1/6.
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Figure 4: Plots of autocorrelation ρapprj and �xation index F appr

ST (lower right)

as function of the migration rate m for a two-dimensional (torus) stepping

stone model with s1 = s2 = 5 and Ne = Nc = 50. The migration probabilities

are either symmetric (pj = 0.25 for all j ∈ {(−1, 0), (0, 1), (0,−1), (0, 1)},
solid), or non-symmetric (pj = 0.45 for j ∈ {(0, 1), (1, 0)}, pj = 0.05 for

j ∈ {(0,−1), (−1, 0)}, dash-dotted).
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Figure 5: Plots of autocorrelation ρapprj versus j/s for the one-dimensional

von Mises model when Ne,tot = sNe = 5000, Nc =∞, m = 1 and κ = 5. The

four plots correspond to s = 10 (circles), s = 20 (asterisks), s = 50 (squares)

and s = 300 (solid).
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Figure 6: Plots of autocorrelation ρapprj as function of j for the one-

dimensional (circular) stepping stone model with m = p = 0.5 and Ne =

Nc = 50. The four curves correspond to s = 10 (squares), s = 30 (asterisks),

s = 100 (plus signs), s = 300 (circles) and s = 1000 (diamonds).
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